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ABSTRACT

This paper presents an aspect-oriented approach to dynamic
adaptation. A systematic process for defining where, when,
and how an adaptation is to be incorporated into an ap-
plication is presented. Specifically, the paper presents a
two-phase approach to dynamic adaptation, where the first
phase prepares a non-adaptive program for adaptation, and
the second phase implements the adaptation at run time.
This approach is illustrated with a distributed conferencing
application.

1. INTRODUCTION

Software is considered to be dynamically adaptive if condi-
tions in the executing environment cause new code to be in-
troduced at run time to achieve new behavior not previously
possible with the original code. In the context of self-healing
systems, dynamic adaptation may be needed to correct er-
roneous behavior, add code to implement a new security
policy, provide fault-tolerance, or improve performance. Un-
fortunately, the software development community currently
lacks design methods and tools for rigorously construct-
ing dynamically adaptive software. This paper proposes a
systematic approach for preparing an existing program for
adaptation and defining dynamic adaptations.

Extending an existing application to support dynamic ad-
aptation is complicated. Consider, as a running example, an
existing online conferencing application, where participants
may enter and leave a collaborative conferencing session,
and consider that we now want to add secure communica-
tion capabilities. Moreover, we want to be able to change the
security characteristics dynamically at run time. A major
challenge in effecting such a change is to make the exist-
ing application adapt-ready, that is, to extend the program
so that new security logic can be loaded and unloaded at
run time. Such an extension could affect many lines of code
that implement network communication. Moreover, it is dif-
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ficult to codify a priori the precise conditions under which an
adaptation should occur and what responses are appropri-
ate. For example, in order to protect a conferencing session
against eavesdroppers, an offending condition occurs when
participants from untrusted hosts attempt to communicate
during the session, and a dynamically adaptive response is
for the conferencing group members to continue their session
using encryption.

A key insight to systematically making programs adapt-
ready is recognizing that the concerns that tend to warrant
dynamic adaptation (e.g., security, QoS, fault-tolerance) are
cross-cutting in nature. This paper explores the hypothesis
that aspect-oriented programming (AOP) [11], a technique
for separating and composing cross-cutting concerns, can be
leveraged to systematically extend a non-adaptive program
into one that is adapt-ready. Specifically, AOP’s facility for
defining aspects may be used to introduce an adaptation in-
frastructure. For example, consider adding secure commu-
nication to an insecure program that communicates using
sockets. Infrastructure is needed to intercept invocations of
a send (or receive) operation and to enable processing of the
data prior to (immediately after) invoking the operation. In
this case, the adaptation infrastructure comprises wrappers
for calls to the send and receive operations, as well as code
that manages the dynamic insertion and removal of packet-
processing filters.

A second insight is to encapsulate the logic for adapting
the run time behavior of the program into an adaptation
kernel. An adaptation kernel is an engine for firing adapta-
tion rules, each of which comprises a condition under which
an adaptation should occur and an action that indicates the
appropriate adaptive response. We use aspects to weave
calls (hereafer called traps) to the adaptation kernel into
the application program, thereby completely separating the
application program from the code dealing with adaptation.

This paper describes a two-phase process that makes use
of AOP to support dynamic adaptation. First, at develop-
ment time, we use aspects and weaving to extend an exist-
ing program with adaptation infrastructure and entry points
into the adaptation kernel. At run time, the adaptation ker-
nel checks the condition of each adaptation rule to determine
if an adaptation should be performed and executes the cor-
responding actions if the condition is satisfied. Thus, the
second phase in our approach is to encode the adaptation
logic in terms of conditions and actions and to implement
these as condition and action classes, from which objects
in the adaptation kernel are allocated. Because these con-
dition and action classes can be loaded and unloaded at run
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time, the adaptation kernel itself is adaptive. We applied
our approach to a case study in which we used the AOP
language AspectJ [10] to extend a network conferencing ap-
plication into one that dynamically adapts to incorporate
new security features as needed.

The remainder of the paper is organized as follows. Sec-
tion 2 introduces the AOP-based approach to dynamic adap-
tation and gives a detailed explanation of the example con-
ferencing application. Section 3 overviews dynamic adap-
tation projects most relevant to our approach. Section 4
briefly summarizes this work and overviews future investi-
gations.

2. AOP-BASED DYNAMIC ADAPTATION

This section describes the two-phased approach to dy-
namic adaptation using AOP. The first phase, occurring at
development time, identifies points in the original program
at which adaptation may occur; it also determines what
types of supporting software (i.e., infrastructure) is needed
to enable adaptation at those points. The second phase
takes place at run time and encompasses the activities sur-
rounding the actual adaptation, including the checking of
conditions for adaptation and the insertion or removal of
code for adaptation purposes. Both phases are illustrated
by our sample conferencing application. For clarity, we be-
gin by reviewing relevant aspect-oriented development terms
and presenting the general architecture for our approach to
dynamic adaptation.

2.1 Background and motivation for AOP

In our study, we used Aspect], a compile-time, Java-
based AOP language [10]. AspectJ extends Java with three
new programming features: pointcuts, advice, and aspects.
A pointeut declaratively specifies a collection of program
statements, specifically method invocations, using regular-
expression pattern matching, which is further constrained
by type checking. For example, pointcut receive, depicted
in Figure 1, specifies the collection of calls to the receive
method on objects of class MulticastSocket. The match
is further constrained to occur only inside methods of class
ConfDisplay (line 5) because it is required that the cur-
rent object (i.e., the object pointed to by this) is of type
ConfDisplay. Moreover, the variables cd, ms, and dp are
bound to the current object, the socket object, and the ar-
guments to the receive method respectively. These bound
variables will be available for use in the code for the aspect
that weaves in new code at this pointcut. A similar pointcut
is defined for send.

Pointcuts enable the precise definition of the program
points at which dynamic adaptation may occur. A pro-
gram is made adapt-ready by extending it with new code
that (1) introduces and exploits adaptation infrastructure,
and/or (2) traps into the adaptation kernel. This extension
is performed, not by modifying the original program, here-
after called the core program, but rather by weaving in an
aspect that makes the program adapt-ready with respect to
a particular concern. Specifically, an aspect comprises code
fragments, called advice, which can be woven in and around
statements that are quantified using pointcuts. In our ap-
proach, advice comprises code that provides infrastructure
support, such as the ability to insert/remove filters, that
can then be used to perform adaptation-specific processing,
such as dynamically inserting filters to encrypt or decrypt
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pointcut receive(
ConfDisplay cd,
MulticastSocket ms,
DatagramPacket dp):
this (cd)
&& target (ms)
&& args(dp)
&& call(public *
*. .MulticastSocket.
receive(DatagramPacket)) ;
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pointcut send(
ConfClient cc,
MulticastSocket ms,
DatagramPacket dp):
this(cc)
%& target (ms)
&& args(dp)
&& call(public *
*..MulticastSocket.
send (DatagramPacket)) ;
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Figure 1: Definition of the send and receive pointcuts

packets to provide secure communication, and/or calls into
the adaptation kernel. It is these traps into the adapta-
tion kernel that cause the program to dynamically adapt.
Having developed such an aspect, we compile the core pro-
gram with AspectJ’s source-to-source compiler to produce
the adapt-ready program.

2.2 Architecture of adaptive programs

Figure 2 illustrates the architecture of adaptive programs
developed using our approach. The roundtangle encapsu-
lates the process address space for the given adapt-ready
program and its corresponding adaptation kernel. The Be-
haviorAdaptor refers to a contiguous code fragment that re-
places a method invocation M in the core program with code
that (1) pre-processes and transforms (in or in-out) data to
M; (2) postprocesses (out or in-out) data parameters and
return values from M; and (3) traps into the adaptation
kernel in order to enable dynamic adaptation. When the
program traps into the adaptation kernel, the Adaptation
Manager checks the rule base for conditions that are satis-
fied for that concern. Once a given condition is satisfied,
two possible actions can be taken. Either new code can be
loaded to add new behavior to the adapt-ready program,
or new adaptation rules (i.e., condition-action pairs) can be
added to the adaptation kernel, thereby changing the adap-
tation logic for that aspect. The stack within the adapta-
tion kernel indicates that each different adaptation concern
might give rise to a different adaptation manager and rule
base, where these two components are tightly coupled for a
given concern. The shaded boxes indicate the elements that
are not defined during development time, but may be loaded
at run time depending on the actions in the rule base.

To explore these ideas, we extended a non-adaptive con-
ferencing application with support for secure communica-
tion. The original (non-adaptive) application allows a user
to join and leave a conferencing group and to send textual
information to other online users in the same group. The
application was built using multicast sockets (i.e., the Java
class MulticastSocket) to communicate over the network.
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In the remainder of this section, we use this example to de-
scribe the main steps of our proposed methodology.

2.3 Phase I: Making a program adapt-ready

To make a core program into one that is adapt-ready,
the designer must develop BehaviorAdaptors that extend
the core program with adaptation infrastructure and traps
into the adaptation kernel. These BehaviorAdaptors are en-
capsulated into an aspect that is then woven into the core
program. In the conferencing application, the adaptation in-
frastructure comprises packet-filtering logic that is wrapped
around network operations, specifically invocations of send

and/or receive methods on objects of class MulticastSocket.

BehaviorAdaptors wrap these invocations with code that
redirects any outgoing data through a sequence of datagram
filters, each of which is an active object that consumes data-
gram packets in order to produce new datagram packets. A
similar filtering process is applied to incoming data.

Figure 3 illustrates the structure of our conference applica-
tion after it has been extended with this filtering infrastruc-
ture. Whereas in the core code, the conferencing application
(Conf in the figure) interacts directly with MulticastSocket
objects, the adapt-ready Conf interacts instead with a se-
quence of filters, hereafter referred to as a filter chain. Fil-
ter chains encapsulate one or more datagram filters that
are arranged in sequence and that eventually communicate
directly with a MulticastSocket object. We designed the
filter-chain infrastructure to allow datagram filters to be in-
serted and removed dynamically from these sequences as
execution conditions change. Each pair of filters is inter-
posed with a FilterBuffer object (depicted by circles in
Figure 3), which enables each filter to run in its own thread
and also simplifies the dynamic replacement of a running
filter. Example filters might add forward error correction or
encryption capability.

Figure 4 depicts a portion of the FilterChainController
aspect, which transforms a program that interacts directly
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with multicast sockets into one that interacts with filter
chains. Lines 6-11 introduce the filter chains that are de-
picted in Figure 3 as private data members of the core classes
ConfClient and ConfDisplay (which are classes used by
Conf). After weaving this aspect into the core code, objects
of class ConfClient (respectively ConfDisplay) will contain
a new attribute called filterChain that the original de-
signer of these core classes never imagined needing. Addi-
tionally, both core classes (ConfDisplay and ConfClient)
are extended with the operation getFilterChain() (not
shown in figure) that returns a reference to these filterChain
attributes.

The advice in Figure 4 is executed around each invoca-
tion that matches the receive pointcut. This advice means
that each invocation of receive on a multicast socket object
in the core code is effectively replaced with the line:

cd.getFilterChain().receive(ms, dp);

This BehaviorAdaptor statement retrieves a reference to the
receiver filter chain (using the getFilterChain operation in-
troduced by the aspect) and then invokes the receive method
on this object. Each call to receive(ms,dp) on the filter-
chain object returns a packet that has passed through all of
the filters in the chain (e.g., one of the packets produced by
filter R1 in Figure 3).

Using aspects and weaving, we are able to extend a core
program with code that introduces and exploits adaptation
infrastructure (in this case filter chains and datagram fil-
ters). In addition, an aspect can weave in traps into the
adaptation kernel. In our study, we placed these traps in the
filter-chain code, as opposed to the aspect, in order to allow
multiple filters to be inserted depending on the environment
conditions for different adaptation concerns. Regardless of
how the traps are introduced, a program cannot adapt dy-
namically without them. For clarity, we use aspects, such
as FilterChainController, to weave in infrastructure sup-
port for dynamic adaptations for different concerns, such
as security and QoS. In the next section, we describe how
adapt-ready code traps into the adaptation kernel and how
this kernel accomplishes dynamic adaptation.

‘ Conf ‘

? ¥

‘ Filter S1 ‘ ‘ Filter R1 ‘
‘ Filter S2 ‘ ‘ Filter R2 ‘

? :

MulticastSocket

MulticastSocket

Network

Figure 3: Architecture of Dynamically Adapted
Conferencing Application

2.4 Phase Il: Achieving Dynamic Adaptation



public aspect FilterChainController {
//
// filter-chain objects that trap to
// AdaptationManager
//
private SenderFilterChain edu.msu.cse.
sens.conf.ConfClient.filterChain
= null;
private RecverFilterChain edu.msu.cse.
sens.conf.ConfDisplay.filterChain
= null;
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around( ConfDisplay cd,
MulticastSocket ms,
DatagramPacket dp)
:receive(cd, ms, dp)
{ cd.getFilterChain() .receive(ms,dp); }
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Figure 4: Elided Aspect Code

Dynamic adaptation is achieved via the adaptation ker-
nel, which is a loose federation of concern-specific adapta-
tion managers that are explicitly invoked to check execu-
tion conditions and perform (concern-specific) adaptations
as appropriate. To help clarify the role of an adaptation
manager, consider the scenario where a developer wants to
add a rule for dynamic adaptation for our running example.
Two major steps need to be performed: (1) develop an ac-
tion class that describes how an encryption filter should be
inserted into a filter chain; (2) develop a rule that describes
the conditions under which the adaptive action should take
place and create an adaptation action class that describes
how the action class (from the first step) should be loaded
(e.g., following a URL pointer, loading a file from a direc-
tory, etc.). Therefore, an adaptation action class, using the
context, implements the dynamic adaptation, and an action
class contains the code that is actually dynamically loaded
(e.g., encryption filter insertion). The adaptation manager
then monitors the conditions for the rules and performs the
corresponding actions according to the specifications in the
adaptation action class. It suffices to understand the oper-
ation of one adaptation manager; thus we shall concentrate
on the structure and operation of a concern-specific adapta-
tion manager, EncryptionAM.

Figure 5 depicts the high-level structure of an adapta-
tion manager. The abstract class AdaptationManager main-
tains a collection of 0 or more rule schemas, which collec-
tively play the role of the rule base in Figure 2. Briefly,
a rule schema is an object that encapsulates an encoding
(usually a string) of an adaptation condition and an encod-
ing (again typically a string) of an adaptation action class,
which when loaded and instantiated can be performed to ac-
complish a dynamic adaptation. For example, one security
feature that we implemented monitors the packets received
during a conference to detect communication with insecure
hosts. This detection is encoded as a condition in an in-
stance of ConditionSpecificRS that matches the IP address
of an incoming packet against a pattern of secure hosts. If
the address does not match (i.e., the condition is satisfied),
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the adaptive action, coded as a subclass of Action, called
InsertDESFilters (not shown due to space constraints) is
to begin encrypted communication by adding a DESEncoder
filter to the sender filter-chain and a DESDecoder filter to
the receiver filter-chain. This InsertDESFilters action, i.e.,
the instantiation and subsequent insertion of filters into the
filter-chains, is performed by running the handle method of
an EncryptionAction object, whose class is a subclass of
ConcernSpecificAction. Therefore, action objects are in-
stantiated as required from adaptation action classes that
are represented (usually as a string) inside a rule schema
object.

Class AdaptationManager provides a method called evaluate

that systematically iterates through each of these rule schemas
to check conditions and perform actions. When we speak of
traps into the adaptation kernel, we mean the invocation
of the evaluate operation on a given adaptation manager.
The evaluate operation is implemented using the template
method pattern, which means it is a concrete method that
invokes abstract hook operations, which are defined in de-
rived classes [8]. As the figure illustrates, a concern-specific
adaptation manager derives from AdaptationManager and
provides methods for hook operations that set the context
(setCondContext) and perform the necessary processing to
carry out the action (performAction, such as follow a URL
to an address that contains new code to be inserted).

At development time, we developed an aspect (Filter-
ChainController) that transforms a program that inter-
acts with sockets into one that interacts with filter chains,
thereby enabling the insertion of filters for secure network in-
teraction. This aspect definition contains adaptation infras-
tructure code, such as filter insertion methods, and may also
contain traps into the adaptation kernel for FilterChain-
Controller!. At compile time, we wove this aspect defi-
nition into the core program to yield an adapt-ready pro-
gram containing BehaviorAdaptors replacing the original
MulticastSocket send and receive with respective calls
in filter chains.

Finally, at run time, the adapt-ready program is instan-
tiated and initialized to yield a dynamically adaptive pro-
cess (denoted by the roundtangle). Depending on the con-
ditions and actions in the adaptation kernel, numerous ex-
ecutable processes are possible, as depicted by the multiple
arrows emanating from the run time roundtangle. Each Be-
haviorAdaptor in the running program uses a filter-chain
object to “trap” to the concern-specific adaptation man-
ager to determine which adaptation rules have been satisfied
and which corresponding adaptation actions should be per-
formed. In this particular example, the RecverFilterChain
object traps to the EncryptionAM when a message has been
received in order to determine if any of the encryption-
based rules have been satisfied. If the message has been
received from an unacceptable host, then DESEncoderFilter
and DESDecodeFilter are dynamically inserted into the re-
spective filter-chain sequences. In this manner, an insecure
conferencing application is transformed into a dynamically
adaptive, more secure application. Moreover, the dynamic
adaptation code is encapsulated into a separate part of the
program, making the conferencing application easier to de-
velop and maintain.

!Though, as explained earlier, we chose to place these traps
inside the code for the filter-chain classes for this particular
concern.
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3. RELATED WORK

For clarity and discussion purposes, we have identified
three broad categories for adaptation, all centered around
the different types of relationships between the original pro-
gram and the adaptations.

The first category, termed Static-Adapt, refers to the ap-
proaches where the actual executable code does not change
throughout the lifetime of a process: Several approaches
yield programs with the Static-Adapt property. For example,
approaches to dynamic adaptation based on programming-
language extensions (e.g., Adve et al. [1] for C++ and Java
and Mezini et al. [13] for Java) fall into the Static- Adapt cate-
gory almost by default. In addition, the adaptive-component
architecture of Chen, Hiltunen, and Schlicting [6] falls into
the Static-Adapt category, as do Aksit’s composition filters [4].
While all of these approaches are adaptive, they do not in-
volve the loading or unloading of code at run time in ways
that were not known at development time.

Another useful category of adaptive programs, termed
Trace-Adapt, are those that add, modify, or remove code at
run time (via loading or unloading classes) but that never
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modify or remove the original program statements, thereby
providing traceability back to the original program. The ap-
proach presented in Section 2 yields programs that satisfy
the Trace-Adapt property, as we disallow unloading any of
the application’s original classes. The Hadas project [3],
which is closely related to ours, also falls into the Trace-
Adapt category. A Hadas component comprises two sections,
the fized and the extensible. The extensible section contains
the mutable portion of the components and can be changed
according to the run-time environment, and the fixed sec-
tion corresponds to the original program. Welch [15], on the
other hand, uses user-defined dynamic Java-class loaders, in
order to dynamically adapt a class with new code. However,
these adaptations are always additive, which means that the
original program is preserved. Other projects achieve adapt-
ability via computational reflection [12], which is a technique
that requires meta-level language support to enable a pro-
gram to observe the behavior of itself during execution. It is
interesting to note, however, that most of these approaches
(e.g., Kasten et al. [9], Blair et al. [5], David et al. [7]) use
reflection in such a way that the resulting programs still



satisfy the Trace-Adapt property.

Beyond the realm of adaptive programs that preserve the
original source code, we can consider approaches such as
the Kava [16] bytecode rewriting system, Akkawi’s Dynamic
Weaver Framework [2], and Iguana [14], a reflection-based
system to associate new behavior with existing methods in
the application. These systems are designed to modify the
original program, thus we call them Full-Adapt. Once the
elements of the original program are modified or removed,
verification and validation tasks for the adapted program
become less defined, since we lose traceability to the original
program and its requirements.

Depending on how much a prior: knowledge a developer
has about changes in the environment and the level of flexi-
bility needed to change an application’s functionality to re-
spond to those changes, different types of adaptation might
be warranted.

While other approaches [7, 14] have used an AOP ap-
proach to dynamic adaptation, both use aspects to only
define the pointcuts for adaptation, and use reflection to
achieve the dynamic adaptation, where [7] falls into the
Static-Adapt and [14] falls into the Full-Adapt category. In
contrast, we are able to use aspects to encapsulate all code
related to achieving an adaptation, and the run-time con-
figurable adaptation kernel is used to manage the dynamic
adaptations.

4. CONCLUSIONS

The aspect-oriented approach to dynamic adaptation that
we presented provides a technique to fully separate the ap-
plication code from the dynamic adaptation concern. Fur-
thermore, the adaptation kernel not only supports run time
changes to a program’s functionality that differs from that
of the core program, but it also supports the dynamic adap-
tation of the adaptation kernel itself. Currently, we have
two major limitations with this approach. First, adapta-
tion is centered around the pointcut definitions included in
the aspect specification. Because our aspects were at a low-
level, i.e., multicast send/receive, we were able to support
multiple adaptation managers for a given aspect, ranging
from security to QoS since all of them involved some type
of communication between objects that could be affected by
inserting filters. A second (related) limitation is the lack of
a generic aspect definition, thus requiring a given pointcut
to be tied closely with a class of adaptations. We are in-
vestigating generic adaptation aspect definitions to address
limitations to the current approach. Future work will also
explore developing more fine-grained formal property speci-
fications of dynamic adaptation. Finally, we have discussed
only adaptation related to security, but the proposed meth-
ods can be used to support self-healing and adaptation in
other cross-cutting concerns.
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