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Abstract

Contact mechanics-based models for the friction of nominally flat rough surfaces have not

been able to adequately capture certain key experimentally observed phenomenona, such as

the transition from a static friction peak to a lower level of sliding friction and the shear-

induced contact area reduction that has been observed in the pre-sliding regime especially

for soft materials. Here, we propose a statistical model based on physically-rooted contact

mechanics laws describing the micromechanics of individual junctions. The model considers

the quasi-static tangential loading, up to full sliding, of the contact between a smooth rigid

flat surface and a nominally flat linear elastic rough surface comprising random independent

spherical asperities, and accounts for the coupling between adhesion and friction at the

micro-junction level. The model qualitatively reproduces both the macroscopic shear-induced

contact area reduction and, remarkably, the static friction peak without the need to explicitly
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introduce two different friction levels. It also demonstrates how the static friction peak

and contact area evolution depend on the normal load and certain key microscale interface

properties such as surface energy, mode mixity and frictional shear strength. “Tougher”

interfaces (i.e. with larger surface energy and smaller mode mixity parameter) are shown

to result in a larger real contact area and a more pronounced static friction peak. Overall,

this work provides important insights about how key microscale properties operating at the

asperity level can combine with the surface statistics to reproduce important macroscopic

responses observed in rough frictional soft contact experiments.

Keywords: Friction, Contact mechanics, Adhesion, Fracture, Rough surface contact

1 Introduction

The tribological properties (including contact, friction and adhesion) of rough contact inter-

faces between elastic solids have been widely investigated in the last decades (see e.g. [1] for

a recent review). In particular, they are of interest to a wide range of applications involving

soft materials such as rubber (including tires [2] and seals [3]) or biological materials (includ-

ing human skin [4, 5] and animal adhesive pads [6, 7]). The mechanical response of rough

elastic contact interfaces under pure normal load, in particular the amount of real contact

area of the many micro-junctions formed between the highest antagonist asperities, is now

rather well understood (see e.g. [9] for a detailed comparison between the many modeling

methods available in the literature). In contrast, much less is known about the behaviour of

those interfaces under shear. Recent measurements have shown that, well before the onset

of macroscopic sliding, significant modifications to the morphology of the contact occurs,

including both a reduction in real contact area [5, 10] and a growth in anisotropy [11]. These

shear-induced changes potentially affect all of the macroscopic properties of the interface (in-

cluding friction, stiffnesses and conductivities) compared to what they are under pure normal
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loading. It is thus paramount to develop contact and friction models that incorporate shear-

induced contact morphology changes. Building and investigating the behavior of one such

improved model is the main objective of the present work.

To the authors knowledge, there has been only one attempt in this direction in the

literature: that of Scheibert et al. [12]. They proposed a dynamic independent-asperity model

aimed at reproducing quantitatively the experimental results obtained in [5]. The model is

initiated with a list of micro-junctions, the number and individual areas of which are extracted

from the experiments, when no shear is applied yet. The shear-induced anisotropic area

reduction of each micro-junction is then computed based on empirical laws inspired by the

experiments. The slipping threshold at the micro-junction level is assumed to be proportional

to the micro-junction area. Overall, most model parameters are directly taken from the

experiments. As a result, while the macroscopic tangential force evolution (including the

initial shear stiffness and the final stick-slip regime) was well reproduced, the area evolution

was not. Specifically, the model predicted a linear area decay as a function of tangential

load, instead of the quadratic-like decay observed experimentally. The reasons invoked for

such discrepancy were (i) that the empirical microscale behavior laws may be too simplistic

to accurately represent the experimental evolution and (ii) a possible role of the elastic

interactions between micro-junctions that were not accounted for in their model. As we will

see, our model will enable testing of the plausibility of the first of the two above-mentioned

reasons, by using one of the most recent adhesive contact models as a microscale law.

To model the onset of sliding of soft rough contact interfaces, our strategy is the following.

We will use a statistical model based on independent elastic micro-junctions, as classically

done in normal contact [13–15] or friction models [8, 16]. At the individual micro-junction

scale, we then need two behavior laws. First, a contact mechanics model describing the

effects on the micro-junction area of both the normal indentation and the shear displacement.

Second, a friction law describing the tangential force sustained by a micro-junction when it
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is in a slipping state. For the latter law, many models use Amonton’s law of friction with

a friction force proportional to the local normal load, from the classical Cattaneo-Mindlin

model [17, 18] to dynamic multi-asperity contact models [20, 21], through to models based

on the phenomenological rate- and state-dependent friction law [19] . Here, we will use the

classical law of a friction force proportional to the contact area with the proportionality being

the frictional shear strength, a law found generally valid for soft rough contacts [5, 22–24].

Concerning the contact mechanics model, we will classically assume that the summits of

the asperities of the rough surfaces are paraboloids, and thus use the most relevant contact

models from the literature. In this respect, the fact that soft parabolic contacts shrink under

shear has been repeatedly observed [11, 25–28] since the pioneering work of Savkoor and

Briggs [29]. A recent model [28] showed that, at least for millimeter-sized contacts, shear-

induced area reduction is a non-linear elastic effect due to large deformations in soft materials

induced by their low elastic modulus, when involved in an interface with a high frictional

shear strength. For smaller contacts, and a fortiori for micro-junctions, the prevailing view

is that adhesion plays an important role. Thus, in the present work, we will neglect the

potential effects of finite strains on the contact and friction response of rough contacts,

and concentrate on the role of adhesion. Most of the modeling literature on shear-induced

contact area reduction concerns adhesive parabolic contacts, treated either analytically (see

e.g. [26, 29–33] or using finite elements (see e.g. [27, 34, 35]). For our model, it is more

convenient and computationally inexpensive to resort to an analytical model. Among those

available, we decided to use the one developed by Papangelo and Ciavarella [30], because

they have identified the model ingredients suitable for a quantitative agreement with the

experimental results [27], which have been obtained on the same materials and tribometer

as those used here [5, 11].

The manuscript is organized as follows. In Section 2, we describe the adhesive friction

model used at the micro-junction level, and present its main features. In Section 3, we present
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our statistical multi-asperity contact model and demonstrate its general qualitative behavior

in Section 4. Although the model parameter values used in the illustrations of section 4 are

inspired by actual experimental observations, only in section 5 do we address the challenging

question of how to extract the relevant topographical and material parameters enabling a

quantitative comparison with experiments. Indeed, in section 5, we apply our model to the

conditions of the experiments of Sahli et al. [5], quantitatively compare the predictions with

the observations, and discuss the outcome with respect to that of the previous modeling

attempt of [12].

2 Single asperity adhesive friction model

Consider a contact pair between an elastic axisymmetric parabolic asperity of radius R and

a rigid flat, subjected to a combined action of normal load P and tangential load T . The

Young’s modulus and Poisson’s ratio of the asperity are E and ν, respectively. The reduced

elastic modulus is E∗ = E/(1 − ν2). In the rest of this article, Tabor’s parameter, µ =(
Rw2

E∗2ε3

)1/3

, with w being the work of adhesion and ε ≈ 0.2 nm as the equilibrium distance

between atoms, is assumed to be larger than 5 so that the adhesive contact is within the

Johnson, Kendall and Roberts (JKR) limit [37].

2.1 Purely normal adhesive contact: JKR theory

Because µ > 5, the single spherical adhesive contact under purely normal load (when T = 0)

is governed by the JKR theory [38]. Following either the thermodynamic approach [38] or

the fracture mechanics approach [39, 40], the final forms of the JKR theory may be written
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as follows:

δ =
a2

R
−
√

2πwa

E∗
, (1)

P =
4E∗a3

3R
−
√

8πE∗a3w, (2)

where a and δ are the radius of the circular contact area and the indentation depth, respec-

tively. Note that only the stable branch is given above. As the work of adhesion vanishes

(w → 0), the JKR theory reduces to the Hertzian theory [36].

In asperity-based rough surface adhesive contact models (e.g., the Fuller-Tabor model

[14] and the Greenwood model [15]), single asperity contact is in fixed grip condition (i.e.,

indentation is prescribed). Thus, the unstable points of the JKR theory in fixed grip condition

at loading and unloading stages are discussed below.

Loading stage Due to the intermolecular attractions (e.g., van der Waals forces) between

two mating surfaces, two approaching asperities can immediately jump onto contact with an

initial gap, which is known as the jump-to-contact distance, that can be represented using

a negative indentation: δloading
JKR < 0. Because the original JKR theory does not account for

the adhesion outside the contact area, it is impossible to derive the jump-to-contact distance

using the JKR theory. Thus, a zero jump-to-contact distance is commonly assumed when

using the JKR theory [15]. Using a numerical modeling approach, an empirical solution of

δloading
JKR was fitted by Wu [41]:

δloading
JKR = −2.641µ3/7 exp

(
− 1

2
√
µ

)
ε. (3)

Unloading stage The instability (snap-out) also occurs when the contacting asperities

are unloaded. The jump-off-contact distance is represented by a negative indentation depth:
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δunloading
JKR < 0. This distance can be directly obtained from the JKR theory [39]:

δunloading
JKR = −3

4
π2/3µε. (4)

The jump-off-contact and jump-to-contact distances (δunloading
JKR and δloading

JKR ) of single asperity

contact are different, which is one of the key factors contributing to the adhesive hysteresis

(energy dissipation) of the adhesive rough surface contact in loading-unloading cycles [15, 42].

Because µ > 5, we can confirm numerically that δunloading
JKR < δloading

JKR < 0.

2.2 Papangelo and Ciavarella (PC) adhesive friction model

After the indentation has reached the target value during the purely normal loading stage,

the contacting asperities are then subjected to a quasi-statically increasing tangential dis-

placement δT . Before the contact enters the sliding stage, its periphery can be modeled as

a bi-material interfacial crack in a mixed mode loading. The past experimental studies of

interfacial cracks [43–45] showed an increase of the interfacial toughness with phase angle of

loading attributed to the energy dissipation through viscoelastic deformation and interfacial

friction, etc. Some phenomenological relations have been proposed [46, 47] to approximate

the measured failure locus and one of them was used by Papangelo and Ciavarella [30] in their

single asperity adhesive friction model. In order to maintain a stick stage in PC’s model, the

following fracture criterion must be satisfied at the contact edge (crack tip)[30]:

1

2E∗
(
K2

I +K2
II

)
= wf(ψ), (5)

where KI and KII are the Mode I (opening) and Mode II (shearing) stress intensity factors

(SIFs), respectively; ψ = tan−1(KII/KI) represents the phase angle of the loading; f(ψ) =[
1 + (λ− 1) sin2(ψ)

]−1
; λ ∈ [0, 1] is the mode mixity parameter. The left-hand side of Eq.
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(5) is the total strain energy release rate at the contact edge, G, which is commonly referred

to as the driving “force” of smearing the adhesive bond. It is clear from the increasing

nature of f(ψ) in Eq. (5) that an interface under mixed mode requires a larger driving force

to propagate the interface crack, and that this driving force increases with tangential loading

(i.e., with the phase angle ψ).

When λ = 1, the fracture criterion in Eq. (5) becomes the Griffith criterion (G = w), and

PC’s model reduces to the seminal Savkoor and Briggs adhesive friction model [29] where

strengthening of the bonding toughness under mixed mode loading is ignored. When λ = 0,

Eq. (5) becomes
1

2E∗
K2

I = w which indicates that the failure of adhesive bonding is only

related to the normal load: the external work due to the tangential loading is completely

dissipated along the interface. Therefore, we can conclude that, the smaller the mode mixity

parameter λ, the higher the resistance of the contact to tangential loading.

In Ref. [30], the PC model is formulated in terms of normal and tangential loads (P, T ).

For a given pair of normal and tangential displacements (δ, δT ), an alternative form of PC’s

model may be given as follows:

δ =
a2

R
−
√

2πaw

E∗
− 4

9
λδ2

T , (6)

P =
4E∗a3

3R
−
√

8πE∗a3w − 16

9
λE∗2a2δ2

T , (7)

T =
4

3
E∗aδT . (8)

Note that ν = 0.5 and only the stable branch of the solution is given above. As λ→ 0, Eqs.

(6) and (7) reduce to the JKR theory. The extra terms in Eqs. (6) and (7) introduce a cou-

pling between tangential and normal loadings, i.e., the tangential displacement δT influences

the normal load P for a prescribed indentation δ. The extent of the coupling is governed by

the mode mixity parameter λ.

Using as an example the parameters of the smooth, milimeter-scaled ball-on-flat adhesive
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Unstable boundary Unstable boundary

Unstable boundaryUnstable boundary

(a) (b)

(c) (d)

Figure 1: Evolutions of (a) normal load, P (δT ), (b) tangential load, T (δT ), (c) contact area,
A(δT ) = πa2, and (d) A(T ) predicted by PC’s model under fixed grip condition for various
δ. The model behaviour is illustrated for the contact parameters of [27], as extracted by
Papangelo and Ciavarella [30]: w = 27 mJ/m2, R = 9.42 mm, E∗ = 2.133 MPa, and
λ = 0.0023. Tabor’s parameter µ ≈ 5736.

frictional test done by Mergel et al. [27], P (δT ), T (δT ) and A(δT ) = πa2 predicted by PC’s

model are given in Fig. 1(a-c) assuming the ball-on-flat contact is under fixed grip condition.

After the ball is pressed normally with a constant indentation δ, a monotonically increasing

tangential displacement δT is applied. The normal load P slightly increases with respect to

the tangential displacement, see Fig. 1(a). This minor change might be due to the loose

coupling between normal and tangential loading (λ = 0.0023). The tangential load, T , first
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increases then decreases (this trend is observable for the smallest indentation value, e.g. for

the curve associated with δ = 0.01 mm in Fig. 1(b). The contact area in Fig. 1(c) shows

a monotonic decreasing trend which is consistent with the junction shrinkage phenomenon

observed in many friction tests [5, 26–29, 32]. The curves P (δT ), T (δT ) and A(δT ) stop at the

unstable boundary (for fixed grips condition), beyond which no real root can be found from

Eqs. (6–8). From a physical point of view, this is equivalent to saying that the contacting

asperities subjected to any tangential displacement δT > δmax
T can no longer maintain the

stick condition. The sliding stage is assumed to occur beyond this unstable point, even

though there is a lack of empirical evidence.

For a given indentation value δ, the unstable points on curves A(δT ) are associated with

infinite tangent slopes or
dδT
da

∣∣∣∣
amin

= 0, where δ is a constant and the corresponding radius

has the minimum value amin. Thus, a cubic equation of amin is derived:

a3
min − δRamin −

πwR2

2E∗
= 0. (9)

Equation (9) results in a unique real positive root as long as the JKR model with the same

(δ, R,E∗, w) has a stable solution. Substituting amin into Eq. (6), we can get the maximum

tangential displacement allowed in the stick stage:

δmaxT =

√√√√ 9

4λ

[
2πwamin

E∗
−
(
a2

min

R
− δ
)2
]
. (10)

The unstable boundary predicted by Eq. (10) is plotted as a dash-dotted line in Fig. 1(a-d).

Similarly, for a given δT , we can find the minimum indentation, δmin
PC , below which the

sliding stage starts immediately. Letting
dδ

da

∣∣∣∣
a′min

= 0, we can get another cubic equation:

2πw

E∗
(a′min)

3 − 4

9
λδ2

T (a′min)
2 −

(
πwR

2E∗

)2

= 0. (11)

10



The minimum indentation δmin
PC can be obtained by substituting the unique real root a′min of

Eq. (11) and δT into Eq. (6). It is easy to show that δmin
PC = δunloading

JKR when δT = 0, and Fig.

2(a) indicates that δmin
PC > δunloading

JKR where δT > 0. This minimum indentation is important

in the modeling of rough surface adhesive friction contact.

2.3 Transitions between stick, sliding and out-of-contact states

In this section, a status map is generated to determine the status of an asperity adhesive

contact subjected to a certain combination of normal and tangential displacements (δ, δT ).

To make the status map more general, the dimensionless normal displacement δ̃, tangential

displacement δ̃T , and contact radius ã suggested by Papangelo and Ciavarella [30] are slightly

modified as follows:

ξ =

(
E∗R

w

)1/3

, δ̃ =
ξ2

R
δ, δ̃T =

2ξ2

3R
δT , ã =

ξ

R
a.

The unstable boundary, δ̃ = δ̃PC
min(δ̃T ), for the single asperity adhesive contact has the following

dimensionless form:

δ̃PC
min = ã2

min −
√

2πãmin − λδ̃2
T , (12)

where ãmin is the unique positive root of the dimensionless form of Eq. (11):

ã3
min −

λ

2π
δ̃2
T ã

2
min −

π

8
= 0. (13)

The boundaries, δ̃ = δ̃PC
min(δ̃T ) and δ̃ = 0, split the entire (δ̃, δ̃T ) domain into three different

states, namely, out-of-contact, sliding and stick states, see Fig. 2(a). For a constant inden-

tation δ̃ < δ̃unloading
JKR = −3

4
π2/3, which is the jump-off-contact distance in the JKR theory, the

asperities are in the out-of-contact state regardless of any value of tangential displacement.
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Out-of-contact state Stick stateSliding state

(a) (b)

(c) (d)

=3

Indentation

=-0.5

=3

=-0.5=-0.5

=3

Figure 2: (a) Adhesive friction status map of a single asperity contact subjected to both nor-
mal and tangential displacements (δ̃, δ̃T ). (b, c, d) Evolutions of the contact area πa2, normal
load P , and tangential load T , respectively, as functions of the tangential displacement, δT ,
at fixed dimensionless indentations of δ̃ = −0.5 (blue) or 3 (red). The model behaviour is
illustrated for the contact parameters of [27], as extracted by Papangelo and Ciavarella [30]:
w = 27 mJ/m2, R = 9.42 mm, E∗ = 2.133 MPa, λ = 0.0023, and τ0 = 0.43 MPa. Tabor’s
parameter µ ≈ 5736.

If a constant indentation δ̃ is maintained within [−3

4
π2/3, 0], then the asperity contact will

transit from the stick state to the out-of-contact state when δ̃T reaches δ̃maxT . This phe-

nomenon was confirmed experimentally by Waters and Guduru [26] and Mergel et al., [27].

The corresponding evolutions A(δT ), P (δT ), and T (δT ) associated with δ̃ = −0.5 are plotted
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as blue curves in Fig. 2(b-d). If the indentation δ is held at a positive level, asperities will

transit from the stick state to the sliding state at the unstable boundary δ̃ = δ̃PC
min(δ̃T ). The

sliding state is governed by the Hertzian contact where the shear stress is assumed to be

uniform along the contact area with a fixed magnitude of τ0. The contact area, normal load

and tangential load are determined only by the normal loading:

a =
√
Rδ, P =

4

3
E∗
√
Rδ3/2, T = πa2τ0. (14)

Note that the transition from stick to slip at the single asperity level is associated with a

drop of tangential load, from a peak value accounted for by PC’s model, down to a slipping

plateau at the value given in Eq.(14). The evolutions A(δT ), P (δT ), and T (δT ) associated

with δ̃ = 3 are plotted as red curves in Fig. 2(b-d). The establishment of the status map

in Fig. 2(a) is helpful for the development of the rough surface friction model in the next

section.

3 Rough surface contact: a statistical model

Consider the specific case where one linear elastic (E, ν) nominally flat rough surface is in

normal contact with a smooth rigid flat over a nominal contact area of An, see Fig. 3. The

rough surface topography is denoted by h(x, y). The two surfaces are initially compressed

under a purely normal load Fz acting remotely. Then, a tangential displacement δT is applied

to the contact pair in a quasi-static manner.

In this section, a statistical model of independent, adhesive spherical asperities is devel-

oped. This new model can simulate the adhesive friction, Fx, and real contact area, Ar,

under the combined action of the normal load Fz and of the tangential displacement δT . The

introduction of this statistical model is divided into two parts: namely, the pre-loading stage

and the tangential loading stage.
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Undeformed shape
Deformed shape

Figure 3: Schematic of the contact interface, loading configuration and associated parameters
considered in the statistical adhesive friction model, at both the macroscopic rough surface
and individual asperity levels.

3.1 Pre-loading stage

During the pre-loading stage, the normal load, Fz, is monotonically increased from zero

and held at a constant value of Fmax
z , with the tangential displacement δT kept at zero.

A statistical model recently developed by Greenwood [15], based the classic Fuller-Tabor

(FT) model [14] is used. In the FT model, the summits of all asperities have a common

radius of curvature, R, and the summit height, z, follows the Gaussian distribution, i.e.,

φ(z) =
1√

2πσ2
s

exp

(
− z2

2σ2
s

)
where σs =

√
〈z2〉 is the standard deviation of asperity summits

heights (the mean summit height 〈z〉 = 0). For a given surface separation, d, between the rigid

flat and the mean summit height (see Fig. 3), we can identify all possible contacting asperities

based on the value of indentation δ = z − d. Neglecting the coalescence and interaction of

neighboring asperities, the normal load, Fz(d), and the real contact area, Ar(d), can be given
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in the integral forms [14, 15]:

Fz(d) = ηAn

∫ ∞
δloadingJKR

PJKR(δ)φ(d+ δ)dδ, (15)

Ar(d) = ηAn

∫ ∞
δloadingJKR

πa2
JKR(δ)φ(d+ δ)dδ, (16)

where η is the asperity density over the entire nominal contact area An. The single asperity

contact model is governed by the JKR theory. Therefore, for a given δ, the contact radius

aJKR and normal load PJKR at the asperity level can be solved from Eq. (1) and (2), re-

spectively. Greenwood [15] improved the original Fuller-Tabor model in the loading stage by

introducing the jump-to-contact distance δloading
JKR , see Eq. (3). In the original Fuller-Tabor

model, δloading
JKR = 0.

As the normal load reaches its maximum, Fz → Fmax
z , the corresponding surface sep-

aration monotonically reduces to its minimum value d → dmin. Note that if a surface is

described by its full topograph h(x, y), one needs to evaluate the roughness-related inputs of

the statistical model (i.e., η, σs and R). One possible method to achieve such an evaluation

is described and briefly discussed in Appendix A.

3.2 Tangential loading stage

Once entering the tangential loading stage, each contacting asperity initially in the stick

state is subjected to normal and tangential displacements (δ, δT ), simultaneously. Based on

the status map in Fig. 3(a), contacting asperities may transit to an out-of-contact or sliding

state, depending on the values of (δ̃, δ̃T ). Because of the coupling introduced by the mixed

mode parameter λ, the normal load acting on each contacting asperity increases with the

tangential displacement, see Fig. 2(c) for an example. In order to maintain the macroscopic

load equilibrium of rough surface contact in the normal direction, the corresponding surface

separation must increase from dmin as tangential displacement proceeds. As a matter of fact,

15



during shear, all contacting asperities tend to unload along the normal to the contact.

Inspired by the loading-unloading formulation in Greenwood’s model [15], the correspond-

ing normal load, tangential load and real contact area may be formulated in the following

integral forms:

Fz(d, δT ) =ηAn

∫ ∞
δ2

PPC(δ, δT )φ(d+ δ)dδ + ηAn

∫ δ2

δ1

PHertz(δ)φ(d+ δ)dδ, (17)

Fx(d, δT ) =ηAn

∫ ∞
δ2

TPC(δ, δT )φ(d+ δ)dδ + ηAn

∫ δ2

δ1

THertz(δ)φ(d+ δ)dδ, (18)

Ar(d, δT ) =ηAn

∫ ∞
δ2

πa2
PC(δ, δT )φ(d+ δ)dδ + ηAn

∫ δ2

δ1

πa2
Hertz(δ)φ(d+ δ)dδ, (19)

where the two limits δ1 and δ2 have the following composite forms:

δ2 = max(dmin − d+ δloading
JKR , δmin

PC ), (20)

δ1 = min(0, δ2). (21)

The first integrals on the right-hand sides of Eqs. (17-19) are associated with all asperities in

the stick state where the normal load PPC, tangential load TPC, and contact radius aPC at the

single asperity level are governed by the PC model, see Eqs. (6-8). The second integrals are

associated with the asperities in the sliding state, where PHertz, THertz, and aHertz are governed

by the Hertzian theory, see Eq. (14).

The composite form of δ2 is built upon a similar form proposed by Greenwood [15]. The

lower limit δ2 is not simply δmin
PC [15], because at the end of the loading stage with δT = 0,

the minimum indentation is min(δ) = δloading
JKR > δunloading

JKR = δmin
PC . Because of this composite

form, the lower limit δ2 will gradually converge to δmin
PC as the separation distance d increases.

The composite form of δ1 is determined based on the left boundary of the Hertzian contact

zone in the status map of Fig. 2(a).

To prove the continuity of Fz, Fx and Ar at the transition point between the pre-
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loading and tangential loading stage, let δT = 0 and d = dmin, then δmin
PC ≡ δunloading

JKR ,

δ2 = max(δloading
JKR , δunloading

JKR ) = δloading
JKR < 0, δ1 = δ2, aPC = aJKR, and PPC = PJKR. Thus,

the sliding portions (second integrals) in Eqs. (17) and (19) vanish, and Eqs. (17) and (19)

reduce to Eqs. (15) and (16), respectively.

4 General behaviour of the model

The behaviour of the statistical model developed in Section 3 is illustrated using a refer-

ence set of parameters inspired by the experiments of [5], where a rough elastomer block in

frictional contact with a glass plate is loaded tangentially until full sliding. The way the

roughness parameters have been estimated is discussed in Appendix A. The elastic block is

initially subjected to a purely normal load of Fz = 3.1 N, and is held constant for the rest of

the test.

Even though the contributions to the normal load from the sticking and sliding junctions

monotonically decreases and increases, respectively, as the tangential displacement, δT , in-

creases (see dotted and dashed lines in Fig. 4(a), which correspond to the contributions of

the first and second integrals of Eq. (17), respectively), the prediction of normal load, Fz,

by the statistical model remains constant as imposed as a boundary condition. As implied

by the status map in Fig. 2(a), all contacting asperities being in the stick state gradually

transit to the sliding state as the tangential displacement increases. This is confirmed by the

dashed and dotted line in Fig. 4(b), where the number of contacting asperities monotonically

drops and increases within the sticking and sliding populations, respectively. Note that the

variation of the total number of contacting asperities against the tangential displacement

(see solid line in Fig. 4(b)) is negligible, even though it decreases from 3826 to 3801. Such

a loss of contacting asperities is caused by the jump-off-contact of asperities with negative

indentation, see for example blue lines in Fig. 2(b-d).
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(a) (b)

(d)(c)

Figure 4: Typical behaviour of adhesive frictional contact between a rough elastomer and a
rigid glass plate from the model. Macroscopic evolutions (solid line), as well as their stick
(dotted line) and sliding (dashed line) contributions, against the tangential displacement
δT , of (a) normal load, (b) number of contacting asperities, (c) real contact area and (d)
tangential load. The parameters (except for λ and ε) are of the same order of magnitude as
those of the experiments from [5]: w = 40 mJ/m2, E∗ = 2.133 MPa, λ = 0.2, τ0 = 0.13 MPa,
Fz = 3.1 N, An = 700 mm2, and ε = 0.2 nm. The roughness-related inputs are η = 652.1
mm−2, σs = 0.032 mm, and R = 0.041 mm. Tabor’s parameter µ ≈ 1217.

The real contact area, Ar, predicted by the statistical model shows a smooth drop until

it converges to a constant when nearly all contacting asperities are in the sliding state, see

solid line in Fig. 4(c). This is consistent with the shear-induced area reduction phenomenon

18



observed by Sahli et al. [5], and it is due to the contact area shrinkage at single asperity

level during the stick state. Clearly, as the contribution of the stick populations is nearly

vanishing, the real contact area converges to its final value.

Figure 4(d) presents the evolution of total tangential load, Fx, (solid line), which is

also the sum of the contributions from the sticking and sliding populations. Initially, the

tangential load almost linearly increases with the tangential displacement. This is because

(1) nearly all contacting asperities remain stuck and (2) the tangential load at single asperity

level increases almost linearly with the tangential displacement (see red line in Fig. 2(d) as

an example) when δT is relatively small (less than 2 µm in Fig. 4(d)). The tangential load

enters a nonlinear increase stage, and is followed by a decrease until the tangential load equals

τ0Ar once all asperities are in their sliding state. Most interestingly, a static friction peak

(higher than the sliding friction) is reproduced by the statistical model. This is a common

phenomenon in friction tests, and is frequently incorporated empirically in phenomenological

friction laws. Here, the peak arises because the asperity-level model already presents a force

drop (see Fig. 2(d)) originating both from PC’s model, which yields a peak force of its own,

and from an abrupt drop down to the sliding force proportional to Hertz’s contact area, at

the sliding transition. Note that the tangential displacement at sliding inception (about 8

µm) is several orders of magnitude lower than its experimental counterpart (about 1 mm

in [5]). This is because the experimental displacement incorporates not only the interfacial

displacement, but also the deformation of the tangential loading system with finite stiffness

[48].

Figure 5 illustrates the effects of the work of adhesion, w, mode mixity parameter, λ,

frictional shear strength, τ0, and normal load, Fz, on the real contact area and tangential

load, especially the static friction peak. A reduction of the real area against the tangential

displacement is observed for all studied cases. The work of adhesion and mode mixity pa-

rameter greatly affect the evolution of the tangential load. A larger work of adhesion means
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(a) (b)

(c) (d)

Figure 5: Effects of (a) work of adhesion w, (b) mode mixity λ, (c) frictional shear strength
τ0 on the real contact area Ar/An vs. tangential load Fx; (d) effect of normal load Fz on
the tangential load Fx/Fsliding vs. tangential displacement δT , as predicted by the statistical
model. Each figure is achieved by varying one of the following base parameters: w = 40
mJ/m2, λ = 0.2, τ0 = 0.13 MPa, Fz = 3.1 N. The other parameters are the same as that
provided in the caption of Fig. 4. The minimum Tabor’s parameter min(µ) ≈ 633.

a tougher adhesive bond, and a lower mode mixity λ implies a higher energy dissipation

along the interface, which will also result in a tougher adhesive bond. Therefore, an obvious

static friction peak can be observed in Fig. 5(a) for w ≥ 25 mJ/m2 and in Fig. 5(b) for

λ ≤ 0.3 (see the hook-like portion on the right-hand side of the curves). A relatively low

20



work of adhesion and high mode mixity parameter result in an absence of static friction peak

from the friction curves, e.g., w = 15 mJ/m2 curve in Fig. 5(a) and λ = 0.9 curve in Fig.

5(b). The frictional shear strength τ0 within the sliding zone can also play an important

role in determining the static friction peak. A relatively small τ0 can yield an obvious static

friction peak, which may instead be buried in the tangential force curves as τ0 increases to

a larger value, see Fig. 5(c). The absence of a static friction peak was indeed observed in

some friction tests (e.g., [10, 27]), and it may be attributed to the combination of low surface

energy, high mode mixity, and/or high frictional shear strength. Let Fsliding be the tangential

load acting on the rough surface during the sliding stage. The dimensionless tangential load

Fx/Fsliding vs. tangential displacement is given in Fig. 5(d). As the inset shows, the relative

difference between the static friction (the maximum of Fx) and the corresponding sliding

friction reduces as the normal load increases. Some consistent empirical data may be found

in [49] for silicon-silicon contact.

5 Quantitative comparison with experiments

Friction tests of a rough planar elastomer in contact with a smooth glass plate were conducted

by Sahli et al. [5], and some typical measurements are shown in Fig. 6. In the experiments,

the rough slider is driven tangentially through a thin steel wire with a stiffness of 9200 N/m.

At the beginning of the friction tests, the wire is fully unloaded, so that the motor needs to

travel some distance before the wire actually exerts a force on the slider. Therefore, the first

3 seconds in Fig. 6(a) are necessary for the wire to start applying any force on the slider, and

the real contact area and the tangential load are nearly constant before that point. The real

contact area is measured based on reflection images of the rough contact interface, acquired

using a monochrome CCD camera. The pixels inside the real contact regions appear darker

than those within out-of-contact regions. An automatically determined threshold value of
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Figure 6: Selected adhesive friction test results measured by Sahli et al., [5]: (a) Evolution
of real contact area and tangential load when Fz = 2.08 N; (b) Quadratic reduction of the
fractional real contact area Ar/An against the tangential load for all six normal loads. The
tangential displacement is applied at a rate of 0.1 mm/sec.

grey level is used to segment the digital image into real contact area and out-of-contact

area. Details about the image acquisition and segmentation algorithm can be found in the

Supporting Information of Sahli et al. [5]. Periodic stick-slip cycles are found after the

sliding inception, yielding a large number of data points accumulated at the tails of the

friction curves Ar(Fx) in Fig. 6(b). This accumulation of quasi-cyclic data somewhat hides,

especially at lower normal loads, the existence of an underlying hook-like shape of the curves

like that predicted in the model (see Fig. 5(a-c)), due to the existence of the static friction

peak in the tangential force.

All the necessary input parameters of the statistical model are directly available from

[5] except for (1) the roughness-related parameters R, η and σs, and (2) the mode mixity

parameter λ. The roughness-related parameters may be estimated based on the topography

data given in Appendix A. A relevant spatial resolution needs to be first identified so that

the interaction and/or coalescence of neighbouring micro-junctions can be accounted for

in a effective way. As shown by Papangelo and Ciavarella [30], the λ value can only be
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estimated by fitting the analytical solutions to the experimental results under shear. Even

for smooth PDMS spheres prepared in the same group (with the same radius, material and

tribometer), the fitted λ values may differ by up to one order of magnitude [30](experimental

data from Sahli et al. [5]: λ = [5 − 6] × 10−3; experimental data from Mergel et al. [27]:

λ = [7 × 10−4 − 2 × 10−3]). As a matter of fact, a two-step fitting procedure is adopted

to determine the relevant spatial resolution and λ. In the first step, we consider the purely

normal contact case in which the tangential displacement is zero. Since the results of purely

normal contact are independent of λ, we focus on finding the spatial resolution such that

the corresponding real contact area reaches a good agreement with the test results. In the

second step, an optimal value of λ is obtained so that the statistical model can recreate

quantitatively the shear-induced reduction of the real contact area observed experimentally.

The topography data is measured on the rough mold used to create the rough elastomer

surface, over a sampling area of 10 × 10 mm2, which is one seventh of the entire nominal

contact area between the glass plate and the elastomer slider. The raw topography data has

a constant spatial resolution of 2 µm. To explore how the roughness statistics vary with the

spatial resolution, the measured topography data is re-sampled with various ratios to create

multiple realizations at coarser scales, by considering successively one out of two, three, four,

etc sampling points in x and y directions (yielding a spatial resolution of ∆x = ∆y of 4, 6, 8

µm, etc in both directions). The values of R, η and σs associated with each realization can

then be evaluated following the approach given in Appendix A. As the resolution increases

from 2 µm to 260 µm, the mean asperity radius R increases linearly, see Fig. 7(a); the

asperity density η drops as a power law of exponent −1.12, see Fig. 7(b); the rms asperity

height remains nearly constant, see Fig. 7(c).

The statistical model, once solved using the roughness parameters extracted from the raw

topography data (with a resolution of 2 µm) significantly underestimates the real contact area,

see yellow solid line in Fig. 7(d). This is typical of statistical models based on independent
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Figure 7: Evolution of (a) the mean asperity radius R, (b) the asperity density η, and (c)
the root mean square (RMS) asperity height with the resolution; (d) comparison of the real
contact area predicted by BEM and by the statistical model with the test data, under purely
normal loading (i.e. with zero tangential displacement).

asperities, like ours, because they neglect interaction and coalescence of neighboring micro-

junctions [51, 52]. To test this explanation, a boundary element method (BEM) [57] is applied

to predict the real contact area under purely normal loading (i.e. tangential displacement is

zero). More details about this numerical model are given in Appendix B. The BEM model

uses the full measured topography data as the input, and solves the linear elastic contact

problem, including neighboring asperity interaction and micro-junction coalescence. The real

contact area predicted by the BEM model (square) is indeed much closer to the experimental

results (circle), compared with the statistical model (solid line, 2 µm). The difference between
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the BEM calculations and experimental tests may be attributed to the fact that rough surface

data used in the BEM is only one seventh of the entire nominal contact area, so that, the

measured fraction may not be representative of the entire rough interface in the test. Indeed,

Müser et al. have shown that the difference between the BEM and the experimental results

can be negligible (see Fig. 10 in [9]), if the topography data of the entire contact interface is

used as input for the BEM. They also found that statistical models of independent asperities

significantly underestimate Ar, see Fig. 10 in [9]. This conclusion is consistent with Fig.

7(d). Also note that, in future studies, a more accurate asperity-based rough surface contact

model may be developed in the framework of ICHA [9, 49-51] which can explicitly consider

neighbouring asperity interaction and micro-junction coalescence3.

The competition between the increasing R and decreasing η with the spatial resolution

results in an increasing real contact area Ar predicted by the present statistical model, see

Fig. 7(d). The best agreement between the model prediction and the test results can be

found when the resolution is approximately 260 µm, see Fig. 7(d). The corresponding

roughness parameters are R = 1.180 mm, η = 2.25 mm−2 and σs = 0.0419 mm. Let us

now discuss the physical relevance of such a coarse optimal resolution, based on the Power

Spectrum Density (PSD) of the same rough topography given in Fig. S1 of [11]. The PSD

has a plateau at large scales followed by a power law at smaller scales. The transition

point is associated with the roll-off wavelength of about 600 µm. It is thus expected that

the most visible surface asperities are the ones formed by the wavelengths larger than the

roll-off wavelength (those present in the plateau of the PSD). Note that those wavelengths,

according to Shannon’s theorem, can be accurately represented with our optimized spatial

resolution of 260 µm, because it is smaller than half the wavelength. The typical amplitude

3Note that a way to implement neighboring asperity interactions in the Greenwood-Williamson framework
would be to follow the works of Zhao and Chang [54] and Ciavarella et al. [55]. However, in those works,
the neighboring asperity interaction is only achieved in an average sense, since an accurate account for the
neighboring asperity interaction would need a detailed rough surface data, rather than a formless rough
surface whose asperity heights follow the Gaussian distribution.
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associated with those wavelengths is expected to be of the order of the rms roughness of the

topography divided by
√

2, i.e. about 36 µm. Thus, radii of curvature (estimated as that at

the summits of a sine wave with those wavelength and amplitude) larger than 250 µm are

expected, suggesting that a mean asperity radius of 1.180 mm may very well be representative

of the most relevant summits. Note, that the pixel size in the contact area images (25 µm)

is sufficiently smaller than the optimized resolution (260 µm), so the contact images are

expected to be able to resolve the micro-junctions formed by those larger asperities. The

spectral contents with the wavelengths lower than the roll-off wavelength may only create

a “protuberance on protuberance” structure, presumably hardly detectable by the optical

method of Sahli et al. [5].

Choosing 260 µm as the relevant effective resolution, we are now ready to find the opti-

mized λ so that the Ar(Fx) curves predicted by the present model can have good agreement

with the test results given in Fig. 6(a). λ = 0.0023 best fitted from the single asperity

contact test [30] may be used as an initial guess. However, such a small λ value causes a very

small area reduction rate, in particular a very flat initial part of the Ar(Fx) curve. According

to Fig. 5(b), the reduction rate can be increased by larger λ. A higher value of λ in the

rough surface scenario may be explained as follows: in the above-mentioned asperity contact

test, the spherical asperity and glass plate are optically smooth, while the rough surface

on the elastomer slider has a topography spanning a wide range of wavelength, including

wavelengths (a few µm) much smaller than the micro-junctions that our model is focusing on

(typically hundreds of µm diameter). Thus, there exists a small roughness on the main as-

perities forming those micro-junctions. Although the physical ingredients affecting the value

of λ are far from being understood, we can speculate that such a small scale roughness re-

duces the interfacial dissipation under shear, compared to a perfectly smooth asperity. Such

a reduction of the dissipation would certainly increase the value of λ, by an extent that is

not predictable in the current state of knowledge in the field.
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The best fit of Ar(Fx) predicted by the statistical model to the test results can be found

with λ = 0.03. The corresponding Ar(Fx) curves for all six normal load cases along with

the test results are shown in Fig. 8. The statistical model reproduces a convex-shaped

reduction of the real contact area against the tangential load, very similar to the quadratic-

like reduction observed experimentally by Sahli et al. [5], a feature that the previous model

of [12] could not capture. A better agreement is found at higher normal loads, due to a better

accuracy of the predicted real contact area when tangential load is zero, see Fig. 7(d). The

hook-like portions at the right end of Ar(Fx) curves can hardly be reproduced at the same

time because, in the experiments, it is presumably an unstable dynamic feature caused by

stick-slip. A better solution for fixing this mismatch might be to use the dynamic formulation

proposed by Scheibert et al. [12].

We are now in a position to comment on the previous model by Scheibert et al. [12],

already mentioned in the Introduction. They developed an asperity-based dynamic contact

model in which the real contact area is composed of multiple elliptic contact spots. The initial

areas of contact of individual micro-junctions at zero tangential load are directly taken from

the optical measurement of [5]. The evolution of each contact spot under shear is governed

by a quadratic phenomenological law:

Ai = A0i − αb
1

Ap0i
f 2
i , (22)

where A0i and Ai are the initial and instantaneous areas of the ith elliptical contact spot,

respectively. The corresponding tangential force at each contact spot, fi, is determined based

on the tangential stiffness of an elliptical contact in the full stick condition, until it converges

to the sliding friction fi = Aiτ0. The predicted dynamic friction has excellent agreement

with the test results, not only before the sliding inception, but also during the stick-slip

stage. In contrast, instead of a quadratic shape, the predicted reduction of real contact area

27



C
on

ta
ct

 a
re

a 
pe

rc
en

ta
ge

 A
r /

A
n 

(%
)

Tangential load Fx (N)

Test
Statistical model
Constant shear strength

Fz = 6.40 N

Fz = 4.01 N

Fz = 3.10 N

Fz = 2.08 N
Fz = 1.53 N

Fz = 0.98 N

0 2 4 6 8 10
0

1

2

3

4

5

6

7

Figure 8: Comparison of the fractional real contact area Ar/An vs. tangential load Fx under
six different normal loads measured by Sahli et al. [5] (solid curves) and predicted by the
statistical model (coarse dashed curves) and a constant shear strength model (fine dashed
line). Choosing the optimized resolution of 260 µm, the corresponding roughness parameters
are: R = 1.180 mm, η = 2.25 mm−2 and σs = 0.0419 mm. λ = 0.03. The other parameters
are the same as that used in Fig. 5. Tabor’s parameter µ ≈ 1939.

shows a nearly linear trend against the tangential force. According to the discussion given

by Scheibert et al. [12], their disagreement may be attributed to the following two reasons:

1. Constant fitting parameters, p and αb, in the phenomenological law;

2. Lack of elastic coupling between neighboring micro-junctions.

The first reason actually suggests that the empirical asperity scale law they have used is

not fully satisfactory. Indeed, a detailed expression of αb/A
p
0i was derived by Papangelo

and Ciavarella, see Eqs. (27–29) in [30], based on the PC model, which appears to be an

alternative, more physically-based contact mechanics law. As a matter of fact, according

to the results of our statistical model, the quadratic shape of contact area reduction is
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recovered if the PC model is used to describe the shear-induced area reduction, see Fig. 8.

This is a strong signal that, if a more sophisticated form of p and αb were introduced, the

model developed by Scheibert et al. might better predict the shape of the area reduction.

Additionally, the second invoked reason may not be as paramount as the first one since the

present statistical model also does not consider the coupling between neighboring asperities

and still behaves better.

6 Conclusions

The adhesive friction behaviour of a linear elastic rough contact interface is modeled using a

statistical model of independent spherical asperities. The coupling between friction and ad-

hesion at the asperity level is described using Papangelo and Ciavarella’s model, in which the

periphery of each asperity is considered as an interfacial crack under a mixed mode loading.

As tangential displacement increases, more and more micro-junctions switch from a sticking

to a slipping state, until global sliding occurs. The statistical model satisfactorily reproduces

the phenomenon of shear-induced reduction of the real contact area observed in recent fric-

tion tests, which is attributed to junction shrinkage at the asperity level. Remarkably, our

model also reproduces a static friction peak at the macroscale without explicitly introduc-

ing two different friction levels (static and dynamic/sliding). It also demonstrates how the

static friction peak and contact area evolution depend on the normal load and the interfacial

properties such as surface energy, mode mixity and frictional shear strength. Generally, a

“tougher” interface (larger surface energy and smaller mode mixity parameter) results in

more contact area and a more pronounced static friction peak, all the more so as the normal

load is reduced. The static friction peak can be made to “disappear” due to a relatively

higher frictional shear strength and a “weaker” interface - again a behaviour which has been

observed in experiments. The prediction of the friction force and real contact area quantita-
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tively matches the experimental measurements, if a specific evaluation procedure is followed

to estimate the relevant roughness parameters and the mode-mixity parameter. Overall, this

work provides important insights about how key microscale properties (e.g. surface, mode

mixity etc.) operating at the asperity level can combine with the surface statistics to simulate

some of the most relevant macroscopic responses observed in experiments on the friction of

rough elastic surfaces - most notably, the evolution of friction and real contact area during the

transition from static to sliding friction. The paper, therefore, offers important fundamental

insights into the mechanism of friction itself. In the future, those insights might be a useful

aid in designing engineered friction systems (i.e. functionalized textured interfaces etc). The

work also paves the way for the development of more comprehensive asperity-based and full

continuum models for the adhesive friction of rough elastic contacts.
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Appendix A. Statistics of measured rough surface to-

pography

The rough surface used in this study was measured by Sahli et al. [5, 11] which is one seventh

of the nominal contact area of the elastomer block (35 × 20 mm2) used in the friction test,

see the rough surface height map in Fig. A.1. The rough surface is sampled with a resolution

of 2 µm.

x(mm)

z(mm)

y(
m
m
)

Figure A.1: Map of the measured rough surface topography [5, 11]. The rough surface
consists of 5001 × 5001 sampling points over a sampling area of 10 × 10 mm2. The rough
surface is leveled and the mean surface height is zero.

Three roughness-related parameters, namely, asperity density, η, mean asperity radius,
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R, and standard deviation of the asperity height ,σs, are needed for the statistical model

developed in Section 3. The asperities are identified using the method of 4-nearest-neighbors,

i.e., a sampling point is identified as the summit of an asperity if it is higher than the nearest

four sampling points. The asperity density over the sampling area An = 10× 10 mm2 is η =

N/An = 652.1 mm−2 where N is the number of asperities. The standard deviation of asperity

height is σs =
√
〈z2〉 = 0.032 mm where z is the summit height of all asperities measured

about the mean summit height level, i.e., 〈z〉 = 0. The mean asperity radius R = 0.041 mm

is the average of the summit radius of the asperities R = 1
2
〈|∂z2/∂2x|−1 + |∂z2/∂2y|−1〉 which

can be approximated using central differentiation. The above calculations of R, η and σs are

associated with the resolution of 2 µm. Analogous measurements based on re-sampled data

yielding coarser spatial resolutions are given in Fig. 7.

Appendix B. Boundary element method for adhesive

contact

The Pohrt & Popov’s model [56] is an adhesive contact model applied to the pre-loading

stage of the adhesive friction where Fx = 0 N and adhesion is included. Consider a rough

elastic half-space in purely normal non-adhesive contact with a rigid flat, see Fig. 3 where

Fx = 0 N. The geometrical relation at the contact interface has the following form

g(x, y) = uz(x, y)− h(x, y) + d (x, y) ∈ Ω, (B.1)

where g is the interfacial gap; Ω is the computational domain; uz is the normal surface

deflection which can be determined by the convolution between the Boussinesq solution and

contact pressure p [36]; d is a load-dependent distance. The solutions, p(x, y) and g(x, y),
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must satisfy the following boundary conditions

g(x, y) = 0 where (x, y) ∈ Ωc, (B.2)

g(x, y) > 0, p(x, y) = 0 where (x, y) ∈ Ωnc, (B.3)

where Ωc and Ωnc are the contact and out-of-contact regions, respectively. Finally, the load

equilibrium in the normal direction must be maintained

Fz =
x

Ωc

p(x, y)dxdy. (B.4)

Since the measured rough topography of a finite size 10× 10 mm2 is only one seventh of the

entire nominal contact area 35×20 mm2 used in the friction tests, the computational domain

Ω is assumed to be periodic. The load-dependent d reduces to the average interfacial gap.

The entire measured rough topography shown in Fig. A.1 is used in the BEM model, where

the size of each surface element is 2 × 2 µm. Fast Fourier Transform (FFT) is adopted to

accelerate the calculation of the normal deflection w [58, 59]. For a non-adhesive contact, the

solutions of nonlinear equations, Eqs. (B.1–B.4), are iteratively solved using the conjugate

gradient (CG) method proposed by Polonsky and Keer [58, 59].

For a non-adhesive contact, the BEM model can be divided into two parts, a normal

contact BEM solver and a mesh-dependent delamination criterion. The former part solves

Eqs. (B.1–B.4) iteratively with a given real contact area Ωc using the conjugate gradient (CG)

method [57, 58]. In the latter part, the contacting interface is considered as an interface crack.

The surface elements are delaminated where the normal tractions p(x, y) violate the Griffith

criterion, which states that the crack propagates when the strain energy release rate (G) is

larger than w = 27 mJ/m2. Pohrt and Popov [56] developed an analytical solution of G
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using the Boussinesq solutions, and their derivation results in a mesh-dependent form [56]:

G =
p2χ

∆x∆yE∗
, (B.5)

where

χ =
1

3π

(
∆3
x + ∆3

y −∆2
x∆̄−∆2

y∆̄
)

+
1

2π
∆x∆y

[
∆x log

(
∆̄ + ∆y

∆̄−∆y

)
+ ∆y log

(
∆̄ + ∆x

∆̄−∆x

)]
.

∆x = 2 µm and ∆y = 2 µm are mesh sizes in the x and y directions, respectively; ∆̄ =√
∆2
x + ∆2

y. The analytical solution G in Eq. (B.5) quantifies the released strain energy

due to the delamination of a rectangular element of unit area. Substituting Eq. (B.5) into

G > w, the energy-based delamination criterion can be rewritten as a normal traction-based

one, i.e., p < −Σ where

Σ =

√
∆x∆ywE∗

χ
. (B.6)
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