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An Assessment of Paralinguistic Acoustic Features

for Detection of Alzheimer’s Dementia in

Spontaneous Speech
Fasih Haider, Member, IEEE, Sofia de la Fuente and Saturnino Luz, Member, IEEE

Abstract—Speech analysis could provide an indicator of
Alzheimer’s disease and help develop clinical tools for auto-
matically detecting and monitoring disease progression. While
previous studies have employed acoustic (speech) features for
characterisation of Alzheimer’s dementia, these studies focused
on a few common prosodic features, often in combination with
lexical and syntactic features which require transcription. We
present a detailed study of the predictive value of purely acoustic
features automatically extracted from spontaneous speech for
Alzheimer’s dementia detection, from a computational paralin-
guistics perspective. The effectiveness of several state-of-the-art
paralinguistic feature sets for Alzheimer’s detection were assessed
on a balanced sample of DementiaBank’s Pitt spontaneous speech
dataset, with patients matched by gender and age. The feature
sets assessed were the extended Geneva minimalistic acoustic
parameter set (eGeMAPS), the emobase feature set, the Com-

ParE 2013 feature set, and new Multi-Resolution Cochleagram
(MRCG) features. Furthermore, we introduce a new active
data representation (ADR) method for feature extraction in
Alzheimer’s dementia recognition. Results show that classification
models based solely on acoustic speech features extracted through
our ADR method can achieve accuracy levels comparable to those
achieved by models that employ higher-level language features.
Analysis of the results suggests that all feature sets contribute
information not captured by other feature sets. We show that
while the eGeMAPS feature set provides slightly better accuracy
than other feature sets individually (71.34%), “hard fusion” of
feature sets improves accuracy to 78.70%.

Index Terms—Affective Computing, Social Signal Processing,
Dementia, Alzheimer, Cognitive Decline Detection, Cognitive
Impairment Detection

I. INTRODUCTION

DEMENTIA is a category of neurodegenerative diseases

that entails a long-term and usually gradual decrease of

cognitive functioning. It is characterised by a set of symp-

toms that include memory loss, thought difficulties, defective

executive functions (e.g. problem-solving, decision-making,

planning), language impairment, motor problems, lack of

motivation and emotional distress. Throughout the disease, the
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severity of these symptoms increases, reducing the patient’s

autonomy and wellbeing, as well as their caregivers’ [1].

Those cognitive symptoms may be a consequence of the

neuropathology of different diseases, such as Alzheimer’s

Disease (AD; 50% of dementia cases), cerebrovascular disease

(25% of cases, including those that also manifest AD), Lewy

body disease (15% cases), and other brain diseases (5%),

including Parkinson’s, frontotemporal dementia and stroke [2].

The main risk factor for dementia is age, and therefore its

greatest incidence is amongst the elderly. As the population

over 65 years old is predicted to triple between years 2000 and

2050 [3], dementia care is projected to have an immense so-

cietal impact. In 2015, the WHO [4] estimated approximately

47.5 million cases of dementia worldwide, with longitudinal

cohort studies finding an annual incidence between 10 and 15

cases per one thousand people, where 5 to 8 cases would be

caused by Alzheimers Disease. The prognosis is difficult, with

around 7 years of average life expectancy and less than 3%

patients living longer than 14 years after diagnosis [4].

Due to the severity of the situation worldwide, institutions

and researchers are investing considerably on dementia pre-

vention and early detection, focusing on disease progression.

There is a need for cost-effective and scalable methods for

detection of dementia from its most subtle forms, such as the

preclinical stage of Subjective Memory Loss (SML), to more

severe conditions like Mild Cognitive Impairment (MCI) and

Alzheimer’s Dementia (AD) itself.

The neuropathology of AD consists of several phenomena,

including intracellular accumulation of tau-protein fibres [5]

and extracellular accumulation of beta-amyloid plaques [6].

Both are responsible for brain damage and neural functional

disruption [7]. Such neuropathology is known to start silently

up to 20 years before an individual shows obvious and

observable cognitive symptoms, and there is no satisfactory

treatment for them. Therefore, it is paramount to find strategies

to detect the problem as early as possible, in order to enhance

therapy effectiveness and quality of life [8].

This study focuses on AD recognition using acoustic in-

formation extracted from spontaneous speech. Whilst memory

loss is frequently considered the most prominent symptom of

AD [9], speech and language alterations are also common

[10], [11]. Patients with AD usually display naming and

word-finding difficulties (anomia) leading to circumlocution,

as well as difficulty accessing semantic information inten-

tionally, leading to a general semantic deterioration [12]. The

heterogeneity of the symptomatic expression of AD requires
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diagnosis support methods that are able to capture more subtler

aspects than conventional screening tools, which often fail

to discriminate these symptoms in preclinical AD. Social

signal processing technologies are creating opportunities for

personal health monitoring and development of diagnostic

support tools based on automated processing of behavioural

signals [13]. Speech and language are rich and ubiquitous

sources of cognitive behavioural data, where computational

analysis has the potential to aid clinicians in early and accurate

diagnosis of dementia [14].

Several commonly used cognitive tests for dementia diag-

nosis involve linguistic assessment, These include the Mini-

Mental State Examination (MMSE) [15], the five-word test

[16], the frontal assessment battery [17], and the instrumental

activities of daily living scale [18]. Speech continuity, for in-

stance, may be assessed through picture description tasks [19]

or through countdown tasks [20], and Semantic Verbal Fluency

(SVF) usually involves naming tasks [21]. However, whilst

still valuable for diagnosis, most of these neuropsychological

tests offer little insight into early stages of neurodegeneration.

Hence there is an increasing interest in developing alternative

methods for early detection. A recent study [20] on sentence

repetition data employed dynamic time warning to evaluate

the wave forms, assessing alignment curve between pairs of

corresponding wave forms to see whether there is a significant

difference between the sentences produced by the clinician and

the sentences produced by the AD patients [20].

A disadvantage of these tests is that they employ speech

and language generated under controlled laboratory conditions

rather than spontaneously, which would be required for practi-

cal longitudinal screening and monitoring in daily life. One of

the few currently available spontaneous speech datasets linked

to clinical neuropsychological assessments for dementia is the

picture description task gathered by the Alzheimer and Related

Dementias Study at the University of Pittsburgh School of

Medicine, often referred to as the “Pitt dataset” [22]1.

The Pitt dataset consists of speech from participants who

were recorded while performing the Boston Cookie Theft

picture description task, from the Boston diagnostic aphasia

examination [23], [24], [25]. A variety of computational

methods have been employed on this corpus for detection

of Alzheimer’s Disease and mild cognitive impairment across

different studies (more details in section 2). Most of these

works focused on linguistic features [26], [27], [28], [29],

taking advantage of the manual transcriptions available with

the speech data. While paralinguistic features have so far

received less attention, there are good reasons for investigating

a paralinguistics approach to AD. Some of these reasons are

methodological, such as avoiding the need for transcriptions,

and some are related to the nature of the disease, such

as the fact that prosodic analysis may lead to detection of

motor subtleties in speech production, in addition to subtle

linguistic decline. Fraser et al. [29] carried out additional

prosodic analysis on the Pitt recordings, extracting 42 mel-

frequency cepstral coefficient (MFCC) features [30]. Others

have used a similar approach [31], [32]. Another recent study

1Data available at DementiaBank, http://dementia.talkbank.org/

successfully used these recordings to extract low-level speech

features (vocalisation events and speech rate) and used them

to train a system for AD detection [33]. All these studies

use the Pitt corpus, and the majority rely on manual speech

transcripts; only [33] relies exclusively on acoustic features.

Furthermore, these previous studies did not adjust for age and

gender imbalances or the effects of variable audio quality in

the data, and employed ad hoc paralinguistic feature sets.

The work presented in this paper addresses these issues by

evaluating a comprehensive set of acoustic features which are

emerging in the field of computational paralinguistics [34], on

a gender- and age-balanced subset of the Pitt corpus, which

has been preprocessed to ensure consistent audio quality. It

contributes to research in AD detection by:

• evaluating the potential of several feature sets de-

signed for different computational paralinguistics tasks

(eGeMAPS [35], emobase [36] and ComParE [37]) along

with a recently proposed MRCG derived feature set [38],

for AD detection. This is, to the best of our knowledge,

the first empirical attempt to use these feature sets as

“digital biomarkers” for Alzheimer’s disease. We

1) demonstrate the discriminative power of these feature

sets, and their fusion, for automatic recognition of AD

2) test these features using different machine learning

methods to implement automatic classification of pa-

tients with and without AD.

• presenting and evaluating a novel method (ADR) of

representing these acoustic features, and

• creating an enhanced version of the Pitt corpus which is

balanced and acoustically preprocessed.

II. BACKGROUND

The complex multimodal ways in which AD symptoms may

appear calls for increasingly interdisciplinary research. Current

work on AD symptomatology combines signal processing,

artificial intelligence, cognitive psychology, computational lin-

guistics, medicine, neuropsychology and computer science,

among other disciplines. Although linguistics research on

AD has focused on formal aspects of language (i.e. lexicon,

syntax, semantics), the analysis of continuous speech has been

progressively seen by Alzheimer’s researchers as a source

of information that may support diagnosis of MCI, AD and

related conditions [39], [29], [33], [40], [41], [42].

Language research into AD has employed high-level fea-

tures such as information content, comprehension of com-

plexity, picture naming and word-list generation, as predictors

of disease progression [43]. A study by Roark et al. [44]

used natural language processing (NLP) and automatic speech

recognition (ASR) to automatically annotate and time-align a

few spoken language features (pause frequency and duration),

also comparing them to manually annotated counterparts.

They analysed audio recordings of 74 neuropsychological

assessments to classify MCI and healthy elderly participants.

Their best SVM classifier obtained an AUC of 0.86 by

including a combination of automated speech and language

features and cognitive tests scores. Jarrold et al. [45] worked

with a dataset consisting of semi-structured interviews from
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9 healthy participants, 9 with AD, 9 with frontotemporal

dementia, 13 with semantic dementia, and 8 with progressive

nonfluent aphasia. With an ASR system, they extracted 41

features, including speech rate, and the mean and standard

deviation of the duration of pauses, vowels, and consonants.

They used a multilayered perceptron network, achieving a

classifier accuracy of 88% for AD vs. healthy subjects based

on lexical and acoustic features. A more recent study by Luz

et al. [40] extracted graph-based features encoding turn-taking

patterns and speech rate [46] from the Carolina Conversations

Collection [47] (spontaneous interviews of participants with

and without an AD). They used these features to create an

additive logistic regression model that obtained 85% accuracy

in distinguishing dialogues involving an AD speaker.

These studies combine signal processing and machine

learning to detect subtle acoustic signs of neurodegeneration

which may be imperceptible to human diagnosticians. Tóth

et al. [39], for instance, found that filled pauses (sounds like

“hmmm”, etc) could not be reliably detected by human anno-

tators, whereas detection improved by using an ASR system.

This study analysed the recorded speech of 38 healthy controls

and 48 patients with MCI speaking about two short films,

extracting several acoustic features (hesitation ratio, speech

tempo, length and number of silent and filled pauses, length

of utterance). They reported that ASR-extracted features per-

formed best in combination with machine learning methods,

particularly with a Random forest classifier (75% accuracy),

outperforming manually calculated features (69.1% accuracy).

Similar machine learning methods were used by König et al.

[20], who reported an accuracy of 79% when distinguishing

MCI participants from their healthy counterparts; 94% for AD

vs. healthy; and 80% for MCI versus AD. However, their

tests were performed on non-spontaneous speech data gathered

under controlled conditions, as part of a neuropsychological

assessment that included manually transcribed text.

Satt et al. [48] reported accuracy levels above 80% for

different SVM classifiers when distinguishing 89 AD, MCI

and control participants who had performed 4 different spoken

tasks. Several features were extracted with an ASR system,

such as global statistics of the segments, temporal structure of

the speech/voice, real cepstrum coefficients, irregularity/errors

in pronunciation, response time, speech rate, correctness, and

pause patterns. This analysis was carried on a Greek lan-

guage dataset, and the same research group reported similarly

promising results on a French dataset later on [49]. This sup-

ports our view that the acoustic-prosodic approach generalises

across languages.

Studies in this field continually evidence the heterogeneity

with which language and speech impairments are displayed

in AD and related diseases. Duong et al. [50] ran a cluster

analysis with data from picture narratives and concluded that,

rather than a common profile, there were several discourse

patterns that could be indicative of differences between healthy

ageing and AD. This heterogeneity seems to be more evident

in AD than in specific language diseases such as primary

progressive aphasia [51], especially in early stages of AD [52].

Therefore we hypothesise that a comprehensive analysis of

state-of-the-art paralinguistic feature sets which have been suc-

cessfully used in different prediction tasks may help identify

such patterns and enhance accuracy of early AD detection.

Although there is a research trend on collection of sponta-

neous speech data, as opposed to speech elicited through lab-

based tasks, the Pitt Corpus remains one of the very few avail-

able datasets coupling relatively spontaneous speech (record-

ings and transcriptions) with clinical information. Hence, this

dataset has been used in several studies. One of the best known

such studies is [29], which obtained 81.92% accuracy for

machine learning classification of individuals with and without

AD. A variety of features were employed, identifying four

factors: semantic impairment, acoustic abnormality, syntactic

impairment and information impairment. In addition to a range

of high-level linguistic features, this study employed a basic

set of acoustic features, namely, mean, variance, skewness, and

kurtosis of the first 42 MFCCs.

Similarly, [31] used a Random Forest classifier to detect AD

in the Pitt dataset, achieving 80% accuracy. They developed

a vector-space method for automatic topic modelling based

on manual transcripts to train this classifier. However, the

aforementioned accuracy is only achieved when they add the

same lexicosyntactic and acoustic features described by Fraser

et al.’s [29] in their topic model.

Along the same lines, the work of Hernandez-Gmez et al.

[32] used information coverage measures, linguistic features

and acoustic features for automatic classification of dementia.

Their best binary model (AD-nonAD) is an SVM classifier

which achieved 79% accuracy. Following [29], the acoustic

features extracted consisted of the mean, kurtosis, skewness

and variance of MFCCs, although they only estimated these for

the first 13 MFCC values. After introducing the MCI group,

conjoint it with the AD group in the binary classification, the

best performance with the same feature set dropped to 77%

with a Random Forest classifier [32].

A slightly different approach was adopted by Orimaye et al.

[27] who used a deep neural network for the classification task.

They advocate for high order n-grams and deeper vocabulary

spaces, and report an AUC of 0.79 for 4-grams, and 0.83 for 5-

grams, and even 0.94 for 1000-grams features in another study

[26]. However, n-grams require expected information units to

be operationalised (previously), which is a process influenced

by context and subject to variability [53]. The higher the

n-gram order, the more these n-grams become tied to the

task content. This makes the method hard to generalise as

a screening tool, unless speech is collected using this same

Cookie-Theft task. To address this problem, a method has

been proposed [28] which generates information units across

two different languages. SVM models are trained with these

features extracted from the Pitt corpus descriptions in English

and Swedish to classify MCI and healthy elderly controls.

Classification accuracy varied across languages, achieving

72% accuracy in Swedish, and 63% in English. Although these

results do not match the performance of previous work [29]

in terms of classification accuracy, it is worth mentioning this

study because its multilingual approach attempts to palliate

an important challenge for clinical language analysis, namely,

the predominance of English language data in research and

the difficulties to generalise these tools to less frequently
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researched languages. In this regard, we consider this to be

a priority for global public health, and argue that a model

based solely on acoustic analysis, such as the present study,

might make multilingual generalisation more straightforward.

Lastly, the study by Luz et al. [33] shows that a simple

Bayesian classifier can achieve 68% accuracy classifying

Alzheimer’s patients and elderly controls without relying on

transcribed content. As far as we know, this is the only study

on this dataset to exclusively employ speech data for the anal-

ysis - without also including the available transcriptions. The

Bayesian classifier was trained in low-level acoustic features

directly extracted from the recordings, but no extensive use of

paralinguistic feature sets was attempted.

The general picture of speech research aiming at dementia

detection is heterogeneous and comparisons are difficult to

draw. One of the main reasons is not the multiplicity of

datasets, some of which have been mentioned, but rather the

diversity of collection methods (i.e. semi-structured interviews,

recording of neuropsychological testing, picture descriptions,

spontaneous conversations), acoustic quality, content, length,

experimenter and participant expectations, etc. Even the cited

studies that use the same dataset - the Pitt Cookie Theft Corpus

- do not use the full dataset, but different samples of it. For

instance, [29] used 233 control samples and 240 AD samples,

whereas [26] selected a subset consisting of 99 patients with

probable AD and 99 healthy controls.

From a speech processing perspective, another difficulty is

that most studies combine acoustic features with high-level

language features which can only be extracted reliably from

transcription, making it difficult to assess the extent to which

classification performance can be obtained by fully automated

means. Notwithstanding, several studies have successfully

carried fully automatic transcriptions to detect dementia from

speech. There have been attempts to quantify the potential

effects of ASR errors on classification performance. Weiner et

al. [54] compared AD detection based on manually and auto-

matically generated transcripts. They obtained nearly identical

results with an automatic transcription (unweighted average

recall, UAR = 0.623) as with a manual one (UAR = 0.606),

using the ISLE dataset, which consists of biographic interview

and cognitive diagnoses of 74 German participants. Another

study [55] evaluated the effectiveness of ASR transcripts as

a source of input features on four different spoken language

datasets ([22], [56], [57], [58]), which had available but

erroneous transcriptions. This is, to the best of our knowledge,

the only study to employ linguistic features extracted from the

Pitt dataset through ASR. It reported 58.4% accuracy using

ASR-generated transcripts, compared to 69.8% accuracy when

using manual transcription. Although these results are not to

be overlooked, we propose a model which, not relying on

transcription, is free from the constraints inherent to ASR,

and might be more easily portable to other languages.

III. METHOD AND ANALYSIS

This section describes the dataset, data preprocessing,

acoustic features and machine learning methods employed in

this study for detection of AD through spontaneous speech.

A. The Pitt Corpus

The Pitt corpus was gathered longitudinally between 1983

and 1988 on a yearly basis as part of the Alzheimer Research

Program at the University of Pittsburgh [59]. Participants are

categorised into three groups such as dementia, control (i.e.

healthy), and unknown. All participants were required to be

above 44 years of age, have at least seven years of education,

have no history of nervous system disorders or be taking

neuroleptic medication, have an initial MMSE score of 10

or more and be able to provide informed consent. Extensive

neuropsychological and physical assessments conducted on

the participants are also included [22]. The study reported

in this paper selected only the dementia and control groups

for a learning task of distinguishing between AD (including

categorised by clinicians as probable AD and possible AD)

and non-AD participants.

The Pitt Corpus contains participants’ speech data collected

by the Alzheimer and Related Dementias Study at the Univer-

sity of Pittsburgh School of Medicine on the following tasks:

1) a description task in which the participant is asked to

describe, verbally in their own words, a picture (the “cookie

theft” picture from the Boston aphasia examination),

2) word fluency task,

3) a story recall task, and

4) a sentence construction task.

The picture description task has been transcribed for AD

and control patients, while the remaining tasks contain AD

patient data only. We chose the picture description task sample

because it contains spontaneously generated narrative speech.

Table I shows the data available in this dataset.

TABLE I
STATISTICS OF THE DEMENTIABANK PITT CORPUS

Control AD*

Number of patients 99 194
Number of visits (recordings) 242 307
with 1 visit 26 117
with 2 visits 28 53
with 3 visits 28 12
with 4 visits 9 9
with 5 visits 8 3

*One participant (ID:172) has changed the diagnosis from ”Con-
trol” (in the first visit) to ”Dementia” (in the remaining 3 visits).

As the AD and non-AD groups are not matched for age and

gender in the original dataset, we created a derived dataset

which is matched for age and gender, as shown in Table II,

so as to minimise risk of bias in classification. The resulting

dataset was segmented for voice activity using using a voice

activity detection system based on a signal energy threshold.

We set the log energy threshold parameter to 65 with a

maximum duration of 10 seconds per speech segment. The

segmented dataset contains 2033 speech segments from 82

non-AD subjects and 2043 speech segments from 82 AD

subjects. The average number of speech segments produced

by each participant in their descriptions was 24.86 (standard

deviation sd = 12.84). Audio volume was normalised across

all speech segments to control for variation caused by record-

ing conditions, such as microphone placement.
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TABLE II
BASIC CHARACTERISTICS OF THE PATIENTS IN EACH GROUP.

AD non-AD
Age Interval Male Female Male Female

[50, 55) 2 1 2 1
[55, 60) 7 8 7 8
[60, 65) 4 9 4 9
[65, 70) 10 14 10 14
[70, 75) 9 11 9 11
[75, 80) 4 3 4 3

Total 36 46 36 46

B. Acoustic Feature Extraction

Acoustic feature extraction was performed on the speech

segments using the openSMILE v2.1 toolkit which is an open-

source software suite for automatic extraction of features from

speech, widely used for emotion and affect recognition in

speech [36]. The following is a brief description of each of

the feature sets constructed in this way:

emobase: This acoustic feature set contains the mel-

frequency cepstral coefficients (MFCC) voice quality, funda-

mental frequency (F0), F0 envelope, LSP and intensity features

with their first and second order derivatives. Several statistical

functions are applied to these features, resulting in a total of

988 features for every speech segment.

ComParE: The ComParE 2013 [37] feature set includes

energy, spectral, MFCC, and voicing related low-level de-

scriptors (LLDs). LLDs include logarithmic harmonic-to-noise

ratio, voice quality features, Viterbi smoothing for F0, spectral

harmonicity and psychoacoustic spectral sharpness. Statistical

functionals are also computed, bringing the total to 6,373

features.

eGeMAPS: The eGeMAPS [35] feature set resulted from

an attempt to reduce the somewhat unwieldy feature sets

above to a basic set of acoustic features based on their

potential to detect physiological changes in voice production,

as well as theoretical significance and proven usefulness in

previous studies [60]. It contains the F0 semitone, loudness,

spectral flux, MFCC, jitter, shimmer, F1, F2, F3, alpha ratio,

Hammarberg index and slope V0 features, as well as their

most common statistical functionals, for a total of 88 features

per speech segment.

MRCG functionals: MRCG features were proposed by Chen

et al. [30] and have since been used in speech related appli-

cations such as voice activity detection [61] speech separation

[30], and more recently for attitude recognition [38]. MRCG

features are based on cochleagrams [62]. A cochleagram is

generated by applying the gammatone filter to the audio signal,

decomposing it in the frequency domain so as to mimic the

human auditory filters. MRCG uses the time-frequency repre-

sentation to encode the multi-resolution power distribution of

the audio signal. Four cochleagram features were generated at

different levels of resolution. The high resolution level encodes

local information while the remaining three lower resolution

levels capture spectrotemporal information. A total of 768

features were extracted from each frame: 256 MRCG features

(frame length of 20 ms and frame shift of 10 ms), along with

256 ∆ MRCG and 256 ∆∆ MRCG features. These features

are meant to capture temporal dynamics of the signal [30]. The

statistical functionals (mean, standard deviation, minimum,

maximum, range, mode, median, skewness and kurtosis) were

applied on the 768 MRCG features for a total of 6,912 features.

In sum, we extracted 88 eGeMAPS, 988 emobase, 6,373

ComParE and 6,912 MRCG features from 4,077 speech

segments. Pearson’s correlation test was performed on the

whole dataset to remove acoustic features that were signifi-

cantly correlated with duration (when R > 0.2). Hence, 75

eGeMAPS, 711 emobase, 3,899 ComParE and 4,688 MRCG

features were not correlated with the duration of the speech

chunks, and were therefore selected for the machine learning

experiments. Examples of features from the ComParE feature

set by the above described procedure include L1-norms of

segment length functionals smoothed by a moving average

filter (including their means, maxima and standard deviations),

and the relative spectral transform applied to auditory spectrum

(RASTA) functionals (including the percentage of time the

signal is above 25%, 50% and 75% of range plus minimum).

C. Machine Learning Methods

The experiments conducted to test different feature sets and

approaches to AD recognition through speech encompassed

segment level classification, majority vote classification, and

active data representation. experimental settings are described

in the following sections, starting with a description of our

ADR approach.

D. Active Data Representation

The acoustic information contained in a speech segment,

which typically lasts only a few seconds, may not be enough

for AD recognition. While segment-level aggregation through

voting approaches has been used in computational paralinguis-

tics, this approach does not reflect intersegmental relations

other than a basic grouping according to their predicted

class. The motivation behind ADR is to model the acoustic

information of the full audio recording of a subject using

acoustic features of all speech segments, representing an audio

recording with a single fixed-dimension feature vector for the

classification task. These features are extracted as follows:

1) Segmentation and feature extraction: each audio recording

Ai (i = 1 : r, where r represents the total number of audio

recordings or subjects) is divided into n speech segments

Sk,i as described in Section III-A, where k varies from

1 to n. Hence Sk,i is the kth segment of the ith audio

recording, and acoustic features are extracted over such

speech segments, rather than over the full audio recording,

at this processing stage. The system architecture depicted

in Figure 1 illustrates this point.

2) Clustering of segments: self-organising maps (SOM) [63]

are employed for clustering segments Sk,Ai into m clusters

(C1, C2, ...., Cm) using audio features. Here m represents

the number of SOM clusters. The number of clusters was

determined through a grid search cross-validation proce-

dure with a hyperparameter space of m ∈ {5, 10, . . . , 100}.

3) Generation of the Active Data Representation (ADRAi)

vector is done by first calculating the number of segments
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in each cluster for each audio recording (Ai), that is,

creating a histogram of the number of speech segments

(nADRAi) present in each of the m clusters for each audio

recording. Then, to model temporal dynamics we calculate

the mean and standard deviation of the rate of change with

respect to the clusters associated with the speech segments

for each audio recording (cADRAi), where the rate of

change is given by an approximation of derivative

vADRAi =
∂cADRAi

∂t
,

with respect to time (t). Finally, we calculate the duration

of segments in each cluster (Ai), building a histogram

representation of segment duration (dADRAi).

4) Normalisation: as the number and duration of segments is

typically different for each audio recording due to inter-

subject variability, we normalise the feature vector by di-

viding it by the total number (duration) of segments present

in each audio recording (i.e. the L1 norm of nADRAi and

dADRAi), as shown:

nADRAinorm
=

nADRAi

‖nADRAi‖1
(1)

dADRAinorm
=

dADRAi

‖dADRAi‖1
(2)

5) Fusion: the ADRAinorm
feature set encompasses the fea-

tures of nADRAinorm
, dADRAinorm

, vADRAi, age and

gender. Therefore a feature vector with dimensionality of

2× (m+ 2) is generated to represent each subject.

A flowchart of the ADR generation procedure is available in

supplementary material.
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Fig. 1. Automatic detection of AD and non-AD subject using the Active Data
Representation (ADRAinorm

) method where FE represents the extraction of
low level features (such as eGeMAPS) from speech segments.

E. Classification methods

The classification experiments were performed using five

different methods, namely decision trees (DT, with leaf size

of 20), nearest neighbour (KNN with K=1), linear discriminant

analysis (LDA), random forests (RF, with 50 trees and a

leaf size of 20) and support vector machines (SVM, with

a linear kernel with box constraint of 0.1, and sequential

minimal optimisation solver). The classification methods are

implemented in MATLAB [64] using the statistics and ma-

chine learning toolbox. A leave-one-subject-out (LOSO) cross-

validation setting was adopted, where the training data do not

contain any information of validation subjects.

F. AD Detection

As mentioned above, we conducted three classification ex-

periments to detect cognitive impairment due to AD, namely:

1) segment-level (SL) classification: in this experiment we

trained and tested our classifiers in a LOSO setting, with

acoustic features, age and gender to predict whether the

speech segments were uttered by a non-AD or AD patient;

2) majority vote (MV) classification: using the results of

segment-level classification, we calculated the number of

segments detected as AD and non-AD for each subject and

then took a majority vote to assign an overall label to the

subject; and

3) active data representation: we generate the ADR using

acoustic features as described in section III-D, and then

used ADRAinorm
for classification as before.

TABLE III
SEGMENT LEVEL CLASSIFICATION (CHANCE LEVEL 50.12%).

Features LDA DT 1NN SVM RF

emobase 52.53 55.10 50.07 55.05 56.55
ComParE 54.88 48.06 51.64 52.63 53.51
eGeMAPS 49.98 50.64 48.90 49.78 55.03
MRCG 50.22 52.01 51.57 52.67 54.17

TABLE IV
MAJORITY VOTE CLASSIFICATION (CHANCE LEVEL 50.00%).

Features LDA DT 1NN SVM RF

emobase 53.66 56.10 48.17 56.71 57.93
ComParE 61.59 46.95 53.05 54.88 58.54
eGeMAPS 50.61 51.83 48.17 50.61 60.98
MRCG 50.61 54.88 54.27 56.10 56.10

IV. RESULTS AND DISCUSSION

The classification accuracy of segment level, majority vote

and ADR are shown in Table III, IV and V respectively. These

results show that the ADR (77.44%) provides better results

than majority vote (61.59%) in most of the cases (17 out of

20) , with LDA being the best classifier for AD detection

with accuracy well above the chance level of 50%. A possible

reason for the better results obtained using ADR of acoustic

features in comparison with MV (which relies on segment

level classification) is ADR’s ability to encode acoustic infor-

mation of a full audio recording into a single feature vector

for model training. The segment level classification accuracy

is very low (56.55%, against a random baseline of 50.12%)
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TABLE V
ADR CLASSIFICATION RESULTS WITH NUMBER OF CLUSTERS (m) USED. THE CHANCE LEVEL IS 50.00%

Features LDA, m DT, m 1NN, m SVM, m RF, m

emobase 56.10, 30 66.46, 20 54.88, 80 45.12, 15 60.98, 25
ComParE 57.93, 35 68.90, 95 55.49, 100 59.76, 35 60.37, 95
eGeMAPS 77.44, 85 71.34, 30 54.27, 65 52.44, 20 71.34, 30
MRCG 59.76, 5 69.51, 15 52.44, 95 59.76, 15 63.41, 15

mean 62.81 69.05 54.27 54.27 64.03
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Fig. 2. Confusion matrices of the best results of each experiment along with
precision and recall for each class, and overall accuracy.

which suggests that the speech segments carry contradictory or

incomplete information at the speaker level, which results in

poor machine learning models for classifying AD and non-AD

patients. It also suggest that the AD and nonAD subjects have

some common speech characteristics at the segment level. For

further insight, the confusion matrices of the best results of

each experiment (i.e. segment level, majority vote and ADR)

are also shown in Figure 2.

From the results shown in Table V and Figure 3, we note

that even though LDA provides the best result (77.44%) DT

also exhibits promising performance, being in fact more stable

across all feature sets than the other classifiers (the best

average accuracy of 69.05%). We have also note that the ADR

of eGeMAPS (71.34%) provides the best result for DT, and

the ADR of MRCG (69.51 %) yields results close to ADR

of eGeMAPS using DT. It is noted that the dimensionality of

ADR of eGeMAPS (m = 30 will result in 64 features for

each audio recording) is higher than dimensionality of ADR

of MRCG (m = 15 will result in 34 features for each audio

recording), even though the former starts from a much smaller

feature set than the latter. The ADR of the emobase feature

set provides the least accurate results (66.5%), which could be

due to the fact that it does not use jitter, shimmer and spectral

flux features which indicate speech instability.

A limitation of ADR is that by clustering the original

acoustic features and then extracting new features based on

these clusters one loses the ability to assess the contributions

of the original features to the model’s predictions (as one

is able to do with factor analysis “loadings”, for instance).

We intend to tackle this issue in future work. For now, to

better understand the relationship between the feature sets as

regards the DT classifier, we drew the Venn diagram shown

in Figure 4; the blue area (labelled “Target”) represents the

annotated labels, the yellow area represents the predicted

labels when the ComParE feature set was used, the green

ellipse represents the predicted labels under eGeMAPS, the

red ellipse represents the prediction under the emobase feature

set, and finally the brown area represents labels predicted with

the MRCG features. From the overlaps in this diagram, we

observed that there are 6 instances (one non-AD, and five

AD) which have not been recognised by any of the feature

sets. Subjective evaluation by one expert confirmed that the

AD patients’ recordings had good voice quality while the

non-AD participant had poor voice quality. This could be due

to a natural variability with which patients manifest signs of

neurodegeneration [9]. Further clinical information is required

to investigate this possibility in greater depth. Unfortunately,

this information is not available in this dataset. It is possible

that linguistic information might have helped diagnose those

subjects. This is a possibility we aim to investigate in future

work. The age and gender characteristics of the misclassified

patients are: the AD patients were 52, 58, 67, 71, and 74 years

old (mean 64.4), two males and three females, and the non-

AD patient was a 78 year old male. It is possible the age and

gender also acted as confounders for these patients, as AD

affects mostly older people, and most often females.

There are 46 instances (32 of non-AD and 14 of AD) which

have been detected by all four feature sets. The Venn diagram

suggests that although the accuracy results for all feature sets

do not vary by a large margin, the information captured by

them is not similar, as only 46 out of 164 instances are

correctly classified by all the feature sets. For example, the

ADR of ComParE does not use features F1, F2, F3 and alpha

ratio, which is a possible reason why it is capturing different

information than the other ADRs. This suggests that the fusion

of the results could improve overall accuracy.

We implemented a simple “hard fusion” procedure by taking

a vote among decision tree classifiers for the four feature

sets, breaking ties by assuming an AD label. As hypothesised,
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fusion provides the best results, with an accuracy of 78.7% as

shown in Figure 5.

These results are comparable to those attained by state-of-

the-art models working with the speech recordings available

for the Pitt corpus, reviewed in section II. These are pre-

sented in [29], [31] and [32], who reported 81.92%, 80% and

79%, respectively, for AD-nonAD classifiers (see Table VI).

Although some of these studies report slightly higher accuracy

than ours, all of those that do include information from the

manual transcripts, and were conducted on an unbalanced data

set (in terms of age, gender and number of subjects in the AD

and non-AD classes). The performance of a model without

the information from transcripts, that is, relying only on

TABLE VI
COMPARISON WITH THE STATE OF THE ART

Study accuracy modality fully automatic

This study 78.7% acoustic yes
Hernández et AL.[32] 62.0% acoustic yes
Luz [33] 68.0% acoustic yes
Mirheidari et Al. [55] 62.3% text yes (ASR)
Fraser et Al. [29] 81.9% text/acoustic no (text)
Yancheva & Rudzicz [31] 80.0% text/acoustic no (text)
Hernández et AL.[32] 68.0% text no
Mirheidari et Al. [55] 75.6% text no

acoustic features as we do, is only reported in [32], dropping

significantly to an average accuracy of 62% with an SVM.

It is also noted that previous studies do not evaluate their

methods in a complete subject-independent setting (i.e. they

are considering multiple sessions for a subject and classifying

a session instead of a subject). This could lead to overfitting,

as the model might learn speaker dependent features from a

session and then, based on those features, classify the next

session of the same speaker. One strength of our method is

its speaker independent nature, and as such we evaluated our

method in a LOSO cross-validation setting.

Working on a balanced and standardised subset of the orig-

inal dataset implies necessary trade-offs. The most significant

of these is the information contained in voice loudness. Voice

volume is a good indicator of AD, and we are possibly losing

that information by normalising the volume of all speech

segments. However, a machine learning model trained on

normalised volume is robust against variations in distance

between microphone and subject (as the volume/energy of

speech signal varies if a subject is close to microphone or

far from it) which makes the machine learning model more

suitable to monitor subjects in far-field settings and under

diverse recording conditions.

Furthermore, our fully automated acoustic-prosodic model

performs better than the fully automated transcription-based

model presented in [55], who reported a maximum accuracy

of 62.7% for a combination of convolutional and long short

term memory deep neural networks on ASR data, for the De-

mentiaBank dataset. We also achieve higher accuracy than the

only available work exclusively reliant speech for automatic

AD-nonAD classification of the Pitt dataset (68%) [33].
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V. CONCLUSION

This article demonstrates the relevance of acoustic features

of spontaneous speech for cognitive impairment detection

in the context of Alzheimer’s Disease diagnosis. Machine

learning methods operating on automatically extracted voice

features provide accuracy of up to 78.7%, well above the

chance level of 50%. Our results improve on those from

fully automated models on the same dataset such as [55]

(transcription based) and [33] (acoustic-prosodic). We argue

that there are at least three reasons for these improvements

with respect to those previous works. Firstly, that a more

comprehensive acoustic feature set is able to capture a wider

range of speech subtleties potentially indicative of neurode-

generation or impairment. Secondly, that a larger number of

features allows for the use of more sophisticated classifiers,

as well as for the implementation of our novel ADR method,

which shows an improvement in relation to previous methods.

And thirdly, that we used an enhanced version of the dataset.

We expect that these findings will contribute to the devel-

opment of screening tools for AD that are cost-effective and

non-invasive (as compared to imaging and blood biomarkers).

Furthermore, since linguistic abilities respond reasonably well

to certain treatments for AD [65], our method could also be

applied to monitor responsiveness to such interventions.

As the next steps towards these goals, we will extend the

research presented here for prediction of MMSE scores [66],

available in the corpus. We also intend to apply our method to

spontaneous dialogue data, which we are currently collecting

following the Prevent-ED protocol [67]. Prevent-ED partici-

pants are healthy adults with a comprehensive risk profile (i.e.

genetics, cognitive assessments and family history of AD). We

hypothesise acoustic-prosodic analysis to be sensitive enough

to capture dialogical signs that may be present in preclinical

AD. Hence, by applying the method presented in this paper

to the Prevent-ED dialogues, we expect to predict risk of AD

and offer some insight into the earliest stages of the disease.
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