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One of the first useful products from the human genome will be a set of predicted genes. Besides its intrinsic

scientific interest, the accuracy and completeness of this data set is of considerable importance for human health

and medicine. Though progress has been made on computational gene identification in terms of both methods

and accuracy evaluation measures, most of the sequence sets in which the programs are tested are short

genomic sequences, and there is concern that these accuracy measures may not extrapolate well to larger, more

challenging data sets. Given the absence of experimentally verified large genomic data sets, we constructed a

semiartificial test set comprising a number of short single-gene genomic sequences with randomly generated

intergenic regions. This test set, which should still present an easier problem than real human genomic sequence,

mimics the ∼200kb long BACs being sequenced. In our experiments with these longer genomic sequences, the

accuracy of GENSCAN, one of the most accurate ab initio gene prediction programs, dropped significantly,

although its sensitivity remained high. Conversely, the accuracy of similarity-based programs, such as

GENEWISE, PROCRUSTES, and BLASTX, was not affected significantly by the presence of random intergenic

sequence, but depended on the strength of the similarity to the protein homolog. As expected, the accuracy

dropped if the models were built using more distant homologs, and we were able to quantitatively estimate this

decline. However, the specificities of these techniques are still rather good even when the similarity is weak,

which is a desirable characteristic for driving expensive follow-up experiments. Our experiments suggest that

though gene prediction will improve with every new protein that is discovered and through improvements in

the current set of tools, we still have a long way to go before we can decipher the precise exonic structure of

every gene in the human genome using purely computational methodology.

The nucleotide genomic sequence is the primary prod-

uct of the Human Genome Project, but a major short-

and mid-term interest will be the amino acid sequences

of the proteins encoded in the genome. Thus, methods

that reliably predict the genes encoded in genomic se-

quence are essential, and computational gene identifi-

cation continues to be an active field of research (for

reviews, see Fickett 1996; Claverie 1997; Guigó 1997a;

Burge and Karlin 1998; Haussler 1998). A new genera-

tion of gene prediction programs based on Hidden

Markov Models (Burge and Karlin 1997) have shown

significantly greater accuracy than previous programs

based on other methodologies (Burset and Guigó

1996). Conversely, as the databases of known coding

sequences increase in size, gene prediction methods

based on sequence similarity to coding sequences,

mainly proteins and ESTs, are becoming increasingly

useful and are routinely used to identify putative genes

in genomic sequences (The C. elegans Sequencing Con-

sortium 1998). We have recently published an evalua-

tion of sequence similarity-based gene prediction

methods, in particular of EST-based gene prediction

(Guigó et al. 2000). The accuracy of gene identification

programs, however, has usually been estimated on

controlled data sets made of short genomic sequences

encoding a single and complete gene with a simple

structure. Moreover, these data sets are often similar if

not overlapping, to the sets of sequences on which the

programs have been trained. Thus, these data sets are

not representative of the sequences being produced at

the genome centers, which are mostly large sequences

of low coding density, encoding several genes or in-

complete genes with complex gene structure. It is thus

difficult to know how well the figures of accuracy es-

timated in the controlled benchmark data sets extrapo-

late to actual genomic sequences. Furthermore, pro-

grams that combine both sequence similarity and ab

initio gene finding approaches, and those that predict

genes by producing a splicing alignment between a

genomic sequence and a candidate amino acid se-

quence have become recently available, such as PRO-

CRUSTES (Gelfand et al. 1996) and GENEWISE (Birney

and Durbin 1997), (http://www.sanger.ac.uk/Software/

Wise2/). Programs that align genomic sequences with

3Corresponding author.
E-MAIL rguigo@imim.es; FAX 3493-221-3237.
Article and publication are at www.genome.org/cgi/doi/10.1101/
gr.122800.

Methods

10:1631–1642 ©2000 by Cold Spring Harbor Laboratory Press ISSN 1088-9051/00 $5.00; www.genome.org Genome Research 1631
www.genome.org



EST sequences, such as EST GENOME (Mott 1997),

could also be included in this category. These programs

promise highly accurate predictions, but at the cost of

greater computational time. However, this increase in

accuracy has not been well-quantified on challenging

data sets. The effects of the degree of similarity be-

tween the candidate homolog and the genomic se-

quence also deserve careful evaluation.

We believe a more realistic evaluation of the cur-

rently available gene prediction tools on challenging

data sets would be useful. Ideally, one would like to

benchmark the computational gene identification pro-

grams in real genomic sequences. The main problem is

that most real sequences the structure of the genes has

not been verified exhaustively by experimental means,

and thus it is impossible to calibrate the accuracy of the

predictions. Only recently, extensively annotated large

genomic sequences from higher eukaryotic organisms

have become available from the human genome

(http://www.hgmp.mrc.ac.uk/Genesafe) and from the

fly genome (http://www.fruitfly.org/GASP1/). In spite

of the experimental analysis, the possibility of unde-

tected genes in the sequence cannot be easily ruled out,

which makes accuracy difficult to measure. Here, we

attempt to overcome the lack of well-annotated large

genomic sequences by constructing semiartificial ones.

In these semiartificial sequences, known genomic se-

quences have been embedded in simulated intergenic

DNA, and therefore, the location of all coding exons is

known. Although the approach may seem unrealistic,

we believe that the results obtained are instructive with

regard to the accuracy of currently available gene iden-

tification tools.

We evaluate the accuracy of representatives of a

wide variety of computational gene identification ap-

proaches: GENSCAN (Burge and Karlin 1997), an ab ini-

tio genefinder; BLASTX (Altschul et al. 1990; Gish and

States 1993), a genefinding-oriented similarity search

program; and PROCRUSTES (Gelfand et al. 1996) and

GENEWISE (Birney and Durbin 1997), genefinders

based on aligning a genomic DNA sequence fragment

to a homologous protein sequence. We evaluate these

programs on two benchmark data sets: A set of well-

annotated single-gene DNA sequences, and a set of

semiartificial genomic (SAG) sequences created by em-

bedding the single-gene sequences from the first data

set in simulated intergenic DNA.

RESULTS
We investigated the accuracy of the gene prediction

tools (GENSCAN, PROCRUSTES, GENEWISE, BLASTX) de-

scribed in Methods on two benchmark sets. In all cases,

sequences were masked previously for repeated regions

using REPEATMASKER (A. Smit and P. Green, unpubl.).

The gene predictions obtained using the different tools

were compared with the actual gene annotations using

the accuracy measures described Methods.

Accuracy in Single Gene Sequences

Table 1 shows the accuracy of the different gene pre-

diction tools on h178, the set of single gene sequences.

GENSCAN’s accuracy is comparable to that reported

earlier (Burge and Karlin 1997). On average, 90% of the

coding nucleotides and 70% of the exons are predicted

correctly by GENSCAN. Only 7% of the actual exons are

missed completely, and only 9% of the predicted exons

are wrong. We believe this is close to the maximum

accuracy that can be achieved using currently available

ab initio gene prediction programs.

The quality of the gene models inferred from

BLASTX searches depends on the strategy used. Default

usage of BLASTX produced poorer predictions than

more sophisticated strategies. (Results for BLASTX de-

fault correspond to those published in Guigó et al.

2000.) Discrepancies between numbers in Table 1 and

those reported in Guiqoet al. (2000) are due to the

differences in the way the accuracy measures are sum-

marized. In Guigó et al. 2000, we computed the accu-

racy measures on each test sequence, and averaged all

of them. Here, we compute the accuracy measures glo-

bally from the total number of prediction successes

and failures (at the base or exon level) on all sequences.

The default BLASTX strategy produces reasonably high

sensitivity (0.91) by projecting all HSPs over a given

threshold along the query DNA sequence, but the sen-

sitivity rises to an amazing 0.97, if the topcomboN fea-

Table 1. Accuracy of Gene Prediction Tools in the Set of Single Gene Sequences (h178)

Program No.

Nucleotide

Exon

Sn Sp

Sn � Sp

2 ME WESn Sp CC

GenScan 177 0.93 0.90 0.90 0.78 0.75 0.76 0.08 0.10
Blastx default 175 0.91 0.79 0.82 0.04 0.04 0.04 0.12 0.05
Blastx topcomboN 174 0.97 0.80 0.86 0.04 0.04 0.04 0.08 0.05
Blastx 2 stages 175 0.90 0.92 0.90 0.10 0.12 0.11 0.19 0.02
GeneWise 177 0.98 0.98 0.97 0.88 0.91 0.89 0.06 0.02
Procrustes 177 0.93 0.95 0.93 0.76 0.82 0.79 0.11 0.04
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ture is used. The topcomboN feature eliminates the

need for low-complexity filters (seg + xnu), and for

strict secondary HSP cutoff (S2 threshold). Surpris-

ingly, its use does not appear to hurt specificity. The

two-stage method (in which the top homolog with

low-complexity filtering is chosen to build the BLASTX

model with topcomboN in the second stage) increases

specificity from 0.79 to 0.92. Using a single protein to

build a model improves specificity because the noise

from the less significant hits is reduced. But the two

stage method does have lower sensitivity from a lack of

information from the weaker secondary hits. However,

this is still the best purely BLASTX-based strategy in

terms of either specificity or overall accuracy, and the

numbers are comparable to the accuracy of ab initio

gene finders at the nucleotide level.

The proteins encoded by the sequences in h178

are mostly included in the nonredundant database of

amino acid sequences (nr). However, BLASTX still does

not produce perfect predictions. This certainly has an

artefactual component: We have discovered a few an-

notation errors in h178. However, perfect gene predic-

tions from BLASTX searches are intrinsically impossible

because of the inability of BLASTX to predict the splice

boundaries when they occur within codons (this espe-

cially affects its accuracy at the exon level, which is

actually rather meaningless for BLASTX). In this regard,

splicing alignment or sequence similarity-based gene

prediction tools (SSBGP), such as GENEWISE and PRO-

CRUSTES could, in principle, result in more accurate

predictions. Thus, the protein sequence with the low-

est P value after the BLASTX search was given to PRO-

CRUSTES and GENEWISE to model their gene predic-

tions. SSBGP tools improved the accuracy of the gene

predictions inferred directly from BLASTX searches,

and also slightly outperform GENSCAN in this set.

GENEWISE predictions with an overall accuracy of 0.97,

in particular, were close to perfect given the intrinsic

inaccuracy of the database annotation considered to be

the gold standard here. Of course, there is a price paid

in computational time, and GENEWISE is expensive

with its linear-memory dynamic programming tech-

nique.

GENSCAN accuracy, in theory, should be unaf-

fected, whether the query sequence encodes genes for

which a close homolog, remote homolog, or no homo-

log exists. GENEWISE and PROCRUSTES accuracy, on

the other hand, should decrease as the homology be-

comes distant, and these programs have little utility if

a homolog does not exist.

As we have already pointed out, nr database con-

tains protein translations of most of the genes in our

data set, which could be a significant drawback of the

data set. It is difficult (if not impossible) to come up

with criteria for eliminating just the translations.

Mouse orthologs are often 100% identical at the pro-

tein level and variants of the same protein may be

highly (98%–99%) identical. Thus, we chose to evalu-

ate the effect of the similarity level (P value) of an avail-

able homolog on the accuracy of GENEWISE and PRO-

CRUSTES by considering a variety of P value bins. Con-

ceptually, identical or close to identical proteins would

fall in the most significant P value bin, and other bins

would be devoid of identical hits.

A set of Blast-probability (P value) thresholds was

chosen to provide bins with varying levels of similarity

(10�120, 10�80, 10�60, 10�40, 10�30, 10�20, 10�10,

and 10�5). For each of these P values (10�80, for in-

stance), we performed the following experiment. After

running BLASTX against nr for the DNA sequences in

h178, we discarded for each DNA sequence all HSPS

corresponding to all protein sequences with a P value

below cutoff (as if we were ignoring all known amino

acid sequences over a given level of similarity to the

protein encoded in the query DNA sequence). Then,

the protein with the remaining top hit below the next

higher P value threshold (10�60, in the case of the

example) was used, if it existed, as a candidate homo-

log for the SSBGP tools. If there was no protein hit in

the bin (10�80 to 10�60 in the example) then this gene

was discarded for the evaluation of this bin.

Thus, the BLASTX gene models are based on all the

protein homologs with probability higher than the

threshold considered. The P value thresholds were cho-

sen so as to generate roughly equal numbers of data

points (sequences from h178) for each set. The mini-

mum number of data points in any set is 73, large

enough to avoid significant sampling bias.

The accuracy results as a function of P value of the

homologs are shown in Figure 1. GENSCAN perfor-

mance is expected to be constant, and was for the most

part; the minor variations are because of changes in the

data set. Only a fraction of the genes had homologs in

each of the bins, thus the data set changed a little from

bin to bin. The overall performance of SSBGP tools

suffered substantially as the similarity decreased.

Somewhat surprisingly, the performance of GENSCAN is

superior to that of SSBGP tools even at rather high

levels of similarity (P value between 10�80 and 10�60).

When the similarity is strong, GENEWISE appears to

outperform PROCRUSTES in the h178 sequence set.

However, when the similarity is weak the difference in

performance between the two tools at the nucleotide

level is small, and for low levels of similarity PRO-

CRUSTES seems to outperform GENEWISE, particularly

at the exon level. This is not unexpected considering

the design of these programs: GENEWISE is primarily a

sequence alignment tool, and thus it performs very

well when there is strong sequence similarity. PRO-

CRUSTES is more of a gene prediction program; it pos-

sibly encodes a more sophisticated splice site and exon

model, which allows for better exon prediction at low

Gene Prediction Accuracy
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levels of similarity. As shown in Figure 3, a decrease in

accuracy for sequence similarity-based methods is

most likely a result of the decline in sensitivity, while

specificity remains high, which is a very desirable fea-

ture.

Interestingly, when the similarity is weak (P

value > 10�20), the advantage of sophisticated SSBGP

tools as opposed to direct gene modeling from data-

base searches such as those performed by BLASTX,

seems to vanish. It is not unlikely that when the simi-

larity is weak, the query DNA sequence and the top

database search homolog share only a conserved do-

main. In such cases, SSBGP, relying on sequence simi-

larity only to the top homolog, are only able to detect

the part of the gene exonic structure encoding these

domains. Direct gene modeling from BLASTX search

results builds on all potential homologs (not only the

top one); thus, weak homologs that share different

conserved regions with the gene encoded in the DNA

sequence may allow for better recovery of the overall

exonic structure of the gene. In fairness to GENEWISE

and PROCRUSTES, they can be used with multiple pro-

tein homologs and complete gene models synthesized,

but that is computationally expensive and analytically

problematic. Figure 1 illustrates an extreme example. A

possible solution (at least when using GENEWISE) is to

build a profile or an HMM based on the top few ho-

mologs and then align this profile with the target ge-

nomic sequence.

Conversely, when the similarity with the top ho-

Figure 1 The accuracy of the gene prediction tools as a function of the similarity to the chosen homolog. For each P-value cutoff, the
homolog with the lowest P value above the cutoff was chosen to build the gene prediction models. The table indicates the different ranges
considered, the log-average of the P values in each range, and the number of sequences with acceptable homologs in the range. For
example, there were 99 sequences in h178 for which after discarding all hits with P value < 10�120, the top remaining hit had a P
value < 10�80. There were 73 sequences for which the top hit had a P value < 10�120, and 119 sequences for which the top hit had a
P value > 10�5.
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molog is weak, the BLASTX search picks up only the

stronger regions of similarity between the homolog

and the gene encoded in the query sequence, although

lower levels of sequence similarity are shared in other

regions between the protein and the query DNA se-

quences. These can be detected by the SSBGP tools (Fig.

1). Finally, in other cases, both situations occur simul-

taneously, and direct gene modeling from BLASTX

search and SSBGP tools may complement each other to

produce a more accurate overall prediction (Fig. 1).

Examining the data in Table 1 and Figure 1, one

may be tempted to conclude that the gene identifica-

tion problem is almost solved. When a strong homolog

exists, programs like GENEWISE and PROCRUSTES are

likely to pick up the correct exon structure; when such

a homolog does not exist, programs like GENSCAN will

still be able to recover most of this structure. This, we

believe, is rather optimistic, as the sequence set in

which these programs have been tested is extremely

easy. Although the results obtained are instructive of

the comparative performance of the tools, they cannot

necessarily be extrapolated to the performance of these

tools in the large genomic sequences. In the next sec-

tion, we present the results obtained on evaluating the

tools on a set of simulated genomic sequences, which

we believe provide a more realistic estimation of the

actual accuracy of the gene prediction tools in large

genomic sequences.

Accuracy in Semiartificial Genomic Sequences

A SAG data set containing known genes in random

intergenic context (as described in Methods) was con-

structed to check if the accuracy measures from the

previous section extrapolate to larger, more difficult

data sets.

Because each SAG sequence contains multiple

genes, the choice of the set of protein homologs to

predict all the genes was no longer trivial. For ease of

evaluation, we used the knowledge of the genes to pick

these homologs, but there are other techniques that

can be used to pick up a single candidate homolog for

each gene-like region. In short, the top-scoring protein

homolog from the BLASTX search for each of the genic

sequences was used by GENEWISE and PROCRUSTES to

predict the gene based on sequence similarity. For in-

stance, artificial sequence AGS01 was obtained by em-

bedding EMBL sequences HS10116, HSDNAAMHI, and

HSNUCLEO in artificial intergenic DNA, with BLASTX

top homologs being NCBI:gi 134635, 1136442, and

128841, respectively. The GENEWISE and PROCRUSTES

predictions on the artificial sequence AGS01 were ob-

tained by three independent executions of the pro-

grams, with each of the above top homolog proteins in

turn. The programs were executed to predict genes on

both strands and the model on the strand with the

higher score was used to assess accuracy. This approach

isolated the issue of the accuracy of these programs if

the genomic sequence is large and the gene is encoded

only in a small region of this sequence. There are other

factors, such as the ability to choose the correct set of

homologs that affect accuracy, but these factors were

similar for all the programs, and other suboptimal (but

perhaps more realistic) techniques would lead to lower

accuracy. Thus, the accuracy numbers for the semiar-

tificial sequences are not underestimated.

Table 2 shows the accuracy of the gene identifica-

tion tools in Gen178, the set of simulated genomic

sequences. As expected from theoretical consider-

ations, SSBGP tools were mostly unaffected by the in-

clusion of genic sequences in the random intergenic-

like DNA. PROCRUSTES appears to be less robust than

GENEWISE when analyzing large genomic sequences.

In particular, there is a significant decrease in specific-

ity at the exon level (from 0.82 to 0.75), the likely

result of predicting a relatively large number of small

exons in otherwise noncoding DNA [wrong exons

(WE) increasing from 0.04 to 0.16]. The comparatively

low decrease in specificity at the nucleotide level, from

0.95 to 0.94, suggests that most of these false exons are

rather short. Surprisingly, PROCRUSTES sensitivity at

Table 2. Accuracy of Gene Prediction Tools in the Set of Semiartificial Genomic (SAG)
Sequences (Gen178)

Program No.

Nucleotide

Exon

Gene

Sn Sp

Sn � Sp

2 ME WESn Sp CC MG WG

GenScan 43 0.89 0.64 0.76 0.64 0.44 0.54 0.14 0.41 0.03 0.28
0.92 0.92 0.91 0.76 0.76 0.76 0.09 0.09

GeneWise 43 0.98 0.98 0.97 0.88 0.91 0.89 0.06 0.02
0.98 0.98 0.97 0.88 0.91 0.89 0.06 0.02

Procrustes 43 0.93 0.94 0.93 0.80 0.75 0.77 0.10 0.16
0.93 0.95 0.93 0.76 0.82 0.79 0.11 0.04

(Italics) The accuracy values in the set of single gene sequences (from Table 1).
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the exon level is slightly higher in the set of artificial

sequences than in the set of single gene sequences.

The accuracy of BLASTX was not affected by the

intergenic context (data not shown) because no hits

with a P value more significant than 10�10 were found

in the simulated DNA.

Accuracy of ab initio gene finders suffered substan-

tially in the set of artificial genomic sequences. Because

of the tendency of gene finders to overpredict exons,

one would expect that by placing the genic sequences

in the simulated-intergenic context, some loss of speci-

ficity would be observed, with programs predicting

perhaps a few extra exons in otherwise random DNA.

On the other hand, one would expect the sensitivity to

remain essentially constant as the exons predicted in

the genic sequences should still be predicted when

these are included in simulated-intergenic DNA. How-

ever, a significant decrease in specificity is observed

(Table 2). For instance, GENSCAN specificity at the exon

level drops to 0.64 from 0.92, and the proportion of

WEs climbs to 41% from 9% in the single gene se-

quences. In addition, a significant decrease in sensitiv-

ity is also observed, with programs failing to predict

exons that were correctly identified in the single gene

sequences. For instance, the proportion of missing ex-

ons increases for GENSCAN from 9% to 14%. Almost

30% of the GENSCAN genes are predicted in the simu-

lated-intergenic DNA. For ab initio gene finders, we

believe these accuracy values (on SAG sequences) are

more representative of their true accuracy on large ge-

nomic sequences than those obtained in the typical

single gene benchmark experiments.

Figure 2 shows the predictions of the different pro-

grams in one of the artificially generated genomic se-

quences (∼157-kb long). As mentioned, SSBGPs predict

the genic structure of the artificial genomic sequence

rather well. Performance of ab initio gene finders, on

the other hand, degrades substantially.

Although all genes predicted by GENSCAN overlap

real genes, it still predicts a large number of false posi-

tive exons. In addition, even when predicting the ex-

ons correctly, their assembly into genes is often incor-

rect. For instance, in the sequence in Figure 2, GENSCAN

has difficulty in predicting the correct gene bound-

aries, and it expands the gene beyond its actual limits.

In the lower portion of the Figure 2, we compare the

predictions in the region between positions 23,000 and

41,000 from the SAG sequence to the predictions on

just the actual genic sequence (without the random

context). GENSCAN performance suffers substantially

from this inclusion in pseudointergenic context. One

explanation is that GENSCAN uses the wrong isochore

model for this sequence: the actual isochore structure

being destroyed by the usage of artificial intergenic

context. In such a case, decrease in performance would

be an artifact of our SAG sequences rather than a fea-

ture of GENSCAN. Experiments with gene finders other

than GENSCAN (data not shown) indicate that such a

decrease in performance is not specific to GENSCAN, but

rather a general feature of ab initio gene finders.

As with the set of single gene sequences, the com-

parison of GENSCAN with SSBGP tools is not strictly

fair. The SSBGPs are affected by the existence of closer

homologs, while GENSCAN is not affected. To study the

effects of the range of similarity on the accuracy of

gene prediction in the SAG data set, we extracted two

different sets of SAG sequences. In the first set, each

gene in each SAG sequence has a strong homolog

(BLASTX P value < 10�50), and in the other set, each

gene in each sequence had a moderate homolog

(BLASTX P value between 10�50 and 10�6). Some of

the genes in the second set also had better homologs

which were ignored for this analysis. The results are

shown in Table 3. If the similarity is strong, the se-

quence similarity-based methods perform very well,

outperforming ab initio tools (as in Table 2). However,

if the average similarity between the genes encoded

and the known proteins is only moderate (though per-

haps, still better than expected for real genomic se-

quences), the performance of these tools is similar to

the performance of GENSCAN. At the exon level, the

overall accuracy stays at ∼50%. A very similar accuracy

has also been observed independently on test sets on

actual genomic sequences (http://predict.sanger.ac.uk/

th/brca2/; see Discussion). We believe this is still an

overestimation of the actual accuracy of these tools in

real genomic sequences.

DISCUSSION
Computational genefinders produce acceptable predic-

tions of the exonic structure of the genes when ana-

lyzing single gene sequences with very little flanking

intergenic sequence, but are unable to correctly infer

the exonic structure of multigene genomic sequences.

In particular, ab initio genefinders predict and utilize

intergenic boundaries poorly. Conversely, as our re-

sults indicate, sequence similarity searches on data-

bases of known coding sequences are extremely helpful

in deciphering the exonic structure for the genes that

have known homologs. For very strong similarity,

SSBGP tools appear to be the most useful. Surprisingly

even for genes predicted based on homologs with a

moderate degree of similarity (10�50 < P value < 10�6),

GENSCAN performs comparably to SSBGP programs. It

appears that at such levels of similarity, potential splice

signals and statistical biases in the sequence composi-

tion carry information comparable to sequence simi-

larity for the purposes of identifying coding regions. It

is possible that the use of SAG sequences does not pro-

vide a realistic scenario to test the accuracy of compu-

tational gene finders. Ideally, one would like to use

large genomic sequences with gene structure experi-

Guigó et al.
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mentally verified. However, experimentally verifying

each and every gene along with alternative splice struc-

tures in a large genomic sequence remains a difficult

challenge. Techniques such as exon-trapping (Church

et al. 1994) have high sensitivity but poor specificity,

while RT–PCR or identifying a cDNA clone for every

transcript can be fairly specific (Hochgeschwender

1992), but have less than perfect sensitivity and are

dependent on finding a tissue in a developmental stage

under an environmental condition in which that gene

(or alternative gene product) is expressed. In particular,

proving that a piece of sequence (that appears coding

Figure 2 (AGS17, top) Gene predictions in one of the artificial genomic sequences. The row EMBL indicates the coordinates of the actual
genes. Exons corresponding to the same gene (or predicted to be in the same gene) are linked by a box. (AGS17, middle) Predictions of
GENSCAN finders in the region 23,000 to 41,000 from the semiartificial genomic sequence. (HSIL9RA, bottom) The predictions improve
if GENSCAN is provided only the 18,000-bp long genic sequence that has been inserted in this region. This figure, as well as Fig. 1, has
been prepared using gff2ps. (Abril and Guigó 2000)

Gene Prediction Accuracy
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to gene-prediction programs) is not coding is ex-

tremely difficult. Thus, even though there are a num-

ber of attempts to consolidate genomic gene prediction

data sets [Banbury Cross (http://igs-server.cnrs-mrs.fr/

igs/banbury), GeneSafe (http://www.hgmp.mrc.ac.uk/

Genesafe), GASP (http://www.fruitfly.org/GASP1/)],

the number of experimentally well-annotated large ge-

nomic sequences remains small, and even in those

Guigó et al.
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cases, the reliability of the annotation is difficult to

assess (Reese et al. 2000). To compensate for the lack of

these verified data sets, we have built semiartificial data

sets with known genes placed in the context of random

intergenic sequence. This ensures that all the genes in

these sequences are known. In fact, most of these genes

have fairly small genomic spread (i.e., none of the in-

trons is very large), and a number of the ab initio gene

prediction programs have been trained on them. This

should make this data set easy for most programs.

However, our model for intergenic sequence is possibly

imperfect for at least two reasons: The genes are not

necessarily placed in the correct isochore context; and

the apparent codon composition in the simulated in-

tergenic DNA may be different from that of actual in-

tergenic sequence. These imperfections may conceiv-

ably make gene prediction more difficult on this data

set for ab initio programs, but we think these are more

than offset at least in part by the small genes and the

fact that the programs have partly trained on these

genes. Overall, the sensitivity and specificity numbers

are most instructive in the relative context. The sensi-

tivity of most tools remains high even when con-

fronted with large intergenic sequences, but the speci-

ficity of the ab initio tools drops because of large in-

tergenic regions.

Interestingly, the accuracy reported here for GEN-

SCAN is very similar to the accuracy found in the

BRCA2 region (Chruch et al. 1994; Couch et al. 1996);

probably the best annotated human genomic region

from an experimental standpoint. BRCA2 region is a

large genomic tract with multiple genes, thus, a diffi-

cult data set for most gene prediction programs. At the

exon level, Tim Hubbard and Richard Bruskiewich

(Sanger Center, UK) report for GENSCAN in this region

a sensitivity of 0.63 (termed coverage there) and a speci-

ficity of 0.38 (termed accuracy there) (http://

predict.sanger.ac.uk/th/brca2/). As anticipated, these

values are slightly worse than the ones we have found

here in the SAG data set (0.64 and 0.44, respectively).

This seems to indicate that the approach of building

artificial genomic sequences is not too unrealistic, and

that it could be useful both for training and testing

gene prediction programs. Results in these sequences,

however, should be taken as an upper bound estimate

of the accuracy of the programs in real genomic se-

quences.

There is a growing class of gene identification pro-

grams that combine both sequence similarity and tra-

ditional coding potential measures, such as Genie

(Kulp et al. 1996 1997), HMMgene (Krogh 1997), and

GSA (Huang et al. 1997). Unfortunately, because of a

Table 3. Accuracy of Gene Prediction Tools in the Set of Semiartificial Genomic Sequences, When Either Strongly or
Moderately Similar Sequences are Used to Model the Genes

Program

Strong similarity P Value < 10�50

17 SAG sequences
Moderate similarity 10�50 < P value < 10�6

26 SAG sequences

Nucleotide

Exon

Nucleotide

Exon

Sn Sp

Sn � Sp

2 Sn Sp

Sn � Sp

2Sn Sp CC Sn Sp CC

GenScan 0.91 0.66 0.77 0.67 0.46 0.56 0.91 0.61 0.74 0.67 0.43 0.55
GeneWise 0.99 0.99 0.99 0.90 0.93 0.91 0.68 0.98 0.81 0.46 0.63 0.54
Procrustes 0.92 0.96 0.94 0.80 0.75 0.77 0.66 0.79 0.72 0.48 0.32 0.40

The geometric mean of the P values of the strong similarity sequences was 10�135 and for the weaker similarity group it was 10�39.

Figure 3 If the candidate protein sequence is a remote homolog, direct gene modeling from BLAST-like database searches may have
different predictions compared to more sophisticated SSBGP tools. (A) EMBL DNA sequence HSCKBG was compared with the protein
sequences in the nr sequence database using BLASTX. Hits with P value < 10�20 were discarded, the top remaining corresponded to a
fragmentary protein sequence gi:553231. Not surprisingly, only a small fraction of the actual gene was recovered using this homolog by
either GENEWISE or PROCRUSTES. Other choices of homologs may have yielded different predictions but none of them by themselves
appears to be perfect. Conversely, the gene model derived directly from the BLASTX search reproduces the exonic structure of the gene
fairly well. Thus, even though upon discarding the close homologs, the remaining proteins individually showed only little overall similarity
to the encoded protein product, as a collection they enable to walk its exonic structure. (B) If database protein sequences with hits below
P-value = 10�20 are discarded, BLASTX is able to detect significant similarity between only one of the encoded exons in EMBL sequence
HSPAC3G and the remaining protein sequences in the database. But with the top homolog among these, the SSBGP tools (GENEWISE
in particular) are able to infer the correct exonic structure, picking up both the additional upstream exons. This is because the SSBGP tools
are able to detect more distant sequence relationships than BLASTX with our choice of thresholds or because (as in this case) coding exons
occur in low-complexity regions, which are usually masked when performing BLASTX searches to avoid large numbers of false positives.
(C) In another case, direct gene modeling from BLASTX searches and SSBGP tools can complement each other to produce more accurate
gene predictions. As in A and B, HSP hits below P-value = 10�20 were ignored after comparing EMBL sequence HSFOLA with the
nonredundant protein sequence database.
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lack of public availability at the time of the initiation

of this study, their evaluation will have to await a fu-

ture analysis.

EST similarity can also provide useful information

regarding gene structure for ∼85% of the common

genes (Guigó et al. 2000). A set of single gene se-

quences in h178 was used to optimize a method for

deriving exonic structures from EST matches. When

using the EST sequences in the public databases, the

method yielded an accuracy of Sn = 0.72, Sp = 0.87,

and CC = 0.69 at the nucleotide level, when predicted

gene structures were compared to the annotated

mRNA (not the coding) exonic structure. Other sec-

ondary questions regarding EST-based gene prediction

may also be important, such as the extent to which EST

matches help in delineating the gene boundaries.

Though there is considerable variation in the ac-

curacy of various gene prediction programs depending

on data sets and the availability and choice of homo-

log, we believe that a judicious use of these programs in

combination can result in highly accurate gene struc-

tures for genes with known homologs. There is, how-

ever, still considerable progress to be made on predict-

ing alternative spliced structures and genes with no

known homologs.

METHODS

Computational Gene Identification Tools

Gene identification tools may be categorized into ab initio

tools (those not utilizing sequence similarity and relying on

intrinsic gene measures such as coding potential and splice

signals), and those based (at least partly) on sequence similar-

ity.

Ab initio Gene Identification Tools

The ab initio gene identification tools use information from

both the gene signals in the genomic DNA (such as splice

sites, start and stop codons, and promoter elements), and the

statistical biases in DNA composition that is characteristic of

coding regions. There are a number of such programs (for

reveiws, see Fickett 1996; Claverie 1997; Guigó 1997a; Burge

and Karlin 1998; Haussler 1998). GENSCAN (Burge and Karlin

1997) is one of the most accurate and widely used programs in

this category, and we use it as a representative.

SSBGP Tools

A number of recent programs predict genes by aligning ge-

nomic sequences with candidate homologous protein se-

quences. These programs may include a splice site model, cod-

ing potential, and sequence similarity to known proteins to

infer gene predictions. We evaluated two of these programs,

PROCRUSTES (Gelfand et al. 1996), and GENEWISE (Birney and

Durbin 1997) (http://www.sanger.ac.uk/Software/Wise2/).

These programs require as input a candidate homologous

protein sequence; therefore, in typical use, a sequence simi-

larity database search with the query genomic sequence is

performed a priori and the top hit is used as the candidate (or

top hits are used as candidates, in the case of a query sequence

encoding multiple genes). The database similarity searches

were performed against the nonredundant protein sequence

database from NCBI, nr, using BLASTX (Altschul et al. 1990;

Gish and Sates 1993). BLASTX performs a translation of the

query sequence into the six frames, and searches for similari-

ties between each of these translations and the protein se-

quences in the database.

BLASTX was designed as a similarity-based gene predic-

tion tool, and it is possible to model a gene directly from the

database search results. BLASTX, however, does not confine

its similarity to exon;, thus the similarity region is not con-

strained to begin or end on splice sites. Moreover, BLASTX

does not explicitly predict genes in genomic sequences, and

some postprocessing of its output is required to infer gene

predictions from the search results. Indeed, while computa-

tional gene finders predict genes, that is pairs of positions

(corresponding to exon starts and ends) along the query ge-

nomic sequence, database searches only produce lists of se-

quence database hits along the query sequence. Each hit

above a given similarity threshold may be assumed to be a

coding exon. For different database entries, however the set of

hits may be different. The problem is then to infer a gene

model from the set of database hits. A simple solution is to

project the hits into a single axis along the genomic sequence,

and to assume the union of these projections to be the coding

exons.

In total, three strategies based on BLAST were tested:

(1) default — A procedure consisting of projecting the HSPs

onto the genomic sequences was used (see Guigó et al.

2000). BLASTX was run with E = 1e-10 � filter xnu + seg

S2 = 60, and all HSPs with identity <40% were discarded.

The choices of S2 and percentage identity were influenced

by the need to restrict false matches.

(2) topcomboN — BLASTX was used with default parameters

except for �filter xnu + seg topcomboN = 1. HSPs with P

value > 10�20 were discarded, and the projections along

the query sequence of the remaining HSPs assumed to be

the predicted coding exons. WashU–BLAST has a param-

eter topcomboN that limits all HSPs generated to be in

one consistent group. For example, for BLASTX searches,

each region of the nucleotide sequence is only aligned to

a single region on the protein sequence and the ordering

of these HSPs has to be consistent along both the nucleo-

tide and protein sequences. This restricts spurious

matches arising from repetitive domains with query se-

quences, and from low scoring hits in introns and flank-

ing regions.

(3) two-stage — BLASTX was used in a two stage process that

first identifies one or more candidate protein sequences in

the presence of a low-complexity filter. In the second

stage, BLASTX is used to align the candidates individually

with the genomic sequence, this time without the filter

and with topcomboN = 1. This two pass technique is

closer to the strategy used with GENEWISE and PRO-

CRUSTES, where a first BLASTX search pinpoints the pro-

tein homolog to be used, and a subsequent GENEWISE

uses this protein homolog.

Both GENEWISE and PROCRUSTES were run with

mostly standard parameters: GENEWISE v2.1.16b -both

-gff -pretty -para -cdna -genes -quiet and PROCRUSTES was

run in the local mode with MIN EXN 20, MIN IVS
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50, GAP 2, INI GAP 10, MATRIX pam120.mtx. GEN-

SCAN was run with default parameters.

Benchmark Sets

Two sets of sequences have been used to evaluate the pro-

grams discussed above. First, a typical benchmark set made of

sequences from the EMBL database release 50 (1997) that in-

cluded 178 human genomic sequences coding for single com-

plete genes for which both the mRNA and the coding exons

are known. The procedure used to extract the sequences is

described in Burset and Guigó (1996) and Guigó (1997b). We

will refer to this set here as h178. All the genes in this data set

are on the forward strand. Other characteristics of h178 are

provided in Table 4.

For the reasons discussed in this paper, this does not

appear to be a challenging benchmark set for estimating the

accuracy of gene identification programs in the larger ge-

nomic sequences. Unfortunately, very few large genomic se-

quences have been studied extensively to produce complete

experimental determinations of the exact structure of each

gene. To overcome this limitation, we generated a semiartifi-

cial set of genomic sequences in which accurate gene anno-

tation can be guaranteed.

In essence, a set of annotated genic sequences are placed

randomly in a background of random intergenic DNA. The

length of the semiartificial sequence is generated randomly

according to a normal distribution. Genomic fragments con-

taining genes and random-sized segments of intergenic se-

quence are then concatenated until their combined lengths

exceed the target. The strands are also chosen at random for

each genic subsequence.

Table 4 shows the characteristics of the generated se-

quences when the method is applied to the sequences in h178

and the intergenic background is generated using a Markov

Model of order 5 as described in Guigó and Fickett (1995)

assuming an average intergenic G + C content of 38%. The

178 genic sequences were collapsed into 42 SAG sequences.

Some of the resulting parameters, such as average G + C con-

tent of 40%, a gene every 43 Kb, and a coding density of 2.3%

are in agreement with that for the overall human genome.

This data set has flaws and is not a perfect representative of

the human genome. Some of the ignored characteristics in-

clude the isochore organization of the human genome,

known and unknown repeats in the intergenic regions, pres-

ence of pseudogenes and other evolutionary remnants, genes

with huge introns, and tandem gene clusters. Most of the

missing properties (pseudogenes, repeats, huge introns) make

gene prediction much more difficult. Thus, we expect the ac-

curacy results on Gen178 to still be an overestimate of the

true accuracy.

Evaluating Accuracy

The measures of accuracy used here are discussed extensively

in Burset and Guigó (1996). We will restate them briefly. Ac-

curacy is measured at three different levels: nucleotide, exon,

and gene. At the nucleotide and exon levels, we essentially

compute the proportion of actual coding nucleotides/exons

that have been predicted correctly–(which we call Sensitivity)

and the proportion of predicted coding nucleotides/exons

that are actually coding nucleotides/exons (which we call

Specificity). To compute these measures at the exon level, we

will assume that an exon has been predicted correctly only

when both its boundaries have been predicted correctly. To

summarize both Sensitivity and Specificity, we compute the

Correlation Coefficient at the nucleotide level, and the aver-

age of Sensitivity and Specificity at the exon level. At the exon

and gene level, we also compute the Missing Exons/Genes

(the proportion of actual exons/genes that overlap no pre-

dicted exon/gene) and the Wrong Exons/Genes (the propor-

tion of predicted exons/genes that overlap no actual exon/

gene).

The measures are computed globally from the total num-

ber of prediction successes and failures (at the base and exon

level) on all sequences. Accuracy in Table 1 is computed ig-

noring predictions in the reverse (wrong) strand. The first

column in Tables 1 and 2 indicates the number of sequences

for which the progams produced predictions.

Data Availability

Both the set of single gene sequences and the set of semiarti-

ficially generated genomic sequences will be available from

http://www1.imim.es/databases/gpecal2000/.
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