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Abstract: Disc herniation is one of the most ubiquitous healthcare problems in modern cities—severe
patients eventually require surgical intervention. However, the existing operations—spinal fusion and
artificial disc replacement—alter the biomechanics of the spine, leaving much room for improvement.
The appropriateness of polyvinyl alcohol (PVA) for biomedical applications has been recognised
due to its high water content, excellent biocompatibility, and versatile mechanical properties. In this
study, a newly-designed PVA–bacterial cellulose (PVA-BC) composite was assembled to mimic both
the biomechanics and annular structure of natural intervertebral discs (IVDs). PVA-BC composites of
various concentrations were fabricated and tested under unconfined compression and compressive
creep in order to acquire the values of the normalised compressive stiffness and whole normalised
deformation. The normalised compressive stiffness increased considerably with an increasing PVA
concentration, spanning from 1.82 (±0.18) to 3.50 (±0.14) MPa, and the whole normalised deformation
decreased from 0.25 to 0.13. Formulations of 40% PVA provided the most accurate mimicry of natural
human IVDs in normalised whole deformation, and demonstrated higher dimensional stability. The
biocompatible results further confirmed that the materials had excellent biocompatibility. The novel
bionic structure and formulations of the PVA-BC materials mimicked the biomechanics and structure
of natural IVDs, and ensured dimensional stability under prolonged compression, reducing the
risk of impingement on the surrounding tissue. The PVA-BC composite is a promising material for
third-generation artificial IVDs with integrated construction.

Keywords: PVA-BC; intervertebral disc; biomechanics; creep; unconfined compression

1. Introduction

Disc herniation is one of the most common health problems troubling millions of
people in modern cities. It is principally caused by degenerative disease or the unexpected
injury of intervertebral discs (IVDs). For severe patients, eventual surgical interventions
are required, including spinal fusion and total disc replacement (TDR) [1,2]. Fusion, the
gold standard for treating degenerative disc disease (DDD), aims to eradicate pain by
eliminating the motion of the treated segment while restoring the height of the normal disc
with implanted instrumentation. However, complications of adjacent segment diseases and
loss of motion have urged an alternative treatment of TDR that preserves the motion of the
treated segment and decompresses using a dynamic device [3–5]. Popular devices such as
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CHARITÉ (DePuy Spine, Inc., Raynham, MA, USA), Prodisc (Synthes, Inc., West Chester,
PA, USA), and Activ (Aesculap Implant Systems, LLC, Center Valley, PA, USA) are artificial
disc prostheses that replace natural IVDs with the structure of an articulating ball-and-
socket joint. Unfortunately, they introduce the inevitable problems of friction and wear [6,7].
Moreover, in most clinical studies, the outcomes of TDR were not superior to fusion [8–12].

Several second-generation artificial discs have been proposed with more biomimetic
designs [13], including the Freedom disc (Axiomed, Cleveland, OH, USA), the Bryan disc
(Medtronic, Minneapolis, MN, USA), and the M6 artificial disc (Spinal Kinetics, Sunnyvale,
CA, USA) [14,15]. However, these devices failed to abandon the metal endplates. They may
limit the range of motion (ROM) and hamper follow-up imaging due to metal artefacts,
particularly in complicated cervical segments [16,17].

These unsatisfactory clinical results from surgical interventions are due primarily to
the unsuitable selections of structures and biomaterials of existing prostheses, altering the
biomechanics of spinal segments. With fusion and TDR, the load and motion are transmitted
by the rigid connection and the articulating contact, whereas natural IVDs are deformable
soft tissue in which the load and motion are provided by viscoelasticity [18–20]. From
the perspective of bionic optimisation, these problems may be addressed by providing a
viscoelastic “cushion” that includes axial compliance instead of rigid connection, preventing
the prosthesis from sinking in medium- and long-term clinical practice. The appropriateness
of PVA for biomedical applications has been recognised in terms of its high water content,
excellent biocompatibility, and versatile mechanical properties in the areas of artificial
cartilage [21–24] and knee meniscus [25–29]; it has demonstrated a potential use in nucleus
pulposus (NP) replacements [30–32] and TDR [33,34].

By mimicking the annular structure of natural IVDs, natural equivalent properties are
expected to be duplicated in the novel PVA-BC composite, thus help in reconstructing functions
of total discs. The natural IVD is formed by a gel-like and deformable NP surrounded
by multiple layers of concentric fibres. The NP principally consists of water (70–90% by
weight) [35–37], proteoglycan (35–65% of the dry weight of the NP) [38–40], and fine collagen
type-II fibrils (5–20% of the dry weight of the NP) [41,42]. The fine collagen fibrils provide a
three-dimensional network in which proteoglycan is trapped, resulting in an osmotic pressure
that resists compression. The annulus fibrosus (AF) consists of 15–25 concentric layers which
are 0.05–0.5 mm thick, and contains water (65–70% by weight), proteoglycan (20% of the dry
weight of the AF), and coarse collagen type I fibre bundles (50–70% of the dry weight of the
AF) [43–46]. Mechanically, type I collagen provides strength in tension, holding the NP together
and bonding to the adjacent vertebral bodies (VBs).

PVA hydrogel, as the primary matrix of the composite, may provide elastic restoring
force and viscoelastic energy dissipation [47–49], which are major functions of natural
NP, and can be infiltrated into the outer BC layers to form a double network. BC fibres
as the outer layers may mimic the function of natural AF, increasing the tensile strength
by sharing the load in the composite framework [50,51]. Furthermore, an additional
immersion in 2-acrylamido-2-methylpropane sulfonic acid (AMPS) solution may help to
provide negative charges from the sulfate groups on the AMPS molecules, endowing the
inner core an osmotic pressure that swells to bear compressive loads.

This study introduces a novel PVA-BC composite for third-generation artificial IVDs,
mimicking the structures and biomechanics of AF and NP, anatomically and functionally.
The novel design comprises a PVA-based gelatinous core that carries negative charges to
preserve swelling after being treated with AMPS and BC multilayers outside that hold the
nucleus together and provide tensile strength. The goals of the study were (1) to evaluate
the mechanical outcomes for the optimisation of the formulations of the PVA-BC composite,
and (2) to assess the cytotoxicity of the novel material for safety assurance for further
implanted use.
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2. Materials and Methods
2.1. Fabrication Process

The PVA-BC composite was fabricated following the path depicted in Figure 1A. First,
aqueous solutions of 15, 20, 25, 30, 35, and 40 wt.% PVA (PVA 124, Macklin Biochemical
Co., Ltd., Shanghai, China) were prepared. Next, the membrane of bacterial nanocellulose
(Bacterial nanocellulose membrane 32 * 26 * 0.3 cm, Qi Hong Technology, Guilin, Guangxi
Province, China) was cut into strips, then softened by boiling in 100 ◦C water for 1 h. The
BC multilayers were placed on the inner wall of the hydrothermal reactor, and the PVA
aqueous solution was poured into the middle to mimic the natural structure of IVDs. The
melt and mutual infiltration were conducted at 135 ◦C for 24 h, after which the gel was
frozen at −80 ◦C for 1 h and thawed at 4 ◦C for 2 h, which was one freeze–thaw cycle (FTC),
in order to physically crosslink the PVA.
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Figure 1. (A) Illustration of the PVA-BC composite fabrication process. (B) Formulations for the
PVA-BC composite.

The PVA-BC composite was then soaked in a solution of 60 × 10−3 M methylene
diacrylamide (MBAA), 0.5 mg mL−1 potassium persulfate (KPS), 50 × 10−3 M I2959, and
30 wt.% AMPS for 24 h, followed by radiation under UV lights for 12 min. Finally, curing
at 60 ◦C for 8 h ensured the even mechanical properties of the composite. Moreover, the
PVA-BC composite required an extra bath in 0.15 M phosphate-buffered saline (PBS) for
24 h before testing. The PVA-BC composite was finally formed with a diameter of 30 mm
and a height of 20 mm, and the average mass was 15.91 (± 0.74) g. The formulations are
presented in Figure 1B.

2.2. Material Property Characterisations

Each formulation of the PVA-BC composite underwent unconfined compression and
compressive creep tests to determine the sensitivity of the mechanical properties to those
parameters (the PVA concentration, number of FTCs, and weight of BC). The mechanical
tests were conducted at room temperature using the MTS-CMT 6104 (MTS System [China]
Co., Ltd.). During the tests, the specimen was placed between platens (Figure 2A), and the
results were recorded for comparison with natural IVD values in the published literature.

The unconfined compression was performed in the load-controlled mode at a loading
rate of 2 N/s, up to the final force of 500 N (Figure 2B), which is equal to 0.71 MPa. The
specimen was then unloaded at an unloading rate of −2 N/s.

The compressive creep provides the basic mechanical properties of the PVA-BC com-
posite because it simulates the most common loading condition of the spine: prolonged
sitting or standing [52,53]. The specimen was first preloaded with 50 N for 30 min, then
increased to 300 N at 5 N/s for 4 h (Figure 2C), which is equal to 0.425 MPa and corresponds
to a human’s bodyweight at 750 N divided by the 1765 mm2 disc area [54]. The displace-
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ment and load were recorded at 1 Hz, and the step displacement, creep displacement, and
compressive stiffness were calculated and compared with natural IVDs.
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2.3. Data Analysis

Data from the end of the preload to the point reaching 300 N in the compressive creep
tests were analysed in order to obtain the compressive stiffness. The tangent values of the
load-displacement curves from 50 to 300 N represented the compressive stiffness, and the
step displacement was defined as the change in displacement during this period. The creep
displacement was the change in the displacement at a constant load of 300 N for 4 h.

The area and height of the PVA-BC composite were used to calculate the normalised
values and eliminate the effects of geometric parameters on the above mechanical param-
eters. The normalised compressive stiffness was calculated with Equation (1), where H is
the height of specimens and A is the area of the cross-section of specimens. The normalised
creep and step displacements were calculated with Equations (2) and (3).

Normalized compressive sti f f ness = Compressive sti f f ness × H
A

(1)

Normalized creep displacement =
Creep displacement

H
(2)

Normalized step displacement =
Step displacement

H
(3)

2.4. Assessment of Cytotoxicity

For the evaluation of the cytotoxicity of the PVA-BC composite, 0.6 g material was
immersed in 3 mL solution of minimum essential medium (MEM), 10% fetal bovine serum
(FBS), and 1% antibiotics (penicillin and streptomycin) for 24 h in a 37 °C oscillator to
prepare the leach liquor. Three groups were established: the blank MEM control group,
the positive dimethyl sulfoxide (DMSO) group, and the trial group containing the leach
liquor and MEM. Next, the L-929 mouse fibroblasts were diluted to a concentration of
1.5 × 104 cell/well in a 96-well cell culture plate, and were then cultured with the three
groups of solutions for one day. On day 2, the absorbance values of the three groups,
containing six wells each, were assessed and recorded using an enzyme-labelled instrument
(iMark, Bio-Rad Laboratories Inc., Hercules, CA, USA) with a 450-nm detection filter.

2.5. Statistical Analysis

A statistical analysis was performed on the normalised compressive stiffness and the
whole normalised deformation using single-factor analysis of variance (ANOVA), where
the factor was the formulations. All of the statistical analyses were performed using IBM
SPSS Statistics 26.0 software (IBM Corporation, Armonk, NY, USA) with the statistical
significance set at p ≤ 0.05.
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3. Results
3.1. PVA-BC Composite Morphography

The nanofibres in BC (Figure 3A) and the concentric layers in natural AF (Figure 3B)
are depicted in the scanning electron microscopy (SEM) images. Moreover, the construction
of NP (Figure 3D) was mimicked by the crosslinked PVA (Figure 3C). The morphology of a
cross section of a PVA-BC specimen fabricated by this method (Figure 3E) closely mimics
the natural IVD (Figure 3F).Materials 2021, 14, x FOR PEER REVIEW 6 of 16 
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3.2. Unconfined Compression

The basic mechanical properties of the PVA-BC composite with respect to the natural
IVDs were compared for unconfined compression. Figure 4 illustrates a typical set of
stress–strain curves for porcine discs and 15–40% PVA-BC composite containing 2 g BC
after 3FTCs. The nonlinear elasticities of the PVA-BC composite and the natural discs are
revealed. The curves also feature the different paths of the initial phase of unloading and
loading (hysteresis), and the convergence to the starting point, indicating no permanent
deformation. The hysteresis can be attributed to the lag in entropic elastic recovery [55,56]
and the fluid diffusion into the hydrogel. Another characteristic is the tendency that, at
higher concentrations of PVA, the material is harder and less hysteresis lag occurs, featuring
left-shifting and closing curves [57].
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3.3. Compressive Creep

The compressive stiffness, step displacement, and creep displacement of our PVA-BC
composite were calculated (Table 1). Due to the difference between dimensions in our
tests and Jesse et al.’s study [54], the corresponding normalised values in Table 2 were
used for comparison.

Table 1. Mean (standard deviation) for measured mechanical parameter values for each PVA-
BC composite.

Specimen Compressive Stiffness
(N/mm) Step Displacement (mm) Creep Displacement (mm)

15% PVA+2 g BC (3FTCs) 64.23 (6.39) 3.925 (0.36) 1.035 (0.05)
15% PVA+4 g BC (3FTCs) 85.66 (4.96) 2.94 (0.16) 1.57 (0.25)
15% PVA+4 g BC (6FTCs) 79.90 (0.61) 3.12 (0.03) 1.96 (0.37)
20% PVA+2 g BC (3FTCs) 66.46 (10.46) 3.83 (0.64) 1.07 (0.25)
25% PVA+2 g BC (3FTCs) 67.62 (6.77) 3.76 (0.36) 0.97 (0.02)
30% PVA+2 g BC (3FTCs) 63.06 (2.01) 3.99 (0.14) 0.99 (0.12)
35% PVA+2 g BC (3FTCs) 87.52 (3.59) 2.85 (0.13) 0.82 (0.18)
40% PVA+2 g BC (3FTCs) 123.48 (4.79) 2.04 (0.08) 0.53 (0.18)
40% PVA+6 g BC (3FTCs) 117.25 (1.32) 2.15 (0.02) 0.70 (0.01)
40% PVA+6 g BC (6FTCs) 111.77 (20.15) 2.28 (0.42) 0.81 (0.16)

Values are presented as mean over (standard deviation).

Table 2. Mean (standard deviation) for normalised mechanical parameter values for each PVA-BC
composite.

Specimen Normalised Compressive
Stiffness (MPa)

Normalised Step
Displacement

Normalised Creep
Displacement

15% PVA+2 g BC (3FTCs) 1.82 (0.18) 0.20 (0.02) 0.05 (0.00)
15% PVA+4 g BC (3FTCs) 2.42 (0.14) 0.15 (0.01) 0.08 (0.01)
15% PVA+4 g BC (6FTCs) 2.26 (0.02) 0.16 (0.00) 0.10 (0.02)
20% PVA+2 g BC (3FTCs) 1.88 (0.30) 0.19 (0.03) 0.05 (0.01)
25% PVA+2 g BC (3FTCs) 1.91 (0.19) 0.19 (0.02) 0.05 (0.00)
30% PVA+2 g BC (3FTCs) 1.79 (0.06) 0.20 (0.01) 0.05 (0.01)
35% PVA+2 g BC (3FTCs) 2.48 (0.10) 0.14 (0.01) 0.04 (0.01)
40% PVA+2 g BC (3FTCs) 3.50 (0.14) 0.10 (0.00) 0.03 (0.01)
40% PVA+6 g BC (3FTCs) 3.32 (0.04) 0.11 (0.00) 0.04 (0.00)
40% PVA+6 g BC (6FTCs) 3.16 (0.57) 0.11 (0.02) 0.04 (0.01)

Values are presented as mean over (standard deviation).

The whole normalised deformation of specimens after preload is depicted in Figure 5.
The values of the whole normalised deformation of our PVA-BC composite are close to the
values of natural IVDs (0.13), which were 0.08 (±0.00) for normalised step displacement
and 0.05 (±0.00) for normalised creep displacement of human L4-L5 according to Jesse et al.
[54], indicating the appropriate selection of PVA concentration and fabrication. At higher
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PVA concentrations, less deformation occurs, which indicates the materials are “harder”.
Furthermore, the candidates for novel artificial IVD material are the three formulations at
40% PVA (p > 0.05), which closely resemble the human L4-L5 (p > 0.05).
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Figure 5. Whole normalised deformation of each PVA-BC composite under compression.

The normalised compressive stiffness of our formulations of PVA-BC composite can
be seen from Figure 6, and it differs from natural IVDs. The values of natural IVDs was 9.95
(±3.24) MPa according to Jesse et al. [54], while those of the materials are only between
1.79 and 3.50 MPa.
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There was no statistical difference between the specimens containing 2 g BC and 4 g
BC in terms of 15% PVA (p > 0.05), or between the specimens containing 2 g BC and 6 g BC
in terms of 40% PVA (p > 0.05). Furthermore, there was no statistical difference between the
specimens which underwent 3 FTCs and 6 FTCs containing 15% PVA (p > 0.05), or between
the specimens which underwent 3 FTCs and 6 FTCs containing 40% PVA (p > 0.05). Results
can be seen from Figure 7.
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Different formulations of the PVA-BC composite exhibited a wide range of normalised
compressive stiffness and whole normalised deformation values. Increasing the concentra-
tion of the PVA contributes to a higher degree of crystallinity [58,59], and increasing the
number of FTCs is associated with the coarsening of the regions of heterogeneity and the
increased consolidation of polymer chain entanglement [60]. The BC functions as AF to
provide tensile strength.

3.4. Cytotoxicity

The material containing 40% PVA combined with 6 g BC (3FTCs) was used for the
cytotoxic analysis as the representative. The absorbance values of every well are presented
in Table 3. The cell viabilities of the trial group and the positive control group were
calculated with Equation (4), where A is the absorbance.

Cell viability (%) =
A (Trial group) or A (Positive control group)

A (Blank control group)
× 100% (4)

Table 3. Absorbance and cell viability in the cytotoxicity tests.

Group Trial Group
(MEM + PVA-BC)

Blank Control
Group
(MEM)

Positive Control
Group

(MEM + DMSO)

Absorbance 0.847 (0.117) 0.826 (0.070) 0.304 (0.030)
Cell viability (%) 102.604 (14.136) - 36.839 (3.639)

Values are presented as the mean over the standard deviation.

According to the standard of ISO 10993-5:2009, a material can be considered to be
biocompatible if the value of the cell viability is higher than 70%. The cell viability of the
PVA-BC composite is 102.604 (14.136), which is confirmed to have biocompatibility.
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4. Discussion

With the higher incidence of disc herniation and the increasing complexities of the
patients’ needs, traditional fusion and TDR could not provide complete satisfactions for
the patients and doctors. An alternative prothesis based on proper selections of structures
and biomaterials could help with the reconstruction of spinal biomechanics, and it is also
the goal of this study to propose a novel PVA-BC “cushion” that mimics natural IVDs
anatomically and functionally.

The complicated multi-chip structures of the existing artificial IVDs (CHARITÉ,
Prodisc, and Activ) are problematic, requiring additional assembly by surgeons compared
with the integrated cage in fusion operations. The novel, integrated PVA-BC composite
mimics the natural structure and mechanics of the IVDs, and makes progress towards the
third generation of integrated bionic artificial IVDs.

According to our knowledge, the PVA formulations reported in studies range from
7 to 40 wt.% [61–65], and the 5% and 10% PVA were also fabricated in our study in order to
characterise the mechanical behaviours. However, after the immersion before the tests, the
5% PVA + 2 g BC (3FTCs) materials fractured circumferentially (Figure 8A) due to their
super water absorption and the retention of the low PVA gel concentration, bursting the
BC jacket. Similarly, the 10% PVA + 2 g BC (3FTCs) materials incurred bearing failure after
compression of 500 N (Figure 8B) because the BC jacket outside cannot bind the inner PVA
gel, and thus experiences a large deformation.

Debate continues regarding the duration and load of the in vitro creep tests simulating
the physiological conditions. The mechanical parameters of the PVA-BC composite were
compared primarily with the natural IVDs from Jesse et al.’s study [54]. They conducted
creep tests on animal discs within 1 h, which were 4 h in our study in order to create a
strict condition. The magnitudes of the loads are equal, both at 0.48 MPa, corresponding to
750 N human bodyweight divided by a 1560 mm2 disc area [66], and the applied load was
approximately scaled for the material area as 0.48 × A(material) (≈300 N).
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We hypothesise that the whole normalised deformation of superior formulations
should be equal to Jesse et al.’s results of 1 h, which is stricter while maintaining the same
dimensional stability after prolonged compression. The whole normalised deformation
results reveal that the three 40% PVA formulations are equal to or slightly larger than the
natural IVDs (Figure 5) (p > 0.05), illustrating their potentials as candidates for the IVD
replacement. Another parameter is the normalised compressive stiffness, while the value
varies from the 40% PVA-BC composite to natural IVDs (Figure 6) (p < 0.05). Reasons can be
attributed to the different structures of natural IVDs and the PVA-BC composite: the former
consisted of upper and lower VBs, and the sandwiched IVD (upper right in Figure 4), while
the latter only contained the PVA-BC composite, which functioned merely as the IVD. The
compressive stiffness calculated based on the sandwich structures of natural IVDs took the
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stiffness of VBs into account, resulting in a higher value compared with the pure PVA-BC
composite [67,68], and was not used as the decisive parameter for the optimal formulation.

Honestly speaking, there is still much room for improvement in terms of the com-
pressive stiffness of our PVA-BC materials toward the natural IVDs. Strengthening strate-
gies include the addition of biopolymers (e.g., polysaccharides and proteins), polymers
(e.g., Poly Acrylic Acid (PAA), Polyethylene Glycol (PEG), Polyethylene Pyrrolidone (PVP),
Polycaprolactone (PCL) and Polyacrylamide (PAAm)), nanocomposites (e.g., silicon-based,
carbon-based and metal oxide-based inorganic materials) and ions (e.g., zwitterionic poly-
mers, common ionic compounds that contain aluminum ions or iron ions), and postpro-
cessing the PVA with curing or annealing [22]. Special attention should be paid in terms of
the in situ degradability and dose-dependent cytotoxicity that the additions may bring.

The formulation containing only 40% PVA was not considered by this study, as the
addition of BC was necessary for the mimicking of the natural structure of human IVDs,
and possessed the advantage of non-degradability by human enzymes [69], which was
essential for artificial spinal prostheses in order to ensure the loading durability. Meanwhile,
it should be admitted that supplementary studies of only 40% PVA may provide evidence
for the assessment of the addition of BC for the achievement of biomechanical mimicry.

Studies on the mechanics of PVA suggest that an increased number of FTCs tends to
decrease the amount of swelling of the materials [70,71], and adding BC helps with the
tensile strengthening by sharing the load in the composite framework [50,51]. Meanwhile,
according to our observation (Figure 7), neither the higher number of FTCs nor more weight
of BC seems to have an influence on the normalised compressive stiffness. Further works
are still needed to explore the mechanisms of adding BC or increasing the number of FTCs
in the improvement of the biomechanical properties.

As for the biocompatibility results, only the material containing 40% PVA combined
with 6 g BC after 3FTCs was used for the cytotoxic analysis. Further assessment should be
conducted to explore the effects of different concentrations of PVA and BC on cell viability
and cell adhesion, and whether the developed PVA-BC composite allows the differentiation
of cells toward the neural lineage.

This study was only compared with one prior study, conducted by Jesse et al. [54].
At present, there is a lack of standardised loading protocol in terms of mechanical evalua-
tions of surgical prostheses that are followed by the whole community of biomechanics [72].
To make the results of our study more comparable, a similar testing environment and
loading magnitude were replicated merely according to Jesse’s study in order to support a
proper comparison. Further studies should be conducted with the aim of a direct compari-
son between artificial implants and natural discs using the same biomechanical tests.

In order to address the problem of fixation, the protein-based biological adhesives—containing
catechol amino acid (DOPA), phosphonate, and divalent metal ions that contribute to strong
adhesion on wet surfaces [73–75]—have been considered as bonded materials at the interfaces.
The advantage of not using metal endplates is that they do not create imaging artefacts, making
them more compatible with follow-up imaging such as MRI [15]. An additional advantage of
the integrated design is that traditional endplates could limit the ROM by impinging at a certain
angle during flexion/extension or lateral bending. Without endplates, the ROM is only limited by
the viscoelasticity of the material and the surrounding ligaments, muscles, and soft tissue, which
mimics the physiological condition of a natural IVD. This leads to a shrinkage in the structure,
which might create an instability, and there might be a risk of damaging the soft material during
the operation process. Moreover, the implanted material may suffer from fretting wear at the bone
surfaces after implantation. The risk of reduced osseous integration between the vertebrae and
the implant is another disadvantage, while some surface treatments, such as plasma etching or
hydroxyapatite coating, can be added to promote bone ingrowth [15].

Further fatigue tests are also required because the low normalised compressive stiff-
ness and large step displacement of the PVA-BC composite imply that it is softer than
the natural IVDs with comparable whole normalised deformation. Multiple reciprocat-
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ing loading could facilitate an assessment of the load failure and failure form during the
fatigue tests.

5. Conclusions

The 40% PVA combined with 2 g BC (3FTCs), 6 g BC (3FTCs), or 6 g BC (6FTCs)
formulations with the bionic structural design may have potential in the application of
TDR. The unconfined compression confirmed that the PVA-BC composite has similar
nonlinear elasticity and hysteresis to natural IVDs. The normalised compressive stiffness
and whole normalised deformation were compared with natural IVDs via compressive
creep, showing acceptable mimicry and ensuring dimensional stability. Combined with
the cell viability results, this novel bionic structure with its formulation of the PVA-BC
composite has excellent biocompatibility, making it a suitable choice as a material in third-
generation artificial IVDs that mimic the natural IVDs anatomically and mechanically.

The results of this investigation address the research gaps regarding the mechanical
properties of bionic PVA-BC composites, especially concerning human IVDs. The results
provide a solid foundation for future works in biomimetic material design and fabrication,
advancing superior applications of PVA-BC composite towards implantable spinal prosthe-
ses which are intended to restore IVD biomechanics. The novel integrated IVD design has
potential for animal trials and ultimate clinical use.
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