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Abstract

Background: Next-generation sequencing technologies are rapidly generating whole-genome datasets for an increasing

number of organisms. However, phylogenetic reconstruction of genomic data remains difficult because de novo

assembly for non-model genomes and multi-genome alignment are challenging.

Results: To greatly simplify the analysis, we present an Assembly and Alignment-Free (AAF) method (https://

sourceforge.net/projects/aaf-phylogeny) that constructs phylogenies directly from unassembled genome sequence

data, bypassing both genome assembly and alignment. Using mathematical calculations, models of sequence

evolution, and simulated sequencing of published genomes, we address both evolutionary and sampling issues

caused by direct reconstruction, including homoplasy, sequencing errors, and incomplete sequencing coverage.

From these results, we calculate the statistical properties of the pairwise distances between genomes, allowing us

to optimize parameter selection and perform bootstrapping. As a test case with real data, we successfully reconstructed

the phylogeny of 12 mammals using raw sequencing reads. We also applied AAF to 21 tropical tree genome datasets

with low coverage to demonstrate its effectiveness on non-model organisms.

Conclusion: Our AAF method opens up phylogenomics for species without an appropriate reference genome or high

sequence coverage, and rapidly creates a phylogenetic framework for further analysis of genome structure and diversity

among non-model organisms.
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Background

Understanding the phylogenetic relationships among or-

ganisms is an essential aspect for many ecological, biogeo-

graphical, and evolutionary questions [1]. Currently, the

simple step of generating a robust phylogeny for a group

of poorly studied organisms can require substantial re-

search investment. Most phylogenies are reconstructed

from a tiny portion of the genome [2], but as next-

generation sequencing technologies become faster and

cheaper, the number of species for which whole genome

sequence data are available has increased dramatically.

Most whole-genome datasets are collected for reasons

other than phylogenetic reconstruction, yet it is the first

step in many comparative studies [3]. Therefore, con-

structing a phylogeny from genomic data would be a valu-

able tool even if genome datasets were not collected with

this in mind. Unfortunately, most existing methods for

phylogenetic reconstruction are not intended for analysis

of genomic scale datasets [4]. Traditional phylogenomic

techniques require genome assembly, detection of putative

orthologous genes from the assembled sequences, and

alignment at the DNA sequence level [5]. These analyses

typically go beyond the expertise of researchers who only

require a phylogeny to place comparative studies into an

evolutionary framework. Approaches are needed to effi-

ciently cope with the dramatic increase in genomic data,

and to allow easy and reliable reconstruction of phylogen-

etic relationships among genomes [6].

Multiple-sequence alignment is a central issue in phylo-

genetic reconstruction, and errors in the alignment process
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often lead to errors in phylogenetic reconstruction [7].

When working at the genome scale, multi-sequence

alignment becomes very difficult (reviewed in [8]).

Alignment-free methods were initially proposed to cir-

cumvent the issues of recombination and genetic shuf-

fling that make alignment difficult [9], and they have

attracted attention due to their computational efficiency

[10] and accuracy [11]. However, because they are not

based on specific evolutionary models, they have been

mainly used for comparing similarity between sequences

[12, 13] and genomes [14].

The majority of the alignment-free methods focus on

the distribution within and among study genomes of short

DNA/protein fragments, known generally as k-mers where

k is the length of the substring taken from the original se-

quences [15]. Usually distance matrices are calculated dir-

ectly from the distribution of k-mers, and phylogenies are

built from these distances [16]. These distance metrics,

however, are derived without an evolutionary model and

therefore do not represent the genetic distances (see [17]

for a recent review). Furthermore, the k-mer statistics used

to compare genomes are typically computed from assem-

bled sequences [18, 19]. Unfortunately, for the majority of

organisms, a reference genome from a closely related spe-

cies is not available. Without a reference, de-novo genome

assembly of short reads remains a major challenge, espe-

cially in wild, out-crossed species with high levels of het-

erozygosity [20]. Additionally, high coverage is generally

required [21, 22], but even with high coverage de-novo as-

sembly often remains error-prone [23]. The difficulty of

assembly has led to methods that directly analyze unas-

sembled read data [24, 25], and some of these methods

are proposed for reconstructing phylogenies [26–29].

However, these methods are mainly designed for closely

related prokaryotic genomes. Finally, although a couple of

these methods [26, 29] have addressed the inherent

assembly-free problems such as coverage and sequencing

errors, none proposed any solution. They also do not pro-

vide methods such as bootstrapping to assess confidence

in the reconstructions.

Here we present a new method that directly recon-

structs a phylogeny from whole-genome short read se-

quence (SRS) data. By removing the need for assembly of

the sequencing reads, we extend alignment-free methods

to Assembly and Alignment-Free (AAF) methods. Fur-

thermore, we develop, explain, and validate our AAF

method using a combination of sequence evolution

models, mathematical calculations and simulated SRS data

from published genomes for 11 primates. The mathemat-

ical calculations provide the conceptual foundation for the

method and predict its performance given a basic evolu-

tionary model for sequence divergence. Simulation models

of sequence evolution allow us to test the mathematical

predictions. Simulations of SRS data allow us to validate

the method given realistic genome complexity, different

genome sizes, sequencing errors, and a range of sequence

coverage. To provide a tool for researchers to assess their

own AAF phylogenetic reconstructions, we also developed

a two-stage bootstrap that estimates the precision of our

method when applied to novel genome data. In order to

demonstrate how AAF works on real sequencing data, we

apply AAF to reconstruct the phylogeny for 12 mammal

species from raw sequencing datasets, since the primate

phylogeny is well established through both morphological

and molecular data. Finally, to illustrate the ability of AAF

to handle data for which it was designed – low-coverage

data from poorly known species – we use AAF to recon-

struct the phylogeny for 21 tropical tree species. The pack-

age is available at https://sourceforge.net/projects/aaf-

phylogeny/ with detailed documentation and tutorials.

Results and discussion

The AAF approach first calculates pairwise genetic

distances between each sample using the number of evo-

lutionary changes between their genomes, which are

represented by the number of k-mers that differ between

genomes. The phylogenetic relationships among the ge-

nomes are then reconstructed from the pairwise distance

matrix. Using simulated SRS read data (with sequencing

error and incomplete coverage) from published and fully

assembled genomes, our AAF method obtained the same

phylogeny for 11 primate species (plus one outgroup,

Fig. 1) as those previously published using traditional

methods [30, 31], even though AAF did not use any in-

formation about assembly or alignment. Furthermore,

the AAF method was very efficient, requiring only a few

days on a standard work station (Table 1). Below, we

provide complete theoretical and computational support

for our method.

Evolutionary model

Our measure of the phylogenetic distance (denoted d)

between two species, A and B, is based on the estimate

of the rate parameter from a Poisson process for a muta-

tion occurring at a single nucleotide under the evolu-

tionary model that the mutation rate is the same for all

nucleotides across the genomes. We include not only

mutations caused by nucleotide substitutions, but also

insertions and deletions (indels). If k-mers are random

nucleotide sequences of length k, and if mutations occur

randomly and independently among nucleotides, the

probability that no mutation will occur within a given k-

mer between species A and B is exp(−kd). Mutations will

decrease the number of shared k-mers, ns, between spe-

cies relative to the total number of k-mers, nt. In the

hypothetical case in which only substitutions occurred

and all k-mers were unique, then all the species will have

the same total number of k-mers, nt, and the maximum
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Fig. 1 Primate phylogeny reconstructed by AAF using assembled genomes and simulated short reads. a Phylogeny reconstructed from assembled genomes

with k= 19. Incorrect branches are shown in red. b Phylogeny reconstructed from assembled genomes with k= 21. For the assembled genomes, correct

phylogenies were also given for k= 23, 25 and 31 (Additional file 1: Figure S1). c Phylogeny reconstructed from 70-bp reads were simulated from assem-

bled genomes with 1 % sequencing errors and 2X coverage. Grey bars at the tips give the tip corrections (Eq. 10) for incomplete coverage and sequencing

error that are trimmed from each tip.d Like (c) but with 5X coverage. e Like (d) but with filtering to remove k-mers that appear only once. f A recently pub-

lished phylogeny of primates [31]
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likelihood estimate of exp(−kd) is ns/nt. In real situa-

tions, indels introduce the complication of changing nt
which can be addressed as follows. A single insertion of

length l will cause the loss of at most (k – 1) k-mers and

a gain of at most (l + k – 1) k-mers, while a single dele-

tion of length l will cause the loss of at most (l + k – 1)

k-mers and a gain of at most (k – 1) k-mers. For com-

puting distances, this means that deletions will cause a

greater reduction in the number of shared k-mers than

either a substitution or an insertion of the same length.

To account for this asymmetry, when estimating the dis-

tance between two taxa, the smaller of the two values of

nt calculated separately for each of the taxa is used. This

leads to the estimate of d (denoted D) of

D ¼
−1

k
log

ns

nt
ð1Þ

This formula can be modified to correct for back sub-

stitutions (reversal to a nucleotide’s original state after

two or more mutations), although this effect is small

(see Methods: Estimating d).

Although application of Equation 1 for AAF is in

principle straightforward, several important issues must be

addressed. These divide naturally into alignment-free and

assembly-free issues. Below, we first address alignment-free

issues that involve extracting as much information as pos-

sible about the true evolutionary variation between species.

We then address assembly-free issues that involve reducing

sampling variation caused by incomplete coverage and se-

quencing errors.

Alignment-free: k-mer sensitivity and homoplasy

Lack of alignment makes it more difficult to extract all of

the possible information about evolutionary distances be-

tween species. If genomes from two species were perfectly

aligned, it would be possible to identify all substitutions

and indels. In AAF, however, only differences in the pres-

ence/absence of k-mers are used. If a k-mer covers, for

example, multiple substitutions, it will count equally as

one carrying only a single substitution. Consequently,

shorter k-mers are more likely to have greater sensitivity

to single evolutionary events. On the other hand, identical

k-mers could be derived from physically, functionally, or

evolutionarily different regions of the genome and are

therefore not homologous (k-mer homoplasy). Longer k-

mers are less likely to suffer from k-mer homoplasy.

Therefore, a trade-off exists for k-mer length between the

problem of sensitivity (which requires smaller k) and k-

mer homoplasy (which requires larger k).

To isolate alignment-free issues, in this section we com-

pute k-mers under the assumption that we have com-

pletely assembled genomes without error. Therefore, only

the evolutionary differences between genomes will be cap-

tured, without any differences caused by sampling error or

sequencing effort.

k-mer homoplasy

k-mer homoplasy is generally considered as “noise” in

phylogenetic reconstruction [16] and is a particular prob-

lem when k-mer length is short and genome size is large.

For example, if k = 15, the total number of possible k-mers

accounting for complementarity is 415/2 (~5x108), so if ge-

nomes are close to this length, identical k-mers will appear

in different species simply due to the limited number of

total possible k-mers.

k-mer homoplasy may incorrectly inflate the proportion

of shared k-mers because (i) multiple copies of the same k-

mer at different locations in species A must all experience

mutations before this k-mer is no longer shared with spe-

cies B, and (ii) a k-mer that does undergo a mutation may

turn into a k-mer that already exists elsewhere in the ge-

nomes of species A or B (see Methods: k-mer homoplasy).

k-mer homoplasy depends on the frequency distribution of

different k-mers across the genome of species A and B,

which varies with k; for the species with the shortest gen-

ome, we denote this distribution Qk. To account for k-mer

homoplasy, we derived a mathematical formula for the

proportion of shared k-mers between species, ph, which is a

prediction of the ratio ns/nt based on Qk (Methods: k-mer

homoplasy). In this formula, Qk can be calculated empiric-

ally from real genomes (Eq. 4) or estimated theoretically

under the assumption that the ancestral genome for species

A and B is a random sequence (Eq. 5).

We first investigated the general issue of k-mer homo-

plasy under the assumption that the ancestral genome

is a random sequence (Fig. 2a). For large genomes and

small k, k-mer homoplasy led to ph = 1 because all pos-

sible k-mers occur in both species. This problem is exac-

erbated if GC content is biased, which will inflate the

average similarity in genomic k-mer composition. Fortu-

nately, because the possible number of k-mers increases

exponentially, small increases in k quickly overcome this

Table 1 AAF performance metrics

Coverage Filtered Memory
(MB)

Generating k-mer
table (CPU hours,
using one core)

Calculating distance
matrix (CPU hours,
using one core)

5X no 68,082 117 103

5X yes 68,086 85 56

2X no 39,780 66 61

2X yes 39,048 39 22

1X no 34,316 50 8

Performance metrics for the AAF reconstruction of the 11-primate phylogeny

from simulated SRS data using one thread only. Phylogenetic reconstruction

requires generating the k-mer table and calculating the number of shared k-mers

between species to compute the distance matrix. Note that the memory usage is

for the first step; the second step required no more than 1G of memory
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limitation; for example, when k = 18 over 30 billion k-

mers are possible, which is considerably larger than the

majority of genome sizes, and when k = 21, over 2 tril-

lion possible k-mers exist. Therefore, above a threshold

k (which differs by genome size and sequence complex-

ity), the effects of k-mer homoplasy are greatly reduced.

As would be expected, above this k the theoretical and

observed values of ph are the same (Fig. 2a dashed black

Fig. 2 Effect of k-mer length on k-mer homoplasy. a Mathematical predictions of the proportion of shared k-mers, ph, as a function of k for genomes of

sizes g= 105 (blue), 107 (purple), and 109 (green) when the true genetic distance between two species is d= 0.02 or d= 0.1, and the GC content is 0.5

(solid lines) and 0.4 (dashed lines). The dashed black line gives the hypothetical case if there were no k-mer homoplasy. Calculations were performed using

the assumption that genomes are random sequences (Eq. 5). b Simulations of the effect of k-mer homoplasy on ns/nt and comparison with its theoretical

prediction ph. Three simulations were performed starting with a random sequence of 105 bp assuming that the true genetic distance between taxa is

d= 0.1. The black lines give ns/nt from sequence simulations and the blue lines give the theoretical predictions, ph, under the assumption that the ancestral

genome is random with GC content 0.5 (Eq. 5). c Like (b) but with the ancestral sequences given at three random starting positions from a published 1.9 Mbp

sequence of the rabbit genome [30]. The red line gives the theoretical predictions (Eq. 4) calculated using the observed frequency distribution of

k-mers, Qk, in one of the simulated species. d Theoretical predictions (Eq. 4) of the proportion of shared k-mers, ph, calculated from the observed frequency

distribution of k-mers, Qk, for the 11 primate genomes ranging in size from 2.7 to 3.5 Gbp assuming the true distance between taxa is d= 0.02 or 0.1
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line). Furthermore, the k at which k-mer homoplasy van-

ishes depends only weakly on the genetic distance d be-

tween species (Fig. 2a, d = 0.02 vs. d = 0.1). Therefore, a

sufficiently large k will overcome homoplasy, regardless

of the evolutionary distance between species.

The mathematical formula for ph accurately predicted

the results from simulated sequence evolution starting

from either a random ancestral sequence of 100 kbp

(Fig. 2b) or real (non-random) sequences (Fig. 2c). Com-

paring sequence evolution simulated from random and

real ancestral sequences, k must be larger to reduce k-

mer homoplasy with the real ancestral sequence (Fig. 2c);

this is because the lower complexity in the real ancestral

sequence increases the probability that a k-mer appears

at multiple locations in the genome by chance. For ran-

dom sequences of length 109 bp, k-mer homoplasy is

negligible for k ≥ 19 (Fig. 2a), whereas for Qk obtained

from the primate genomes, k-mer homoplasy only be-

comes negligible for k ≥ 21 (Fig. 2d).

Balancing sensitivity and homoplasy

While k-mer homoplasy becomes negligible when k is suf-

ficiently large, continuing to increase k will also increase

the probability that a single k-mer contains more than one

evolutionary event, and this will reduce sensitivity and

underestimate the proportion of shared k-mers.

The balance between k-mer homoplasy and sensitivity

can be understood in terms of the statistical properties of

bias and precision in the estimate D (Fig. 3). Bias refers to

the under- or overestimation of distances, whereas preci-

sion refers to the variability in the estimates. We investi-

gated both the bias and precision by simulating sequence

evolution (Methods: Simulation of sequence evolution);

for these simulations, we used relatively short ancestral se-

quences (compared to the primate genomes) for which

smaller values of k will be enough to overcome k-mer ho-

moplasy. For short k-mers (k = 9, 11), increasing genome

size led to consistent underestimates of D (Fig. 3a) due to

the increased numbers of shared k-mers from k-mer ho-

moplasy (Fig. 2). At small genome sizes, however, shorter

k-mers led to greater precision in the estimate D mea-

sured by the coefficient of variation, CV (Fig. 3b). This

greater precision for shorter k-mers occurred because

shorter k-mers have greater sensitivity to identify individual

mutations. At large genome sizes, however, the precision

decreased for shorter k-mers due to k-mer homoplasy.

These results predict that shorter k-mers will give better

phylogenetic reconstructions up to the point that k-mer

homoplasy leads to strong bias and imprecision in the

estimate D. Therefore, the optimal k for phylogenetic

reconstruction is the k which is just large enough to

greatly reduce k-mer homoplasy for a given genome

size (Fig. 2).

To test this conclusion, we simulated 12 sequences

based on their phylogenetic relationships starting with

ancestral sequences ranging from 5 kb to 1280 kbp (100

phylogenies simulated for each starting length) given the

“true” phylogenetic relationships among simulated spe-

cies are given by Fig. 1b. As expected, for short genomes

for which k-mer homoplasy was negligible, shorter k-

mers led to fewer topological mistakes in phylogeny

reconstruction (Fig. 3c). However, as genome length in-

creased, phylogenies reconstructed using k = 9 possessed

an increasing number of mistakes. For longer k-mers

(11 ≤ k ≤ 17), AAF invariably gave the correct topology

when genome size was ≥160 kbp. Furthermore, the ad-

equate performance with k = 11 despite the expected

underestimate of D (Fig. 3a) suggests that reconstructing

tree topology is robust to moderate amounts of bias.

Phylogeny reconstruction from assembled genomes

Using 11 assembled primate genomes with rabbit as an

outgroup, AAF with k = 21 generated a phylogeny with

the same topology as those described in recent publica-

tions [30, 31]. With k < 21, a few topology errors were ob-

served, especially for deep nodes; these errors were

anticipated as a result of k-mer homoplasy (Fig. 2c). For

k > 21, tree topology (Additional file 1: Figure S1) and

branch lengths (Additional file 2: Table S1) were remark-

ably stable. This matches our prediction from Fig. 2c that

values of k ≥ 21 should be sufficient to minimize k-mer

homoplasy. Therefore, we take 21 as the optimal k that

balances homoplasy and sensitivity for this dataset, and

we take the tree constructed from assembled genomes

with optimal k as our optimal AAF tree (Fig. 1b). Quanti-

tative comparison with the phylogeny from Perelman

et al. (2011) showed high similarity to our optimal phyl-

ogeny with respect to branch lengths; there was a high

correlation between their patristic distances (r = 0.9717)

and a low Branch Score Distance (BSD = 0.0518;[32]).

AAF is also very efficient, requiring only a few days on a

standard workstation (Table 1).

Assembly-free: incomplete coverage, sequencing error,

and filtering

While the lack of alignment introduces possible errors

in the inference of the actual evolutionary relationships

among species, the lack of assembly primarily introduces

sampling error caused by low genome coverage and se-

quencing errors [26, 29]. The actual number of k-mers

will be under-represented given low sequencing cover-

age, whereas sequencing error will cause both the loss of

true k-mers and the gain of false k-mers.

One simple solution to remove false k-mers caused by

sequencing error is to filter out all low-frequency k-mers;

here, we filtered by removing k-mers that occur as
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Fig. 3 Statistical properties of bias and precision of the estimate D caused by alignment-free issues only. a Mean and (b) coefficient of variation (CV) of

D between two species as a function of genome size. k-mer lengths are k = 9 (red), 11 (orange), 13 (green), 15 (blue) and 17 (black). The true distance

between species is d = 0.1. In (b) the dashed line is the approximate CV of D calculated assuming that all mutations were identified. c Average number

of topological mistakes generated by AAF from simulated sequences on the phylogeny depicted in Fig. 1b, with different ancestral genome lengths

and different k. One hundred simulations were performed for each length using ancestral genomes taken from random starting positions on a 1.9

Mbp sequence of the rabbit genome from Prasad et al. (2008)
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singletons (those which occur as single copies) in a gen-

ome. If sequencing errors are random, with no molecular

or experimental bias, then the probability of observing the

identical sequencing error at the same position is low.

Therefore, given observed error rates for most next-

generation sequencing platforms, k-mers observed more

than one time in the SRS data for a genome are unlikely

to be errors. However, as sequencing coverage decreases,

a larger fraction of real k-mers will be singletons in the

dataset, and therefore filtering will remove real k-mers. As

a consequence, although filtering will be beneficial at high

coverage, at low coverage filtering will be detrimental. We

investigated incomplete coverage, sequencing error, and

k-mer filtering using mathematical calculations, simula-

tions, and application to simulated SRS data to determine

the severity of potential problems caused by sampling er-

rors and to derive recommendations accordingly.

Total and shared k-mers with missing and false k-mers

When there is incomplete coverage and sequencing er-

rors, the true total and shared numbers of k-mers, denoted

nt* and ns*, differ from the observed total and shared k-

mers, nt and ns. We derived mathematical formulas

(Methods: Combined effects of coverage and sequencing

error) to predict the ratios pt = nt/nt* and ps = ns/ns* given

information about coverage, sequencing errors, and k-mer

filtering (Fig. 4). False k-mers caused by sequencing errors

inflate pt starting from 2X coverage (Fig. 4a, solid lines),

and at least 5X coverage is required to capture most of the

shared k-mers (dashed lines). When filtering out singleton

k-mers, pt at higher coverage correctly equals one; how-

ever, at lower coverage ps is reduced by 20-30 % (Fig. 4b)

due to the loss of true singletons. Thus, the advantage of

filtering is that it reduces the number of false total k-mers,

at the cost of losing true shared k-mers.

To filter or not to filter?

Given the trade-off between filtering and not filtering,

we investigated how much coverage is required before

filtering should be used. Whether or not to filter k-mers

can again be decided by computing the bias and preci-

sion of the estimate D (Eqs. 8 and 9). Without filtering,

the number of false k-mers increases, and the true dis-

tance between species is overestimated (Fig. 5a, solid

lines). Filtering out singletons can correct for this se-

quencing error effect with sufficient coverage (5-8X ac-

cording to genome size, dashed lines).

Because reconstructing the correct topology appears

robust to bias in the estimate D (Fig. 3a vs 3c), precision

is likely more important, and filtering should be done

when it can lower the variance in the estimate D. This

crossover point generally occurs between 5X and 8X, de-

pending on k (Fig. 5b, dashed lines for filtering and solid

lines for no filtering).

To confirm these conclusions, we simulated SRS data

with sequencing error and different coverage using an-

cestral genomes of length 80 kbp (Fig. 5c). As predicted

by the estimates of the precision (Fig. 5b), filtering led to

fewer mistakes in the topology of the phylogeny when

coverage exceeded a threshold between 5X and 8X. The

poor performance with k = 9 (Fig. 5c, red line) was due

to k-mer homoplasy as found previously (Fig. 2b). With

the genome size of 80 kbp, k = 11 and 13 (Fig. 5c, orange

and green lines) performed slightly better than other

values of k in the simulations of assembled genomes

(Fig. 3c) and here had the additional advantage of being

less sensitive to sequencing error (Fig. 5a, b).

Tip correction

Incomplete coverage and sequencing error both inflate

estimated distances between species and lead to longer

tips on the tree. We derived a mathematical correction

Fig. 4 The theoretical ratios of observed to true total and shared k-mers. a Ratio of observed to true total k-mers, pt = nt/nt* (solid lines) and ratio of

observed to true shared k-mers, ps = ns/ns* (dashed lines), when k-mers are not filtered (Methods: Combined effects of coverage and sequencing error).

k-mer lengths are k = 9 (red), 11 (orange), 13 (green), 15 (blue) and 17 (black). The simulation was performed with a sequencing error rate of 1 % and a

read length of 76 bp, and the true distance between species is d = 0.1. b Like (a) but with filtering
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for this effect (Eq. 10) that does not depend on the true

distance between species, but does depend on the read

length and sequencing error and coverage. When the

read length, sequencing error, and coverage are similar

for all taxa, then this correction is similar for all species,

so that the correction only affects the tips rather than

internal nodes of the tree. This correction is particularly

helpful for lower coverage datasets when filtering is not

an option. Note that the decision whether to filter de-

pends on precision (Fig. 5); therefore, although the tip

correction adjusts for bias, it does not affect the decision

whether to filter. The case of large differences in read

length, sequencing error, and coverage among taxa is

discussion in the Methods: Tip correction.

Bootstrapping

To determine the uncertainty in tree topology, we de-

vised a two-stage nonparametric bootstrap that accounts

for both sampling variation (caused by incomplete

coverage and sequencing error) and evolutionary vari-

ation (caused by the true history of sequence divergence

and the ability of AAF to reconstruct it). The first stage

of the bootstrap follows standard procedures: resample

the original reads with replacement, construct a k-mer

presence/absence table, compute distances D, and con-

struct the phylogeny. The variance in topology among

100 replicates is then used to assess the precision of re-

construction associated with sampling variation. To add-

itionally incorporate evolutionary variation, the second

stage involves, for each of the 100 k-mer presence/ab-

sence tables, resampling with replacement 1/k of the

total k-mers. Only 1 in k of the k-mers is selected to ac-

count for the non-independence among k-mers caused

by their overlap. Simulations showed that choosing 1/k

of the k-mers gives the correct variance in D in the boot-

strap (Methods: Bootstrapping).

This nonparametric bootstrap is not practical for large

genomes due to the computational requirements for re-

peating the phylogenetic reconstruction a hundred or more

times. Therefore, we also developed a two-stage parametric

bootstrap that uses mathematical equations to estimate the

variances in distances between species caused by sampling

and evolutionary variation (Methods: Bootstrapping). This

approach gives similar results to the nonparametric boot-

strap in both simulations with high coverage and filtering

(Fig. 6a), and low coverage without filtering (Fig. 6b), but

its computational requirements are independent of gen-

ome size.

Application on simulated and raw sequencing data

As an initial test of AAF, we simulated reads from 11

fully assembled primate genomes with rabbits as an out-

group (Methods: Read simulations). AAF successfully re-

constructed phylogenies with the same topology and

only slightly different branch lengths from simulated

SRS data (Fig. 1c-e, Table 2). The closest match to the

phylogeny produced from the assembled primate ge-

nomes with k = 21 (Fig. 1b) was the filtered 5X coverage

Fig. 5 Statistical properties of the estimate D with combined effect from

assembly and alignment-free issues. a Mean and (b) standard deviation

in the estimate D from simulations with incomplete coverage and

1 % sequencing error. The true distance between species is d = 0.1,

and k-mer lengths are k = 9 (red), 11 (orange), 13 (green), 15 (blue)

and 17 (black), with solid and dashed lines corresponding to no filtering

and filtering, respectively. c Average number of topological mistakes

generated by AAF from simulated sequences on the phylogeny depicted

in Fig. 1b. One hundred simulations were performed using 80 kbp of a

1.9 Mbp sequence of the rabbit genome from Prasad et al. (2008) with

random starting positions. For each sequence simulation, reads of length

76 were simulated and each read dataset was analyzed using different

k-mer lengths
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(Fig. 1e, BSD = 0.016), followed by the non-filtered 2X

coverage (Fig. 1c, BSD = 0.063) and then non-filtered 5X

coverage (Fig. 1d, BSD = 0.10). In fact, even for 0.5X

coverage and no filtering, AAF recovered the correct

topology (Additional file 1: Figure S1e), although we do

not recommend application of AAF to datasets with

such low coverage. Finally, with the tip correction, the

trees are more similar to those constructed from the

fully assembled genomes (Table 2).

Although we have included sequencing error and random

sequences in our read simulations, there are non-random

biases brought by different sequencing technologies. In

order to test the performance of AAF on real sequencing

data, we downloaded next-generation sequencing data for 7

primates that are available in NCBI Short Reads Archive.

We did not find data for rabbit in SRA, and therefore we

used cat as the outgroup. We added five species to expand

the study to Euarchontoglires, the super-order to which pri-

mates belong. This dataset includes sequences from differ-

ent sequencing platforms with different library construction

strategies and read lengths (Additional file 3: Table S2).

AAF successfully reconstructed a phylogeny from the 12

mammals dataset (Additional file 4: Figure S2) that agrees

with recent studies [33, 34]. This illustrates how AAF can

be used to construct phylogenies from publicly available,

heterogeneous genome data.

AAF is designed mainly for constructing phylogenies

for non-model organisms. Therefore, we showcase AAF

on raw SRS datasets that might be typically encountered

by evolutionary biologists and ecologists, a dataset of 21

tropical trees from four orders (Additional file 5: Table

S3). Analyzing this 21 tropical trees dataset was the initial

stimulus for developing AAF, and the dataset contains the

many complications that will arise in studies of non-

model organisms: low and uneven coverage, different read

lengths, and no available reference genome close enough

to aid traditional assembly and alignment. The AAF tree

(Fig. 7) matched the established phylogeny at the interfam-

ily level according to the current Angiosperm Phylogeny

Group classification, APGIII [35], and the intergenera level

according to recent studies [36, 37]. However, at the intra-

genus level, there is no published phylogeny for one of the

major genera, Lithocarpus; the existing phylogenies for the

other major genus, Ficus, have no consensus and poor

bootstrap support [38, 39]. Therefore, we cannot compare

our results diagnostically to established results in the lit-

erature. A tutorial giving a full demonstration from

parameter selection to phylogeny reconstruction, tip cor-

rection and bootstrapping of this dataset is provided in

the Additional file 6: Tutorial of the analysis of the 21

tropical trees dataset.

Comparison with other alignment and assembly-free

methods

Although there are other alignment and assembly-free

methods for constructing phylogenies, these methods are

designed for prokaryote genomes [27, 28, 40]. A major ad-

vantage of AAF is its ability to process large genomes

within days. The only methods that demonstrated attempts

Fig. 6 Two-stage nonparametric and parametric bootstraps. a Examples of two-stage nonparametric and parametric bootstraps from simulated

data with high coverage (10X) and filtering (k = 13). The node values give the number of bootstrap trees supporting each node, with the values

in parentheses giving bootstraps accounting for only sampling variability (first stage); for each node, the top numbers give the results from the

nonparametric bootstrap and the bottom numbers give the results of the parametric bootstrap. Nodes without values all have 100 % support. b

like (a) but with low coverage (2X) and without filtering. The ancestral genomes (different between panels) were 80 kbp sequences taken from

random starting positions on a 1.9 Mbp sequence of the rabbit genome from Prasad et al. (2008)

Table 2 Branch Score Distance (BSD) between trees generated

from simulated reads and the optimal AAF tree

Tree No tip correction With tip correction

AAF 2X (Fig. 1c) 0.062 0.022

AAF 2X filtered 0.063 0.043

AAF 5X (Fig. 1d) 0.104 0.028

AAF 5X filtered (Fig. 1e) 0.016 0.011

The optimal AAF tree that is generated from assembled data using k = 21 for the

11 primate dataset (Fig. 1B) is compared to trees generated from simulated SRS

data with different coverage, with or without filtering, and before and after

tip correction
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on mammalian-size genomes are provided by Song et al.

[26] and Yi and Jin [29].

Song et al. [26] extended a variant of the classic

alignment-free statistic, D2, to perform assembly-free

phylogenetic reconstructions. The authors demonstrated

its application on 1X simulated genome sequences of five

mammals and raw sequences of 13 tropical trees (included

within the 21 species we present in our Tutorial), but the

results were not convincing. For mammals, none of the

resulting clustering was consistent with the known phylo-

genetic relationships of the five species. For the tropical

trees, species from the same genus (Lithocarpus) were not

grouped together, and the relationship between genera

within Fagaceae was not consistent with previous studies

[41]. Song et al. [26] did not provide a package which we

could use for direct comparisons with AAF, although our

successful application to 12 mammals and 21 tropical tree

species contrasts with their results.

Yi and Jin [29] developed co-phylog that uses an micro-

alignment method for identifying SNPs (http://humpop-

genfudan.cn/resources/softwares/CO-phylog.tar.gz.). This

method is designed primarily for closely related species,

and the applications Yi and Jin present consist mainly of

bacteria. The authors applied co-phylog to 5 mammal spe-

cies in one of their supplemental figures. However, when

we tried to repeat this analysis, the intermediate file

(.co file) for a single run of one species (Bushbaby,

SRR953063) was 129G. Ideally the intermediate file could

be limited to around 24G for mammal species (genome

size times 8byte), only if given perfectly assembled ge-

nomes without repetitive segments. Since each species has

dozens to hundreds of runs of data, we were not able to

replicate their results and compare their method to AAF

based on real large genome data. This type of analysis will

require more hard drive space than most potential users

will have available, and this limits the practical use of the

method for large genomes.

For a direct comparison between AAF and co-phylog

for smaller datasets, we simulated 100 data sets and

assessed the performance of the two methods by the

number of topological mistakes in the phylogeny. This

simulation study is similar to that in Fig. 3c (see

Methods: Simulation of sequence evolution). To select

the length of the flanking regions (CK) to use in co-phy-

log (since no guidance is provided with the method), we

used our calculations for optimal k to avoid homoplasy,

which should pose the same problems for co-phylog as for

AAF; thus, in co-phylog we set the combined length of the

flanking regions plus the focal nucleotide (i.e., 2CK + 1)

equal to k in AAF. AAF uniformly outperformed co-phylog

(Additional file 7: Figure S3). Furthermore, the perform-

ance of co-phylog depended on CK in a manner predicted

Fig. 7 AAF phylogeny of 21 tropical trees constructed from raw reads with k = 27. Grey bars at the tip branches give the tip corrections (Eq. 10) for

incomplete coverage and sequencing error that are trimmed from each tip. Intsia palembanica_P is a pooled sample containing 10 individuals. Both

the construction of the tree and tip correction are presented in Additional file 6: Tutorial of the analysis of the 21 tropical trees dataset
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for the selection of k in AAF: for short initial sequences,

smaller values of CK performed best because they are

more able to identify SNPs that are located close together

on the genome. However, for longer sequences perform-

ance was degraded by homoplasy for small CK. The best

value of CK for genome sizes >160 KB was CK = 6, which

is comparable to k = 13 in AAF.

Advantages of the AAF method

The AAF method greatly simplifies phylogenetic recon-

struction from genomic scale data. Compared to trad-

itional phylogenetic methods, the AAF method uses the

evolutionary signal from the whole genome, including

coding and non-coding regions, and small-scale structural

differences, like indels, not just nucleotide substitutions.

In contrast to most current alignment-free methods, the

distance matrix calculated by AAF matches with the gen-

etic distance. In contrast to the few available assembly-

free methods, AAF can analyze large genomes and huge

datasets while accounting for problems posed by lack of

assembly, specifically sequencing read errors and incom-

plete coverage. Our strategy of treating k-mers as present/

absent instead of using their absolute or relative frequencies

will be advantageous for the direct analysis of raw SRS data,

particularly when the coverage varies within and among ge-

nomes. Using presence/absence of k-mers also makes AAF

more robust to repetitive sequences with high abundance.

We demonstrated that the method has statistically well-

defined properties that allow optimization and adaptation

of the method. These properties also provide predictive

insight into the strengths and weaknesses of AAF given a

range of evolutionary and sampling conditions.

Other main advantages of the AAF method include:

(i). Low coverage requirements. Even with the increasing

throughput of next-generation sequencing technology,

it is still expensive to sequence many genomes at the

high coverage needed for successful assembly. The

AAF method is able to recover an accurate phylogeny

with low coverage (Fig. 5c). This is largely due to the

abundance of information brought by whole genomes.

Even for species with large genomes like primates, it is

possible to obtain 2X coverage for five individuals from

a single Illumina HiSeq lane. Therefore, AAF can

generate a robust phylogeny quickly and inexpensively

for any group of species of interest.

(ii). Low computational demands. Traditional

phylogenomic studies rely on three main steps

(without considering data acquisition) that are

computationally demanding: assembly, orthologous

gene identification and alignment, and phylogenetic

reconstruction based on the aligned sequences.

Traditional phylogenetic methods like maximum-

likelihood and Bayesian methods rely on complex

evolutionary models that require large amounts of

computing time, even when using large computing

clusters. The AAF method decreases the total ana-

lysis time drastically. Compared to 40–50 h required

for human genome assembly using a supercomputer

[42], which is just the first step of traditional analysis

for one species, AAF takes less than two days to

complete the phylogenetic reconstruction of a dozen

primate genomes on a standard workstation with

25G of RAM and 12 threads.

Limitations

The advantages of the AAF method come with some

costs:

(i). Loss of k-mer sensitivity. AAF does not use all

of the evolutionary information that would be available

if genomes were accurately assembled and aligned.

The minimum length of k-mers is set by the need to

overcome k-mer homoplasy; for the primate dataset in

this study, the minimum length was k = 21. Therefore,

if there are multiple mutations (substitutions or

indels) within a 21-nucleotide sequence, they will

be covered by the same k-mer. Nonetheless, the

vast amounts of data available from entire genomes

will largely overcome this problem.

(ii). Deep nodes. The accuracy of most alignment-free

methods suffers when applied to sequences or

genomes separated by large genetic distances [27, 29].

Deep phylogenetic nodes imply a higher density of

mutations. This will cause the loss of sensitivity of

AAF to differences between genomes, and will also

exacerbate the effects of homoplasy, which in turn

will decrease the estimate D between distantly related

species (Additional file 8: Figure S4). In our simulations

and application to the primate genomes, AAF

performed well despite a divergence time for

primates estimated at 87 Mya [31] and estimated

genetic distance (probability of mutation) from basal

node to tips of roughly 0.1. It also worked well when

expanding the analysis to Euarchontoglires (Additional

file 4: Figure S2b). However, AAF failed to identify

some of the deep nodes when including more

mammals across the Placentalia clade (Additional file 4:

Figure S2c) with a divergence time of >100 Mya [33].

In our dataset of 21 tropical trees, the AAF relationships

between families were consistent with the APG III

System. The divergence time for this group is about

94 Mya, and the average genetic distance from basal

node to tips is roughly 0.1 as well. These empirical

examples suggest that AAF can successfully

reconstruct phylogenies with divergence times of <100

Mya and genetic distances from base to tips of <0.1,

and we do not recommend AAF for deeper nodes.
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(iii). Location of mutations. AAF does not directly

give information about where genetic differences

between genomes occur. Specifically, the calculation

of the phylogeny from the distance matrix does not

estimate ancestral states that might be used for

mapping specific mutations onto the phylogenetic

tree. Thus, AAF does not identify genes or regions

of the genome that are conserved or discordant.

Nonetheless, once a phylogeny is constructed,

analyzing distribution patterns of genes and genome

regions across the phylogeny can be performed on

k-mers directly [25, 43]. Integration with AAF,

however, will require additional development.

Guidelines for parameter selection

AAF requires two choices from the user: (i) what k-mer

length to use, and (ii) whether to filter out singleton k-

mers. The choice of k depends on the possibility of k-mer

homoplasy; k must be long enough to guard against it. This

choice can be made for real genomes by plotting ph and

selecting k where the estimated value of ph matches the

theoretical value assuming no k-mer homoplasy, using em-

pirically calculated Qk (Fig. 2d, Additional file 9: Figure S5).

Larger values of k beyond this will generally decrease the

performance of AAF due to both the loss of sensitivity

(from covering multiple mutations under the same k-mer)

and the increased likelihood of k-mer loss through sequen-

cing error if k-mers are not filtered (Fig. 4). We have in-

cluded the R code for plotting Fig. 2d to provide a starting

point for the selection of k (see more details in the tutorial).

To confirm this selection, users can repeat the analyses

while increasing k by 2 until successive values of k give the

same phylogeny.

Filtering is a good guard against sequencing error and

inflated tip lengths in the phylogeny (Figs. 1, 2, 3, 4 and 5).

However, it requires coverage of at least 5-8X (depending

on k-mer length) to ensure that not too many true k-mers

are filtered out (Fig. 4). A pleasant side effect of filtering at

the k-mer counting stage is that this decreases the size of

k-mer table drastically and thereby decreases the compu-

tational load substantially (Table 1).

Future directions

AAF could be used to develop automated phylogeny gen-

erators such as phylota [44] while using whole-genome

data, or REALPHY [40] but not only for microbes. It can

make use of both assemblies and sequencing reads that

are available, as we demonstrated for primates (assemblies

downloaded from ensemble and raw reads downloaded

from the NCBI Short Reads Archive). Automation is made

feasible by AAF’s robustness against incomplete and un-

equal coverage, and its ability to accept different read

lengths from any sequencing platform. Although AAF is

designed for phylogenetic analysis, it has wider application

for understanding the pattern of relationships among dif-

ferent taxonomic levels of samples such as population

structure within species. While AAF is mainly designed

for large eukaryotic genomes, it is also able to analyze

prokaryote datasets. Possible application of the alignment

and assembly free approach requires further exploration

for other types of sequencing data, such as RAD-seq and

metagenomic data especially for organisms without a ref-

erence. Although AAF is designed for subjects without a

good reference genome, studies on species with a refer-

ence will also benefit from AAFs computation efficiency

and user-friendly pipeline. Because the AAF approach is

based upon a matrix of genetic distances among the ge-

nomes, it is easy to add new data without recalculating all

of the other distances among genomes.

Our overall AAF approach could also be expanded nat-

urally to investigate different phylogenetic patterns within

genomes. Our application of AAF to phylogenies generates

“average” genetic distances between whole genomes and a

corresponding phylogeny based on the overall differences

among genomes. It is possible, however, to use AAF to

identify suites of k-mers that are consistent with a different

phylogeny from the majority. This compartmentalization

of the evolutionary history of the genome could identify

portions of the genome with discordant histories in com-

parison to the majority of the genome [25]. The approach

could also be used, in conjunction with phenotypic infor-

mation about species, to associate suites of k-mers with

phenotypes of interest. An advantage of the overall AAF

approach is that it can identify genomic elements (k-mers

and contigs derived from them) that show interesting dis-

cordance or associative patterns among species without

initially investing in whole-genome assembly and align-

ment. Thus, the use of AAF to construct phylogenies is

only the initial step in a broader AAF program.

Conclusions
The AAF method proved to be an accurate and efficient

way of estimating the phylogenetic relationships using raw

sequence data from whole genomes. We developed the

theoretical basis for optimizing k-mer length selection, fil-

tering, correcting tip branch lengths, and bootstrapping,

directly addressing the problems of homoplasy, sequen-

cing error, and incomplete coverage. Thus, AAF provides

a robust tool for phylogeny reconstruction especially when

only low-coverage and heterogeneous genome data are

available – data that would challenge traditional assembly-

and alignment-based methods.

Methods

Generating the k-mer table

We use programs from the phylokmer package [25] for

counting and merging k-mers into a combined k-mer

presence/absence table. The counting step identifies all
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possible k-mers for each genome. Adjacent k-mers overlap

for (k – 1) consecutive nucleotides, so if there is complete

coverage, each site is covered by k k-mers. When there is

filtering, a k-mer is only recorded as present if it occurs as

two or more copies in the same species. The merging step

is to produce an M x N table of the counts of each of M

k-mers among a group of N species. Because the number

of k-mers counted for a given species will depend on the

sequencing coverage and possible non-uniform coverage

across the genome, the k-mer frequency table is converted

to a table of presence/absence of k-mers among taxa.

Estimating d

In our model, the evolutionary distance (d) is estimated

from the proportion of k-mers that are shared between

taxa. As in most evolutionary models, multiple substitu-

tions at the same site limit the divergence among k-mers

and hence the distance estimated between species [45].

Under the assumption that mutations only take the form

of nucleotide substitutions, the probability that a given

nucleotide undergoes m substitutions in distance D be-

tween two species is Poisson distributed; thus, this prob-

ability is Dme–D/m!. If γm denotes the probability that

after m substitutions there is no change in the nucleo-

tide, the probability of no change in the k-mer is

ns

nt
¼

X

∞

m¼0

γm

Dme−D

m!

 !k

ð2Þ

Here, γ0 = 1, γ1 = 0, γ2 =ws
2 + 2wt

2, and γ3 = 2ws
2wt + 4wt

3

where ws and wt are the probabilities of transitions and

transversions. Values of γm for m > 3 are vanishingly

small. Equation 2 can be solved to obtain the estimate

D, although this estimate differs little from that given by

Equation 1. For example, for ws = 0.5 and wt = 0.25, the

difference between estimates D is 4 % when the true dis-

tance d = 0.2 and diminishes for lower values of d inde-

pendently of k and genome size. Equation 2 assumes that

all mutations are substitutions, and even though indels may

be rare, large indels will lead to a much greater loss of

shared k-mers than single substitutions. Therefore, multiple

substitutions will in practice lead to even smaller differ-

ences in the estimate of D from Equation 1 in the main

text. Thus, Equation 1 in the main text rather than

Equation 2 above is included in the pipeline.

Tree estimation

We constructed phylogenies from the N x N matrix of dis-

tance measures Dij for species i and j using weighted least

squares [1] with weights proportional to the expected vari-

ance of distances calculated for Equation 1. For fixed nt,

the values of ns will have an approximately binomial distri-

bution with the number of trials nt and the probability of

success of each trial (persistence of a k-mer) given by ns/

nt. Because nt will be large, this can be approximated by a

Gaussian distribution with mean ns and variance ns(1 –

ns/nt). From this, the distribution of Dij will be approxi-

mately lognormal with variance proportional to

σ
2
D
≅
1

nt

1−e−kD̂
ij

e−kD̂ ij

 !

¼
1

ntω kD̂ij

� � ð3Þ

where D̂ij is the estimate of Dij determined during the

tree-fitting process. The phylogenetic tree for N species

given by branch lengths D̂ij is that tree that minimizes

X

N

i;j

ω kD̂ij

� �

Dij−D̂ij

� �2
: For these calculations in our

pipeline, we used the program fitch in the package PHY-

LIP [46], although we modified the program to accom-

modate the weights given by Equation 3.

k-mer homoplasy

K-mer homoplasy is a central challenge for analyzing

raw read data, and therefore we addressed it in detail.

The results of the mathematical calculations of homo-

plasy are illustrated in Fig. 2. Here, we present the de-

tailed mathematical results for interested readers.

To calculate the consequences of k-mer homoplasy on

the estimated distance between species requires the distri-

bution of k-mer frequencies within genomes. Let Qk denote

the random variable for the number of copies of a k-mer in

a genome above 1; thus, if qk(i) denotes the probability dis-

tribution of Qk, qk(0) is the probability that a k-mer is

unique, qk(1) is the probability that a k-mer occurs at two

different locations in the genome, etc. There are three ways

in which k-mer homoplasy increases the observed propor-

tion of shared k-mers. (i) If there are multiple copies of a k-

mer, then even if some copies undergo a mutation from

species A to species B, the species will still share the k-mer

if at least one copy in A does not undergo a mutation in B.

(ii) Even if all copies of a k-mer mutate from species A to B, a

mutation in another region of the genome of B could give rise

to the same k-mer, so that this k-mer is still shared between

A and B. (iii) Even if all of the copies of a k-mer in A undergo

mutations, they will still be shared if the mutations generate

k-mers that exist in B at different locations. Combining these

three scenarios, the probability of two species sharing k-mers

is ph= p1+ (1 – p1)p2+ (1 – p1)(1 – p2)p3 where

p1 ¼ 1−
X

∞

i

1−e−kD
� �

i

qk ið Þ

p2 ¼ 1−e−kD
� �

1− 1−Pð Þg½ �

p3 ¼ 0:5e−kD
X

∞

i

1− 1−Pð Þgð Þ
i
qk ið Þ

ð4Þ

Here, P is the probability of a given k-mer being iden-

tical at two different locations in the genome, which is
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2(0.5 - u + u2)k with GC content u, and g is the genome

length. For theoretical exploration of the consequences of

k-mer homoplasy, ph can be calculated under the assump-

tion that genomes are random sequences undergoing evo-

lution. In this case, Qk follows a binomial distribution with

probability of success P and number of trials equal to the

genome size, g. From these assumptions,

p1 ¼ 1−
1−Pe−kD
� �g

− 1−Pð Þg

1− 1−Pð Þg

p3 ¼ 0:5e−kD
1−P 1−Pð Þgð Þ

g
− 1−Pð Þg

1− 1−Pð Þg

ð5Þ

The distribution Qk gives the probability of homoplasy

within a genome. Qk can be calculated empirically from

the k-mer frequency distribution. The two are the same

for simulated (Fig. 2b, c) or assembled genome se-

quences (Fig. 2d). While calculating Qk from sequencing

reads, the k-mer frequency distribution needs to be cor-

rected to account for coverage and sequencing errors

(see below: Tutorial using 21 tropical trees).

Tree comparison

We used both correlations between patristic distance

matrices and the Branch Score Distance (BSD, from the

PHYLIP package [46] to compare between our AAF opti-

mal phylogeny (Fig. 1b) and the most recent phylogeny in

the literature [31]. To compare phylogenetic trees pro-

duced from simulated SRS data (Table 2), we used BSD.

BSD is based on the sum of the squared differences be-

tween the branch lengths of the two trees [32]. The larger

the BSD, the larger is the distance between the trees. BSD

has the advantage that it depends on absolute branch

lengths rather than relative branch lengths (which deter-

mine correlations of patristic distances). Our mathematical

results show that inaccuracies of the AAF method, such as

the lengthening of branch tips (Eq. 10), often involve

changes in absolute branch lengths. Therefore, BSD pro-

vides a rigorous test for comparisons between AAF trees.

Missing k-mers due to incomplete coverage

Assuming that reads are random across a genome with

coverage depth c, the probability of finding a k-mer with

reads of length r is pr = 1 – exp(−L) where L = c(r – k + 1)/r.

If k-mers are filtered to remove singletons, then the prob-

ability of missing a k-mer due to coverage is prf = 1 – (1 +

L)exp(−L). Note that the probability of recording a k-mer is

lower for the case when singletons are filtered.

Missing k-mers due to sequencing errors and filtering

We assume that sequencing errors replace a given nucleo-

tide with A, T, C, or G at random with an error rate E.

Then the probability of finding at least one copy of a true

k-mer is

pe ¼ 1−
exp −L 1−Eð Þk
� �

− exp −Lð Þ

1− exp −Lð Þ
ð6Þ

If k-mers are filtered, the probability of including a true

k-mer is

pef ¼ 1
−L 1−Eð Þk
� �

− 1þ Lð Þ exp −Lð Þ

1− 1þ Lð Þ exp −Lð Þ
− 1−Eð Þk

L exp −L 1−Eð Þk
� �

1− 1þ Lð Þ exp −Lð Þ
:

ð7Þ

False k-mers caused by sequencing errors

Sequencing errors will generate false k-mers that will in-

crease the apparent number of k-mers within a given spe-

cies, nt*. The probability that false k-mers are produced is

approximately pta = L(1 – (1 – E)k). False k-mers will also

increase the observed number of shared k-mers between

species ns* by generating apparent homoplasy; the prob-

ability of generating a false shared k-mer is approximately

psa = L(1 – (1 – E/3)kd). If k-mers are filtered, the probabil-

ity of false k-mers generated by sequencing error is van-

ishingly small.

Combined effects of coverage and sequencing error

The previous results make it possible to estimate the

net effect of incomplete coverage and sequencing errors

on the estimate of the distance between species. Let pt
and ps denote the theoretically predicted ratios of ob-

served to true total and shared k-mers, nt*/nt and ns*/ns.

In the absence of k-mer filtering, pt = pr pe + pta and

ps = pr
2 pe

2 + psa. In the presence of filtering, these equa-

tions also apply by replacing pr and pe by prf and pef, and

setting pta = psa = 0. These equations are used to show

the effects of coverage, sequencing error, and filtering

on the ratios nt*/nt and ns*/ns (Fig. 4). They can also be

used to show the bias in estimates of distances caused

by incomplete coverage and sequencing error (Fig. 5a).

The distance computed from the observed total and

shared k-mers is D* = −(1/k)log(ns*/nt*), and the differ-

ence between D* and D (that would be calculated if the

true nt and ns were known) is

D
�
−D ¼

−1

k
log

ps
pt
: ð8Þ

To compute the loss of precision due to incomplete

coverage and sequencing error, assume that the true

numbers of shared and total k-mers, ns and nt, are

known; these values are random variables due to the

evolutionary process, but we are interested only in the

variation caused by incomplete coverage and sequencing

error in estimating the distance between two species that

represent a single realization of the evolutionary process.
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The variance in the estimate of D calculated from the

observed ratio ns*/nt* is proportional to

V log
n�

S

n�t

� �

≅ log 1þ
1

ns

qs 1−qsð Þ þ psa

qs þ psað Þ2

 !

þ log 1þ
1

ns

qt 1−qtð Þ þ pta

qt þ ptað Þ2

 !

: ð9Þ

where qs = pr
2 pe

2 and qt = pr pe when singletons are not

filtered, and qs = prf
2 pef

2 , qt = prf pef, and pta = psa = 0 when

they are filtered. From this equation, precision always in-

creases with coverage (Fig. 5b).

Tip correction

Incomplete coverage and sequencing error will increase

the estimated distance between species, but this bias can

be corrected using Equation 8. Specifically, the tips of

the tree can be reduced by

Dtip ¼
D
�
−D

2
≅

1

2k
log

prpe þ pat
p2rp

2
e

� 	

: ð10Þ

if k-mers are not filtered; if k-mers are filtered, pr and

pe are replaced by prf and pef, and pta = 0. This approxi-

mation for Dtip depends only on c, r, E and k, and there-

fore if all species have similar values of c, r and E, the

correction will be very similar for all species. Note that

shortening tip lengths should be done only after the tree

topology has been constructed, because the weights used

in the least-squares tree estimation (Eq. 3) apply to the

observed values nt* and ns*, not the corrected values.

When c, r, E and k differ greatly among species, the

values given by Equation 10 will differ among tips. A solu-

tion to this situation is to calculate the average Dtip for all

pairwise distances using the parameter values for taxa

with the lower nt, and then trim each tip with the average

of these values of Dtip. This solution is preferable to

correcting distances between taxa before constructing

the phylogeny, because the construction of the phylogeny

should incorporate variances due to coverage and sequen-

cing error that would be removed by tip corrections.

Bootstrapping

We developed a nonparametric bootstrap similar to stand-

ard bootstraps used for phylogenetic reconstructions, and

also a parametric bootstrap that can be scaled to very large

genomes. Both bootstraps separate the effects of sampling

variation (incomplete coverage, sequencing error) and

evolutionary variation (mutations).

The nonparametric bootstrap first randomly resamples

reads (with replacement) to assess the uncertainty in the

phylogenetic tree caused by sampling variability. For

each resampled data set, a k-mer table is generated. To

isolate the effect of sampling variability alone, bootstrap

phylogenies are constructed from these k-mer tables. To

include evolutionary variability, the second stage takes each

k-mer table generated from resampling reads and resam-

ples the table (with replacement) by taking rows with prob-

ability 1/k; this follows the “block bootstrap” proposed by

[47, 48]. This resampling shortens the k-mer table by 1/k

to account for the overlap between k-mers; each nucleotide

can be covered by k k-mers. In simulations of sequence

evolution, this resampling procedure gave good approxi-

mations to the evolutionary variance in D estimated be-

tween two species, validating the block bootstrap for this

application.

The parametric bootstrap uses our equations for the

variation in the estimates of distances to simulate genetic

distances including sampling and evolutionary variation.

For stage one, the approach involves adding a random

variable eij to the distance between each pair of species i

and j, thereby “contaminating” the distance matrix with

the uncertainty expected from incomplete coverage and

sequencing error; eij is selected from a normal random

number generator with mean zero and variance

log 1þ
1

ns

qs 1−qsð Þ þ psa

qs þ psað Þ2

 !

þ log 1þ
1

ns

qt 1−qtð Þ 1þ r−kð Þ=Lð Þ þ pta 1þ wð Þ

qt þ ptað Þ2

 !

where w ¼
X

k−1

i¼1

2i

k r−k þ 1ð Þ
max 0; r−2k þ iþ 1ð Þ

ð11Þ

Simulations showed that this formula sometimes under-

estimates and sometimes over-estimates the true standard

deviation in the distance between taxa by as much as 50 %.

To provide a conservative bootstrap (i.e., one that is not go-

ing to improperly inflate the support for nodes), we multi-

plied the estimated standard deviation of eij by a correction

factor of 2. The resulting distance matrix is then used to

construct a bootstrap phylogenetic tree. Repeating this pro-

cedure 100 (or more) times gives an estimate of the propor-

tion of branch nodes that are consistent despite uncertainty

in genetic distances between species caused by incomplete

coverage and sequencing error. For stage two, the “contam-

inated” distance matrix from stage one is contaminated a

second time to account for variation in mutations by add-

ing the random variable eij with mean zero and variance

given by

1

k2nt
ekD−1
� �

þ 2
X

k−1

i¼1

eiD−1
� �

" #

ð12Þ

This equation is modified from Equation 3 to incorporate

covariances caused by overlapping k-mers. The second
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stage of parametric bootstrap also incorporates covariances

among distances between species that share a common

branch in the tree. These covariances are estimated from

the phylogenetic tree computed from the original data so

that the covariance between distances d(A,B) and d(C,D)

equals the proportion of evolutionary history shared by the

four species (i.e., the distance between the node separating

A and B, and the node separating C and D).

Simulation of sequence evolution

We used Rose (Random-model Of Sequence Evolution

[49]) to simulate sequences under a HKY model of evolu-

tion [50] with a transition bias of 2. We assumed that the

insertion and deletion rates were the same, and that their

sum was 10 % of the substitution rate. Both insertions and

deletions had length uniformly distributed between 1 and 5.

There are two types of simulations in our study: simulations

of differences in sequences between two species given a

true distance d between them, and simulations of many se-

quences from a phylogeny. The first is used to assess the es-

timate of distance, D (Fig. 3a, b), and the second is used to

assess the ability of AAF (Fig. 3c) and co-phylog (Additional

file 7: Figure S3) to recover the phylogeny used as starting

trees. We used the phylogeny given in Fig. 1b as the starting

tree and randomly selected sequences from a segment of

the rabbit genome [30] as the ancestral genome sequences.

Read simulations

The primate genome assemblies were downloaded from

the Ensembl database [50], and we simulated pair-end

Illumina data using Dwgsim (Whole Genome Simulation,

http://sourceforge.net/apps/mediawiki/dnaa/) assuming

a read length of 70 bp, a sequencing error rate of

1 %, and coverages of 2X and 5X, with and without

filtering.

Availability of supporting data

The SRS data sets of the 21 tropical trees are available in the

NCBI Short Reads Archive. See accession numbers in

Additional file 5: Table S3.

Additional files

Additional file 1: Figure S1. Primate phylogeny reconstructed by AAF

from assembled genomes or simulated reads. From genome assemblies with

(A) k = 15 (B) k = 23 (C) k = 25 (D) k =31. (E) Using 70-bp reads

simulated from assembled genomes with 1 % sequencing errors and 0.5

coverage. Incorrect branches (relative to the optimal tree with k = 21) are

shown in red.

Additional file 2: Table S1. Branch Score Distance (BSD) between the

optimal AAF tree and trees generated with larger k.

Additional file 3: Table S2. General information and accession

numbers in NCBI Short Reads Archive of the mammal dataset.

Additional file 4: Figure S2. Phylogeny of mammals constructed with

raw reads downloaded from NCBI Short Reads Archive. (A) 7 primates. (B) 12

mammals. See details of dataset in Additional file 3: Table S2.

Additional file 5: Table S3. General information and accession

numbers of the 21 tropical trees dataset.

Additional file 6: Tutorial of the analysis of the 21 tropical trees

dataset. Contains the whole process from obtaining data to parameter

selection, phylogeny reconstruction and bootstrap.

Additional file 7: Figure S3. Performance comparison between AAF

and co-phylog measured by the number of topological mistakes in the

phylogeny for initial sequence lengths ranging from 5 to 640 KB. Rose 1.3

was used to simulate sequence evolution down the 12 species

phylogeny given in Fig. 1b (see Methods: Simulation of sequence

evolution); for each sequence length, 100 simulations were performed,

and the number of topological mistakes averaged. For Co-phylog, the

values of CK (length of the flanking regions) were 4 (red), 5 (orange), 6

(purple), 7 (green) and 8 (cyan), and for AAF the values of k were 11 (blue

dots) and 13 (black dots).

Additional file 8: Figure S4. Comparison of pairwise distances for the

tropical trees dataset calculated with different k.

Additional file 9: Figure S5. Estimating the optimal k of the tropical

trees dataset. Theoretical predictions of the proportion of shared k-mers,

ph, calculated from the observed frequency distribution of k-mers,

Qk, for the tropical trees dataset ranging in size from 400 M to 1.3Gbp

assuming the true distance between taxa is d = 0.1 (divergence time

94Mya).

Abbreviations

AAF: Assembly and Alignment-Free; BSD: Branch Score Distance; SRS: Short

Read Sequences.
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