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Highlights 

• An integrated approach to dynamic pipeline failure likelihood analysis 

• Incorporates subjective data and accommodates uncertainties using BN and AHP  

• Identifies parameters that have the most impact on reducing pipeline loss of containment  

• Nigeria’s pipeline system used to show model application in situations where failure data is 
limited or unreliable  

Abstract 

The increased incidents of pipeline failures and resultant consequences of fires, explosions and 

environmental pollution motivate stakeholders to find solutions in dealing with these emerging threats 

as part of process safety management. This is further compounded by the absence of reliable failure 

data, particularly in developing countries. To address such challenges, a Bayesian Network (BN) 

model has been developed. The aim of the model is to highlight the contributing failure factors to the 

identified pipeline hazards and their interrelationships. The BN approach is appropriate for this work 

because it accommodates data uncertainty, or the lack of data, and can integrate the expert’s 

knowledge. The model is especially good at updating the results whenever new data becomes 

available.   

The proposed model has been applied to a case study focusing on estimating the failure probabilities 

of Nigeria’s cross-country oil pipeline system - 2B as part of the pipeline risk assessment. The model 

takes into account multiple interactions between several failure parameters to reduce the risk of 

pipeline failure. Such parameters include human factors (e.g., third party intervention and operation 

damage), mechanical factors (e.g., corrosion and material defect) and natural hazards. The main 

focus of the research is the construction of a model that shows the influence of the multiple parameters 

and their interactions resulting in a pipeline leak or rupture. The model enables the pipeline 

stakeholders and operators to determine those parameters or interventions that have the most impact 

on the reduction in pipeline loss of containment as part of the risk management. The novelty of this 

work is the integration of both the objective and subjective data, and the explicit accommodation and 

treatment of the sparse and incomplete local data into the failure likelihood analysis. The model, 

therefore, provides the managers with dynamic information on how to prevent undesired outcomes 

as part of a safety management plan.  

The model analyses pipeline failure risks under uncertainty. However, it can also be used to focus on 

a sub-threat arising from the third-party activities, for example, in order to gain a wider understanding 

and to identify an effective combination of risk reduction and intervention factors. 

Keywords: Bayesian Networks, Failure Likelihood, Cross-country Pipeline System, Risk 

Assessment, Failure Factors, Third Party Damage 
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 Introduction 

In many countries, the oil and gas pipeline industry have a structured process of failure data collection, 

which informs the failure probability analysis as part of the process safety management. However, in 

developing countries where data is either unavailable or unreliable, this kind of analysis may produce 

unreliable results. This, in addition to peculiar local environmental and other conditions, leads to 

higher-than-average pipeline failure scenarios. These scenarios can escalate into catastrophic events 

leading to a significant loss of life, on top of the economic loss [1,2]. For example, according to 

Nigeria’s premier oil company, the Nigerian National Petroleum Corporation (NNPC), Nigeria is 

reported to have lost about 22 million barrels of oil due to pipeline theft in the first half of 2019 [3]. 

To ensure a more reliable assessment of the likelihood or probability of failure which informs the 

pipeline risk assessment process, a Bayesian Network (BN) model is adopted as outlined in Section 

3. This approach can accommodate data uncertainty or lack of data by utilising experts’ judgement. 

The model is especially useful at updating the uncertainty whenever new data becomes available.   

 

 Literature Review 

Identification of the probability or likelihood of a pipeline failure is required as part of the risk 

assessment process; see BSI [4] and DNV [5]. Several studies have assessed the probability or 

likelihood of pipeline failure where data is lacking or is unreliable, including [6–13]. The models used 

vary, from Analytic Hierarchy Process (AHP) to Fuzzy Rule Base. However, they all have one 

commonality, namely trying to address lack of knowledge and uncertainty as part of the pipeline risk 

assessment process. For instance, Dey [13] and Al-Khalil et al. [11] used expert judgement and AHP 

to develop a risk-based cross-country pipeline failure analysis. The studies identified and categorised 

pipeline failure modes and used expert elicitation to assess and rank the pipeline risks. Experts were 

invited to score the likelihood of failure and the associated cost implication. The input is used to assign 

weights to the pipeline segments, allowing for assessing relative exposure and ranking of each 

pipeline segment. The ranking also forms the basis for pipeline failure repair budget and prioritisation.  

However, much of the literature does not address many of the challenges faced by pipeline operators 

and, especially, those in developing countries. These include the interactions of multiple influencing 

factors, lack of knowledge and data, uncertainty related to vagueness, randomness, and ignorance. 

For instance, whilst fuzzy set theory can be used to deal with vagueness, it lacks the ability to conduct 

inference inversely. Approximate reasoning approaches are strictly unidirectional, that is, when a 

model is given a set of inputs, it can predict the output, but not vice versa. This may have a limitation 

on the flexibility of a safety assessment method that focuses on exploring causal relationships among 

risk factors [14]. Additionally, these approaches assume a direct event-consequence inference. This 

is true under certain circumstances, where a rate of pipeline leak consequence is directly linked to, 

for example, corrosion event. However, recent developments in many developing countries indicate 

that the relationship is often indirectly related.  Increase in the rate of pipeline leaks and the period of 

political electioneering are an example of such indirect relationships.  
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Unlike rule-based and other similar approaches, the use of Bayesian Networks allows the user to 

replicate the main features of reasoning inference in a consistent, efficient, and mathematically sound 

way. In addition, the beliefs can be updated when new evidence becomes available, which can be 

used to infer causality from consequence events. As an implementation of probability theory, BN is a 

powerful tool both for graphically representing the relationships among a set of variables and for 

dealing with the uncertainties related to such variables. 

BN modelling has been used in different domains by many researchers, including in oil and gas as 

part of the process safety regime to assess and prioritise failures of safety systems under uncertainty. 

A number of researchers [14–20] have used BN models for a dynamic risk-based offshore pipeline 

safety and integrity assessment. While the rest of the researchers applied only the BN model, 

Adumene [20] used an integrated model of BN-Markove Misture (MM) with Monte Carlo simulation 

for operational safety assessment of pipelines with multiple Microbiologically Influence Corrosion 

(MIC) defects. Sulaiman and Tan [15] used a North Sea subsea pipeline as a case study, where there 

are historic data going back several decades. However, the work relies mostly on expert elicitation 

due to the unsuitability of those data. The use of the BN has also been shown to be effective in 

identifying influencing factors leading to third party damage to the pipelines [21–26]. While the majority 

of the researchers assessing third party damage limit their work on unintentional third party damage, 

[21] extended their model using game theory to assess malicious damages. The incessant pipeline 

damages and resultant consequences of fires, explosion and environmental pollution due to malicious 

third-party events in Africa have been widely investigated [27–29]. The European pipeline database 

also shows an astronomical increase in the pipeline third-party damage due to intentional purposes, 

from two incidences in 2012 to 87 in 2015 [30]. 

Research on corrosion prediction of the pipeline has been reported mostly using numerical methods 

such as Monte Carlo simulation. However, BN has also been employed to predict pipeline corrosion 

with promising results [31–34]. Abubakirov [31], for instance, used Dynamic Bayesian Network (DBN) 

to estimate both internal and external corrosion damage and assess the probability of failure to 

support inspection intervals optimisation. Kim et al. [34] used small observation and simulated data, 

and applied time-dependent generalised extreme value distribution and Bayesian inference to predict 

corrosion depth distribution on pipelines. The results indicate a good prediction of the defect 

distribution by incorporating the observation data in the form of prior distribution.  

The use of BN to identify and analyse failure factors for gas pipelines under uncertainty has been 

reported by various researchers [35–39]. They used the incident databases to identify and investigate 

loss cases, and together with the pipeline characteristics developed the BN model outlining the failure 

incident evolution and built a relationship between variables. The researchers show that the BN 

developed was able to perform probabilistic inference and belief updating to predict failure frequency. 

However, the researchers utilised failure data mainly from European and US databases and applied 

it to their case study region without assessing the suitability of such data with respect to the local 

environment including consideration for management systems and human factors. The study did not 

indicate whether any expert elicitation has been carried out to put the data into context with respect 

to the case study pipeline and the region that it has been applied.  
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The risks of tank stations and pumps have been assessed using BN [40–44]. Zarei et al. [43] used a 

bow-tie to develop a BN model as part of the accident scenario modelling for conditional 

dependencies and risk updating of natural gas stations. The BN approach facilitates the model 

development in which part of the needed information as a priori is available in measured data and 

functional relations or as expert knowledge, and part is uncertain and unknown. The BN then serves 

data mining purposes for the unknown part which is then updated as a posteriori with the uncertainty 

reduced by a later experience or observations.  Pasman & Rogers [41] compared the risks of the H2 

tank stations and that of the associated pipelines using BN. 

Kabir et al. [45], Ren et al.[46] and Yang et al. [47] used a combination of fuzzy rule and BN to assess 

risks of offshore installations. Kabir et al. [45] used the combined model to prioritise the risk of collision 

between a Floating Production Storage and Offloading (FPSO) system and a shuttle tanker. The 

model first establishes the appropriate fuzzy rule base, estimates the failure factors using expert 

elicitation, conducts risk inference using fuzzy Bayesian reasoning and finally assigns utility functions 

to prioritise the failures.  The model has been demonstrated to successfully utilise human knowledge 

to deliver risk criticality values in support of safety-based decision-making. The model, though, did 

not test the interdependence of the failure factors and how that may affect the model’s sensitivity. 

Khakzad et al. [48] investigated and compared BNs with fault tree analysis in safety analysis within 

the process industry. The study concluded that the BN technique provides better outcomes in safety 

analysis where data availability is at stake, due to its flexibility, allowing the assessment to fit a wide 

variety of accident scenarios. 

The reviewed literature address some of the identified weaknesses of other models such as 

approximate reasoning and fuzzy rule base. It also assessed the application of the BN in oil and gas 

domains including subsea oil pipelines and urban gas distribution pipelines.  However, they still do 

not robustly address the challenges faced by operators of cross-country pipelines in developing 

countries relating to availability and fidelity of failure data, uncertainty, the integration of the multitude 

and complex interdependence between different factors and interrelations of technical human and 

organisational malfunctions. Therefore, this study proposed new models that address those problems, 

including allowing for the effect of indirect relationship of the available variables. The main goal of the 

study is to develop a framework for the prediction of failure likelihood for cross-country pipelines 

through identification and assessment of the critical failure factors of oil pipelines. A case study of a 

cross country pipeline to analyse the contribution and the interaction between various factors leading 

to loss of contentment as a result of either a pipeline leak or rupture is presented. Pipeline failure 

likelihood and the interdependence of different failure factors are analysed to provide a 

comprehensive picture to support decision making. The use of BN has several advantages, such as 

the ability to integrate expert judgement and empirical data into the analysis. This is particularly useful 

in situations where data is absent, sparse or unreliable. BN’s ability to deal with uncertainty by 

facilitating inference and allowing new evidence to be incorporated when it becomes available is 

particularly useful.  
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 Background Theory  

 Bayesian Networks Framework 

BN is the graphical presentation of the Bayes’ Theorem and has been developed from the conditional 

probability product rule. The Bayes rule is presented as shown below [49]:  

( | ) ( )
( | )

( )


=

P E H P H
P H E

P E
        (1) 

P(H) is called the prior or marginal probability of H and represents the state of knowledge of H at the 

initial stage before the evidence is considered, whilst P(H/E) is called the posterior probability and 

represents the updated knowledge given the evidence E. P(E/H) is the likelihood (also referred to as 

the conditional probability) of E given H. P(E) is the marginal probability of E and the evidence to 

enable P(H) to be updated.  

A BN is a Directed Acyclic Graph (DAG) that encodes the Conditional Probability Distributions (CPDs) 

of the underlying variables. A BN has two components, the physical graph structure that shows the 

interconnections between nodes and the quantitative part that encodes the probability distribution. 

Generally, a BN over variables X is a pair of (G, Θ), where [50]: 

- G is a directed acyclic graph over variables X;  

- Θ is a set of CPTs, one CPT ΘX|U for each variable X and its parents U in G. The CPT ΘX|U 

maps each instantiation to a probability θx|u such that | 1x ux
 = .  

The upper-case letters represent variables, lower-case letters represent individual values and bold 

lower-case letters represent an instantiation of the values. The qualitative component of the BN is the 

DAG, which consists of nodes and edges. The nodes represent variables of interest and the DAG 

provides the directed influence amongst the nodes. The relationship is represented by the connecting 

edges with the arrow showing the influence direction. Figure 1 shows a BN example and the 

relationships between the nodes. 

 

Figure 1: Example of a Bayesian Network 

 

 Conditional Probability Table (CPT) 

Determining the prior probabilities for parent nodes P(A1) and P(A2) in Figure 1 is straightforward 

given hard data. However, it is not often straightforward to determine the conditional probability of the 
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children node given the influence of the parent nodes, that is, P(B|A1, A2). The Bayesian Theory 

approach would require the prior probability details for the distribution to be provided which sometimes 

could be obtained via field data or historical cases. In reality, however, this is difficult, especially in 

geographical areas where the basic data is often not available or not reliable and detailed data to form 

prior probabilities is rare. Even where data is available, it is often not suitable as an input into the BN 

analysis. To overcome the unreliability or lack of data, the subjective probability distribution is relied 

upon, often provided by expert elicitation using AHP, or similar models, to represent the experts’ 

degrees of belief.   

Different methods have been proposed to address the conditional probability distribution, including 

Noisy-Or [51] and symmetric methods [52]. A symmetric method will be adopted in this work as 

outlined in Section 3.2.1. The symmetric method is better suited for this research as it addresses 

some of the problems encountered when using the Noisy-Or method. The problems include its 

inability to consider multiple causes for the presence of a child node (leaky Noisy-Or is supposed to 

address that problem) and the fact that the model is asymmetric in nature, that is, it is only true in one 

direction.  

3.2.1 Symmetric Models 

The symmetric model provides input as a set of relative weights which maps the relative strength of 

the parent nodes as they influence child nodes. This is represented as a probability distribution table 

and grows linearly as the number of parent nodes increases. The symmetric model can take input 

either in the form of experimental data, expert opinion or a combination of the two.  

The use of a symmetric model eases the input requirements for a CPT and ensure objective and 

consistent input. Assuming in Figure 1, the two parents nodes A1 and A2 have both three states of 

low (L), medium (M) and high (H), whilst the child note B has two states of yes (Y) and no (N), then 

the influence of one of the parent states over the child state can be represented, for example, as 

𝑃(𝐵 = 𝑦𝑒𝑠|𝐴1 = 𝑙𝑜𝑤) = 𝑃(𝐵𝑦|𝐴1𝑙) This is the probability of obtaining ‘yes’ for B given A1 is in the 

state of ‘low’; all other states of A1 are ignored.   

Since the model distributes the expert’s opinion on the relative importance of each parent to its 

associated child node (normalised weight), the normalised space (𝑃(𝐵𝑦|Â1𝑙)) stands for the relative 

importance of the first parent’s state L to the child node assuming all other states do not occur. Thus:  
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The influence of an individual parent node on the CPT of the child node for each Boolean parent node 

Ar (where r can be 1,2,…..n) is obtained as follows: 

1( | 1 )B yes A low  = = = , 2( | 2 )B yes A low  = = = ,…,R(B = yes | An = low) == w
n
  (3) 

1

1
n

r

r


=

=  

Equations 2 and 3 can be combined, where there is symmetry (normalisation), to produce: 

1

( / 1, 2......... )
n

r

r

P B A A An 
=

=          (4) 

where: 

r r =  if the state of the parent node r is identical to the state of the child,  

0r =  if the state of the parent node r is not identical to the state of the child node. 

3.2.2 AHP Pairwise Comparison 

To obtain the relative weight of the parent node (as it affects the child node), the AHP technique is 

used. The relative weight provides the input required to fill in the conditional probability tables in 

Section 3.2.1. AHP, introduced by Saaty [53], is an effective tool for dealing with decision-making, 

reducing complex decisions to a series of pairwise comparisons, and helping to synthesise the results. 

AHP can calculate a weight for each evaluation criterion based on the decision maker’s pairwise 

comparison of each criterion against the others. The more important the criterion, the higher its 

corresponding weight.   

The assessment involves assigning scores to each option in accordance with the decision maker’s 

pairwise comparison of the options based on that criterion. Qualitative judgements from experts on 

each pair of attributes iA   and
jA  are represented in a form of n x n matrix [54].  

12 1

12 2

1 2

1

/ 1
( )

1/ 1/ 1

n

n

ij

n n

a a

a a a
A a

a a

 
 


 = =
    
 

 

   (5) 

where i, j = 1,2,3,…,n and each ija  is the relative importance of attribute iA   to attribute 
jA . 

A weight vector, which indicates the priority of each element in the pairwise comparison matrix, is 

represented in Equation 6. The weight determines the overall contribution of each element to the 

overall goal of the decision-making process.  
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where ija  is the entry of row i and column j in the matrix of order n.  

More details of the AHP are outlined in [53]. 

 BN Software 

Due to the complexity of the BN calculations, several software packages exist to simplify the 

assessment, converting the numerical inputs into DAG visualisation for ease of understanding and 

analysis. Examples of such software include Hugin, BayesiaLab, GeNie, and AgenaRisk. For the case 

study in this work, Hugin [55] is adopted, which has been used widely both for research and field 

applications. The Hugin software can be used to make a higher number of nodes in BN modelling 

faster and error-free [51]. The graphical representation of the node properties in the software 

simplifies the process of network analysis and understanding the results.  

 Methodology 

The methodology in this research is based on the combination of Bayesian Networks, AHP and 

Symmetric models. These have been used to obtain reliable assessments of the likelihood of failure. 

Figure 2 illustrates the main steps in building the model, including entering the CPT values (e.g., 

weights obtained using AHP pairwise comparisons or hard data) and obtaining the overall results to 

be used by the decision maker. 

 Construction of the Bayesian Network and Data Modelling 

The first step in the assessment is to build the model. In order to do so, input from relevant past cases, 

literature and expert opinion have been used. To develop the nodes, a determination must be carried 

out of the parent or root nodes and the child or the target node. The root nodes are not directly 

influenced by any other node in the BN and it is defined as a level 1 node (first stage). Each child 

node is defined as a level 2 node (second stage) and the target node is defined as the level 3 node 

(third stage). 

To analyse the primary pipeline failure data and predict failure characteristics using the BN model, a 

generic model building, and analysis procedure has been adapted and is explained in this section. 

The steps as outlined here are key to error-free analysis and form part of the quality control procedure 

that ensures that the model performs consistently as expected irrespective of the domain of 

application. It also ensures processes and results comparability. 

The number of steps and the details contained vary from application to application and are also 

dependent on the level of modelling details envisaged. However, the basic procedure shares a 

similarity and has been adapted for this work as described below. 
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Figure 2: Flowchart of the methodology  

 

4.1.1 Identification of Variables  

This step entails identifying the variables that are required in the model. In identifying them, care must 

be taken to ensure that the number is kept to the minimum that is necessary to provide expected 

results. In this research, the determination of the factors that affect cross-country pipeline integrity 

and loss prevention mechanisms is the main driver of the variables’ development. To reduce 

complications and difficulties that will arise from unwieldy variables (and hence the data for the 

Conditional Probability Tables - CPTs), the number of the parent nodes for each child node is 

suggested to be limited (e.g., up to three). This ensures that all the identified major factors leading to 

pipeline failure are included whilst the number of variables is kept to the minimum in order for the 

assessment not to be complicated. The granularity of the analysis should be balanced with the 

practicality of the available information and the modelling effort.  

4.1.2 Creation of Nodes Corresponding to all Variables Identified 

Having identified all the variables, this step involves creating nodes that describe the problem to be 

addressed. The nodes represent the relevant variables, and their development involves a 

determination as to whether each node is discrete, continuous or if it has several states.    

4.1.3 Identification of a Set of States for Each Variable 

The states of each variable are to be determined based on the available data, the modeller’s 

perspective and the complexity envisaged. The states of the nodes can be discrete, continuous or 

involving several states.  

4.1.4 Specification of the State of Each Node 

For this assessment, a Boolean state with the option of “yes” and “no” has been adopted. Only the 
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top-level node has three states – leak, rupture and operational. The use of three states as opposed 

to two that were used on other nodes is to mirror the major failure modes mostly associated with 

pipelines, that is, “leak” and “rupture”. The “operational” state indicates that the pipe did not encounter 

any failure and is, thus, still operational. 

4.1.5 Identification of Node Dependencies 

The identified nodes are connected to the influencing/influenced nodes via arc connections. This step 

creates the DAG that the BN relies on for information parsing and probability propagation. The nodes 

which represent the causes and effects are linked to one another via directed edges or arcs. The 

model ensures that the assessment nodes established are connected, as appropriate, to the variables 

identified, and that the levels of information propagation are correct.  

4.1.6 Construction of Conditional Probability Table  

A CPT for each node will be set at this step and can be specified based on either available data or 

expert elicitation. The number of probabilities required depends on the structure of the model.  

In this research, the information that makes up the CPT is obtained from the Concawe database [30], 

the US DOT [56] and NNPC [57], among others. Where direct data is not available, expert elicitation 

using AHP and a symmetric model [58] are used to complete the CPT as described in Sections 2.2.1 

and 2.2.2. 

 Analysis of the BN model 

Once all the data required is provided, and the correct connections are made, the next stage is 

ensuring that all the values entered for the CPT are normalised so that each set of nodes has a sum 

total equal to 1.  

Based on the designed network and the data inputs the BN software package is then used to perform 

the necessary calculations. This includes extracting marginal probabilities and interrogating the data 

to extract the belief values for certain assumptions and inputs. The baseline model gives the marginal 

probabilities of the end event, given the various input conditions of the contributing variables. These 

baseline results can be interrogated further given additional evidence to observe the impact of that 

new evidence on the overall results. This can then be used for a “what if” scenario analysis to better 

understand the impact of each input variable or sub-variable.  

Predictive, diagnostic and sensitivity analysis can also be carried out as part of the decision-making 

process and model validation to provide insight, supporting managers in predicting the consequences 

of certain decisions or the impact of a certain intervention. It can also help with post-accident analysis, 

where the failure is diagnosed to find the likely contributing factors leading to it.  

4.2.1 Model Validation  

To ensure that the BN model behaves as expected, a sensitivity analysis needs to be carried out. The 

aim is to test how sensitive the model is to the incremental or decremental changes to the inputs. A 

representative model will have a relative increase or decrease in the results for a similar increase or 

decrease in the input. A sound model with logical inference reasoning should be able to pass the 

following three axioms [59]: 
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Axiom 1: A slight increase/decrease in the prior subjective probability of each parent node should 

certainly result in the effect of a relative increase/decrease of the posterior probabilities of child nodes. 

Axiom 2: Given the variation in subjective probability distributions of each parent node, its influence 

magnitude to child node values should be kept consistent. 

Axiom 3: The total influence magnitude of the combination of the probability variations, from x 

attributes, on the values should always be greater than that of the set of x-y (y∈x) attributes. 

 Case Study: Section 2B of Nigeria’s cross-country pipeline 

The BN model methodology described in Section 4 is used in this research to demonstrate the model's 

practical application in onshore cross-country pipeline failure analysis as part of the operator’s 

process safety management. The BN model incorporates a symmetric model and the AHP pairwise 

comparison technique to generate conditional probability tables for nodes with multiple parents where 

data is insufficient or not available. The proposed model is then analysed for prediction and diagnosis. 

Verification and sensitivity analyses have been carried out to ensure that the model is constructed 

correctly and behaves as expected. This provides a level of confidence in the model’s analysis and 

the results.   

 Description of the Pipeline System 

The BN model is applied to an onshore Nigeria cross-country pipeline, Section 2B, located in 

southwestern Nigeria shown in Figure 3. The total length of the system is circa 500km. The relevant 

pipeline connects Lagos (including the Atlas Cove import jetty) in southwestern Nigeria to Mosimi and 

terminating at Ilorin in north-central Nigeria. The system includes the Oil pipeline, Pipeline manifold, 

Pigging (pig launchers and receivers), Metering system, Pumps, Utility systems and Future tie-in 

connections. The pipelines are multiproduct systems for the supply of Premium Motor Spirit (PMS), 

Dual Purpose Kerosene (DPK), Aviation Turbine Kerosene (ATK) and Automotive Gas Oil (AGO). To 

ensure a safe operation of the pipeline, they are buried about one metre deep on average.  

Pipeline 2B is representative of the country’s pipeline system as a whole with respect to failure 

frequency, as it is in the middle quartile overall in the failure records across the country. The pipeline 

has a high level of reported loss of containment with the associated consequence of fires and 

explosions. The last fire and explosion resulting from pipeline 2B failure was in March 2020 which 

caused about twenty-three fatalities and destroyed buildings and structures within about a hundred 

thousand square meters [1].  
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Figure 3: Onshore Pipeline Map – Case Study System is pipeline between Lagos and Ilorin (Source: 

[28]) 

The case study is a continuation of previous work [60], where a modified FMEA approach has been 

utilised to identify and rank all potential failure modes for the pipeline system. The failure mode that 

ranks highest is the pipeline’s loss of containment due to a leak or rupture.  

 Events Flow 

To identify the initial variables for the modelling, an assessment of the primary failure factors that 

affect onshore oil and gas pipelines, both globally and locally in Nigeria, has been carried out. As a 

result of incomplete information on pipeline failure factors for Nigeria (and this is also the case for 

other African countries), the European and American data is used to augment the primary failure 

factors that will inform the variables. The databases on data in these regions for the onshore cross-

country refined products pipelines are the most relevant. There are some issues related to the 

terminology and differences in recording techniques, but the main failure factors are broadly similar 

and are grouped under tier 1 factors, listed in Table 3, that lead to a pipeline leak or rupture.   

For a pipeline to fail, there is either going to be (i) a human interference consisting of a third-party or 

operational damage, (ii) a mechanical failure consisting of corrosion and a material defect or (iii) a 
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natural hazard. These are the tier 1 factors. Directly beneath each of the tier 1 factors are tier 2 factors. 

The root events (tier 3) are the basic failure factors. These are outlined in Table 3 (based on the US 

DOT and EU Concawe databases).   

A qualitative assessment carried out and the opinion of the experts sought as part of this BN model 

development indicate that the Concawe database [30] is more appropriate for Nigeria’s pipeline 

system, compared to the US DOT database [56], and, therefore, the Concawe nomenclature and the 

majority of its data has been used in this work.  

Table 1: Primary and Secondary Pipeline Failure Factors 

U
S

 D
O

T
  

Tier 1/2 
Factors 

Tier 3 Factors 
E

U
 C

o
n

c
a
w

e
  

Tier 1/2 
Factors 

Tier 3 Factors 

Material/ 
Weld 
Failure 

• Construction/installation/fabrication  

• Fitting defect 

• Failure of equipment body 

• Malfunction of control equipment 

• Non-threaded connection failure 

• Pump-related seal failure 

• Other 

Material 
defect  

• Material  

• Construction 

• Design  

Natural 
Force 
Damage 

• Flood/heavy rain 

• Earth movement 

• Lighting 

• Temperature  

• Others 

Natural 
Hazard 

• Ground 
movement  

• Other natural 
hazards 

Incorrect 
operation 

• Operator damage 

• Incorrect installation  

• Incorrect operation  

• Incorrect valve position  

• Others 

Operational 
damage  

• System 
malfunction 

• Human and org 
error 

Excavation 
damage 

• Operator/contractor exc. damage 

• 3rd party excavation damage  

• Other damages  

Third-party 
damage 
 

• Incidental  

• Accidental  

• Theft  

Corrosion • Internal 

• External  

• Unspecified 

Corrosion • Internal 

• External  

• Stress corr. 

Other 
outside 
force 

• Electrical arcing  

• Vehicle not engaged in excavation  

• Previous mechanical damage  

• Others  

  

 

5.2.1 Model Structure  

The developed BN model shows the relationship between failure factors and their conditional 

dependencies. The BN simulates the cause and effect of pipeline failure and the various factors 

affecting it, including mechanical factors, corrosion damage, human and organisational failure, and 

third-party damages. The representation of the Bayesian model is shown in Figure 4. The description 

of all nodes and their states is given in Table 4. 
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Figure 4: Hugin Graphical Output of the BN Model 

Table 2: Variables used in the BN and their Descriptions 

Variables States Description 

Human Damage Yes/No 
This is the total likelihood of all human related interventions 

resulting in pipeline integrity issues 

Third-Party Damage Yes/No  
Total likelihood of pipeline failure due to all third-party 

related activities 

 Incidental Damage Yes/No  
Likelihood of pipeline damage due to an event that is not 

immediately obvious but later developed into a failure 

 Accidental Damage Yes/No  
Damage due to accidental intervention, like construction or 

farming 

 Theft/Intentional Success/Failure  
A failure likelihood due to deliberate damage, to tap the 

pipeline content or to vandalise the system 

Operational Damage Yes/No Likelihood of damage due to unintended operations 

 System Malfunction  Yes/No  
Failure due to mechanical, electrical/electronic systems 

malfunction 

 
Human (and org) 

Error 
Yes/No  

This is the potential for human and organisational error, like 

lack of training or quality assurance (QA) to cause accidents 

leading to failure  

Mechanical Failure 
Failed/Not 

Failed  

This is the combined contribution of the mechanical-related 

defects affecting pipeline integrity  

Material Defect Yes/No  
Likelihood of defective materials used in design and 

construction contributing to pipeline failure 

 Material Yes/No  
Likelihood of defective materials only contributing to pipeline 

failure 

 Construction Yes/No  
Likelihood of defective construction only contributing to 

pipeline failure 

 Design Yes/No  
Likelihood of defective design only contributing to pipeline 

failure 
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Variables States Description 

Corrosion Yes/No Pipeline failure due to corrosion 

 External Corrosion Yes/No  Corrosion damage due to external corrosion 

 Internal Corrosion Yes/No  Likelihood of corrosion damage due to internal corrosion 

 Stress Cracking Yes/No  
Likelihood of corrosion damage due to applied stress on the 

pipeline 

Natural Hazard Yes/No 
The likelihood that a pipeline has failed due to natural 

related events like flash flood and frost  

 Ground Movement Yes/No  Likelihood of ground movement affecting pipeline integrity  

 
Other Natural 

Hazards 
Yes/No  

Likelihood of other types of natural hazards affecting 

pipeline integrity 

Pipeline Failure – Loss 

of Containment  

Leak, Rupture, 

Operational 

Likelihood of all of the above resulting in a pipeline integrity 

failure 

 

 Parameter Estimation 

5.3.1 Pipeline Failure Data  

The pipeline failure data relevant to the pipeline system under consideration has been collected and 

used to inform the model. Nigeria’s pipeline failure data has been collected from the pipeline operator 

which recorded the pipeline 2B loss of containment and its trend. However, the information contained 

in the database is incomplete and not detailed to support risk assessment when compared with 

established databases such as the UKOPA (UK Onshore Pipeline Operators Association) or 

Concawe. For example, the database recorded very few failure categories and is mainly geared 

towards assessing repair costs as opposed to recording failure details. Integrating the available local 

data with other relevant international data and expert elicitation could be revolutionary. In addition to 

Nigeria’s available data, the other relevant data chosen for this assessment is the EU Concawe 

database [30]. Even though this database is for European cross-country pipelines our qualitative 

assessment and expert opinion indicates that it is the most relevant database to augment Nigeria’s 

patchy pipeline failure data. The Concawe report [30] documents loss of containment incidents in 

European cross-country pipelines and their underlying statistics from 1971 to 2016. The report, which 

analyses the short and long-term trends of containment loss, covers over 140 pipeline systems 

provided by 66 pipeline operators, with a total length of about 38,000 km with a total throughput of 

755 Mm3 of refined products and crude oil. However, as the occurrence probabilities data for the five-

year moving average is unrealistically low when adapted to developing countries like Nigeria, an 

average over 1971 to 2015 is used, which is more conservative.  

Most of the failure factors identified and their long-term failure trends are deemed appropriate for use 

in this assessment in the absence of specific data for Nigeria’s pipeline systems, with the exception 

of operational and third-party factors. For operational factors, the high quality of management regimes 

and supervision means that failure probabilities in the European pipelines are very low compared to 

those of Nigeria; the US DOT database for operational factors is more suitable in this instance.  

Additionally, third-party intervention and especially theft/intentional and incidental damages are very 

low for both the Concawe and US DOT databases compared to the reported incidences for Nigeria. 

The patchy data obtained from Nigeria is very unreliable but seems to indicate that a significant 
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percentage, up to 90% of failures, is due to third-party intervention, specifically intentional and theft 

[57,61]. However, the domain experts consulted for this work, as outlined in Section 5.3.2, agreed 

that both the local data, and the Concawe data, which has an up to 60% reported failure probability 

due to third-party damage in 2015, should be used but adjusted.  

In all other areas where direct data is not available, or if it is not applicable in the given context, expert 

elicitation has been adopted; see Section 5.3.2. Table 5 summarizes the data sources for each 

variable. 

Table 3: Variables and Data Sources 

 Variables  Parents No. of CPT 

elements 

Failure Data 

Source  

Comment 

A Human Damage 
2 8 Expert 

Elicitation 

 

A.1 Third Party Damage 
3 16 NNPC & Expert 

Elicitation  

 

A.1.1 Accidental Damage 0 2 Concawe   

A.1.2 Incidental Damage 
0 2 Concawe  Concawe data and experts’ 

agreed upward adjustment 

A.1.3 Theft/Intentional 
0 2 Concawe  Concawe data and experts’ 

agreed upward adjustment 

A.2 Operational Damage 

2 8 US DOT and 

Expert 

Elicitation 

Concawe data not suitable. 

Lack of robust management 

regime in Nigeria means 

failure due to operational 

issues is more similar to US 

DOT data. 

A.2.1 
Human & 

Organisational Error  

0 2 Concawe   

A.2.2 System Malfunction 0 2 Concawe   

B Mechanical Failures 

2 8 NNPC and 

Expert 

Elicitation 

NNPC data used, from a 

published paper.  

B.1 Material Defect 
3 16 Expert 

Elicitation 

 

B.1.1 Material 0 2 Concawe  

B.1.2 Construction 0 2 Concawe   

B.1.3 Design 0 2 Concawe   

B.2 Corrosion 3 16 Expert elicitation  

B.2.1 Internal Corrosion 0 2 Concawe  

B.2.2 External Corrosion 0 2 Concawe   

B.2.3 Stress Cracking 0 2 Concawe  

C Natural Hazard 2 8 Expert elicitation  

C.1 Ground Movement 0 2 Concawe  

C.2 Other Natural Hazards 0 2 Concawe   

D Pipeline Failure – 

Loss of Containment 

3 24 Expert 

Elicitation 
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5.3.2 Expert Elicitation 

A key strength of the BN method is that it allows for the use of subject matter experts in the absence 

of hard data. In this model, probability tables for some of the child nodes cannot be completed with 

the data available. As a result, expert opinion is used to compensate for the lack of data. Typically, 

the direct estimates from such experts for the nodes are elicited for the probabilities. However, this 

approach often leads to inconsistencies and unreliable results due to subjective biases, especially 

when a node has more than two states [62]. The experts also find it difficult to provide input for the 

high number of conditional probabilities in CPTs. 

To address these shortcomings, AHP-based pairwise comparisons have been used. A questionnaire 

has been developed for the pairwise comparison for variables where expert input is required. The 

experts are selected based on their relevant experience and qualification. The backgrounds of the 

experts used in this case study are summarised in Table 6. 

Table 4: Experts Selected for the Research 

No Area of Expertise  Organisational Sector  Years of 

Experience 

1 HSE Engineer Pipeline regulator >10 years 

2 Project Engineer Pipeline infrastructure owner and operator >10 years  

3 Loss Prevention Engineer Pipeline consultants >5 years 

4 Pipeline Engineer Contractor >5 years 

5 Research Engineer Academic  >3 years 

5.3.2.1 AHP Questionnaire and Pairwise Comparison  

Expert opinion has been obtained for all children nodes where data is not sufficient to fill the prior 

probabilities. Questionnaires in the form of AHP and pairwise comparison have been utilised. Once 

questionnaire responses have been obtained, Equation 7 is used to assess the weight of each 

variable. A total for each column in Table 7 is required to assess the weighting. Each of the ratings in 

the table is divided by the total for each column. This gives the ratio of each rating as a percentage 

of the total for each variable as shown in Table 8. The indicative matrices for ‘Material Defect’ and 

‘Corrosion’ are presented; the same approach is followed for other nodes as required.  

To obtain the relative weighting for each variable, the average weighting across the row of the matrix 

is calculated as shown in Table 8. The average weightings are the values required along with the 

symmetric model to populate the node probability table of each respective child node. 

Table 5: Pairwise Comparison Matrix 

Material Defect  Corrosion 
 

DF CF MQ  EC IC SC 

DF 1.00 2.00 1.00 EC 1.00 0.13 0.11 

CF 0.50 1.00 0.50 IC 8.00 1.00 0.50 

MQ 1.00 2.00 1.00 SC 9.00 2.00 1.00 
        

Total 2.50 5.00 2.50 Total 18.00 3.13 1.61 

Note: DF is a design fault, CF is construction fault, MQ is material quality EC is external corrosion, IC is internal corrosion, 
and SC is stress cracking.  
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Table 6: Standard Matrix Relative Weighting Calculation 

Materials Defect Weight  Corrosion Weight 

DF 0.40 0.40 0.40 0.40 EC 0.06 0.04 0.07 0.05 

CF 0.20 0.20 0.20 0.20 IC 0.44 0.32 0.31 0.36 

MQ 0.40 0.40 0.40 0.40 SC 0.50 0.64 0.62 0.59 

Total 1.00 1.00 1.00 1.00 Total 1.00 1.00 1.00 1.00 

However, to ensure that the above assessment has been carried out in compliance with the AHP 

procedure and that the results are within the acceptable consistency bounds, a consistency check 

using the CI criterion is carried out. All CI values obtained are less 0.10, passing the consistency 

check.  

5.3.2.2 Symmetric Method and Relative Weight Development 

Determining the conditional probabilities requires filling out the CPT, using the symmetric model and 

relative weight development that has been introduced in Section 3.1.6. The application of the 

symmetric model in the CPT development is shown below, for the two example nodes – ‘Material 

defect’ and ‘Corrosion’ – to illustrate the process. The required input for the assessment includes the 

failure probabilities of the parent nodes, obtained from historical data, and the AHP pairwise 

comparison, derived from the expert elicitation. The AHP pairwise comparison method has been used 

to identify the relative influence of each parent node to the associated child node. That relative 

influence is shown as the average weighting in Table 9. The average weighting of each variable is 

multiplied with its failure probability to obtain the variable’s specific importance. This is then used to 

calculate the symmetric method weighting ,r and that would be the input value for the CPTs of the 

child nodes. In all cases, 
n

r

r=1

ω =1  where n is the number of decision factors. Table 9 shows the process 

and the results for the child nodes material effect and corrosion. 

The sum of the relative weights for each of the two variables is:  

1 2 3

1

( ) 0.395 0.209 0.395 1
n

r

r

material defect   
=

= + + = + + =  

1 2 3

1

( ) 0.312 0.499 0.189 1
n

r

r

corrosion   
=

= + + = + + =  

From the values calculated in Table 9, and using Equation 5, the node or conditional probability table 

is completed, as shown in Table 10. The values for material defect (MD), are arrived at as below, for 

a probability of material defect leading to pipeline failure being ‘yes’. The probability for ‘no’ is 1 minus 

that of ‘yes’.  
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Table 7: Symmetric Method Relative Weight for Variables 

Variables Failure 
Probabilities 

AHP Average  
Weight  

Variable 
Specific 
Weight 

Symmetric Method Weight for Use in 
the Assessment 

Material Defect 

DF 0.069 0.40 
0.028 (i.e., 
0.069x0.40) 1

0.028
0.395

0.028 0.015 0.028
 = =

+ +
 

CF 0.073 0.20 0.015 
2

0.015
0.209

0.028 0.015 0.028
 = =

+ +
 

MQ 0.069 0.40 0.028 
3

0.028
0.395

0.028 0.015 0.028
 = =

+ +
 

Corrosion 

EC 0.108 0.05 0.006 1

0.006
0.312

0.006 0.009 0.004
 = =

+ +
 

IC 0.026 0.36 0.009 2

0.009
0.499

0.006 0.009 0.004
 = =

+ +
 

SC 0.006 0.59 0.004 
3

0.004
0.189

0.006 0.009 0.004
 = =

+ +
 

Note: The occurrence probabilities for the main failure factors – material defects and corrosion - are obtained from the data (1971 to 2015) 
in Concawe [63], which is more conservative than the five-year moving average. The failure probabilities for the variables (e.g., DF and CF) 
are derived by weighting each sub-variable, based on its recorded failures, against the main factors’ failure probabilities. 

 

Table 8: Node Probability Table for Material Defect and Corrosion 

Material Defect 

Material Yes No 

Construction Yes No Yes No 

Design Yes  No Yes  No Yes  No Yes  No 

Yes 1.000 0.605 0.791 0.395 0.605 0.209 0.395 0 

No 0 0.395 0.209 0.605 0.395 0.791 0.605 1.00 

 

Corrosion 

External Corrosion Yes No 

Internal Corrosion Yes No Yes No 

Stress Cracking  Yes  No Yes  No Yes  No Yes  No 

Yes 1 0.81 0.50 0.31 0.69 0.50 0.19 0 

No 0 0.19 0.50 0.69 0.31 0.50 0.81 1.00 

 

 Analysis and Validation of the Model 

The model has now been built, and all prior probabilities have been computed based on the failure 

data and the AHP pairwise comparison method applied. Figure 5 shows the BN nodes for the 

probability of a pipeline failure, including its marginal probabilities.   

The BN shows that the likelihood of pipeline failure resulting in full rupture is 7.51% per year whilst 

that of a leak is 14.72% per year. The leak likelihood being double compared to that of a rupture’s 

likelihood is not surprising because the biggest threat to oil pipelines in Nigeria is theft due to drilling 

intended to create a tapping point on the pipeline [64]. The other threat is the deliberate destruction 

of the pipeline system by insurgency, which is rife in the country for political and socio-economic 
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reasons [65]. This results provide a baseline failure likelihood for the system based on the information 

gathered. It also provides interrelationships between different factors leading to either a leak or rupture 

incident.   However, the power of the BN model is in providing managers with a tool to carry out a 

“what if” assessment or investigate past incidents to gain insight into the likely contributing factors that 

led to the incident.    

To assess the robustness of the model, predictive, diagnostic and sensitivity analyses have been 

performed. 

 

Figure 5: BN Model Showing Marginal Probabilities for Pipeline Failure 

5.4.1 Evidence Propagation   

In undertaking BN model analysis, certain assumptions are made, and certain inputs are provided 

based on data that may not be directly relevant to this particular case. Evidence propagation allows 

the analyst to observe changes in the probability distribution if some of the assumptions were to be 

amended, either in isolation or in combination with other changes. For instance, in order to find out 

what combinations of factors must be avoided, different scenarios and combinations of events can be 

propagated as new evidence and compared with the baseline probability distribution. Figure 5 shows 

that human-related intervention has a higher failure likelihood on the selected Nigerian pipeline 

system, with a 30.76% failure likelihood, compared to mechanical failure which has a value of 4.19% 

and natural hazards which have a value of 0.75%. The operator might wish to model different 

scenarios related to, for example, increased security to prevent criminal activities (such as the 

destruction of pipelines) or to test the effect of ageing pipelines. To estimate the pipeline failure 

probability, two hypothetical scenarios are examined:  
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Scenario 1: the government’s effective security policies and political intervention result in a significant 

drop in third-party intervention due to intentional and incidental damages. This scenario will assume 

a best-case scenario of a 5% factor for those variables compared to the baseline model.    

Scenario 2: the ageing pipeline may deteriorate further with time, resulting in increased cases of 

corrosion failure and material defect. This scenario assumes a worst-case scenario of a 90% failure 

probability for these factors, compared to the baseline.  

Table 11 shows the baseline model input and the results for the two scenarios, i.e., the probability 

that the pipeline remains operational (O) and occurrence probabilities for leaks (L) and rapture (R). 

The baseline model results indicate occurrence probabilities of 14.72% for leaks and 7.51% for 

ruptures. The pipeline remains operational 77.77% of the time. Scenario 1 results (best case) indicate 

the level of loss reduction that is possible if efforts were to be made to reduce the occurrence of the 

two factors – theft and incidental damages. A reduction of up to 75.00% and 55.00% for leaks and 

ruptures is possible if the occurrence probabilities of theft and incidental damages can be reduced 

from the baseline 30.00% and 22.00% down to 5.00% and 5.00%, respectively. The leak and rupture 

probabilities are reduced from 14.72% and 7.51% to 3.90% and 3.30%, respectively. The pipeline 

availability increases from 77.77% to 92.80%. 

Table 9: Evidence Propagation 

Variables Best Case 
(Scenario 1) 

Baseline Model Worst Case 
(Scenario 2) 

Probability Distribution 

 Y N Y N Y N 

Human Damage 6.6 93.4 30.8 69.2 30.8 69.2 

     Third Party Damage 7.0 93.0 33.8 66.2 33.8 66.2 

 Incidental Damage 5 95 22.0 78.0 21.6 78.4 

 Accidental Damage 5.2 94.9 5.2 94.9 5.2 94.9 

 Theft/Intentional 5 95 30.0 70.0 30.0 70.0 

     Operational damage 12.0 88.0 3.8 96.2 3.8 96.2 

 System Malfunction  1.3 98.7 1.3 98.7 1.3 98.7 

 Human (& org) Error 4.8 95.2 4.8 95.2 4.8 95.2 

Mechanical Failure 4.2 95.8 4.2 95.8 90 10 

     Material Defect 6.2 93.8 6.2 93.8 90 10 

 Material 6.9 93.1 6.9 93.1 90 10 

 Construction 7.3 92.7 7.3 92.7 90 10 

 Design 6.9 93.1 6.9 93.1 90 10 

     Corrosion 3.8 96.2 3.8 96.2 90 10 

 External Corrosion 11.0 89.0 11.0 89.0 90 10 

 Internal Corrosion 2.6 97.4 2.6 97.4 90 10 

 Stress Cracking 0.6 99.4 0.6 99.4 90 10 

Natural Hazard 0.8 99.2 0.8 99.2 0.8 99.2 

 Ground Movement 1.5 98.5 1.5 98.5 1.5 98.5 

 Other Natural Hazards 0.5 99.2 0.5 99.2 0.5 99.2 

Pipeline Failure – Loss of 
Containment  

O L R O L R O L R 

92.8 3.9 3.3 77.77 14.72 7.5 39.8 27.3 32.9 

For scenario 2, which assumes a worst-case scenario of progressive pipeline deterioration due to 

ageing and lack of maintenance, the availability of the pipeline drops significantly, from 77.77% to 

39.80%. The scenario assumes a 90.00% occurrence probability from a mechanical failure, which 
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encompasses material defect and corrosion. All other factors remain the same. The occurrence 

probabilities for leaks and ruptures jump twofold and fourfold from 14.72% and 7.51% to 27.30% and 

32.90%, respectively. 

From the above analyses, the importance of evidence propagation in decision-making and forecasting 

is clear. Our methodology allows the decision-maker to assess a great combination of what-if 

scenarios in order to examine their impact on the operation of the pipeline system. This will help direct 

scarce resources into areas where they will have the most impact.  

5.4.2 Posterior Probabilities Assessment 

The main advantage of BN modelling is its ability to support the decision-making process by allowing 

for an update to the model in the presence of new observations or evidence. That evidence can be 

propagated in either direction.  

However, diagnostic analysis, which is the determination of the posterior probabilities of the parent 

nodes given new evidence for the child node, is the most popular [48]. Therefore, diagnostic analysis 

inference will be used to calculate the posterior probability distribution of each risk factor in the case 

of a confirmed pipeline failure. 

The first part of the diagnostic analysis assesses the impact of given evidence for the pipeline failure 

node on its parent nodes. The effect of such evidence can easily be propagated backwards to see 

which of the parent nodes has the most impact on the confirmed condition of a pipeline. Two different 

pieces of evidence have been propagated – a confirmed pipeline leak (probability of leak equal to 

100%) and a confirmed pipeline rupture (probability of rupture equal to 100%). Figure 6 and Figure 7 

show the BN model with both leak and rupture evidence inserted. The new occurrence probabilities 

for the parent nodes – human, mechanical and natural hazard – as a result of the evidence are also 

shown. For comparison, the baseline model occurrence probabilities are 30.76%, 4.19% and 0.75% 

for human damage, mechanical failure and natural hazards, respectively.  

 

Figure 6: Posterior Probabilities for Parent Nodes Given Evidence of a Leak 
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From Figure 6 and Figure 7 the impact of new evidence on the parent node is clear, with the highest 

change affecting human intervention, which increases from 0.31 to 0.96 for a confirmed leak and from 

0.31 to 0.80 for a confirmed rupture. This shows, counter-intuitively, that the impact of human 

intervention resulting in a pipeline leak is greater than such impact resulting in a pipeline rupture. This 

can be explained by the fact that the human intervention factor is skewed by a disproportionate failure 

rate due to third-party theft/intentional intervention, and there are more incidents of theft via hot-

tapping than there are for the intentional destruction of the pipelines for political reasons.  

 

Figure 7: Posterior Probabilities for Parent Nodes Given Rupture Evidence  

Conversely, the occurrence probabilities of both mechanical failure and natural hazards have been 

affected more by new evidence due to a confirmed rupture than due to a confirmed leak, as shown in 

Figure 6 and Figure 7. There is a twofold increase for a leak and fivefold increase for a rupture for 

both mechanical failure and natural hazards, respectively. Unlike human damage, the contribution of 

primary variables to the change of failure probability spreads amongst both the corrosion and 

materials defect factors and not skewed by a single factor.  

Figure 8 and Figure 9 shows how the new evidence only accentuates the contribution made by the 

largest three factors to the overall failure probability. For the baseline model, the three largest primary 

failure contributors are theft/intentional damage (22%), incidental (18%) and external corrosion (8%). 

Upon new evidence of a confirmed leak, the contribution of theft/intentional damage to the overall 

failure probability jumps to 65%, that of incidental damage to 32% and that of external corrosion to 

10%.  

The results obtained in this analysis are generally in agreement with the Concawe database [30], with 

the exception of the outsized contribution of theft or intentional damage and incidental damage. These 

are particularly high due to the peculiar challenges resulting from a prevalence of criminality and 

politically motivated actions in Nigeria. The European pipeline database also shows an astronomical 



24 

 

increase in third-party damage due to intentional actions, from two incidents in 2012 to 87 incidents 

in 2015. The prevalence of incidental damage has not seen any increase in Europe, but it has seen 

an increase in Nigeria due to a significant population increase over the past two decades and 

encroachment into the pipeline’s right of way due to weak implementation of the law. The 

encroachment into the pipeline’s right of way, including construction activities and farming, increases 

the likelihood of damages occurring, which subsequently lead to pipeline loss of containment.  

 

Figure 8: Primary Variables’ Posterior Probabilities Given Leak Evidence  
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Figure 9: Primary Variables’ Posterior Probabilities Given Rupture Evidence 

 

The revised failure probabilities due to new evidence can be further interrogated by providing 

additional evidence. For example, given the assumption that a leak is more likely to occur as a result 

of intentional damage, inserting a 100% chance of failure due to intentional damage reduces the 

failure probability contribution of other factors; the incidental damage contribution is reduced from 

18% to 10%, whilst external corrosion reduces from 8% to 6%. This intercausal inference attempts to 

explain the contribution of other variables by reducing their failure rates in place of plausible reasons 

to assume one variable caused the incident.  

The main benefit of diagnostic analysis is affording fault diagnosis and investigation by identifying the 

variables that are more likely to contribute to a pipeline failure. Additionally, the diagnostic analysis 

can be used to identify factors that will likely cause a certain failure in the future, hence concentrating 

the mind of the operator on what to focus on. By performing these analyses, the posterior joint 

probabilities of all the variables, given new evidence of an event, are very useful for safety evaluation. 

Additionally, the causal path of an accident can be identified using this model, thus reducing the need 

for dependence on subject matter experts at all times.    

 Sensitivity Analysis 

Sensitivity analysis measures the sensitivity or responsiveness of the model’s results to a variation of 

the inputs. The accuracy, robustness and reliability of the model are linked to the posterior probability 

distribution for changes to the input of the likelihood value. Sensitivity analysis offers the confidence 

that is necessary to show that the model is built correctly and produces results that are within the 

bounds of reality. This section examines the BN properties by applying incremental changes to the 
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likelihood input values and observing the output values to ensure that it follows a similar trend. As 

outlined in Figure 9, the most influential variables have been identified and they will assist in the 

analysis, as they will affect the model more than other variables with insignificant influence on the 

model.  

Parameter sensitivity or one-way sensitivity analysis has been used for this analysis and this is 

incorporated into the Hugin software. The sensitivity function is such that the causation probability PC 

is a function of the parameter 𝑧 = 𝑃(𝑌 = 𝑦𝑖|𝜋) where 𝑦𝑖 is the one state of variable Y and π is the 

combination of the states for Y’s parent nodes [66]. The sensitivity analysis is carried out by selecting 

the hypothesis variable (in this case a pipeline failure), the desired state(s) of the hypothesis variable 

(in this case a leak) and finally selecting the parameter variable. The parameter variables can be 

parent nodes of the hypothesis variable or they can be any other nodes whose input variation will 

influence the outcome of the hypothesis variable. For the parameter variables, the primary failure 

factors have been chosen and only the yes state is assessed.  

Figure 10 shows the sensitivity graph of various variables against pipeline failure (leak). When 

assessed against the three axioms outlined in Section 3.2.1, it can be seen in Figure 10  that a slight 

increase and decrease in the prior probabilities of the parent node, 3rd party damage, results in a 

relative increase and decrease in the child node, human factor. Also, the magnitude of the influence 

of the parent node, 3rd party damage, to the child node, human factor, remains consistent for the 

assessed input variation.  

 

Figure 10: Sensitivity for Pipeline Failure (Leak) Against Other Variables 
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Figure 11 shows a graph of sensitivity analyses output for the given evidence. It can be observed that 

theft/intentional damage has the highest sensitivity value, implying that the incremental increase of 

this variable results in the greatest influence on the outcome of pipeline failure. This aligns with the 

outcome of the analysis in Figure 9, where the posterior probability distribution for theft is shown as 

the largest and the most significant influence for any new evidence entered in regards to pipeline 

failure.   

 

Figure 11: Sensitivity Values for Given Evidence 

 Discussion  

This research analyses onshore cross-country oil pipeline failure due to a leak or rupture, which is 

ranked as the most common factor for loss of containment for the pipeline system 2B [60]. The BN 

model looks at this failure mode in detail, including all the initiating failure factors, that is, the 

contributing factors behind a pipeline leak or rupture.  

Identifying and inserting conditional probabilities for the primary failure factors is straightforward. 

However, specifying marginal probabilities for the CPTs of the child nodes is challenging in the 

absence of relevant data. Generally, the CPTs are filled using elicitation of domain experts. This is 

not usually simple if the node has multiple states or multiple probability tables, as it burdens the 

experts and is prone to biases. To address this shortcoming, both the AHP pairwise comparison 

method and the symmetric model have been adopted to generate the CPT by synthesising the 

experts’ opinions. This approach ensures that the seeming weakness of the BN is addressed. 

The formulated BN model has been used to show the contributing factors behind pipeline failures and 

their interrelationships. The model, therefore, provides managers with dynamic information on how to 

prevent undesired outcomes and can be used for a safety management plan.  

Figure 5 shows the predictive analysis, which outlines the marginal occurrence probability of the loss 

events. Figure 6 and Figure 7 outline the diagnostic analysis, which shows the significant failure factor 

that contributes towards the pipeline failure. The human damage node is shown as the parent node 

that has the most influence on the rupture state of the pipeline failure node. The human related 
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activities include failure due to operations such as system malfunction and human error. It also 

includes third-party activities such as theft and incidental damage. The three largest contributors to 

the failure probability are theft, incidental damage and external corrosion.  

The results obtained in this analysis are generally in agreement with the Concawe database [30], with 

the exception of the outsized contribution of theft or intentional damage and incidental damage. The 

outsized contribution of the theft and incidental damage led to higher reported failure frequency, in 

km-years, for the 5 year average to 2015 of 6.0E-01 compared to Concawe (9.50E-04) or UKOPA 

(1.08E-04).  

Table 11 shows the evidence propagation in the presence of new information, for example, if the 

operator wants to assess the impact of certain actions or spending on pipeline integrity improvements. 

It shows that if the third party and incidental damage probabilities were to be reduced, from 30.00% 

to 5.00% and from 21.60% to 5.00%, respectively, this would lead to a reduction in the hypothesis 

variable, by fourfold for leak and twofold for rupture. On the other hand, if the material defect and 

corrosion probabilities were to be increased from 6.20% to 90.00% and from 3.80% to 90.00%, 

respectively, the hypothesis variable will see an increase in failure probability. This jumps from 

14.72% and 7.50% to 27.30% and 32.90%, respectively.  

Model validation and sensitivity analysis have been carried out to ensure that the model has been 

built and is operating within the bounds of expectation. As indicated in Figure 10, theft/intentional 

damage is found to have the most influence on the leak failure state of the pipeline failure variable. 

The sensitivity analysis shows that the BN developed to help in pipeline failure identification decision-

making is reliable and accurate, although the accuracy can be improved with more objective data.  

It is worth noting that the application of the Bayes’ rule in risk analysis and uncertainty propagation 

has its drawbacks and limitations, as espoused by Ferson [67], including the inadequacy of the 

Bayesian model of ignorance which does not distinguish between incertitude and equiprobability. 

Also, the consequent overconfidence of conclusions that are derived by the analysis can hide a 

number of assumptions embedded in the assessment. Finally, there is a lack of wider acceptance of 

using subjectivity in public policy decision making, which may hamper its wider adoption in the 

industry. 

 

 Conclusions 

Managing safety and risks for oil and gas pipelines especially in developing countries is becoming a 

challenge due to the increasing number of failures often from third party activities. In Nigeria, the 

safety concerns of such pipeline failure resulting in injury, loss of lives, environmental damage and 

loss of revenue are occupying the mind of the stakeholders. The main challenge of addressing such 

safety concerns is the uncertainty resulting from inadequate data, socio-economic and political 

factors, among others. The use of BN as part of the process safety and risk management of those 

pipelines especially to address the lack of or unreliability of the data by incorporating the existing 

scarce data, literature and expert’s elicitation can be revolutionary.  
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The BN model described in this paper enumerates the cause and effect relationship that can be 

established between failure factors and pipeline failure conditions for the pipeline systems where there 

is inadequate or unreliable data. The model has been applied to a case study of Nigeria’s cross 

country pipeline system – 2B to estimate their failure probabilities. The research focussed on the 

model construction that shows the influence of the multiple parameters and their interactions resulting 

in a pipeline leak or rupture.  

The results of the analysis have shown the three largest failure factors that contribute towards the 

pipeline failure for the case study pipeline are deliberate third party activities, incidental damage and 

external corrosion. The analysis has also shown how an end-user can assess and measure the 

relative effectiveness of interventions and spending on pipeline integrity improvements and control 

measures. Example of control measures include detection measures (such as leak detection/impact 

monitors and patrol), prevention measures (such as Supervisory Control and Data Acquisition 

(SCADA) and barrier), and mitigation measures (such as spill response and right of way control) [68].   

Managing risks of pipeline systems in developing countries often involves a high level of uncertainty 

due to inadequate data, socio-economic and political factors, among others. The operation of 

pipelines in such circumstances where failure due to technical, human and organizational factors may 

contribute to a range of possible accidents requires a new approach to address those identified 

challenges. 

This work helps to address those challenges by analysing the refined petroleum products pipeline 

risks and examining the multiple interactions between several failure factors and their likelihood in 

causing a loss of containment. A case study of a pipeline system in Nigeria has been used to show 

how the model can be applied. The assessment carried out in this research can provide the operator 

with tools to be used to predict pipeline integrity issues and diagnose recent loss events to identify 

the most likely responsible failure factors.  

The assessment can also be used to update the degree of beliefs given any new information or 

evidence. The predictive analysis serves to provide valuable information during the design and 

operation of the system and helps in directing resources to the factors with the most influence on a 

particular integrity issue. The diagnostic analysis helps to determine the critical failure factors that 

may lead to a catastrophic loss event. The diagnostic analysis can also help with the identification of 

an accident event path.  

The model accommodates subjective judgements from experts and allows for beliefs updates for 

given information, making it ideal for operators to keep updating their uncertain parameters as more 

data becomes available. It is expected that the model will assist decision makers in identifying and 

ranking failure factors for effective risk mitigation, taking into account the local conditions.  

The novelty of this research is that instead of relying solely on the European and US databases in 

absence of a reliable database in Nigeria, the work integrates the subjective expert’s elicitation in 

addition to accommodating the available Nigerian data.  This helped to put the assessment in context, 

including consideration for the management systems and human factors, with respect to the case 

study pipeline and the region where it has been applied.  
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The key advantage of the model is its ability to incorporate both objective and subjective data; this is 

important for developing countries, where historical data is often unavailable or not reliable. The use 

of subjective data obtained using experts’ elicitation ensures that the results reflect the local industry 

best practices and experience.  

The work has shown how the BN model can be applied as a part of the package of tools to quantify 

failure factors and minimise uncertainty in carrying out process safety analysis for onshore cross-

country oil pipelines, particularly in developing countries where data availability and reliability is often 

a challenge.     

The BN model developed has limitations, such as the incorporation of only two states for most of the 

nodes, either ‘yes’ or ‘no’. This became necessary in order to reduce the complexity of the CPTs 

within the nodes and due to the lack of data required to fill in complex CPTs. However, this approach 

limits the model in many ways and also limits the validation and verification process. 

The BN model developed required CPT construction, which in this analysis used AHP and the 

symmetric method in the absence of hard data. The symmetric method is one of several methods that 

could be used to construct the CPTs. A future work that uses other technique, such as the Noisy-OR, 

to build the CPTs to compare with the approach used in this work can identify which approach yields 

better results. 
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