
An Assertion Language for Constraint Logic
Programs

Germán Puebla, Francisco Bueno, and Manuel Hermenegildo

School of Computer Science
Technical University of Madrid, S-28660-Madrid, Spain
emaíl: {german,bueno,herme}@f i.upm. es

In an advanced program development environment, such as that discussed in
the introduction of this book, several tools may coexist which handle both
the program and information on the program in different ways. Also, these
tools may interact among themselves and with the user. Thus, the different
tools and the user need some way to communicate. It is our design principie
that such communication be performed in terms of assertions. Assertions
are syntactic objects which allow expressing properties of programs. Several
assertion languages have been used in the past in different contexts, mainly
related to program debugging. In this chapter we propose a general language
of assertions which is used in different tools for validation and debugging of
constraint logic programs in the context of the DiSCiPl project. The assertion
language proposed is parametric w.r.t. the particular constraint domain and
properties of interest being used in each different tool. The language proposed
is quite general in that it poses few restrictions on the kind of properties
which may be expressed. We believe the assertion language we propose is of
practical relevance and appropriate for the different uses required in the tools
considered.

1.1 Introduction

Assertions are linguistic constructions which allow expressing properties of
programs. Assertions have been used in the past in different contexts and for
different purposes related to program development:

Run-time checking: This is one of the traditional uses of assertions and
has been applied extensively in the context of imperative programming
languages. The user adds assertions to a program which express condi-
tions about the program which should hold at run-time. Otherwise the
program is íncorrect. A usual example is to check that the valué of a
variable remains within a given range at a given program point. If as­
sertions are found not to hold an error message is flagged. Note that in
this context, assertions express properties about the run-time behaviour
of the program which should hold if the program is correct (see [1.30] for
an application in Constraint Logic Programming (CLP) [1.19]).

Replacing the oracle: In declarative debugging [1.27], the existence of an
oracle (normally the user) which is capable of answering questions about

the intended behaviour of the program is assumed. In this context, the
user may write assertions which express properties which should hold if
the program were correct [1.11, 1.12, 1.2]. If it is possible to answer the
questions posed by the declarative debugger just by using the information
given as assertions, then there is no need to ask the oracle (the user). This
makes systems more practical because the burden on the user is reduced.
Note that here again, assertions are used to express properties which
should hold for the program to be correct.

Compile-time checking: In this context, the user may write assertions
which express properties about the program which are intended to be
checked at compile-time. The result of such checking may indicate either
that the assertions actually hold and the program is valídated w.r.t. the
assertions or that the assertions do not hold, and then the program is
íncorrect w.r.t. the assertions. Again, these are properties which should
hold, i.e., otherwise a bug exists in the program. An example of this kind
of assertions are type declarations (e.g., [1.18, 1.28], functional languages,
etc.), which have been shown to be use ful in debugging. Generally, and
in order to be able to check these properties at compile-time, the expres-
sible properties are restricted in such a way that compile-time checking
can always determine whether the assertions hold or not.

Providing information to the optimiser: Assertions have also been pro-
posed as a means of providing information to an optimiser in order to
perform additional optimisations during code generation. Such assertions
can be provided by the user (e.g., [1.28], which also implements checking)
or automatically generated, generally by means of static program ana-
lysis. In this context, assertions do not express properties which should
hold for the program, but rather properties which do hold for the pro­
gram at hand. Note that if the program is not correct, the properties
which hold may not coincide with the properties which should hold.

General communication with the compiler: In a setting where there is
both a static inference system, such as an abstract interpreter [1.9, 1.14],
and an optimiser, assertions have also been proposed as a means of al-
lowing the user to provide additional information to the analyser [1.4],
which it can use both to increase the precisión of the information it in­
fere and/or to perform additional optimisations during code generation
[1.31, 1.29, 1.22, 1.20]. Examples are assertions which state information
on entry poínts to a program module, assertions which describe properties
of built-ins [1.17], assertions which provide some (but not all [1.4]) type
declarations in the context of a type ínferencíng system, etc. Also, as­
sertions can be used to represent analysis output in a user-friendly way
and to communicate different modules of the compiler which deal with
analysis information [1.4]. In this context, assertions express both pro­
perties which should hold and properties which do hold for the program
in hand.

Program documentation: Assertions have also been used to document
programs and to automatically genérate manuals (as inspired by the "lite-
rate programming" style [1.21, 1.7]). These assertions are usually written
by the user but they can also be automatically generated. Some examples
are Javadoc [1.13], in the context of imperative languages, and LPdoc in
the context of CLP [1.15]. In this application, assertions may express
both properties which do hold or which should hold for the program in
hand.

In addition to the classification given above, made according to the con­
text in which assertions are used, assertions can be classified according to
many other criteria. For example, as mentioned above, in some cases the
assertions express properties which should hold (intended properties) while
in others the assertions express properties which actually hold (actual pro­
perties) for the program. Also, it can be noted that in some cases it is the
user who provides assertions to the tool whereas in other ones the assertions
are generated by the tool.

Independently of these and other classifications, our aim is to design an
assertion language which, in the context of CLP, can be used for all the
purposes menüoned above, and hopefully new ones which may result from
synergistic interactions due to the integration. The main application in which
we will be using the assertion language within this book will be, of course,
program debugging, but we expect the language to be useful in several other
tasks.

There is a clear trade-off between the expressive power of a language of
assertions and the difficulty in dealing with it. A reasonable overall objective
when designing an assertion language is to try to maximise the expressive po­
wer of the language while at the same time keeping it amenable to automatic
reasoning. More concretely, in the context of the DiSCiPl project, different
tools for program development and debugging co-exist in the programming
environment. In particular, Chapter 2 presents a preprocessor which per-
forms combined compile-time and run-time checking of assertions, inference
of assertions based on abstract interpretation, a form of diagnosis (location
of errors), and, though not discussed there, also automatic documentation
generation from assertions. The system presented in Chapter 3 also performs
compile-time and run-time checking of assertions. Chapter 4 presents a sy­
stem which allows locating errors in programs and uses assertions restricted
to regular types. Finally, assertions could be used to replace the oracle in the
declarative debugger presented in Chapter 5 (and even have some potential
uses in the context of the visualisers described in later chapters).

We would like the assertion language to allow expressing any property
which is of interest for any of the debugging (and validation) tools in the
environment. Also, we would like the assertion language to be independent
of the particular CLP platform in which it is applied and the constraint do-
mains supported. Thus, we choose not to restrict too much beforehand the

kind of properties which can be expressed with our assertions. A fundamental
motivation behind this choice is the frequent availability in our target debug-
ging environments of tools which can handle quite rich properties, through
techniques such as approximations and abstract interpretation [1.9].

Clearly, not all tools will be capable of dealing with all properties ex-
pressible in our assertion language. However, rather than having different
assertion languages for each tool, we propose the use of the same assertion
language for all of them. This facilitates communication among the different
tools and enables easy reuse of information, i.e., once a property has been
stated there is no need to repeat it for the different tools. Each tool should
then only make use of the part of the information given as assertions which
the tool understands and should deal safely with the part of the information
it does not understand.

Informally a particular tool understands a given assertion if the tool can
evalúate the assertion in the appropriate context and this evaluation has a
chance of yielding true or false (i.e., it is not the case that it will always
return "don't know"). For example, a program analysis for groundness of
the computed answers typically understands an assertion stating that in all
answers to a given predicate the second argument is ground. It also may
understand an assertion stating that the same argument is a free variable (in
the sense that it may be able to prove that the assertion is false). However, it
will not understand an assertion which states that all calis to a given predicate
must have a list as first argument: first, the tool is not able to reason about
calis to predicates; second, it is not able to reason about "types."

We will present assertions which are able to capture "contexts" of the ope-
rational semantics as well as of the declarative semantics of CLP programs.
Properties about the program execution states, of the computed answers, the
correct answers, and of the computations themselves can all be expressed in
our assertions. A preliminary versión of the assertion language we present
here appeared in [1.25].

In our assertion language, assertions are always instances of some asser­
tion schema together with a reference to which part of the program (predicate
or program point) the assertion refers to and, depending on the schema used,
one or two logia formulae. Whereas the assertion language has a fixed set of
assertion schemas, the user has a high degree of freedom for defining the logic
formulae for the properties considered of interest. Thus, the whole assertion
language is determined by a set of assertion schemas and the way in which
"logic formulae" can be built. Intuitively, the logic formulae in the assertions
are used to say things such as "X is a list of integers," "Y is ground," ap(X)
does not fail," etc. The (schemas of the) assertions specify which are the X's,
y ' s , and p(X)'s of which the previous things are said.

The structure of this chapter is the following. The role of assertions in
program validation and debugging is further discussed in Section 1.2. Sec-
tions 1.3 through 1.6 present several assertion schemas available in our lan-

guage. In more detail, Section 1.3 presents a series of assertion schemas which
allow expressing properties related to execution states. Section 1.4 presents
the syntax we use for logic formulae and also discusses some general issues
on the evaluation of such formulae. While the assertion schemas presented
in Section 1.3 allow expressing properties related to execution states and
are thus operational, Section 1.5 introduces an assertion schema related to
declarative properties of programs. In Section 1.6 we present assertion sche­
mas which allow reasoning about completeness of the set of answers of a
program. Section 1.7 shows how, independently of the schema used, the as­
sertion language is made more expressive by adding a flag to each assertion
which we refer to as an assertion "status." Section 1.8 presents yet another
assertion schema which is conceptually different from all the ones seen in the
previous sections. It allows expressing properties about whole computations
of predicates rather than just states. In Section 1.9 we present how to define
"property predicates", i.e., the predicates which are used as atomic formulae.
These predicates are the building blocks from which logic formulae, and thus
assertions, are written. Section 1.10 summarises the assertion syntax and in­
troduces some extensions to the assertion language which make the task of
assertion writing easier. Finally, Section 1.11 discusses some issues about the
proposed assertion language and concludes.

1.2 Assertions in Program Validation and Debugging

When reasoning about whether a certain program behaves as indicated by a
set of assertions, it is often useful to restrict the discussion to a set of valía1

initial queries. This is because when we design a program not only do we
have an expectation of what the program must compute but also we expect
the program to be used by calling only certain predicates, and with some
restricted class of input data. Thus, informally, a program is correct when it
behaves according to the user's intention for any input data satisfying certain
preconditions. We refer to such input data as valíd input data, and to the
corresponding queries as valíd queries. The entry assertions which will be
presented in Section 1.3.4 are a means for providing (a description of) the
valid queries to the program. In what follows we assume that program de­
bugging and validation is always performed w.r.t. a given set of (descriptions
of) valid queries.

Assertion-based program validation and debugging aims at automatícally
reasoning about program correctness by checking whether assertions hold or
not for a given program and a (set of) valid initial queries. In order to per-
form such reasoning automatically, some inference system is required which
is capable of determining whether the assertions hold or not. Most existing
assertion-based systems are designed with a fixed inference system in mind
(for example, a particular type inferencing algorithm). Depending on the
capabilities of such inference system, the assertion language is defined in

such a way that every assertion expressible in the assertion language can be
automatically determined to hold or not. In the design of the present asser­
tion language we depart from most existing assertion languages in that we
do not assume the existence of any fixed inference system. The main reason
for this is the availability of a growing number of practical different static
analyses for (constraint) logic programs which can perform the task of in­
ference systems. We admit the possibility that different tools use different
inference systems and, also, the same tool may make use of several inference
systems. Thus, we cannot assume that the given assertions can always be
proved ñor disproved by any particular inference system. This on one hand
allows having a very flexible assertion language since it is not limited to some
kinds of properties. On the other hand, each tool must know how to safely
deal with those assertions for which its inference system(s) cannot determine
whether they hold or not. Though plenty of different inference systems may
exist, we make a distinction between static inference systems and dynamic
inference systems. The former systems are capable of reasoning about the
program behaviour (and thus of the truth valué of the assertions) without
actually having to run the program, whereas the latter systems do run the
program and check the assertions which are triggered by the execution of the
program. In the design of the assertion language we have taken both kinds
of inference systems into account, providing means to deal with the program
properties expressed by the assertions either in dynamic or in static systems.
We postpone the discussion on how this can be done, and how to safely deal
with properties which a particular inference system does not understand until
after (part of) the assertion language has been presented.

Very often, the properties of a program which we are interested in ex-
pressing by means of assertions are related to the run-time behaviour of the
program. For this, we need to consider the operational semantics of the pro­
gram. The operational semantics of a program is in terms of its derivations
which are sequences of reductions between execution states. An execution
state (G I 0) consists of the current goal G and the current constraint store
(or store for short) 0 which contains information on the valúes of variables.
The way in which a state is transformed into another one is determined by
the operational semantics and the program code. The assertions presented in
sections 1.3 and 1.8 refer to the operational behaviour of the program.

One of the advantages of CLP is that in addition to the operational se­
mantics, programs also have a declarative meaning or semantics which is
independent of the particular details on how the program is executed. Our
assertion language also has assertions specifically designed for expressing pro­
perties related to such declarative semantics. These assertions are presented
in Section 1.5.

Every assertion A is conceptually composed of two logic formulae which
we refer to as appA and SOÍA- Evaluation of these logic formulae should return
either the valué true or the valué false when evaluated on the corresponding

context (i.e., execution state, correct answer, computation, or whatever is the
"semantic context" which the assertion refers to) by using an appropriate
inference system. The formula appA determines the applicability set of the
assertion: a context s is in the applicability set of A iff appA takes the valué
true in s. Also, we say that an assertion A is applicable in context s iff
appA holds in s. The formula satA determines the satisfiability set of the
assertion: a context s is in the satisfiability set of A iff SOÍA takes the valué
true in s. If we can prove that there is a context which is in the applicability
set of an assertion A but is not in its satisfiability set then the program is
definitely incorrect w.r.t. A. Conversely, if we can prove that every context
in which A is applicable is in the satisfiability set of A then the program is
validated w.r.t. A.

In this chapter we will present a repertoire of assertion schemas. Such
schemas can be seen as templates which when properly instantiated define
in a simple and clear way the required formulae appA and SOÍA- The choice
of one schema or another greatly determines what the applicability contexts
of the assertion may be. Thus, the use of assertion schemas on one hand
makes the task of assertion writing easier, but on the other hand somewhat
limits the freedom in describing in which contexts assertions are applicable.
However, we argüe that the proposed repertoire of schemas is flexible enough
for the purposes for which the assertion language has been designed and we
accept this limited freedom in return for the clarity of the resulting assertion
language.1

1.3 Assertion Schemas for Execution States

When considering the operational behaviour of a program, it is natural to
associate (sets of) execution states with certain syntactic elements of the
program. Typically a program can be seen as composed of a set of predi-
cates (also known as procedures). Alternatively, a program can be seen, at
a finer-grained level, as composed of a set of program points. Thus, we first
introduce several assertion schemas whose applicability context is related to
a given predicate. Then we introduce an assertion schema whose applicabi­
lity context is related to a particular program point. We refer to the former
kind of assertions as predicate assertions, and to the second ones as program-
point assertions. Though a simple program transformation technique can be
used to express program-point assertions in terms of predicate assertions, we
maintain program-point assertions in our language for pragmatic reasons.

As a general rule, we restrict the properties expressible by means of as­
sertions about execution states to those which refer to the valúes of certain
variables in the store of the corresponding execution state. This has the ad-
vantage that in order to check whether the appA and SOÍA logic formulae hold

1 A formal discussion on applicability contexts and schemas can be found in [1.26].

or not it suffices to inspect the store at the corresponding execution state.
Also, the variables (arguments) on whose valué we may state properties are
also restricted in some way. In the case of predicate assertions, the arguments
whose valué we can inspect are those in the head of the predicate. In the case
of program-point assertions, they are the variables in the clause to which the
program point belongs.

Example 1.3.1. We illustrate the use of assertions about execution states with
an example. Figure 1.1 presents a Ciao [1.3] program which implements the
quícksort algorithm together with a series of both predicate and program-
point assertions which express properties which the user expects to hold for
the program.2 Two predicate assertions are given for q s o r t / 2 (Al and A2)

and another two for p a r t i t i o n / 4 (A4 and A5). There is also a program-point
assertion (A3). The meaning of the assertions in this example is explained in
detail in subsequent sections. Note tha t more than one predicate assertion
may be given for the same predicate. In such el CclSG, all of them should hold
for the program to be correct and composition of predicate assertions should
be interpreted as their conjunction.

1.3.1 A n A s s e r t i o n S c h e m a for Success S ta te s

This assertion schema is used in order to express properties which should
hold on termination of any successful computation of a given predicate. They
account for probably one of the most common sorts of program properties
which we may be interested in expressing in relation with program predicates.
They are similar in nature to the postcondítíons used in program verification.
They can be expressed in our assertion language using the assertion schema:

: - succe s s Pred => Postcond.

This assertion schema has to be instantiated with suitable valúes for Pred
and Postcond. Pred is a predícate descriptor, i.e., it has a predicate symbol
as main functor and all arguments are distinct free variables, and Postcond
is a logic formula about execution states (to be discussed in Section 1.4), and
which plays the role of the sat^ formula. The resulting assertion should be
interpreted as "in any activation of Pred which succeeds, Postcond should hold
in the success state." Referring to our notions of applicability and satisfiability
sets, the resulting assertion can be interpreted as "the assertion is applicable
in those execution states which correspond to success states of a computation
of Pred, and its satisfiability set has those states in which Postcond holds."

2 Both for convenience, i.e., so that the assertions concerning a predicate appear
near its definition in the program text, and for historical reasons, i.e., mode
declarations in Prolog or entry and trust declarations in PLAI [1.4, 1.23], we
write predicate assertions as directives, which appear within the program text.
Depending on the tool different alternatives may be used, including for example
sepárate files or incremental addition of assertions in an interactive graphical
environment.

:- calis qsort(L.R) : list(L). 7 Al
:- success qsort(L,R) : list(L,int) => list(R,int). 7 A2

qsort([X|L],R) :-
check(number(X)), 7 A3
partition(L,X,Ll,L2),
qsort(L2.R2),
qsort (L1,R1) ,
append(Rl, [X|R2] ,R) .

qsort ([],[]).

:- calis partition(L,X,Ll,L2) : list(L). 7 A4
:- success partition(L,X,Ll,L2)

: (list(L), ground(X)) => (list(Ll), list(L2)). 7 A5

p a r t i t i o n ([] , _ B , [] , []) .
p a r t i t i o n ([E|R] ,C, [ElLeftl] ,Right) : -

E < C, !,
pa r t i t ion (R ,C ,Lef t l ,R igh t) .

pa r t i t i on ([E |R] ,C,Left , [ElRightl]) : -
E >= C,
pa r t i t i on (R ,C ,Le f t ,R igh t l) .

Fig. 1.1. Some Assertions about Execution States

Example 1.3.2. We can use the following assertion in order to require that
the output (second argument) of procedure qsort for sorting lists be indeed
sorted:

: - success qsort(L,R) => sor ted(R) .

Clearly, we are assuming that sorted(R) is interpreted in a suitable inference
system, in which it takes the valué true iff R is bound to a sorted list. The
assertion establishes that this (atomic) formula is applicable at all execution
states which correspond to a success of qsort.

An important thing to note is that in contrast to other programming
paradigms, in (C)LP a cali to a predicate may genérate zero (if the cali fails),
one, or several success states, in addition to looping (or returning error). The
postcondition stated in a success assertion refers to all the success states
(possibly none).

1.3.2 Adding Preconditions to the Success Schema

The success schema can be used when the applicability set of an assertion
is the set of success states for a given predicate. However, it is often useful to
consider more restricted applicability sets. A classical example is to only con-
sider those successful states which correspond to activations of the predicate

which at the time of calling the predicate satisfy certain precondition. The
preconditions we consider are, in the same way as Postcond, logic formulae
about states. The success schema with precondition takes the form:

: - succe s s Pred : Precond => Postcond.

and it should be interpreted as "in any invocation of Pred if Precond holds
in the calling state and the computation succeeds, then Postcond should
also hold in the success state." Alternatively, it can be interpreted as "the
assertion is applicable to those execution states which correspond to suc­
cess states of a computation of Pred which was originated by a calling state
in which Precond holds, and its satisfiability set has those states in which
Postcond holds." Note tha t ' : - succe s s Pred => Postcond' is equivalent to
' : - s u c c e s s Pred : true => Postcond1.

It is important to also note tha t even though both Precond and Postcond
are logic formulae about execution states, they refer to different execution
states. Precond must be evaluated w.r.t. the store at the calling state to the
predicate, whereas Postcond must be evaluated w.r.t. the store at the success
s tate of the predicate.

Example 1.3.3. The following assertion (A2 in Figure 1.1) requires tha t if
qsort is called with a list of integers in the first argument position and the
cali succeeds, then on success the second argument position should also be a
list of integers:

: - success qsort(L,R) : l i s t (L , i n t) => l i s t (R , i n t) .

where l i s t (A, i n t) is an atomic formula which takes the valué true iff A is
bound to a list of integers in the corresponding state. Note tha t the program
in Figure 1.1 can be used to sort a list of integers but also to sort a list of, say,
floating point numbers. Thus, we cannot require in general tha t the result of
ordering a list be a list of integers. This is why we add as precondition tha t
the list to be sorted is indeed a list of integers.

1.3.3 A n A s s e r t i o n S c h e m a for Cali S t a t e s

We now introduce an assertion schema whose aim is to express properties
which should hold in any cali to a given predicate. These properties are si­
milar in nature to the classical preconditions used in program verification. A
typical situation in which this kind of assertions are of interest is when the
implementation of a predicate assumes certain restrictions on the valúes of
the input arguments to the predicate. Such implementation is often not gu-
aranteed to produce correct results unless such restrictions hold. Assertions
built using this schema can be used to check whether any of the calis for
the predicate is not in the expected set of calis (i.e., the cali is "inadmissi-
ble" [1.24]). This schema has the form:

: - c a l i s Pred : Precond.

This assertion schema has to be instantiated with a predicate descriptor Pred
and a logic formula about execution states Precond. The resulting assertion
should be interpreted as "in all activations of Pred the formula Precond should
hold in the calling state." Alternatively, the resulting assertion can be inter­
preted as "the assertion is applicable in those execution states which corre-
spond to calling states to Pred, and its satisfiability set has those states in
which Precond holds."

Example 1.3.4- The following assertion (Al in Figure 1.1) built using the
c a l i s schema expresses that in all calis to predicate qsort the first argument
should be bound to a list:

: - c a l i s qsort(L,R) : l i s t (L) .

1.3.4 An Assertion Schema for Query States

It is often the case that one wants to describe the exported uses of a given
predicate, Le., its valid queries. This is for example the case also in traditio-
nal preconditions of a program. Thus, in addition to describing calling and
success states, we also consider using assertions to describe query states, Le.,
valid input data. In terms of the operational semantics, in which program
executions are sequences of states, query states are the initial states in such
sequences. These can be described in our assertion language using the entry
schema, which has the form:

: - entry Pred : Precond.

where, as usual, Pred is a predicate descriptor and Precond is a logic formula
about execution states. It should be interpreted as "Precond should hold in all
initial queries to Pred." Alternatively, it can be interpreted as "the assertion
is applicable in those execution states which correspond to initial queries to
Pred, and the satisfiability set has those states in which Precond holds."

Example 1.3.5. The following assertion indicates that the predicate qsort/2
can be subject to top-level queries provided that such queries have a list of
numbers in the first argument position:

: - entry qsort(L,R) : numlis t (L) .

The set of all entry assertions is considered closed in the sense that they
must cover all valid initial queries. This is equivalent to considering that an
assertion of the form ' : - entry Pred : fa lse. ' exists for all predicates Pred
for which no entry assertion has been provided.

It can be noted that entry and ca l i s schemas are syntactically (and se-
mantically) similar. However, their applicability set is different. The assertion
in the example above only applies to the initial calis to qsort , whereas, for
example, the assertion ' : - calis qsort(L.R) : numlist(L).' applies to any
cali to qsort , including all recursive (internal) calis. Thus, entry assertions

allow providing more precise descriptions of initial calis, as the properties
expressed do not need to hold for the internal calis.

Example 1.3.6. Consider the following program with an entry assertion:

: - e n t r y p(A) : g r o u n d (A) .
p (a) .
p (X) : - p (Y) .

If instead of the entry above we had written ' : - calis p(A) : ground(A).'
then such assertion would not hold in the given program. For example, the
execution of p(b) produces calis to p with the argument being a free variable.
However, the execution of p(b) satisfies the entry assertion since the internal
calis to p are not in the applicability context of the assertion.

The ñame entry is used for historie reasons. Entry declarations have long
been used (see for example [1.4]) in order to improve the aecuracy of goal-
dependent analyses since they allow providing a description of the initial
calis to the program. Goal-dependent analyses may obtain results which are
specialized (restricted) to a given context, which allows them to provide in
general better (stronger) results than goal-independent analyses.

1.3.5 Program-Point Assertions

As already mentioned, usually, when considering operational semantics of a
program, in addition to predicates we also have the notion of program points.
The program points that we will consider are the places in a program in
which a new literal may be added, Le., before the first literal (if any) of a
clause, between two literals, and after the last literal (if any) of a clause. For
simplicity, we add program-point assertions to a program by adding a new
literal at the corresponding program point. This literal is of the form:

check(Cond).

an it should be interpreted as "whenever execution reaches a state originated
at the program point in which the assertion is, Cond should hold." Intuitively,
each execution state can be seen as originated at a given program point.
Thus, alternatively it can be interpreted as "the assertion is applicable in
those execution states originated at the program point in which the assertion
appears and its satisfiability set has those states in which Cond holds."

Example 1.3.7. Consider the following clause 'p(X):- q(X,Y), r(Y). ' Ima­
gine for example that whenever the clause is reached by execution, after
the successful execution of the literal q(X,Y), X should be greater than Y and
Y should be positive. This can be expressed by replacing the previous clause
by the following one in which a program-point assertion has been added:

p (X) : - q (X ,Y) , check((X>Y,Y>=0)) , r (Y) .

An important difference between program-point assertions and predicate
assertions is that while the latter are not part of the program, program-
point assertions are, as they have been introduced as new literals in some
program clauses. In order to avoid program-point assertions from changing
the behaviour of the program (at least if dynamic checking has not been
enabled), we assume that the predicate check/1 is defined as

check(_Prop) .

i.e., any cali to check trivially succeeds. If dynamic checking is being per-
formed, this definition is overridden by another one which actually performs
the checking. One possible such definition for run-time checking is presented
in Chapter 2.

1.4 Logic Formulae about Execution States

As we have seen, schemas for predicate assertions have to be instantiated with
a predicate descriptor Pred and one or two logic formulae on execution states,
and the schema for program-point assertions also has to be instantiated with
a logic formula about execution states. In this section we present how such
formulae are defined in our assertion language, and discuss how they should
be evaluated.

We allow conjunctions and disjunctions in the formulae, and choose to
write them down, for simplicity, in the usual CLP syntax. Thus, logic formulae
about execution states can be:

— An atom of the form p(t-¡_,... ,tn) with n ^ 0, where p/n is a property
predícate. How to define these predicates is explained in Section 1.9.

— An expression of the form (Fí, F2) where Fí and F'l are logic formu­
lae about execution states and, as usual in CLP, the comma should be
interpreted as conjunction.

— An expression of the form (Fí; F2) where Fí and F'l are logic formu­
lae about execution states and, as usual in CLP, the semicolon should be
interpreted as disjunction.

Such formulae have to be evaluated as part of the evaluation of an as­
sertion. Evaluation of an assertion can be seen as composed of three steps.
First, an appropriate inference system3 IS must be used to evalúate each
of the atomic formulae AF of the assertion on the appropriate store 0. This
presents a technical difiiculty in the case of predicate assertions, since the
formula is referred to the variables of the predicate descriptor Pred in the
assertion, whereas it has to be evaluated on a store 0 which refers to va­
riables different from those in Pred. We assume that a consistent renaming

3 As we will see in Chapter 2, even the underlying logic system may be used as
inference system for evaluating the formulae.

has been applied on the assertion, and thus on AF, so that it refers to the
corresponding variables of 9. We denote by eval(AF, 9, P, IS) the result of
the evaluation of AF in 9 by IS w.r.t. the definitions of property predicates
P (the definition of property predicates in discussed in Section 1.9). The in-
ference system must be correct in the sense that if eval(AF, 9, P, IS) = true
then AF must actually hold in 9 and if eval(AF, 9, P, IS) = false then AF
must actually do not hold in 9. However, we also allow incompleteness of IS,
i.e., eval(AF, 6,P,IS) does not necessarily return either true or false. If IS
is not able to guarantee that AF holds ñor that it does not hold in 9 then it
can return AF itself. Thus, if eval(AF, 9, P, IS) = AF it can be interpreted
clS el "don't know" result.

The second step involves obtaining the truth valué of the logic formulae
appA and SOÍA as a whole from the results of the evaluation of each atomic
formula. For this, standard simplification techniques for boolean expressions
can be used. We denote by simp(F) the result of simplifying a logic formula
F. Since eval(AF, 9, P, IS) may take the valué AF for some atomic formulae
in F, simp(F) may take valúes different from true and false, which are not
simplified further.

The third step corresponds to obtaining the truth valué of the assertion
as a whole from the valúes obtained for simp(appA) and simp(satA). The as­
sertion is proved to hold either if simp(appA) = false or simp(satA) = true.
The assertion is proved not to hold if simp(appA) = true and simp(satA) =
false. Once again, we may not be able to prove not to disprove the assertion
if simp(appA) and/or simp(satA) are not either true ñor false. A program is
correct for given valid queries if all its assertions have been proved for all the
states that may appear in the computation of the program with the given
queries (see [1.26] for a formal presentation of correctness and completeness
w.r.t. these kinds of assertions).

In order to compute the valué of eval(p(ti,... ,tn), 9,P,IS) three cases
are considered. The first one is that IS is complete w.r.t. p/n, i.e., it can
always return either true or false for any store 9 and any terms t\,... ,tn.
The second case is when IS can return the valué true or the valué false for
some store 9 and terms t\,... ,tn but not for all. In this case we say that
IS partíally captures the predicate p/n. This is usually based on sufficient
conditions. The third case is when IS cannot return the valué true ñor the
valué false for any 9, i.e., IS does not capture (or it does not "understand")
p/n.

Usually, given an inference system IS, there is a set of property predi-
cates for which IS is complete. In addition, the user can often define other
predicates for which IS is also complete by using some fixed and restricted
syntax (consider, for example, defining a new type). The assertion language
has to provide means to do this. Similarly, we cali a predicate provable (resp.
dísprovable) in IS if IS can sometimes evalúate it to true (resp. false). Since
from the beginning we allow incompleteness of IS, it is important that the

user can indícate property predicates which are provable and disprovable in
a given inference system, together with the corresponding sufficient conditi-
ons. Our assertion language also provides means to do this, as explained in
Section 1.9.

The previous discussion assumes that the store on which the logic for­
mulae are evaluated is given. This is feasible when assertions, and thus logic
formulae, are evaluated at run-time, since the store 9 is available. However, if
static checking is being performed, only descriptions of stores and execution
states rather than exact knowlegde on such stores is available. There are two
reasons for this. One is that at compile-time the actual valúes of the (valid)
input data to the program are usually not available. The second one is that
in order to ensure termination of static checking, some approximation of the
actual computation must be performed which loses part of the information
on the actual execution states.

In return for the loss of information introduced by static checking, static
analysis systems often compute safe approximations of the stores reached
during computation. This makes it possible to validate the program w.r.t.
the assertions [1.5], since the results of analysis include all valid executions
of the program. Thus, if a property can be proved in a safe approximation of
a store 9 then it is also proved to hold in 9; if it can be proved that it does
not hold in the approximation of 9 then it does not hold either in 9. This is
done for example in the preprocessor presented in Chapter 2, using abstract
interpretation to compute the approximations.

1.5 An Assertion Schema for Declarative Semantics

As already mentioned, one of the main features of CLP is the existence of a
declarative semantics which allows concentrating on what the program com­
putes and not on how it should be computed. This feature is exploited for
example in declarative debugging. Those tools which are concerned with the
declarative semantics require the use of dedicated assertions. This is why we
also have in our assertion language assertion schemas which refer to declara­
tive semantics.

Consider the case of CLP(D), where D is the domain of valúes. For exam­
ple, in classical logic programming D is the Herbrand Universe. In CLP(5R), D
is the set of real numbers and of ground terms (for example lists) containing
real numbers. The declarative semantics in CLP(D) associates a meaníng to
each program P, denoted |P]], which corresponds to the least D-model of P .
[[P]] is a set of P>-atoms, where a P>-atom is an expression p(di,..., dn) with
n ^ 0 such that p is an n-ary predicate symbol and d¡ € -D. [[PJ coincides
with lfp(Tp) = IJ^lo ^ p (0) where Tp is the immediate consequence operator.

We now introduce an assertion schema which allows stating properties
which should hold in the least .D-model [[P]] of a program. Otherwise the
program is incorrect. This can be done using the schema:

: - inmodel Pred => Cond.

where Pred is a predicate descriptor and Cond is a logical formula about D-
atoms. It should be interpreted as "in any D-a,tomp(di,... , dn) G [PJ whose
predicate symbol coincides with tha t of Pred, Cond should hold." Alternati-
vely, it can be interpreted as "the applicability set of the assertion has those
_D-atoms in |P]] whose predicate symbol is tha t of Pred and the satisfiability
set is the set of _D-atoms whose predicate symbol is tha t of Pred which satisfy
the property Cond."4

Example 1.5.1. The following assertion states tha t the result of ordering a
list by means of the predicate q s o r t should be a list:

: - inmodel qsort(L,R) => l i s t (R) .

if we determine tha t the _D-atom q s o r t (a , a) G [PJ then the program is
not correct w.r.t. the above assertion A. This is because in q s o r t (a , a) A is
applicable. However, list(a) does not hold and thus q s o r t (a , a) is not in the
satisfiability set of A.

As seen in the example above, this kind of assertions allows reasoning
about (partial) correctness of programs. This is why we cali them correctn-
ess declarative assertions. Note tha t they are apparently very similar to the
s u c c e s s assertions presented in Section 1.3.1 since every success state of a
predicate is in the declarative semantics of the program. In fact, a program
which is correct w.r.t. an assertion ' : - inmodel Pred => Cond' is also correct
w.r.t. the assertion ' : - s u c c e s s Pred => Cond'' due to correctness of the ope-
rational semantics (but not vice versa due to possible incompleteness of the
operational semantics). A further difference between inmodel and s u c c e s s
assertions is tha t in inmodel it is not possible to add preconditions since
the declarative semantics does not capture calis to predicates. In addition,
depending on the semantics used, the logic formula used in Cond of inmodel
assertions are not allowed to refer to the instantiation state of arguments, for
example using v a r / 1 , whereas this is completely legal in s u c c e s s assertions.5

1.6 Assertion Schemas for Program Completeness

As seen above, there is a similarity between s u c c e s s and inmodel asserti­
ons in tha t they both express properties about the answers of predicates.

4 Any _D-atom p with the predicate symbol of Pred satisfies p = /j,(Pred) for
a substitution ¡JL. Strictly speaking, it is ¡¿(Cond) which is satisfied on p. For
simplicity of the presentation, we have preferred not to clatter it with these
technical details.

5 However, this could be remedied by using a more powerful declarative semantics
(e.g. [1.1]), in which for example using var /1 would make perfect sense.

More precisely, success assertions express properties of the computed an-
swers of predicates, i.e., those generated by the operational semantics, whe-
reas inmodel assertions refer to corred answers, i.e., those which are in the
declarative semantics of the program (its least _D-model). When considering
answers to predicates, one particular aspect to reason about is correctness of
the program, which corresponds to answering the question: Are all the actual
answers of the program in the set of intended answers? Conversely, another
aspect we can reason about is the well known concept of completeness of
the program, which corresponds to answering the question: Are all the inten­
ded answers of the program in the set of actual answers? In other words, a
program is complete when it does not fail to produce any expected answer.
Clearly, we would like our program to be both correct and complete w.r.t.
our intention. This corresponds to the classical notion of total correctness, as
opposed to the previous notion of correctness, which is also known as partial
correctness.

Though not explicitly mentioned, all the assertions presented in the pre­
vious sections allow reasoning about (partial) correctness of programs w.r.t.
assertions, i.e. the may allow detecting that a program is not partially correct
w.r.t. the assertion or validating the program w.r.t. the assertion. However,
they are of no use in order to reason about completeness of programs. This
is why we now introduce another kind of assertions which are variations of
the inmodel and success assertions. They can be distinguished from the
previous ones because the arrow (=>) now points in the reverse direction, i.e.,
<=. For example, an assertion of the form:

: - inmodel Pred <= Cond.

(note the reversed direction in the arrow) should be interpreted as "any D-
atom of the form p(d-¡_,... , dn) whose predicate symbol is the same as that
in Pred and on which Cond holds should be in \P\."

Example 1.6.1. The following assertion where the symbol == stands for term
identity states that the pair ([2 ,1] , [1,2]) is an expected solution of qsort. :

: - inmodel qsort(L.R) <= (L == [2 , 1] , R == [1 , 2]) .

If we can determine that qsort([2,1], [1,2]) ^ |P]] then P is incomplete
w.r.t the above assertion. This is an indication that the existing code for
qsort does not allow determining that one (in this case the only) result of
ordering [2,1] is [1 ,2] . It is thus an indicator that the current versión of
the program is not complete w.r.t. the above assertion. This is clearly the
symptom of an error, but it can be the case that the program sorts correctly
lists of length different from two, in which case the error cannot be detected
automatically using the (partial correctness) assertions seen in the previous
sections.

We can also write completeness assertions for operational semantics using
the following schema (optional "fields" appear in square brackets):

:- success Pred [: Precond] <= Postcond.

which should be interpreted as "any cali to predícate Pred which on the
calling state satisfies Precond must have as success states at least all those
states which satisfy Postcond."

Example 1.6.2. Consider the following program which aims at improving the
previous versión of qsort by stopping recursion when the list has length 1
since any such list is already sorted. We add to the program a completeness
success assertion:

: - success qsor t (L,R) : (L==[], var(R)) <= R == [] .
qsort([X,Y|L] ,R) : -

par t i t ion([Y |L] ,X,L1,L2) ,
qsort(L2.R2),
qsor t (Ll .Rl) ,
append(Rl, [X|R2] ,R) .

qsor t ([A], [A]).

which requires that the results of sorting the empty list include the empty
list, provided that the second argument satisfies var/1 which holds iff it is
a free, unconstrained variable at the cali. The precondition var(X) is needed
since, for example, the cali 'qsor t ([] , [1])' has no success state.

The assertion above can be used to detect that the program is not com­
plete since we have forgotten the clause 'qsort ([] , []) . ' , thus a cali such as
'qsort ([] ,L). ' fails without producing any answer.

1.7 Status of Assertions

Assertions can be used in different tools for different purposes. In some of
them we may be interested in expressing expected properties of the program
if it were correct, i.e., intended properties, whereas in other contexts we may
also be interested in expressing properties of the actual program in hand, i.e.,
actual properties, which may or may not correspond to the user's intention.
For example, we can use program analysis techniques to infer properties of
the program in hand and then use assertions in order to express the results of
analysis. Thus, the assertion language should be able to express both intended
and actual properties of programs. However, all the assertions presented in
the examples in previous sections relate to intended properties. We have
delayed the other uses of assertions until now for clarity of the presentation.

In our assertion language we allow adding in front of an assertion a
flag which clearly identifies the status of the assertion. The status indica-
tes whether the assertion refers to intended or actual properties, and pos-
sibly some additional information. Five different status are considered. We
list them below, grouped according to who is usually the generator of such
assertions:

— For assertions written by the user:
check The assertion expresses an intended property. Note that the asser-

tion may hold or not in the current versión of the program.
trust The assertion expresses an actual property. The difference with sta­

tus true introduced below is that this information is given by the user
and it may not be possible to infer it automatically.

— For assertions which are results of static analyses:
true The assertion expresses an actual property of the current versión of

the program. Such property has been automatically inferred.
— For assertions which are the result of static checking:

checked A check assertion which expresses an intended property is rewrit-
ten with the status checked during compile-time checking (see Chap-
ter 2) when such property is proved to actually hold in the current ver­
sión of the program for any valid initial query.

f alse Similarly, a check assertion is rewritten with the status f a lse du­
ring compile-time checking when such property is proved not to hold in
the current versión of the program for some valid initial query.

As already mentioned, all the assertions presented in the previous sections
express intended properties and are assumed to be written by the user. Thus,
they should have the status check. However, for pragmatic reasons, the status
check is considered optional and if no status is given, check is assumed by
default. For example, the assertion:

:- check success p(X) : ground(X).

can also be written ":- success p(X) : ground(X)."
Note also that the program-point assertions seen in Section 1.3.5 were in­

troduced in the program as literals of the check/1 predicate. This is because
their status is check. If, however, we would like to add a program-point as­
sertion with a different status we simply replace check by the corresponding
status (true, trust, checked or false) . See Section 1.10.1 for syntactic de-
tails. Again, if we want to execute a program with program-point assertions
we can simply define the predicate corresponding to the status so that it al-
ways succeeds. For example, if the status is true we then define the predicate
true/1 (resp., t rust /1 , checked/1, fa lse /1) as "true(_).."

Example 1.7.1. Figure 1.2 presents the same program as in Figure 1.1 but
rather than with check assertions, with both predicate and program-point
true assertions which express analysis results. The results have been gene-
rated by CiaoPP [1.6, 1.16] using goal-dependent mode analysis. Predicate
and/or program-point assertions may be generated according to the user's
choice. Program-point assertions contain information for each program point
and are literals of the true/1 predicate. Regarding predicate assertions, for
conciseness, compound (pred) predicate assertions are usually produced by
the analyser. Compound assertions will be introduced in Section 1.10.2.

:- entry qsort(L,R) : ground(L).
:- true pred qsort(A,B) : ground(A) => (ground(A), ground(B)).

qsort([X|L],R) :-
true((ground([L,X]),var(Ll),var(L2),var(Rl),var(R2))),
partition(L,X,Ll,L2),
true((ground([L,Ll,L2,X]),var(Rl),var(R2))),
qsort(L2,R2) ,
true((ground([L,Ll,L2,R2,X]),var(Rl))),
qsort(Ll,Rl) ,
true(ground([L,L1,L2,R1,R2,X])),
a p p e n d (R l , [X|R2] , R) ,
true(ground([L,Ll,L2,R,Rl,R2,X])).

qsort ([],[]).

:- true pred partition(A,B,C,D)
: (ground(A) , ground(B) , var(C), var(D))

=> (ground(A), ground(B), ground(C), ground(D)).

p a r t i t i o n ([] , B , [] , []) .
p a r t i t i o n ([E|R] ,C, [ElLeftl] ,Right) : -

t rue ((g round([C ,E ,R]) ,va r (Lef t1) ,va r (Righ t))) ,
E<C, !,
t rue ((g round([C ,E ,R]) ,va r (Lef t1) ,va r (Righ t))) ,
p a r t i t i o n (R , C , L e f t l , R i g h t) ,
t rue(ground([C,E ,Lef t l ,R ,Right])) .

pa r t i t i on ([E |R] ,C,Left , [EI Right 1]) : -
t rue ((ground([C,E,R]), var (Lef t) , var (Right 1))) ,
E>=C,
true ((ground([C,E,R]), var (Lef t) , var (Right 1))) ,
partition(R,C,Left,Right1),
true(ground([C,E,Left,R,Rightl])).

Fig. 1.2. Analysis results expressed as assertions

Though both true and trust assertions refer to properties of the ac­
tual program it is important to see that they are not equivalent. As already
mentioned, true assertions are generated by analysis and are automatically
provable, whereas trust assertions are provided by the user and often they
are not provable either because part of the program is not available or be-
cause analysis is not powerful enough. In any case, analysis is instructed to
trust such assertions.

The status trust receives this ñame for historical reasons. In [1.4] trust
declarations were already used in order to provide the analyser with addi-
tional information so that it could improve its results. Note that a trust
assertion for a predicate p may not only improve the analysis information for
the predicate p (if the information it contains is better than that generated by
analysis) but also it may allow improving the analysis information on other
predicates which depend on p.

Example 1.7.2. Consider the following program in which the definition of
predicate r / 2 is not available but where there is a trust assertion which
states that upon success of r(A,B), B is a list provided that A was a list on
cali:

:- entry p(X,Y).

:- trust success r(A,B) : list(A) => list(B).

p(X,Y):- q(X), r(X,Y).

q([])

qCLIXs]):- q(Xs).
Assume we are using a goal-dependent type analyser. The entry assertion

for predicate p/2 informs the analyser that such predicate can be subject
to initial queries. In addition, the analyser assumes that the set of existing
entry assertions cover all possible initial queries. Since there is no entry
for predicates q ñor r, the analyser assumes that these predicates cannot
be called in initial queries. Without the trust assertion, typically analysis
would infer the following cali and success types for predicates p and r:

: - t rue pred p(A,B) : (term(A),term(B)) => (l i s t (A) , t e rm(B)) .
: - t rue pred r(A,B) : (l i s t (A) , te rm(B)) => (l i s t (A) , t e rm(B)) .

where the type term represents the set of all possible terms. However, by
exploiting the information in the trust assertion analysis can conclude that:

: - t rue pred p(A,B) : (term(A),term(B)) => (l i s t (A) , l i s t (B)) .
: - t rue pred r(A,B) : (l i s t (A) , te rm(B)) => (l i s t (A) , l i s t (B)) .

Note that not only the information on r has been improved, but also that
of p since it depends on r.

It is important to mention that even though trust assertions are trusted
by the analyser to improve its information unless they are incompatible with
the information generated by the analyser (see [1.4]), they may also be subject
to run-time checking. The translation scheme for assertions with the status
trust is exactly the same as the one given in Chapter 2 for assertions with
the status check. It should be an option whether only check assertions or
both check and trust assertions should be checked at run-time.

A similar situation happens with entry assertions (presented in Sec-
tion 1.3.4). If analysis is goal-dependent, it assumes that the entries hold,
and thus all the information generated is correct under this assumption, but
such information may become incorrect if the run-time queries do not con-
form to the existing entry assertions. Thus, in order to guarantee that the
results of static checking and/or program optimisation based on analysis re-
sults are sound we may also check entries at run-time. As in the case of

trust assertions, it should be an option of the compiler whether to perform
run-time checking of entry assertions or not.6

1.8 An Assertion Schema for Computat ions

Though the assertions already presented for operational semantics, declara-
tive semantics, and for reasoning about completeness are very useful, there
are many other interesting properties of programs which cannot be expressed
using the presented assertion schemas. This is why we introduce yet another
assertion schema named comp, which relates to computations, where by com-
putation we mean the (ordered) execution tree of all derivations of a goal
from a calling state.

The comp schema is, in the same way as success and ca l i s schemas, as-
sociated to predicates and is inherently operational. The success and c a l i s
schemas allow expressing properties about the execution states both when
the predicate is called and when it terminates its execution with success.
However, as we mentioned above, many other properties which refer to the
computation of the predicate (rather than the input-output behaviour) are
not expressible with such schemas. In particular, no property which refers
to (a sequence of) intermedíate states in the computation of the predicate
can be (easily) expressed using ca l i s and success predicate assertions only.
Examples of properties of the computation which we may be interested in
are: non-failure, termination, determinacy, non-suspension, non-floundering,
etc. In our language, this sort of properties are expressed using the schema:

: - comp Pred [: Precond] + Comp-prop.

where Pred is a predicate descriptor, Precond is a logic formula on execution
states, and Comp-prop is a logic formula on computations. As in the case
of success assertions, the field ': Precond' is optional. An assertion built
using the comp schema should be interpreted as "in any activation of Pred if
Precond holds in the calling state then Comp-prop should also hold for the
computation of Pred." Alternatively, it can be interpreted as "the applicabi-
lity set of the assertion is the set of computations of Pred in which the logic
formula on states Precond holds at the calling state, and its satisfiability set
has all computations in which the logic formula on computations Comp-prop
holds."

Example 1.8.1. The following assertion could be used to express that all com­
putations of predicate qsort with the first argument being a list of numbers
and the second an unconstrained variable at the calling state should produce

6 The introduction of run-time tests into the original program is analogous to that
performed for calis assertions but is only applied to initial calis to the program
(via a transformation of the program which renames apart the internal calis).

at least one solution in finite time (the property of the computation succeeds
will be further discussed in Section 1.9.3):

: - comp qsort(L,R) : (l i s t (L ,num) , var(R)) + succeeds.

where the atom succeeds is implicitly interpreted as succeeds (qsort (L, R)),
with an extra argument, i.e., it is the execution of qsort(L,R) that has to
succeed.

1.8.1 Logic Formulae about Computations

Similarly to logic formulae about execution states, logic formulae about com­
putations can be conjunctions and/or disjunctions of formulae, where the
atomic formulae are property predicates (about computations). As before,
conjunctions and disjunctions are written in CLP syntax (i.e., are commas
and semicolons, respectively).

As in the case of logic formulae about execution states, given a comp
assertion for Pred with logic formula Comp-prop on computations and an
execution state for a goal of the predicate of Pred in calling store 9, we first
apply a renaming on the assertion which relates the variables in Pred with the
variables in 9. Then we evalúate each atomic formula AFC in Comp-prop and
the evaluation of Comp-prop is obtained by composing the valúes obtained
for each AFC and simplifying the resulting expression. As before, we denote
by eval(AFC, 9, P, IS) the evaluation of AFC in 9 by IS w.r.t. the definition
of properties P. Note that, in general, properties of the computation cannot
be decided by looking at the store 9 alone, as it is the case with properties of
execution states. Thus, IS may need to reconstruct (part of) the computation
of a particular instance of Pred, according to the calling store 9, in order to
decide whether AFC holds or not. We assume that P contains, in addition to
the definition of the property predicates, the program under consideration,
so that reconstructing the computations is possible. Since the necessary part
of the computation required may be an infinite object, it is possible that
the process of reconstructing such computation does not terminate, in which
case eval(AFC,6,P,IS) will not terminate either. Thus, we admit that the
evaluation of an atom of a property of the computation AFC, in addition to
returning true, false or AFC (if IS cannot decide the property), may also not
terminate, precisely in those cases in which the execution of (Pred I 9) does
not terminate either. We argüe that this is admissible since the evaluation
of the property still does not introduce non-termination, in the sense that
if the program execution terminates the evaluation of properties will also
terminate.

Example 1.8.2. Consider again the comp assertion in Example 1.8.1. Consi-
der also that during dynamic checking of such assertion we reach an exe­
cution state of the form (qsort(X,Y) :: Goal I 9), i.e., qsort(X,Y) is the

first literal to solve and Goal is a (possibly empty) conjunction of lite-
rals, where 0 indicates that X takes the valué [1 ,5,3] and Y is an un-
constrained free variable. In such state our comp assertion is applicable
since eval(list([1,5,3] ,int),6, P,IS) and eva/(var(Y)), 9, P, IS), where
P must contain at least the definition of the parametric property l i s t / 2 (and
of var/1 if it were not a built-in predicate), can be proved to take the valué
true using an appropriate IS. In order to see whether the assertion is satisfia-
ble we have to compute the valué of e-ya/(succeeds(qsort([1,5,3] ,Y)), 9,
P, IS), where P must contain at least the definition of succeeds/1 and also
of qsort/2 and of all other predicates it uses, in this case part i t ion/4 and
append/3. In our example the computation which has to be reconstructed is
(qsort([1,5,3] ,Y) 10), which is finite. Thus, checking the property should
terminate.

1.9 Deflning Property Predicates

All our assertion schemas are parameterised on logic formulae for expres-
sing the particular properties of the execution states (in ca l i s and success
assertions), of the correct answers (in inmodel assertions), and of the com-
putations (in comp assertions). Atoms in such formulae are of the predicates
which we cali property predicates (or properties for short when the context is
clear enough). In this section we discuss how to define such property predica-
tes. We have not presented the property predicates allowed in our assertion
language yet because the assertion language is parametric w.r.t. the set of
property predicates of interest. Thus, rather than having a fixed set of such
predicates, we allow users to define their own properties in a very flexible
way.

Since we have assumed that our source language is a logic and/or con-
straint logic programming language, in which it is natural to define predica-
tes, it also seems natural to use the underlying CLP language to define the
property predicates. This design decisión has very important implications:
(1) The user does not need to learn a new language for defining property
predicates since the same language used for writing programs can be used.
(2) This makes the assertion language extremely expressive since the user
can define almost any predicate property that is considered of interest when
dealing with a particular program. (3) With a little run-time support, atomic
logic formulae in assertions can be evaluated by simply executing them on the
underlying CLP system. This can be seen as taking the underlying CLP sy-
stem as an inference system.7 (4) Though the assertion language may remain
decidable for run-time checking under some sensible restrictions on the pro­
perty predicates used (such as that their execution always terminates), there

7 The use of executable properties which can be checked dynamically, i.e., by execu­
ting the code defining them, has also been proposed in the context of declarative
debugging [1.11].

is little hope that the assertion language remains decidable for compile-time
checking given any fixed set of static inference systems available, as we allow
users to define their own predicates. This is why systems designed with par­
ticular inference systems in mind generally only allow using a predefined set
of property predicates or they have a very restricted language for defining
new property predicates, which is a restriction that we want to lift.

1.9.1 Declaring Property Predicates

Since the set of property predicates is not fixed in our assertion language, in
order to be able to perform some syntactic checking on the assertions given
for a program, i.e., to check whether they are consistently written, we require
that all predicates which can be used as property predicates are declared as
such using an assertion of the form:

: - [IS-List] prop Pred-Spec. or : - [IS-List] cprop Pred-Spec.

where Pred-Spec is a term of the form p/n, where p is a predicate symbol and
n its arity. They indicate, respectively, that the predicate can be used in logic
formula about states or about computations. Also, the (optional) field IS-List
contains a list of the inference systems in which Pred is provable. We consider
that it is not required to indicate whether the underlying CLP system can
be used to prove the property or not: if a predicate property is defined in the
CLP source language, such definition is assumed to be exact and thus the
underlying CLP system can be used to decide whether the property holds
or not. As further discussed in Chapter 2, we impose some restrictions on
the code which defines property predicates. Thus, we also assume that the
definition in source code of any property predicate for which a prop or cprop
declaration exists satisfies such restrictions.

All property predicates which may appear in the logic formulae of the
assertions given for the program must be declared, independently of whether
a definition as source code is given for them or not. In particular, we should
declare as property predicates those ones for which there is an inference
system which partially captures (or is complete for) them and which we
intend to use in assertions.

Example 1.9.1. Consider the property predicate about states ground/1. An
argument satisfies this property if it is bound to a Herbrand term without
variables. This property is often provable using static inference systems which
reason about variable groundness. Consider now that in our tool there are
two different inference systems called sharing and def which are capable of
proving the property ground/1. This should be indicated with a declaration
like ' : - [sharing, def] prop ground/1.'. In addition, it is likely that a
built-in (or library) predicate with the same ñame and meaning exists in
the CLP system. In that case, the property can be decided during dynamic
checking using the underlying CLP system. If it is not a built-in we could
write a definition of such predicate in CLP, as further discussed below.

1.9.2 Defining Property Predicates for Execution States

In this section we discuss by means of examples several issues related to the
definition of property predicates about execution states by means of CLP
programs. We start with an example.

Example 1.9.2. Consider the following definition of the property predicate
l i s t / 1 by means of a regular program [1.32, 1.10]:

l i s t ([]) .
l is t([_|Xs]) :- list(Xs) .

The above definition can be used to dynamically decide whether a term is of
type l i s t or not. This case is also interesting because if an inference system
which captures regular types (which are further discussed in this book in
Chapter 4) is available, then it may be able to prove such property statically
by using the code above, which the inference system can safely handle as
a type declaration. This should be indicated with the assertion ' : - regtype
prop l i s t / 1 . ' assuming that regtype is the ñame of the inference system for
regular types. This is an example of how users can define new regular types
in our assertion language by means of a (regular) CLP program.

A distinguishing feature of (constraint) logic programming w.r.t other
programming paradigms such as functional or imperative programming is
that, in a given execution state, the valúes of certain program variables may
be (partially) undefined. This is a consequence of the existence of "logical
variables" whose valué may be further instantiated during forward execu­
tion. This feature has to be taken into account when defining properties of
execution states.

Example 1.9.3. In the definition of property l i s t in Example 1.9.2 above it is
not obvious which one of the following two possibilities we mean exactly: "the
argument is instantiated to a list" (let us indicate this property with the pro­
perty predicate inst_to_list) , or "if any part of the argument is instantiated,
this instantiation must be compatible with the argument being a list" (we will
associate this property with the property predicate compat_with_list). For
example, inst_to_l ist should be true for the terms [] , [1 ,2] , and [X,Y],
but should not for X and [a|X]. In turn, compat_with_list should be true
for [] , X, [1 ,2] , and [a|X], but should not be for [a | l] and a.

We refer to properties such as inst_to_l ist above as instantiation pro­
perties and to those such as compat_with_list as compatibüity properties
(corresponding to the traditional notions of "instantiation types" and "com­
patibüity types"), and to the corresponding property predicates as instantia­
tion and compatibüity property predicates.

It turns out that both of these notions are quite useful in practice. Con­
sider for example a definition of the well known predicate append:

append([] ,L,L) .
append([X|Xs],L,[X INL]):- append(Xs,L,NL).

For this predicate we probably would like to use compat_with_list to
state that in all calis to append all three arguments must be compatible with
lists in an assertion like:

: - c a l i s append(A,B,C) :
(compat_with_list(A) , compat_with_list(B) , compat_with_l is t (O) .

With this assertion, no error will be flagged for a cali to append such as
append ([2] , L, R), since L can be instantiated to a list later on the execution,
but a cali append([] ,a,R) would indeed flag an error.

On the other hand, we probably would like to also use inst_to_l ist to
describe the type of calis for which qsort has been designed, Le., those in
which the first argument must indeed be a list. This was done for example in
assertion Al of Figure 1.1:

: - c a l i s qsort(L,R) : l i s t (L) .

i.e., here we clearly wanted l i s t (L) to mean inst_to_list(L).
Since both kinds of properties are properties of Ínterest, one possibility

is to define, in each case, two distinct property predicates, one of each kind.
This will forcé us to define both inst_to_l ist and compat_with_list in
different ways.

Example 1.9.4- A possible definition of inst_to_l ist is the following:

: - prop i n s t _ t o _ l i s t / l .

i n s t_ to_ l i s t (X) : -
nonvar(X), ins t_ to_ l i s t_aux(X) .

ins t_ to_ l i s t_aux([]) .
i n s t_ to_ l i s t_aux([_ |T]) : - i n s t _ t o _ l i s t (T) .

However, one would like that the more natural definition of l i s t of Ex­
ample 1.9.2 could be used both as an instantiation and as a compatibility
property, by simply instructing the system to handle the definition of the
property in the appropriate way. We introduce a mechanism in our assertion
language for this purpose. Properties about execution states are interpreted
by default as instantiation properties. Thus, writing:

: - c a l i s qsort(L,R) : l i s t (L) .

has the desired effect. If we are interested in using the definition of a predicate
Property as a compatibility property, we should indicate it in the formula
as compat (Property) and it will automatically be interpreted as: "Property
holds in the current store or it can be made to hold by adding bindings (or
constraints) to the current store." Thus, writing:

: - c a l i s append(A,B,C)
: (compat (l i s t (A)) , compat (l i s t (B)) , compat(l is t (C))) .

also has the desired effect.
This allows to define property predicates as compatibility properties, and

use them as either an instantiation or a compatibility property on states.
However, note that if the definition of a state property predicate Prop con-
tains certain impure built-in predicates which explicitly (e.g., nonvar, var)
or implicitly (e.g., integer, atom, >) perform some degree of instantiation
checking, it may not be correct to use Prop as a compatibility property.

On the other hand, note that the definition of l i s t would not behave
as expected either if used as an instantiation property as is. This is because
if we execute it in a store which is not sufiiciently instantiated, execution
will succeed and add the necessary bindings or constraints for the property
to hold rather than failing, which is what the instantiation property should
do. On the contrary, l i s t behaves as expected of a compatibility property.
Nonetheless, we have preferred to consider properties such as l i s t instan­
tiation properties by default. This is because we prefer to put the burden
of interpreting the definition of properties as instantiation properties on the
inference system, rather than putting such burden on the users by forcing
them to write the instantiation property explicitly. We argüe that this is a
natural choice, since in most cases writing down the definition of the compa­
tibility property is easier, but (at least in our experience) in a large number of
logic formulae about execution states users are interested in the instantiation
property rather than in the compatibility property.

1.9.3 Defining Property Predicates for Computations

Since existing (constraint) logic programming systems have meta program-
ming facilities which allow having atoms (calis to predicates) appearing as
arguments of calis to other predicates, it is in principie possible to use the
underlying programming language in order to also define property predicates
for computations. However, this is not as easy as defining property predicates
for execution states.

Example 1.9.5. Consider the property of the computation succeeds (PrecD
which is to be interpreted as "the computation of Pred in the current store
produces at least one solution in finite time." This property, which when
appears in a comp assertion has no arguments, has to be defined in CLP as a
predicate with one argument (which receives the goal on whose computation
we aim at checking the property). The following definition could be used:

succeeds(Goal) :- ca l i (Goa l) .

Although defining the above predicate property in CLP has not been
very difficult, in general, defining a property of a computation in source code

requires to actually perform the computation (which in the example above is
done using the ca l i built-in predicate). This is possible since checking the
property does not need to observe intermedíate states of the computation of
qsort(A,B) (with the valúes of A and B according to the store) and it suffices
to check whether the cali succeeds or not. For other properties which may
need observing internal states of the execution we may need to program a
meta-interpreter. This has the disadvantage that the property being defined
may end up being rather obscure.

An additional difficulty in expressing property predicates for computa-
tions as CLP predicates is that many of the interesting properties of com-
putations we may want to write are by nature undecidable. Thus, it is just
not possible to provide an effective definition of such properties which can be
executed during dynamic checking. A good example of this is trying to define
a predicate te rmina tes /1 which decides whether computation of a predicate
(universally) terminates or not. Clearly, it is not possible to provide a general
definition of such predicate. Thus, comp assertions are often not amenable to
dynamic assertion checking, since it is difiicult to write the properties invol-
ved in such a way that they can be executed efficiently and non trivial results
obtained. However, we still include assertions about properties of computati-
ons in our language for several reasons: (1) when considering static assertion
checking, it is often the case that there are analysis which obtain useful re­
sults on properties which are undecidable in general. This is because such
analyses use sufficient conditions which guarantee that the properties hold
of the program. For example, a good number of termination analyses exist
which can prove termination of a high percentage of terminating programs,
though there will always be terminating programs which cannot be proved
to terminate. (2) In other cases, approximate definitions in source code can
often be provided for dynamic and/or static checking of properties of the
computation. This is discussed in the following section. (3) They are also
useful for expressing the results of static analyses which infer properties of
computations such as termination, non-failure, determinacy... (4) They can
be used for expressing properties which we do not aim at checking but rat­
her they are interesting for documentation purposes. An example of this is
the Ciao reference manual [1.3] where, for example, the assertion ' : - t rust
comp write/1 + iso . ' indicates that the implementation of predicate write/1
behaves according to the ISO Prolog specification.

1.9.4 Approximating Property Predicates

As already mentioned, in our assertion language we do not require an exact
definition of every predicate property used. This is useful for at least two
reasons. One reason is that there are a good number of interesting properties
which are not decidable and for which it is just not possible to provide exact
definitions using the source CLP language. As discussed above, this is of­
ten the case when trying to define property predicates about computations.

Another reason is that sometimes the user prefers not to provide an exact
definition because even though it is possible, it is a hard or tedious task. Ho-
wever, it is very simple to provide an approximate but still useful definition.
The user may decide to provide an exact definition at a later point in time if
so desired.

Our assertion language, rather than restricting the set of property predi-
cates to those for which an exact definition in the source language is provided
or simply returning AF as the result of eval(AF, 9, P, IS) if IS does not cap­
ture the property AF, it allows providing approxímatíons of such property
predicates AF. Such approximations provide sufficient conditions for retur­
ning true (proving AF) or false (disproving AF). These approximations are
given using assertions of the form:

: - proves Pred : Cond. or : - disproves Pred : Cond.

where Pred is a property predicate descriptor and Cond a logic formula about
states or about computations. They indicate that given a current store 0 if
we can prove that Cond holds in 0 (using any inference system) then we have
also proved that Pred holds in 6, if a proves assertion is given, or that Pred
does not hold in 6, if a disproves assertion is given.

Example 1.9.6. Consider a static inference system called simple_stat which
is capable of determining that at certain program points some arguments are
bound to integer numbers. We can use the following declarations:

: - s imple_stat prop i n t e g e r / l .

: - proves ground(X) : in teger(X) .
: - disproves var(X) : in teger(X) .

in order to indicate that (1) s imple .s ta t can prove the state property
i n t e g e r / l and (2) the fact that we can establish that some argument is
an integer number can be used to guarantee that such argument is ground
and also to prove that such argument is definitely not a free variable. Note
that the proves and disproves assertions are independent of any inference
system. This means that they would also be useful if some other inference
system were able to prove the property i n t e g e r / l . Thus, though the predi-
cate properties ground and var are not directly inferred by s imple .s ta t we
can use them in assertions and still be able to either prove or disprove such
assertions, in this case statically, using s imple .s ta t .

1.10 Syntax of and Extensions to the Assertion
Language

In this section we provide a summary of the syntax of assertions. We then
introduce another predicate assertion schema which can be used in addition

to the ones introduced previously. It can be seen as syntactic sugar for a set
of predicate assertions. Finally we comment on some other syntactic sugar
which facilitates the writing of assertions.

1.10.1 Syntax of the Assertion Language

We now summarise the syntax of the assertions presented with the following
two formal grammars. The first one defines the syntax of program assertions,
from the non-terminal program-assert:

program-assert

predicate-assert

pred-assert

entry
pred-cond

pred-desc

args

state-log-formula

comp-log-formula

stat-flag

status

direction

prog-point-assert

::= predicate-assert
| prog-point-assert

::= : - stat-flag pred-assert .
| : - entry .

::= c a l i s pred-cond
| s u c c e s s pred-cond direction state-log-formula
| inmodel pred-desc direction state-log-formula
| comp pred-cond + comp-log-formula

::= e n t r y pred-cond
::= pred-desc

| pred-desc : state-log-formula
::= Pred-name

| Pred-name(args)
::= Var

| Var, args
::= (state-log-formula , state-log-formula)

| (state-log-formula ; state-log-formula)
| compat(State-prop)
| State-prop

::= comp-log-formula , comp-log-formula
| comp-log-formula ; comp-log-formula
| Comp-prop

::= status

::= check
| t rue
| checked
| t r u s t
| f a l se

: : = =>
l <—
1 <~

::= status (. state-log-formula)

There are some non-terminals in the grammar which are not defined. This
is because they are constraint-domain and/or platform dependent. They can

be easily distinguished in the previous grammar because their ñame starts
with a capital letter:

Pred-name As we are interested in having an assertion language which looks
homogeneous with the CLP language used, we admit as Pred-name any
valid ñame for a predicate in the underlying CLP language. Usually non-
empty strings of characters which start with a lower-case letter.

Var It corresponds to the syntax for variables in the CLP language. Usually,
non-empty strings of characters which start with a capital letter. As
mentioned before, it is assumed that all variables in the same predicate
description are distinct.

State-prop An atom of a prop property predicate.
Comp-prop An atom of a cprop property predicate.

The following grammar defines the syntax of assertions for declaring pro­
perty predicates, from the non-terminal prop-assert:

prop-assert

prop-exp

prop

is-flag

is-idlist

pred-spec
approx-assert

approx

approx-exp

::= prop-exp

| approx-exp
::= : - is-flag prop pred-spec .

::= prop

| cprop

::= [is-idlist]
| Is-id
i ,

1 e

::= Is-id , is-idlist
| Is-id

::= Pred-name/Number
::= : - approx approx-exp .

::= proves
| d i sproves

::= State-prop : state-log-formula
| Comp-prop : comp-log-formula

The new non-terminals in the grammar are as follows:

Is-id A constant of the language which uniquely identifies an inference system
in the debugging system being used.

Number A number (which is meant to be the arity of a predicate).

1.10.2 Grouping Assertions: Compound Assertions

The motivation for introducing compound assertions is twofold. First, when
more than one success (resp. comp) assertion is given by the user for the
same predicate, in the user's mind this set is usually meant to cover all the

Table 1.1. Transforming compound into basic assertions.

Fie ld

=> Postcond

+ Comp-prop

TVanslation if g i v e n

s u c c e s s Pred : Precond => Postcond

comp Pred : Precond + Comp-prop

O t h e r w i s e

0
0

different uses of the predícate. In such cases, the disjunction of the precon-
ditions in all the s u c c e s s (resp. comp assertions) is often a description of
the possible calis to the predícate. However, the user would have to expli-
citly wríte down a c a l i s assertion to express thís. It would be desirable to
have the c a l i s assertion be automatically generated in such cases for the set
of assertions, rather than having to add it manually. Compound assertions
allow this. Second, a disadvantage of the assertion schemas presented in sec-
tions 1.3 and 1.8 is tha t it is often the case tha t in order to express a series
of properties of a predícate, several of them need to be written.

Each compound assertion is translated into one, two, or even three basic
predícate assertions, depending on how many of the fields in the compound
assertion are given. Compound assertions are built using the pred schema,
which has the form:8

: - pred Pred [: Precond] [=> Postcond] [+ Comp-prop].

Example 1.10.1. The following assertion indicates tha t whenever we cali
qsort with the first argument being a list, the computation should termínate
and if the computat ion succeeds, on termination the second argument should
also be a list.

: - pred qsort(L,R) : l i s t (L) => l i s t (R) + te rmina tes .

in addition, if this is the only pred assertion given for predícate qsort , then
it also indicates tha t all calis to qsort should have a list in the first argument.

Table 1.1 presents how a compound assertion is translated into basic
s u c c e s s and comp assertions. Generation of c a l i s assertions from compound
assertions is more involved, as the set of all compound assertions for one
predícate must cover all possible calis to tha t predícate. Thus, if the set of
compound assertions for a predícate Pred is {Ai,... , An}, let Ai =Pred : Ci
[=> Si] [+ Compi], then the (only) c a l i s assertion which is generated is

: - c a l i s Pred: V?=i Q -

Example 1.10.2. Consider the two following compound assertions for predi-
cate qsort:

8 Note that the syntax grammar presented previously does not incclude this ex­
tensión.

: - pred qsort(A,B) : numlist(A) => numlist(B) + te rmina tes .
: - pred qsort(A,B) : i n t l i s t (A) => i n t l i s t (B) + te rmina tes .

The c a l i s basic assertion which would be generated is:

: - c a l i s pred qsort(A,B) : (numlist(A) ; i n t l i s t (A)) .

Note tha t when compound assertions are used, a c a l i s assertion is always
implicitly generated. If we do not want the c a l i s assertion to be generated
(for example because the set of assertions available does not cover all possible
uses of the predicate) basic s u c c e s s or comp assertions rather than compound
(pred) assertions should be used.

1.10.3 S o m e A d d i t i o n a l Syntac t i c Sugar

There are a number of syntactic sugar conventions in the assertion language
which can be added to facilítate the writing of assertions. We mention here,
by means of examples, some of the most interesting ones.9

Abrídged syntax. Wi th this syntax it is not necessary to explicitly mention
which argument of the predicate descriptor the logic formulae refer to. The
different arguments are identified by position. Individual logic formulae are
separated by * and they refer to the predicate arguments by order. For ex­
ample:

: - c a l i s qsort(A,B) : l i s t * term.
: - c a l i s q so r t / 2 : l i s t * term.

are both equivalent to:

: - c a l i s qsort(A.B) : (l i s t (A) , term(B)) .

When there is the need for associating two or more properties to the same
argument then the following syntax may be used:

: - c a l i s q so r t / 2 : { l i s t , ground } * term.

which is equivalent to:

: - c a l i s qsort(A.B) : (l i s t (A) , ground(A), term(B)) .

The abridged syntax can be mixed with the normal syntax in a given
assertion, provided tha t each "field" of the assertion is written using only
one syntax. For example:

: - success qsort(A,B) : l i s t * term => l i s t (B) .

Note that the syntax grammar presented previously does not incorpórate these
extensions.

Compatible properties. In some cases, the programmer wants to specify com-
patibility properties of some arguments both at the cali and success states of
the predícate. To avoid repeating the properties, the syntax of the following
example can be used:

: - pred qsort(A.B) : : (l i s t (A) , l i s t (B)) .

which is equivalent to:

: - pred qsort(A,B) : (compat (l i s t (A)) , compat(l is t (B))) =>
(compat (l i s t (A)) , compat(l is t (B))) .

This kind of writing can also be "in-lined" into the predícate arguments. For
example, the following assertion is equivalent to the two ones above:

:- pred qsort(list,list).

Modes. They allow specifying in a compact way several properties which refer
to one argument. Thus, modes can be seen as property macros. For example,
provided that the following mode definition exists:

: - modedef out(X) : var(X) => ground(X).

then, instead of the first assertion below, the second one could be written,
which is equivalent:

: - pred qsort(A,B) : var(B) => ground(B).
: - pred qsor t (A,out (B)) .

Our assertion language generalises the classical concept of modes, allowing
users to define their own. For example, the classical Prolog modes "+" (Le., the
corresponding argument is a non-variable on input) and "-" (the argument
is a variable on input) can be expressed in our language by defining them as:

:- modedef '+'(X) : nonvar(X).
:- modedef '-'(X) : var(X).

Mode syntax can be mixed with any other syntax, as in the first assertion
below (which is equivalent to the second one):

:- pred qsort(list,out(B)) => list(B).
:- pred qsort(A.B) :: list(A) : var(B) => (list(B), ground(B)).

Also, "meta-" modes can be defined which allow writing assertions in a
very compact way. The previous assertion could be written as follows, by
using a different mode definition, i.e.:

:- modedef out(X.P) : var(X) => (P(X), ground(X)).
:- pred qsort(list,out(list)).

where P(X) is a higher-order notation used in Ciao which stands for applying
the property predícate P, whatever valué it has (in this example l i s t) to the
argument X.

1.11 Discussion

In this chapter we have presented an assertion language which should be
of interest in several different tools and for different purposes: compile-time
checking, replacing the oracle in declarative debugging, run-time checking,
providing information to the optimiser, general communication with the com-
piler, and automatic documentation. In such a situation it is difíicult to re-
strict beforehand the properties of a program which we may be interested in
expressing by means of assertions. Also, we cannot assume the existence of
a particular inference system in every tool other than the underlying CLP
system.

An assertion language can be seen as composed of: (1) a set of assertion
schemas, (2) a syntax to build logic formulae for such schemas, and (3) a
syntax to define predicates for the atomic logic formulae. In addition to the
assertion language we need some inference system, capable of evaluating the
assertions for a program. Often, assertion languages are designed bottom-up,
in the sense that once the inference system to be used has been decided,
the three components mentioned are defined so that the assertion language
remains decídable, in the sense that any assertion expressible in the assertion
language can be either proved to hold or not to hold in a program using
the available inference system. This allows debugging systems based on this
approach to reject programs which have not been validated w.r.t. the given
assertions. In contrast, the design of our assertion language is top-down in
the sense that it is not induced by any particular inference system. We do not
assume a fixed set of property predicates but rather we provide the means
for defining new property predicates. This can be done by providing exact
descriptions of properties as CLP predicates and also by using assertions
which indicate that a (possibly built-in) predicate property can be proved by a
given inference system. We also use assertions to provide sufiicient conditions
for proving and disproving predicate properties when such exact definition
is not available. As a result of this, on one hand our assertion language is
very flexible, and on the other hand we have to lift the assumption that any
assertion is decidable in the system. In other words, we have to live with the
possible undecidability of any logic formula and thus of any assertion. Thus,
in the tools which use the proposed assertion language we have to be able to
deal safely with approximations [1.5]. We argüe that lifting the decidability
assumption opens the door to very interesting possibilities and that still very
useful results can be obtained by combining static and dynamic checking of
the assertions.

Even though the properties given in assertions may not be decidable, it
is our view that assertions should be checked as much as possible at compile-
time via static analysis. The system should be able to make conservative
approximations in the cases in which precise information cannot be inferred
(and some assertions may remain unproven). This is the approach taken in
Chapter 2. Note, however, that if the properties allowed in assertions are not

decidable the approach to the t reatment oí "don't know" during compile-time
checking has to be weaker than the one used for "strong" debugging systems:
in our case the program cannot be rejected. The case tha t the analysis is not
capable either to prove ñor disprove an assertion may be because we do not
have an accurate enough iníerence system or simply because the assertion is
just not statically decidable. In this we follow the spirit oí [1.4, 1.8]. However,
we do not rule out the definition and use of a decidable debugging system,
e.g., based on types, if so desired.

References

1.1 A. Bossi, M. Gabbrielli, G. Levi, and M. Martelli. The s-semantics approach:
Theory and applications. Journal of Logic Programming, 19&20, 1994.

1.2 J. Boye, W. Drabent, and J. Maluszynski. Declarative diagnosis of constraint
programs: an assertion-based approach. In Proc. of the 3rd. Int 'l Workshop
on Automated Debugging-AADEBUG'97, pages 123-141, Linkoping, Sweden,
May 1997. U. of Linkoping Press.

1.3 F. Bueno, D. Cabeza, M. Carro, M. Hermenegildo, P. López-García, and
G. Puebla. The Ciao Prolog System. Reference Manual. The Ciao System Do-
cumentation Series-TR CLIP3/97.1, School of Computer Science, Technical
University of Madrid (UPM), August 1997.

1.4 F. Bueno, D. Cabeza, M. Hermenegildo, and G. Puebla. Global Analysis of
Standard Prolog Programs. In European Symposium on Programming, number
1058 in LNCS, pages 108-124, Sweden, April 1996. Springer-Verlag.

1.5 F. Bueno, P. Deransart, W. Drabent, G. Ferrand, M. Hermenegildo,
J. Maluszynski, and G. Puebla. On the Role of Semantic Approximations
in Validation and Diagnosis of Constraint Logic Programs. In Proc. of the
3rd. Int'l Workshop on Automated Debugging-AADEBUG'97, pages 155-170,
Linkoping, Sweden, May 1997. U. of Linkoping Press.

1.6 F. Bueno, P. López-García, G. Puebla, and M. Hermenegildo. The Ciao Pro­
log Preprocessor. Technical Report CLIP8/95.0.7.20, Technical University of
Madrid (UPM), Facultad de Informática, 28660 Boadilla del Monte, Madrid,
Spain, November 1999.

1.7 D. Cordes and M. Brown. The Literate Programming Paradigm. IEEE Com­
puter Magazine, June 1991.

1.8 P. Cousot. Types as Abstract Interpretations. In Symposium on Principies of
Programming Languages, pages 316-331. ACM Press, January 1997.

1.9 P. Cousot and R. Cousot. Abstract Interpretation: a Unified Lattice Model for
Static Analysis of Programs by Construction or Approximation of Fixpoints.
In Fourth ACM Symposium on Principies of Programming Languages, pages
238-252, 1977.

1.10 P.W. Dart and J. Zobel. A regular type language for logic programs. In
F. Pfenning, editor, Types in Logic Programming, pages 157-187. MIT Press,
1992.

1.11 W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. The Use of Assertions in
Algorithmic Debugging. In Proceedings of the Intl. Conf. on Fifth Generation
Computer Systems, pages 573-581, 1988.

1.12 W. Drabent, S. Nadjm-Tehrani, and J. Maluszynski. Algorithmic debugging
with assertions. In H. Abramson and M.H.Rogers, editors, Meta-programming
in Logic Programming, pages 501-522. MIT Press, 1989.

1.13 Lisa Friendly. The Design of Distributed Hyperlink Program Documentation.
In Int'l. WS on Hypermedia Design, Workshops in Computing. Springer, June
1996. Available from ht tp : / / java .sun.com/docs/ javadoc-paper .h tml .

1.14 M. García de la Banda, M. Hermenegildo, M. Bruynooghe, V. Dumortier,
G. Janssens, and W. Simoens. Global Analysis of Constraint Logic Programs.
ACM Transactions on Programming Languages and Systems, 18(5):564-615,
1996.

1.15 M. Hermenegildo. A Documentation Generator for Logic Programming Sy­
stems. In ICLP'99 Workshop on Logic Programming Environments, pages
80-97. N.M. State University, December 1999.

1.16 M. Hermenegildo, F. Bueno, G. Puebla, and P. López-García. Program Analy­
sis, Debugging and Optimization Using the Ciao System Preprocessor. In 1999
International Conference on Logic Programming, pages 52-66, Cambridge,
MA, November 1999. MIT Press.

1.17 M. Hermenegildo, G. Puebla, and F. Bueno. Using Global Analysis, Partial
Specifications, and an Extensible Assertion Language for Program Validation
and Debugging. In K. R. Apt, V. Marek, M. Truszczynski, and D. S. Warren,
editors, The Logic Programming Paradigm: a 25-Year Perspective, pages 161-
192. Springer-Verlag, July 1999.

1.18 P. Hill and J. Lloyd. The Goedel Programming Language. MIT Press, Cam­
bridge MA, 1994.

1.19 J. Jaffar and M.J. Maher. Constraint Logic Programming: A Survey. Journal
of Logic Programming, 19/20:503-581, 1994.

1.20 A. Kelly, A. Macdonald, K. Marriott, P. Stuckey, and R. Yap. Effectiveness
of optimizing compilation for CLP(R). In Proceedings of Joint International
Conference and Symposium on Logic Programming, pages 37-51. MIT Press,
1996.

1.21 D. Knuth. Literate programming. Computer Journal, 27:97-111, 1984.
1.22 K. Marriott and P. Stuckey. The 3 R's of Optimizing Constraint Logic Pro­

grams: Refinement, Removal, and Reordering. In 19th. Annual ACM Conf.
on Principies of Programming Languages. ACM, 1992.

1.23 K. Muthukumar and M. Hermenegildo. Compile-time Derivation of Variable
Dependency Using Abstract Interpretation. Journal of Logic Programming,
13(2/3):315-347, July 1992.

1.24 L. Naish. A three-valued declarative debugging scheme. In 8th Workshop on
Logic Programming Environments, July 1997. ICLP Post-Conference Works­
hop.

http://java.sun.com/docs/javadoc-paper.html

1.25 G. Puebla, F. Bueno, and M. Hermenegildo. An Assertion Language for De-
bugging of Constraint Logic Programs. In Proceedings of the ILPS'97 Works-
hop on Tools and Environments for (Constraint) Logic Programming, October
1997.

1.26 G. Puebla, F. Bueno, and M. Hermenegildo. Combined Static and Dynamic
Assertion-Based Debugging of Constraint Logic Programs. In Logic-based Pro-
gram Synthesis and Transformation (LOPSTR'99), LNCS. Springer-Verlag,
2000. To appear.

1.27 E. Shapiro. Algorithmic Program Debugging. ACM Distiguished Dissertation.
MIT Press, 1982.

1.28 Z. Somogyi, F. Henderson, and T. Conway. The execution algorithm of Mer-
cury: an efncient purely declarative logic programming language. JLP, 29(1-
3), October 1996.

1.29 P. Van Roy and A.M. Despain. High-Performace Logic Programming with the
Aquarius Prolog Compiler. IEEE Computer Magazine, pages 54-68, January
1992.

1.30 E. Vetillard. Utilisation de Declarations en Programmation Logique avec Con-
straintes. PhD thesis, U. of Aix-Marseilles II, 1994.

1.31 R. Warren, M. Hermenegildo, and S. K. Debray. On the Practicality of Glo­
bal Flow Analysis of Logic Programs. In Fifth International Conference and
Symposium on Logic Programming, pages 684-699. MIT Press, August 1988.

1.32 E. Yardeni and E. Shapiro. A Type System for Logic Programs. Goncurrent
Prolog: Collected Papers, pages 211-244, 1987.

