
An Aspect-Oriented Framework for Service
Adaptation

Woralak Kongdenfha1, Régis Saint-Paul1,
Boualem Benatallah1, and Fabio Casati2

1 SCSE, University of New South Wales, Sydney, NSW, 2052, Australia
{woralakk, regiss, boualem}@cse.unsw.edu.au

2 DIT, University of Trento, Via Sommarive 14, I-38050 POVO (TN), Italy
casati@dit.unitn.it

Abstract. Web services are emerging technologies for integrating het-
erogeneous applications. In application integration, the internal services
are interconnected with other external resources to form a virtual en-
terprise. This puts new requirements on the standardization in terms of
external specification, i.e., a combination of service interfaces and busi-
ness protocols, that interconnected services have to obey. However, pre-
viously developed service implementations do not always conform to the
standard and require adjustment.

In this paper, we characterize the problem of aligning internal service
implementation to a standardized external specification. We propose an
Aspect oriented framework as a solution to provide support for service
adaptation. In particular, the framework consists of i) a taxonomy of
the different possible types of mismatch between external specification
and service implementation, ii) a repository of aspect-based templates
to automate the task of handling mismatches, and iii) a tool to support
template instantiation and their execution together with the service im-
plementation.

1 Introduction

The essence of service-oriented computing (SOC) lies in the creation of loosely
coupled, reusable components that can be invoked and composed by clients. In a
successful SOC environment, a service may invoke several other services as part
of its execution, and may in turn be invoked by several clients. The creation of
such modular components and of the infrastructure for their secure and reliable
invocation is a challenging endeavor that is being tackled by scores of companies
and researchers through novel technologies, methodologies, and standards.

The realization of SOC raises the need for methodologies and tools to manage
service adaptation. Service adaptation refers to the problem of modifying a ser-
vice so that it can correctly interact with another service, overcoming functional
and non-functional mismatches and incompatibilities.

There are two main situations in which adaptation is needed, both likely
to be fairly common in SOC. In a first scenario, the ACME company offers

A. Dan and W. Lamersdorf (Eds.): ICSOC 2006, LNCS 4294, pp. 15–26, 2006.
c© Springer-Verlag Berlin Heidelberg 2006

16 W. Kongdenfha et al.

a service that implements some business process (e.g., a quotation and ordering
process). As part of exposing a service to clients, the company also provides
the external specifications of the service, that is, the description of the service
interface (typically in WSDL), the business protocol supported by the service
(i.e., the order in which the interface methods can be invoked), and possibly other
non-functional attributes. The external specifications are used at development
time to write clients that can correctly interact with a service, and at run time
by the middleware that supports service selection and interoperability. In some
cases, external specifications are mandated by standardization consortia (such
as RosettaNet), that define how services in a certain industry sector should
behave. Such standardization is important as it simplifies interoperability and
promotes competition (if many services support the same external specifications,
it is technically easy for clients to switch between providers based on economical
convenience). If ACME wants many customers to use its Web service, then it
has to make its Web service as interoperable as possible. This implies the need of
being compliant with a variety of different external specification requirements,
provided by different standardization consortia or different customers. Hence,
while the service functionality remains to a large extent the same, a service
needs to adapt to different external specifications. As the number of services
provided by ACME grows, and as the number of customers grows, managing
adaptation quickly becomes a daunting effort.

In a second scenario, ACME runs (composite) services which are themselves
implemented by invoking other services, possibly offered by third parties. It is
not infrequent to have many ACME services invoke a same third-party service,
e.g., a payment service offered by a financial institution. Hence, a version change
of the external service would have a deep impact on the collection of composite
services, possibly preventing some or all of them from performing their task. In
this case, some or all of the composite services need to be adapted to interact
with the new version of the invoked service. Again, as scale increases, so does
the complexity of the adaptation management effort.

This paper presents a framework and a tool for managing service adaptation.
We argue that, to simplify adaptation, it is important to separate the adaptation
logic from the business logic. Such separation helps to avoid the need of develop-
ing and maintaining several versions of a service implementation and isolates the
adaptation logic in a single place. We further argue that adaptation can be seen
as a cross-cutting concern, i.e., it is, from the developer and project architecture
point of view, transversal to the other functional concerns of the service. This is
particularly evident in the second scenario above: if the invoked service changes
the interface or protocol, then all the composite services invoking it will have
to undergo analogous changes to interact with the new version of the invoked
service. Consistently with this vision, we propose the use of an aspect-oriented
programming (AOP) approach to weave adaptation solutions into the different
composite services that need to be modified. To the best of our knowledge, this
is the first work to identify service adaptation as a cross-cutting concern and to
propose an aspect oriented approach to tackle it.

An Aspect-Oriented Framework for Service Adaptation 17

In a nutshell, the proposed approach works as follows. First, we provide a
taxonomy of mismatches that can occur between two services. We specifically
focus on service interfaces and protocols, the two most commonly used parts of
external specifications. The reasoning behind having a taxonomy of mismatches
is because we argue that similar mismatches can be addressed with similar mod-
ifications to the service implementation. Then, for each mismatch, we provide
a template that embodies the AOP approach to adaptation. Specifically, the
template contains a set of <pointcut, advice> pairs that define where the adap-
tation logic is to be applied, and what this logic is. As a very simple example,
if the base service changed the signature of an operation, the pointcuts will be
the activities in the composite services where the operation is invoked, and the
adaptation logic consists in modifying the invoked message so that it can be
made compatible with the new interface. In our approach, pointcuts are spec-
ified as queries over business process execution, that is, over the execution of
composite services. In this paper, and in the tool we developed, we assume that
services are implemented in BPEL, though the concepts are independent of the
specific language adopted. The advices are therefore also specified in BPEL, as
snippets that modify the behavior of the services at the specified pointcuts. In
fact, since, as we will see, adaptation needs arise from the conjunction of a given
service composition and a particular client interaction, weaving adaptation code
at runtime is more suited than static weaving done at the code level as it allows
for query expressed on particular execution contexts.

Finally, we present the development and runtime tools we have implemented to
support aspect-oriented adaptation. All of the above ingredients of the solution
correspond to contributions of this paper, with the exception of the identification
of the mismatch taxonomy, which is part of our earlier work [3].

2 Service Mismatches

We illustrate an instance of service adaptation problem as it occurs in the first
scenario discussed in the introduction through a supply chain example. Figure 1
shows a model of the interactions that take place in a supply chain process. This
model is expressed using the Business Process Modeling Notation [15], which is a
high-level equivalent of BPEL [11]. In this supply chain process, the client follows
a standardized External Specification (ES) which specifies a protocol that allows
the client to performs operations in one of the two sequences, namely S1 (top
part of the client flow) or S2 (bottom part of the client flow).

In this example, the implementation of the Business Process (BP) (bottom
part of the figure), differs from the target ES, and therefore is incompatible with
the client, in several respects:

(a) Signature mismatch: The BP allows a client to order products through an op-
eration named OrderProduct that requires an input parameter named order

whose type is ProductOrderInfo. The ES specifies the same functionality via
the SubmitOrder operation with the same input parameter but the data type
is OrderDetail.

18 W. Kongdenfha et al.

Fig. 1. A Supply Chain Example showing the Differences between an ES and a BP

(b) Ordering Mismatch: After an order has been submitted, the BP requires the
client to send a makePayment message, while the ES specifies that the client
has also the possibility of using selectFreeItem. This possibility can create
an ordering mismatch when the client choses to follow the execution path
S2 of the ES.

To be able to interact with clients of this supply chain community, the external
behavior of this BP has to be modified so that it complies with the community’s
ES. At the same time, since the BP might participate in some other companies’
workflow and interact with various internal partners, we have to make sure that
any modification will not prejudice those interactions.

Mismatch Types. In our previous work [3], we identified a taxonomy of pos-
sible mismatches at the interface and protocol levels. To make this paper self-
contained, we briefly introduce the mismatch types, in addition to the signature
and ordering mismatches above, as follows:

– Parameter constraint: Two services have different constraints on an input
parameter, where the value range of the ES parameter is not a subset of the
BP parameter, therefore values sent by the client are not accepted by the
BP. For output parameters, mismatch occurs when value range of the BP
parameter is not a subset of the ES parameter.

– Extra message: The BP issues a message that is not specified in the ES.
– Missing message: The BP does not issue a message specified in the ES.

An Aspect-Oriented Framework for Service Adaptation 19

– Message split: The ES specifies a single message to achieve a functionality,
while the BP requires several messages for the same functionality.

– Message merge: The ES specifies several messages to achieve a functionality,
while the BP requires only one message for the same functionality.

3 Aspect Oriented Service Adaptation

To address mismatches such as the ones mentioned above, we introduce adapta-
tion templates. An example of template for the ordering mismatch is presented
in Figure 2. In the following we detail this template structure: we first introduce
joinpoint queries and discuss the alternatives and rationale for their design. We
then present the advices and, finally, we show how the ordering template, as well
as an other example of template corresponding to the signature mismatch, are
applied to perform adaptation.

Ordering Template

Query Generic Adaptation Advice

query(<operation>,<sequence>) OrderingPart1() {
executes before receive Receive msgObp

i ;

when Obp
j = <operation> AND Si = <sequence> Assign msgOtmp

i ←− msgObp
i ; }

query(<operation>,<sequence>) OrderingPart2() {
executes before receive Assign msgObp

i ←− msgOtmp
i ;

when Obp
i = <operation> AND Sj = <sequence> Reply msgObp

i ; }

Fig. 2. Template corresponding to the ordering mismatch

3.1 Joinpoints

The key part in the aspect-oriented approach to adaptation lies in understanding
the requirements for the joinpoint query language. To this end, we first observe
that the need of adaptation advice is determined not only by the BPEL code, but
also by the actual messages received from the client, and in general by runtime
service execution data. For instance, the ordering mismatch (b) of Figure 1 only
happens when the interaction path follows sequence S

′

2. In this situation, it is
the client choice of using one particular interaction pattern among the possible
ones (i.e. sending SubmitSurvey after sending the login message) that triggers
the adaptation need.

In general, aspect oriented programming can be done using various approaches
for query language. A first approach consists in tailoring the query language for
the identification, within the BPEL code, of locations where advices should be in-
serted. This limits the query expressiveness to conditions on the BPEL code only.
As observed above, adaptation advice execution is also conditionedby runtime con-
text, i.e. by how the service is actually used by a client or how it executes. Using
a query language that focuses on the identification of code location would force us

20 W. Kongdenfha et al.

to include, as part of the advice, some code to evaluate those runtime conditions.
A second approach consists in directly expressing, in the query language, not only
code location but also runtime conditions. This approach has been preferred since
it groups together all advice execution conditions in the query and frees the advice
code from any runtime condition evaluations. The net result is a more readable
code and advices that are more generic.

Note that we are discussing here the query language syntax, not the actual
deployment of the solution. Choosing a query language that incorporates run-
time conditions still allows for aspect weaving done either at compile-time or
at runtime. At compile-time, a new BPEL code would be generated with ad-
vices weaved preceded by runtime conditions. In a runtime deployment model,
a specially modified query engine evaluates execution conditions based on the
execution context it maintains, leaving the original code unmodified. While both
deployment models are viable, the first one (compile-time) imposes to incorpo-
rate in the BPEL code some additional logic, not part of advices, that is needed
to maintain execution context informations (e.g. the interaction pattern used by
the client). In this paper, we therefore chose the second (runtime) deployment
model which, in addition to its greater simplicity, also allows to dynamically
plug and unplug adaptation aspects. The special runtime environment needed
for this deployment model is presented in section 4.

Intuitively, we expect the query language to be able to perform i) identification
of operations with (or without) a certain signature (this is to handle interface-
level mismatches), and ii) identification of paths that are or are not present in
a protocol, that is the query language must be able to discriminate between the
various execution paths that lead to or follow this activity (this is to handle
protocol-level mismatches). Due to space limitations we only present here the
intuition rather than the detailed analysis which is based on the mismatch types
discussed earlier. In both cases, what is done is the identification of a BPEL ac-
tivity where adaptation is needed, e.g., the activity where a signature mismatch
occurs, or the first activity of a sequence that does not have any correspondence
at the protocol level in the client. In addition, we need the language to be able
to define the location of the joinpoint, i.e. whether the advice is to be performed
before, after or around (i.e. in place of) the BPEL activity.

In addition, the query needs to be able to handle runtime conditions, and to
this end it can take parameters that are matched against execution context at
the time of query evaluation. Parameters are given by the user and correspond
to BPEL construct or operations sequences. For example, in the first query of
Figure 2, parameters corresponding to the ordering mismatch above would be
<operation>=makePayment and <sequence>=S

′

2. This query will be evaluated
by the runtime environment before each receive activity, as indicated by the
executes statement, and the two variables Obp

j and Si are valued according to
the current operation and the sequence of operations that lead to the receive
activity under consideration.

Figure 3 presents, in a semi-formal way, the syntax for a query specification
language that satisfies the above requirements. This query language shares some

An Aspect-Oriented Framework for Service Adaptation 21

common characteristics with query languages that operate at the code level such
as BPQL[2]. The main differences are that i) conditions on BP executions can
be expressed and ii) the language also incorporates the location of the advice
relative to the joinpoint (i.e. the before, after or around keywords). As explained
above, those modifications are needed to achieve a self contained query language
able to express all the conditions for advice execution. Examples of queries are
given in Figure 2 and in Figure 5.

<query> ::= query([<param>[,<param>]*])

executes <location> <activity>

when <condition>

<param> ::= id[;id]*

<location> ::= before|after |around

<activity> ::= receive|reply|invoke

<condition> ::= <pred>[AND<pred>]

<pred> ::= <context object>=<param> |<context object>!=<param>

<context object> ::= partnerLink |portType|operation|inputParameter

|outputParameter |type|executionPath

Fig. 3. Semi-formal syntax for query language

Finally, we observe that mismatches of different types may occur at the same
point in a process. In this case, many queries may need to be evaluated. We
have prioritized the query evaluation based on the mismatch types. For exam-
ple, signature mismatches need to be addressed before a message is stored and
forwarded to the BP by an ordering template.

3.2 Advices

An advice corresponds to the code that is executed when its associated query
conditions are satisfied. We call this code generic since it requires parameters
that are specific to an adaptation situation. We choose BPEL as a language
to express template advices for consistency with the original BPEL service im-
plementation, although any other languages commonly used to implement web
services could be a choice. Moreover, the activities required for adapting business
processes, such as receiving messages, storing messages, transforming message
data, and invoking service operations, are very well modeled by BPEL.

As an example, consider the ordering template (Figure 2). Figure 4 presents
how this template behaves at runtime: upon receiving a message, the runtime
environment triggers the execution of the OrderingPart1 if this message is not
desired at this stage of the BP execution, i.e. if message selectFreeItemIn is
received. When executed, the OrderingPart1 advice assigns the selectFreeItemIn

into a temporary variable, i.e. freeItemTmp for later use. When the message
selectFreeItemIn is required by the BP, the orderingPart2 advice copies its value
from the freeItemTmp variable and forwards it to the BP. Note that for the sake of
clarity, we omitted the acknowledgment of the selectFreeItemIn message in this

22 W. Kongdenfha et al.

Fig. 4. Sample Usage of the Ordering Template

mismatch template. In a situation where the client requires an acknowledgment,
the adaptation logic will be more complex. We refer the reader to [3] where this
situation is discussed.

As another example, consider the template to address the signature mismatch,
given in Figure 5. It also consists of two adaptation advices: SignaturePart1
and SignaturePart2. The SignaturePart1 first intercepts an incoming message
msgOes of an operation Oes specified by the ES, then transforms the data type
typees of a message parameter into typebp required by the BP, and finally sends
the resulted message msgObp to the BP. Similar actions are specified in the
SignaturePart2 to solve mismatch for the outgoing messages of the BP.

Due to space limitations, it is not possible here to present the full set of
templates, but the general method described above can easily be applied in the
other mismatch situations.

4 Template Usage and Tool Support

The generic mismatch handling procedures encapsulated in templates allows for
i) generation of the adaptation logic, and ii) integration of the generated adapta-
tion logic into the business process. All the developer has left to do is to identify
the mismatches and instantiate their corresponding templates. For example, once
a signature mismatch has been identified between two services, the user retrieves
the corresponding template and provides parameters for the queries and advices
of SignturePart1 and SignaturePart2. Both queries of this template take a data

An Aspect-Oriented Framework for Service Adaptation 23

Signature Template

Query Generic Adaptation Advice

query(<inputType>) SignaturePart1(<Ti>) {
executes before receive Receive msgOes ;

when typebp= <inputType> Assign msgObp.inParabp.typebp

←− <Ti>(msgOes.inParaes.typees);

Reply msgObp; }
query(<outputType>) SignaturePart2(<To>) {
executes before reply Receive msgObp ;

when typebp = <outputType> Assign msgOes.outParaes.typees

←− <To>(msgObp.outParabp.typebp);

Reply msgOes; }

Fig. 5. Template corresponding to the signature mismatch

type as input and express that their corresponding advices should be executed
for each receive (resp. reply) of the BP that involves a message parameter of
that type. In addition, SignaturePart1 and Signaturepart2 advices each takes
a Transformation Function (denoted < Ti > and < To >) that is responsible
of actually transforming the data types of the message parameters. One of the
benefits of using those precise templates is that the developer’s task is limited
to the identification of the mismatch (i.e. checking the compatibility of the data
models as used in the BP and as specified by the ES) and, when those types do
not correspond, to write the mapping between them. For mapping authoring,
third party tools (e.g. Biztalk) already provide efficient schema matching func-
tionality. In our implementation, we used XQuery[4] functions to perform those
transformations, though other languages can be used.

The developer is assisted in this task by a tool that we have developed. The
tool consists of a development and runtime environment.

Development Environment. The development environment assists the de-
veloper in instantiating the adaptation templates. To this end, the user has to
provide the parameters for queries and advices. As discussed in section 3.1, the
query parameters correspond to BPEL construct identifiers (i.e. their names as
found in the BPEL source). The user has to look through the process specifi-
cation which could be large in its size. We intend to provide a query support
that allows the user to query over process specifications and give parameters
to template queries. On the other hand, advice parameters are transformation
functions that can be authored using third party softwares.

Once both the query and advice parameters are provided, the Development
Environment generates two outputs: the Aspect Definition Document and a col-
lection of adaptation advices. An example of the Aspect Definition Document
is shown below. It is an XML file that consists of a set of mismatch elements,
each specifying a template and its corresponding parameters. Used together, the
Aspect Definition Document and Adaptation Advices (template instances with

24 W. Kongdenfha et al.

their query and advice parameters) allow the Runtime Environment, discussed
in the next section, to adapt the BP in compliance with the ES.

<aspect>
<mismatch template="Signature">
<advice name="SignaturePart1" location="before" activity="receive">

<queryParameter name="inputType" value="ProductOrderInfo"/>
<adviceParameter name="Ti" value"TransformProductOrderInfo"/> </advice>

<advice name="SignaturePart2" location="before" activity="reply">
<queryParameter name="outputType" value"OrderConfirmation"/>
<adviceParameter name="To" value"TransformOrderConfirmation"/> </advice>

</mismatch> ... </aspect>

Runtime Environment. The Runtime is implemented on top of the
ActiveBPEL engine [1], and enables the dynamic weaving of adaptation ad-
vices with the business process. Similar extensions can be considered for other
types of business process implementation (e.g. J2EE). During process execution,
the runtime environment uses query information in the Aspect Definition Doc-
ument to identify if an adaptation advice needs to be executed, based on the
current execution context. If it is the case, the adaptation advice, which is also
specified in the Aspect Definition document, is loaded and executed according
to its definition. After the completion of the adaptation advice execution, Ac-
tiveBPEL continues to process the BPEL instance. Interestingly, this extension
has itself been implemented using an aspect weaved with the ActiveBPEL code
using AspectJ.

The runtime environment supports the inclusion of multiple adaptations for
the same BP. To make this possible, each adaptation aspect is associated with a
specific virtual URL. When the BP is first invoked by a client, the URL is used
to determine which adaptation aspect (i.e. which Aspect Definition document)
should be used. Hence, the same business process can be adapted to different ESs.

5 Related Work

In the software engineering area, few approaches exist for analyzing and solv-
ing software component mismatches. [9] proposes an algorithm to identify mis-
matches between different versions of architectural models and generates an edit
script to solve those mismatches. This approach can be extended to identify mis-
matches between business protocols. Several efforts recognize the importance of
protocol specification in component-based models [5,12,17]. They provide models
for component interface specifications (based on formal approaches e.g. process
algebra) and algorithms (e.g. compatibility checking) that can be used for web
service protocol specification and analysis.

In the context of web services, [13] proposed a technique called chain of
adapters, that satisfies their identified requirements, to manage different versions
of services. In our previous work [3], we argued that mismatches between service
interfaces and protocols are recurring, hence we complemented the adapter ap-
proach by providing a taxonomy of mismatches. [8] also supports this argument
and provides visual operators for adaptations. However, in our previous work,
we made no contribution on the actual implementation of the adaptation logic

An Aspect-Oriented Framework for Service Adaptation 25

and how to integrate them with the service implementation. In this paper, we
design, for each mismatch, an aspect based template that consists of a collection
of adaptation logic expressed in BPEL, and query to support weaving of the
adaptation logic with the business process.

A large amount of work has been done in the area of AOP, however they
mostly address non-functional concerns of software [10]. We focus on previous
work that applies AOP to the adaptation problem. [14] proposes an aspect ori-
ented platform to support adaptation of services according to changes in the
environment, while we focus on the adaptation of processes to be compatible
with external specifications. In addition, their focus on services implemented in
Java prompts them to identify joinpoints on methods and field accesses rather
than BPEL activities as in our framework. Work of [6,7] also supports aspect ori-
ented adaptation of BPEL processes according to changes in the environment.
They use XPath to identify pointcuts which restrict to queries on individual
process execution events. Our query on execution paths differentiate our frame-
work from this previous work. Another work that also focuses on adaptation for
compatibility is presented in [16]. They propose a framework for transforming
XML messages where pointcuts are defined on document contents using XPath.
We differ from this work in terms of the mismatch taxonomy and our focus on
business protocol mismatches.

6 Conclusion

In this paper we proposed the use of AOP for service adaptation to interface and
protocol mismatches. We have argued for adaptation as a cross-cutting concern
and for the separation of business and adaptation logic. This modularization
facilitates the maintenance of the BP when the target ES evolves since only the
adaptation logic needs to be changed. A further benefit of our framework consists
in the precise input parameters required from the user that can be built from
third party tools or supported by a graphical interface. The notion of template
also promotes reusability of adaptation logic that occurs repetitively across dif-
ferent locations in an implementation of a service. In this paper, we exemplified
the application of our framework into the first scenario discussed in the intro-
duction where adaptation needs to be performed at the level of individual web
services. The benefits become even greater when considering situations where
adaptation needs to be performed across several composite services since, in this
case, considering adaptation as a cross cutting concern becomes critical.

We have developed a proof-of-concept implementation of the proposed frame-
work. In particular, we have implemented the Runtime Environment that takes
an Aspect Definition Document and Adaptation Advices as inputs to adapt a
business process in accordance to an external specification. Our experience with
the framework has been primarily example driven. For the Development Environ-
ment, we have provided a GUI support for the instantiation of adaptation advices.

In the current framework, users have to look at the protocol definition and
the BP model to identify the mismatches and provide query parameters. When

26 W. Kongdenfha et al.

the model grows large, this task can become significant. In the future, we plan to
extend the Development Environment to offer a semi-automated identification
of mismatches and a graphical interface that allows the user to create queries
over process specifications and navigate through the results in order to identify
query parameters.

References

1. ActiveBPEL Engine 2.0. http://www.activebpel.org/.
2. C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying Business Processes with

BP-QL. In VLDB’05.
3. B. Benatallah, F. Casati, D. Grigori, H.R. Motahari Nezhad, and Farouk Toumani.

Developing Adapters for Web Services Integration. In CAISE’05, pages 415–429.
4. S. Boag, D. Chamberlin, M. Fernández, D. Florescu, J. Robie, and J. Siméon. XML

Query Language (XQuery 1.0), November 2005. http://www.w3.org/TR/xquery/.
5. A. Bracciali, A. Brogi, and C. Canal. A Formal Approach to Component Adapta-

tion. Journal of System and Software, 74(1):45–54, 2005.
6. A. Charfi and M. Mezini. Aspect-Oriented Web Service Composition with

AO4BPEL. In ECOWS’04, pages 168–182.
7. C. Courbis and A. Finkelstein. Towards Aspect Weaving Applications. In ICSE’05,

pages 69–77.
8. M. Dumas, M.Spork, and K.Wang. Adapt or Perish: Algebra and Visual Notation

for Service Interface Adaptation. In accepted to BPM’06.
9. M. Abi-Antoun et.al. Differencing and Merging of Architectural Views. Technical

report, Carnegie Mellon University, CMU-ISRI-05-128R, August 2005.
10. N. Loughran et.al. Survey of aspect-oriented middleware research. Technical report,

Lancaster University, June 2005.
11. T. Andrews et.al. Business Process Execution Language for Web Services 1.1.

Technical Report TUV-1841-2004-16, BEA, IBM, Microsoft, SAP, Siebel, 2003.
12. P. Inverardi and M. Tivoli. Deadlock-free software architectures for COM/DCOM

applications. Journal of Systems and Software, 65(3):173–183, 2003.
13. P. Kaminski, H. Muller, and M. Litoiu. A design for adaptive web service evolution.

In SEAMS’06, pages 86–92.
14. A. Nicoara and G. Alonso. Dynamic AOP with PROSE. In CAISE’05, pages

125–138.
15. Stephen A. White. Business Process Modeling Notation (BPMN 1.0), May 2004.

http://www.bpmn.org.
16. E. Wohlstadter and K. Volder. Doxpects: aspects supporting XML transformation

interfaces. In AOSD’06, pages 99–108.
17. D. Yellin and R. Strom. Protocol Specifications and Component Adaptors. ACM

TOPLAS, 19(2):292–333, 1997.

	Introduction
	Service Mismatches
	Aspect Oriented Service Adaptation
	Joinpoints
	Advices

	Template Usage and Tool Support
	Related Work
	Conclusion

