AN ASSESSMENT OF THE CALIBRATION OF a SPATIAL INTERACTION MODELS

MASTER OF ARTS (1975)
McMASTER UNIVERSITY (Geography)

1
TITLE: An Assessment of the Calibration of Spatial Interaction Models
AUTHOR: Peter Douglas Hall, B.A. (McMaster)

SUPERVISOR: Dx. F. L. Hall
NUMBER OF PAGES: viii, 124
SCOPE AND CONTENTS:
This paper is concerned with assessing the procedures used in calibrating spatial interaction models. It critically reviews calibration : methodologies which have been proposed. in the literature and determines that the statisticai estimation techniques of maximum likelihood and least-squares are particularly suited to this estimation problem.

The calibration statistics from the maximum likelihood and leastsquares estimators are developed from first principles and special note is made of the behavioral assumptions implicit in each.

Two issues are then reviewed: the reliability of the random sample in representing the mean distribution of trips, and the definition of variables in calibration statistics. A hypothetical framework is proposed, within which an examination of these issues is made.

The study results indicate that the sample reasonably represents the mean distribution and also that the incorporation of implicit behavioral assumptions does not necessarily result in better model predictions.

ACKNOWLEDGEMENTS

I would like to thank my supervisor, Dr. Fred Hall for his encouragement and continued guidance throughout the course of this research. His suggestions and comments have improved the content of this paper. The assistance of Dr. Michael Webber and Dr. Lee Liaw is also gratefully acknowledged, as is that of Ruth Fincher for suggesting many improvements to the manuscript. Initial discussions with Michael Batty stimulated my research in this area, and his assistance in providing the calibration programs is deeply appreciated.
table of contents
Page ACKNOWLEDGEMENTS iii

TABLE OF CONTENTS iv
LIST OF FIGURES , vi

LIST OF TABLES vii

CHAPTER

1 AN ASSESSMENT OF CALIBRATION METHODOLOGIES 1

INTRODUCTION 1
SPATIAL INTERACTION MODELS 3
APPROACHES TO MODEL CALIBRATION 6
GRAPHICAL CURVE FÍITTING 6
TABULATION • 8
SYSTEMATIC SEARCH 11

DIRECT EVALUATION 12
, INDIRECT EVALUATION 16

STATISTICAL ESTIMATORS 18

SUMMARY • 21

THE MAXIMUM LIKELIHOOD METHOD OF PARAMETER ESTIMATION 24 INTRODUCTION 24 HYPOTHESIS EVALUATION AS A METHOD OF PARAMETER
CALIBRATION: AN APPRAISAL OF HYMAN'S APPROACH:

THE MAXIMUM LIKELİHOOD ESTIMATOR28

THE DEVELOPMENT OF CALIBRATION STATISTICS FROM THE METHOD OF MAXIMUM LIKELIHCOD

30

30
KIRBY'S APPROACH TO CALIBRATION 35
ASSUMPTIONS OF THE TWO DERIVATIONS 39

GENERAL CONDITIONS REQUIRED BY THE MAXIMUM LIKELIHOOD ESTIMATOR

SUMMAKKY

THE LEAST SQUARES METHOD OF PARAMETER ESTIMATION
48
INTRODUCTION 48
THE LEAST-SQUARES ESTIMATOR 49
THE DEVELOPMENT OF CALIBRATION STATISTICS FROM THE
METHOD OF LEAST-SQUARES: CESARIO'S APPROACH
ASSUMPTIONS OF THE LEAST-SQUARES APPROACH AND A
COMPARISON TO MAXIMUM LIKELIHOOD
STATISTICAL CONDITIONS REQUIRED BY THE LEASTSQUARES ESTIMATOR

SUMMARY

SOME RELATED CALIBRATION PROBLEMS IN URBAN SYSTEMS MODELLING

INTRODUCTION . 64
THE "PROBLEM" OF MODEL CALIBRATION
65
THE TRAVEL SURVEY AND ITS RELATIONSHIP TO THE POPULATION IT REPRESENTS

VARIABLE DEFINITION IN CALIBRATION STATISTICS
69

A REVIEW OF PROBLEMS IN MODEL CALIBKATION
74
A RESEARCH DESIGN TO EXAMINE THE ISSUES IN CALIBRATION
CHAPTER Page
5 AN ANALYSIS OF THE RELATIONSHIP OF THE TRAVEI SURVEYTO THE MEAN TRAVEL DISTRIBUTION, AND OF THE EFFECT OF 79BELIAVIORAL CONSIDERATIONS ON MODEL, PERFORMANCE
INTRODUCTION 79
THE RELATIONSHIP BETWEEN OPTIMUM FIT AND OPTIMUM* PARAMETER VALUES 82
THE PHYSICAL SETTING FOR THE ANALYSIS 85
A DESCRIPTION OF THE ALGORITHMS IN THE ANALYSIS 89
SYSTEM SIMULATION 89
CORRESPONDENCE MEASURES 92
THE RELIABILITY OF A SINGLE TRIP SURVEY IN MODEL CALIBRATION 94
A COMPARISON OF MOEEL PREDICTIONS GENERATED BY THE MAXIMUM LIKELIHOOD AND LEAST-SQUARES ESTIMATORS 102
FACTORS IN MODEL APPLICATION WHICH REDUCETHEORETICAL CALIBRATION REQUIREMENTS
SUMMARY 111
6 SUMMARY AND CONCLUSIONS 113
BIBLIOGRAPHY 121
Page

1 Grid Search in a Two Parameter Space 10
2 The Response Surface of the Coefficient of Determina- 13 tion (R^{2}) Against the Parameter β

3 Sample Trip Matrix 19
4 Configuration and zoning of the Idealized Urban Areas 86
5 Sequence of Operations in the Analysis 90
6 Scaled-Up Sample Predictions and the Mean Distribution 99 of Trips Generated from Zone Twenty-Five

7 The Deviation of Scaled-Up Poisson and Normal Samples 101 from the Mean Trip Distribution Generated from Zone Twenty-Five

8 Comparison of Maximum Likelihood and Least-Squares 104 Predictions with Poisson Sample of Trips Generated from Zone Twenty-Five

9 Comparison of Maximum Likelihood and Least-Squares 105 Predictions with Normal Sample for Trips Generated from Zone Twenty-Five

10 Scaled-Up Model Predictions as Calibrated by Maximum 107
Likelihood and the Mean Trip Distribution Generated
from Zone Twenty-Five

1 TRIP ORIGINS AND DESTINATIONS ALLOCATED TO EACH ZONE 88
2 THE MEAN, POISSON AND NORMAL TRAVEL PATTERN 97 GENERATED FROM ZONE TWENTY-FIVE
$\because 3 R^{2}$ BETWEEN MODELS ESTIMATED BY MAXIMUM LIKELIHOOD OR LEAST-SQUARES, AND THE SAMPLE DATA USED TO CALIBRATE THE MODEL

4
MEASURES OF CORRESPONDENCE AND PARAMETER VALUES OF MODELS ESTIMATED BY MAXIMUM LIKELIHOOD AND LEASTSQUARES

0

AN ASSESSMENT OE CALIBRATION METHOUCOLOGIES

- INTRODUCTION

The calibration of mathematical models involves finding the best (in some well defined sense) values of their parameters. Calibration transforms the general model structure into a set of exact empirically tested relationships by giving precise empirical definitions to the variables and numerical values to the parameters. A model is calibrated to improve its predictive or descriptive capability. The theoretical principles used to develop the model are seldom sufficient to indicate more than the appropriate sign and probable order of magnitude of the model parameters. Since the parameters are measures of the relationships between numerical variables, the precise empirical definition of these variables affects the parameter values (Lowry, 1965, p. 163).

Mackie (1972, p. 39) identifies three components of the calibration process:
(1) Specification of the type of model to be calibrated;
(2) Selection of a suitable statistic to optimize, which yields the "best" parameter estimates, and
(3) Selection of an accurate and cfficieat technique to solve the equations derived by the statigtic.

This paper is concerned with the calibration of a particular type of geographic model: the spatial interaction model. Fine model has been used as a trip distribution sub-madel in travel forcastirig atudics, and, operating within the Lowry framework, as part of the large-acale modelling efforts in Britain (Batty, 1970c, p. 95: Batty, 1972, p. 152).

The paper will investigate the calibration of the doubly constrained spatial interaction model, which will be outiined later. Therefore, Mackie's first component of the calibration process is defined. Batty (1970c,p, 114) emphasizes the need for better calibration statistics to measure the model's goodness-of-fit, so that a unique set of parameter values can be derived (Mackie's second component). Also important is the development of more efficient and faster numerical methods of solution without a loss of accuracy, which is Mackie's third component. Although several solution techniques will be reviewed in this paper, its primary task will be to investigate Mackie's second component of the calibration process: the selection of suitable statistics, the optimization of which will yield the "best" parameter estimates.

In this chapter, a brief description of the spatial interaction model will be followed by a review apd agsessment of the various approaches to calibration which have been undertaken, particulariy in the British context. From the assessment, two significant calibration approaches will bé identified.

Chapters two and three will explore these two calibration approaches and examane the assumptions implicit in each.

Chapter four will critically assess the general problem of calibration as it is applied to urban systems modelling, ond stress the areas of weakness. (Fror this review, a research design will be proposed and tested in chapter five.

Finally, chapter six will summarize the research findings of this paper and evaluate their significance.

SPATIAL INTERACTION MODELS

\because

Spatial interaction models are a family of models which describe the interaction between sets of activities in terms of flows of people or commodities. The equation which describes this, the gravity law, was oraginally applied to the geographic field by analogy to Newtonian mechanics. It states that the intensity of interaction between two zones i and $], 1 s$ a function of the population masses at 1 and j, and of the impedance to interaction, measured by an inverse function of distance. Wilson (1970) develops a general theoretical derivation of the gravity model from the fields of statistical mechanics and information theory. The gravity model is derived by analogy to princi~ ples in statistical mechanics by finding the most probable distrabution of trips, subject to a set of constraints placed upon the system, which restrict the number of assignments giving rise to a distribution. The same model can be derived from information theory by defining the entropy of a system to be a measure of its uncertainty (Shannon and Weaver, 1949). The probability distribution which results from maximazing the
entropy, subject to whatever information 15 known about the system (the constraints), is minımally biased yet maximally non-commattal with regard to missing information (Webber, 1975, p. 14). Wilson (1970, p. 8) shows that the distribution derived from the information theoretic approach is equivalent to the most probable distribution derived from principles of statistical mechanıcs.

From the general formulation of the spatial interaction model

$$
\begin{equation*}
\hat{t}_{i j}=a_{i} b_{j} f\left(B, c_{i j}\right) \tag{1.1}
\end{equation*}
$$

$$
\text { where } \begin{aligned}
\hat{t}_{i j}= & \text { the predicted number of trips from } 2 \text { to } \mathrm{J}, \\
\mathrm{a}_{i}= & \text { a factor related to the abllity of zone } i \\
& \text { to generate trips, } \\
\mathrm{b}_{j}= & a \text { factor related to the abılity of zone } j \\
& \text { to attract trips, } \\
f\left(\beta, c_{i j}\right)= & \text { the impedence to interaction, }
\end{aligned}
$$

four variations may be derived, depending on the constraints imposed upon the distribution: (1) weonstrained flows; (2) production constrained flows; (3) attraction constrained flows; and (4) production-attráction constrained flows.

The unconstrained model is simply equation (l.1). There are no constraints on the distribution, and the model estimates the number of int(erchanges between each zone pair, the $\hat{t}_{i j}$, the number of origins $\sum_{j} t_{i j}$ and destinations, $\sum_{i} \hat{t}_{1 j}$, within the framework. Both the production censtrained and attraction constrained models are examples of singly
constrained spatial interaction models. In this case, the $\hat{t}_{i j}$ are subject to the constraint

$$
\sum_{j} \hat{t}_{i j}=0_{1} \quad \text { where } 0_{i}=a_{i} / A_{i}
$$

for the production constranned model, or

$$
\sum_{i} \hat{t}_{i j}=D_{j} \quad \text { where } \quad D_{j}=b_{j} / B_{j}
$$

for the attraction constrained model. The models estimate the $\hat{t}_{i j}$ and the $\sum_{i}^{\hat{t}_{i j}}$ (destinations), or the $\sum_{j} \hat{t}_{1 j}$ (origins), depending on whether the distribution is production or attraction constrained. The production-attraction constrained model is a doubly constrained interaction model, as the t_{1} are subject to both of the above constraints. ${ }_{6}$ since both the $\sum_{j} \hat{t}_{i j}$ and $\sum_{i} \hat{t}_{1]}$ are estimated externally, only the $\hat{t}_{i j}$ are estimated by the model.

The doubly constrained model is of interest for two reasons.
First, this variation of the spatial interaction model is generally used for predicting the distribution of trips in transportation studies (Mackie, 1972, p. 27). For this, the calibration procedure is of some practical significance. Secondly, the inclusion of constraints makes it more difficult to calibrate the model (Mackie, 1972, p. 24).

The unconstrained gravity model can be calibrated by transforming the equation into logarithmic form and estimating the parameters by regression techniques (Olsson, 1965, p. 37), although Siedmann (1969) stresses the problems of this approach. The singly and doubly constrained models on the other/hand, because of their intrinsically non-linear
character, cannot be linearized by a simple transformation (Draper and Smith, 1966, p. 264), and thus require more sophisticated calibration techniques. Any attempt at linearizatıon, i.e., truncating a Taylor's serıes expansion at the first order, may lead to biased parameter estımates (Batty and Mackie, 1972, p. 209). Presumably, a calibration procedure developed for a doubly constrained model should be applicable to both singly constrained and unconstrained models.

APPROACHES TO MODEL CALIBRATION

The most important task in application is to calibrate the model so that the most realistic distribution is genexated, or so the model "best fits" the survey data collected. Batty (1972, p. 156) notes some related calibration problems thaf have arisen in model application in Britain and emphasizes the importance of this aspect of design.

Because of the singly and doubly constrained models' inherent nonlinear character, the model parameters have been estimated by several different methods. Specifically, four different approaches to the calibration problem can be identified. Early attempts include graphical curve fitting and tabulation methods, while more recent work has employed systematic search algorithms and statistical estimators. An outline of each of these approaches follows.

GRAPHICAL CURVE FITTTING

Initial attempts at calibration can be seen in the work of Lowry
(1963). Although the allocation sub-models used are not the Wilson-
type spatial interaction models, the potential models used by Lowry can be related to the gravity model (Isard, 1960), and thus the calibration problem is much the same. Lowry estimates the model parameters outside the framework of the model by approximating frequency functions to empirıcal data manually (Lowry, 1963; Relf, 1973, p. 181). He takes data on the relative frequency of work-trips by distance, disaggregated to different socio-economic classes, and finds the distributions to closely approximate a negatıve power function, l.e.,

$$
\begin{equation*}
f(r)=a r^{-x} \tag{1.2}
\end{equation*}
$$

where $\quad r=$ distance from the origin zone $f(x)=$ the relative trip frequency $a, x=$ parameters to be estimated.

The parameter values derived by Lowry are given by Reif (1973, p. 181). Lowry's calibration technique, then, is simply a graphical curvefitting procedure, in which the parameter values are derived so the hypothesized function best fits the given data. The trip distribution index is obtalned from the point density function:

$$
\begin{equation*}
G=\frac{f(r)}{2 \pi r}=\frac{l}{t_{i j}} \tag{1.3}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
t_{i j}=\frac{2 \pi r}{a r^{-x}}=\frac{2 \pi}{a} r^{(x+1)} \tag{1.4}
\end{equation*}
$$

The trip distribution elements, $\left\{t_{1\}}\right\}$, are then substituted into the potential sub-model of locational choice. The entire process is repeated to derive service locations using another frequency function (Reif, 1973, pp. 180-185).

The major weakness of Lowry's approach to calibration is that because the parameters are estimated outside the model framework, the interdependencies between the parameter values and the model are ignored (Batty, 1972, p. 164). Lowry (1965, p. 163) acknowledges the dependence of the parameters on the model variables (see page 1) but does not ancorporate this anto his calibration technique.

TABULATION

Subsequent Bratish work (Batty, 1970a, 1970b; Cripps and Foot, 1969a, 1969b; Turner and Williams, 1970; Masser, 1970) utilizes the tabulation method to calibrate the parameter values. This approach involves the testing of different combinations of parameter values, which are fixed within some predetermined range. If one assumes that a unique optimum exists, then the search is for that combination of parameter values which yields a best fit to the data. The correspondence between the predicted and observed sets of trips can be measured by various statistics. Usually a statistic of comelation, such as the coefficient of determination is used (Batty and Mackie, 1973; Batty, Foot, et al., 1973, p. 356), and the technique tests to find the maximum correlation between the predicted and observed values. For $\hat{t}_{i j}$ predicted and $t_{i j}$ observed, the algorithm measures:

$$
\begin{equation*}
R^{2}=1-\frac{\sum_{i} \sum_{j}\left(\hat{t}_{i j}-t_{i j}\right)^{2}}{\sum_{i} \sum_{j}\left(t_{i j}-\frac{1}{N} \sum_{i} \sum_{j} t_{i j}\right)^{2}} \tag{1.5}
\end{equation*}
$$

where N equals the total number of variables. Wilson (1974, p. 317) states that the statistic varies between one, for an exact correspondence between the model predictions and the observations, and zero, for no correspondence. However, the range of the statistic is actually between one and - ∞. The denominator of (1.5) is simply the sum of squared deviations of the observation from its mean. If the predicted values, $\hat{t}_{i j}$, significantly differ from the observed values, $t_{i j}$, and the devia* tion of the observed values from the mean is small, the right hand term in (1.5) will be greater than one and negative values for R^{2} will result.

An alternative statistic of correspondence which is commonly used is the chi-squared statistic, defined as:

$$
\begin{equation*}
x^{2}=\sum_{i} \sum_{j} \frac{\left(t_{i j}-\hat{t}_{i j}\right)^{2}}{t_{i j}} \tag{1.6}
\end{equation*}
$$

The method searches for the value or combination of parameter values for which the statistic is at a minimum. Evans (1971, p. 25) notes that this statistic is a reasonable measure of the model's goodness-offit with the data. He postulates that the test statistic approximates a chi-squared distribution if the data does arise in the way postulated
by the model and all the $t_{i j}$'s are reasonably large.
Other correlation statistics that have been tested in model calibration include the root mean square error statistic, defined by Hill, ct al. (1965), and the stondard deviation (Batty, 1970c, p. 104).

The tabulation method sets up a grid of combinations of parameter values; for example, if a two parameter interaction model is to be calibrated, a two dimensional grid of pairs of parameter values is constructed (Figure 1).
n

FIGURE 1: Grid Search in a Two Parameter Space.

Each node of the grid represents a particular paramcter combination. The model is then run at each node within a predetermined range of parameter values. Alternatively, the nodes upon which the model is tested in the parameter space can be selected at random. More commonly, however, the nodes are chosen by trial and error, i.e., successive choice is made of the nodes in the parameter space which appear to be approaching the optimum (Mackie, 1972, p. 38). The distribution generated by that combination of parameter values which optimizes the test statistic yields the best fit to the survey data.

The principal draw-backs of this approach are that the method is slow, inefficient, and inaccurate (Mackie, 1972, p. 38). Since the correlation statistics require model output as varables, the model must be run for each combination of parameter values. To improve accuracy requires a vast number of tabulations to be performed. Referring to this, Batty (1971, p. 425) notes that computer time increases directly with the number of functional evaluations, which, for a model of x parameters, can be approximated by $n .{ }^{x}$, where n is the number of evalua$>$ tions to be made in the specified parameter range.

SYSTEMATIC•SEARCH

If, however, the test statistics are plotted over a range of parameter values, a response surface can be generated, measuring the model prediction's correlation to the data. Batty (1970c,p. 111) shows the requarity of these surfaces, and several authors (Batty and Mackie, 1972; Batty and Mackie, 1973; Batty, Foot, et al., 1973; Batty et al.,

1974; Wilson, 1974) suggest how numexical methods could be applied, using the properties of the surface to quickly find that set of parameter values which gives the model predretıons a best fat to the data. Thıs technique, defined as systematic search (Batty and Mackıe, 1972; Batty and Mackie, 1973) is simply a search algorithm, using standard mathematical optimazation principles designed to calibrate the interaction models. The model is calibrated by optimizing a given test statıstıc, such as the coefficient of determanation or chi-squared. Two different optimizing approaches have been employed. One is direct evaluation of the statistics' response surface and the other optimizes by indirect evaluation.

DIRECT EVALUATION

Direct evaluation methods use a set of direction vectors throughout the search, and explorations are made along these directions on the response surface. Subsequent action in directing the search is determined by the results obtained on the previous iteration. Direct evaluation can be based upon linear methods, such as the Newton-Raphson technique, Fibonacci sequences, and search by Golden Section, in all of which the direction vectors are wivariate, or it can be based upon quadratic methods, which specify the optimum point by approximating the objective function by a quadratic. A numerical method of this type which has been used in model calibration is quadratic search by conjugate directions.

The mechanics of all these search procedures are illustrated by the method of Fibonacci sequences (Wilson, 1974, pp. 321-322). Considêr a spatial interaction model of the form:

$$
\begin{equation*}
\hat{t}_{i j}=a_{i} b_{j} f\left(B, c_{1 j}\right) \tag{1.7}
\end{equation*}
$$

The model predictions, $\hat{t}_{i j}$, are functions of the parameter B. The response surface, which is simply a function of the $t_{i j}$ observed and the $\hat{t}_{i j}$ predicted, is also a function of B. The test statistic, such as the coefficient of determination, will generally vary with β in the following manner (Figure 2).
$R^{2}(B)$

FIGURE 2: The Response Surface of the Coefficient of Determination $\left(R^{2}\right)$ Against the Parameter B

Therefore, the calibration task is the unconstrained oprtimization of the function, $R^{2}(B)$. If we assume that at the $k^{\text {th }}$ step, the method has established that B lies within the values B_{1}^{k} and B_{2}^{k}, the method then finds values for B_{3}^{k} and B_{4}^{k} such that,

$$
\begin{equation*}
\beta_{1}^{k}<B_{3}^{k}<B_{4}^{k}<B_{2}^{k} \tag{1.8}
\end{equation*}
$$

by the equations,

$$
\begin{align*}
& \beta_{3}^{k}=\frac{F_{N-1-k}}{F_{N+1-k}}\left(B_{2}^{k}-\beta_{1}^{k}\right)+B_{1}^{k} \tag{1.9}\\
& \beta_{4}^{k}=\frac{F_{N-k}}{F_{N+1-k}}\left(\beta_{2}^{k}-\beta_{1}^{k}\right)+\beta_{1}^{k} \tag{1.10}
\end{align*}
$$

where N is the total number of evaluations, and F_{y} are fibonacci numbers defined by:

$$
\begin{align*}
& F_{0}=F_{1}=1 \tag{1.11}\\
& F_{n}=F_{n-1}+F_{n-2}
\end{align*}
$$

The procedure then determines which interval to evaluate in the $(k+1)$ st step by evaluating the surface at the four points, $\beta_{1}, \beta_{2}, \beta_{3}$, and B_{4} (Wilson, 1974, p. 322). The total number of functional evaluations, N, is determined from the desired interval of search after the N iterations
(Wilson, 1974, p. 322).
Other numerical methods in thas class, although dufferent in structure, basically operate according to the same principle, in which the response surface is incrementally searched for an optimum point. Further information on the techniques within the modelling context is avallable in the literature: Fibonacci sequences (Batty and Mackie, 1973; Wilson, 1974), Newton-Raphson (Batty and Mackıe, 1972, 1973; Batty, Foot, et al., 1973; Batty, et al., 1974; Wilson, 1974), and quadratıc $!$ search by conjugate directions "(Batty and Mackıe, 1972). Also, Mackıe (1972) glves an excellent account of several calibration algorithms, including those discussed in thas chapter.

The basic problem with this class of methods 15 that the search vectors may diverge from the global optimum to local optima on the response surface if poor initial parameter values are chosen. This may be corrected by damping the procedure, i.e., by transforming the slope of the response surface to a more regular shape (Batty and Mackie, 1973), or by choosing the initial parameter values close to the optimum point so the solution does not degenerate (Batty, Foot, et al., 1973, pp. 359362; Batty, et al., 1974, p. 471). Hyman (1969, p. 110) suggests that since, in many cases, the value $\overrightarrow{B C}$, where \bar{C} is the mean trip cost, lies between one and two, a reasonable starting value is given by the equation:

$$
\begin{equation*}
B=\frac{3}{2 \bar{C}} \tag{1.12}
\end{equation*}
$$

INDIRECT EVALUATION

The method of indirect evaluation does not require explicit appraisal of the slope of the response surface (katty and Mackie, 1973), But performs functional evaluations at the vertices of some geometric configuration generated in the parameter space (Mackıe, 1972, p. 39). The only method of indirect evaluation to be applied to the calibration problem in spatial interaction modelling appears to be the Simplex method of sequential search (Mackıe, 1972, pp. 53-56; Batty and Mackie, 1972, pp. 222-224; Eatty and Mackıe, 1973).

For the calibration of an n-parameter model, the simplex is generated by evaluating the objective function at $n+1$ vertices in an n parameter space. The vertex having the worst performance with respect to the optimazation of the test statistic, i.e., maxımize or manmmze, is identified, and the simplex is reflected away from this vertex. If this operation 1 mproves 1 ts performance, the simplex $1 s$ expanded; if not, it is contracted. An illustration of these basic operations is gaven an Mackie (1972, p. 54). The method iterates by reflecting across the response surface and adjusting its shape until the optimum is reached.

Calibration by the simplex method is more reliable than direct search techniques because it overcomes the problem of convergence to local optima on the response surface. The method, however, takes somewhat longer to compute.

Despite the advances made in solving the statistics, there are problems concerning the statistics themselves which cannot be overcome.

Correlation statistics, such as the coefficient of determination, are not as sensitive to changes in parameter values as simpler rerjorman. measures, such as mean trip length (Batty 1970c, pp. 108-109; Batty, 1971, p. $/ 416$). Furthermore, in the callbration of multi-parimeter interaction models, no single goodness-of -bit statastic can determine the parameter values simultareously (Wılson, 1974, p. 323). A unaque set of optimum parameter values can only be derived if each parameter is related to a particular calibration statistic (Batty, Foot, et ai., 1973, p. 358). In other words, there must be as many calibration statistıcs as there are parameters (Batty and Mackie, 1973). Also, correlation statistics, in partıcular cases (wilson, 1974, p. 343), may lead to bogus calitmation, which occurs when the response surface is peaked towards the maximum at the axis of one of the parameters. Wilson (1974, p. 342) states that the bogus calibration problem can render certain correlation statistics virtually useless in parameter estimation.

Finally, one cannot, whth any confidence, draw statistical inferences from these correlation statistics because their distributions are unknown. One is restricted to getting a feel for the goodness-of-fit of the model to the observed data, when interpreting the results. Although, this restriction can be somewhat overcome by choosing more robust correlation statistics, such as chi-squared, which place less stringent assumptions on the data, it is more meaningful to derive new calibration statistics based upon statistical assumptions which consider all the information avallable concerning the problem (Batty and Mackie,
1973). The statistic measuring the goodness-of-fit must take the sample data into account in order to derive the "best" parameter values.

STATISTICAL ESTIMATORS

Batty and Mackıe (1973) suggest maximem likelihood techniques as a meaningful approach to deriving calibration statistics. Based on the work of Hyman (1969) and Evans (1971), for a trip distribution model of the form

$$
\begin{align*}
\hat{p}_{i j}= & a_{i} b_{j} f\left(B, c_{i j}\right) \tag{1.12}\\
\text { where } \hat{p}_{i j}= & \text { the probabilıty of a trip maker living } \\
& \text { in } i \text { and having his destinatıon in zōne } J,
\end{align*}
$$

the maximum likelıhood estimator derives a set of $2 n+1$ conditions for the $2 n+1$ unknowns. Given the sample data from a trip survey (Figure 3), the balancing factors, a_{i} and b_{j}, are chosen such that the proportion of trips generated from and distributed to each zone by the model equals the proportion of trips leaving and the proportion arriving at each zone as observed in the sample, i.e., in the row and column totals of the sample matrix. The parameter β in the impedence function is calibrated against the mean trip cost, and is at its optimum value when the mean trip cost predicted by the model equals the mean trip cost calculated from the sample.

$\underset{\operatorname{Destinations}}{\operatorname{Trip}} \quad \sum_{i} t_{i 1}=D_{1} \quad \sum_{i} t_{i 2}=D_{2} \quad . \quad . \quad \sum_{i} t_{i n}=D_{n} \quad \sum_{i} \sum_{j} t_{i j}=\sum_{i} O_{1}=\sum_{j} D_{j}=T$

FIGURE 3: Sample Trip Matrix

Cesario (1975) proposes the alternative principle of least-squares to derıve calibration statistics for spatial interaction models of the same form. The conditions derived state that the parameters of the model must be such that the sum of squared residuals, defined as the sum of the squares of the difference between the number of trips from zone 1 to J observed in the sample and the number of trips between 1 and 3 predicted by the model, equals zero. Consistency in the balancing factors is achieved on the sum of squares of row and column elements, not simply on the sums of these elements as in maximum likelihood (Cesario, 1975, p. 15).

The statistics generated by the maximum likelihood and least-squares estimators possess characteristics which glve them several advantages over correlation statıstacs. The calibration statistics are simpler and more sensitive to changes in parameter values. The maximum likelihood estimator, under certain assumptions on the nature of travel cost (Hyman, 1969, pp. 108-109), derıves mean trip cost as the statistic against which to calibrate β; Batty (1970c,pp. 108-109) shows the sensitivity of this statistic. The statistics themselves are functions of interaction variables, the $t_{i j}$. Batty (1971, p. 416) finds that statistics using these variables are far more sensitive to variations in parameter values than statistics which measure distributions of activity, such as population or employment.

Secondly, the statistical estimators derive as many calibration stalistics as there are parameters, so that a unique set of "best" parameter values can be determined. The statistics are generated by optimi-
zing the estimator with respect to each unknown parameter. Batty and Mackie (1972, p. 214) develop calibration statistics for a two parameter shopping model and suggest several numerical methods for their solution. Subsequent British work on multi-parameter models bases its Calıbration strategies on these statıstics (Batty, foot, et al., 1973, p. 359; Batty, et al., 1974, p. 466).

Thirdly, the statistics derived from the maximum likelihood and least-squares methods do not lead to bogus calibration problems, as do correlation statistics (Wılson, 1974, p. 343).

But perhaps the most significant advantage of the maximum likelihood and least-squares approaches is that one can look into the construction of the estimator to see exactly what assumptions are being made about the sample data. If the data reasonably satisfy the assumptions, then one should be able to make inferences about the model's goodness-of-fit to the sample observations.

SUMMARY

This chapter has considered four approaches to the calabration problem which have been proposed in the literature: grophical curve fitting, tabulation, systematic search, and statistical estimators.

In the evaluation of these approaches, the method of graphical curve fitting is rejected. It fails to consider the interdependencies between the model and parameters, by estimating the parameter values outside the model framework. Tabulation methods are rejected too. Although they
use a statistical measure of the model's goodness-of-fıt to the survey data, they are too slow and inaccurate to be useful in the calibration of inferaction models.

Systematic search techniques, which use numerical methods to optimaze the model's goodness-of-fit to the sample data, based on a given correlation statıstic, are shown to be a better calibration method than tabulation approaches. However, correlatıon statıstics have several properties which make them undesirable measures of the model's goodness-of-fit. The statistics are relatively insensitive to changes in parameter values. Some statıstics tend to optimaze to a bogus solution. The statistıcs also fall to yield unıque parameter values for multıparameter spatial interaction models. But most important, because the assumptions placed upon the sample data by correlation statistics are unknown, it is impossible to make statıstical inferences on the parameter values and the model's goodness-of-fit.

Statistics derived from statistical estımators, such as maxımum likelihood and least-squares estimators are preferred, since they do not possess the undesirable properties of correlation statistics outlined above. Furthermore, because these statistics are derived from theoretical principles of statistical estimation, one should be able to deduce the assumptions made by the statistics about the data, and thus be able to make inferences about the model's goodness-of-fit. Therefore, this approach to calibration is selected as the most appropriate for estimating "best" parameter values.

Abstract

It now remains to compare the statistics derived from the maximum likelıhood and least-squares estımators through an examination of the estimators themselves. This 1 s of interest because each estimator derives statıstics against whach to calibrate the model parameters from different basic assumptions about the data. Because the statistics dıffer, so do the subsequent parameter estimates. Mackie (1972, p. 36) asserts that a particular set of statıstical conditions 15 based upon specific decision functions "embedded" in the statistics. The decision function can be related to trip purpose through the interzonal probability densıty function assumed by the statıstıcal estımator Kirby, 1974, p. 101). Therefore, the different parameter estimates from alternative statistical hypotheses relate to the behavioral characteristics of the trip-maker, of which trip purpose is a major factor. Since we are attempting to find the "best" parameter estimates in the callbration process, a particular statistical estimator may be more approprıate in deriving calibration statistics, depending on the type of anteraction being modelled.

The next two chapters will examine in detiail the maximum likelihood and least-squares estimators. The appropriate calibration statistics will then be derived and the assumptions that the statistics make upon the data will be defined.

THE MAXIMUM LIKFLIHOOD METHOD OF PARAMETER ESTIMATION

INTRODUCTION

This chapter will examine the mathematical approaches which have : been used to derıve the maximum likelihood conditions for optimum parameter estimates. In doing this, the intention is to define the behavioral assumptions which each approach implies.

In the literature, two distınct methodologies are applied. Hyman (1969) defines the calibration problem to be one of hypothesis evaluation. Evans (1971) and Kirby (1974) define the problem to be one of point estimation. Hypothesis evaluation $1 s$ based on the assumption that competing hypotheses can be evaluated in terms of the survey data and that inferences can be made about which hypothesıs best represents the observed distribution. Point estimation, on the other hand, involves the estimation of unknowns of a given hypothesis from a single function of the sample data (Freeman, 1963, pe229).

Hyman's framework is included in this chapter on maximum likelihood estimators for two reasons. First, it will be shown, through an outlane of his approach, that hypothesis evaluation is not a suitable framework upon which to calibrate model parameters. Second, the simplifying assumptions which Hyman uses in his framework eventually reduce the
problem to that of maximazing the likelıhood function in Bayes' equatıons, which is equivalent to Evans' (1971) and Kırby's (1974) frameworks when they approach the problem as that of point estimation. Following the assessment of Hyman's (1969) work, the paper will briefly outline the general principles of the maximum likelihood estimator. Thas will be followed by the application of the maximum likellhood estimator to parameter calibration problems in spatial interaction models, through the work of Evans (1971) and Kırby (1974). The paper will emphasaze the point that Evans (1971) and Kırby (1974) derive the same key calubration statistics from different mathematical approaches, and an attempt will be made to reconcile the two approaches on the basis of their implicit behavioral assumptions. Finally, the chapter will establısh the relationship between the derived statistics and the behavioral conditions in the survey and will summarize the findings of the previous sections.
$a \cdot$
HYPOTHESIS EVALUATION AS A METHOD OF PARAMETER
CALIBRATION: AN APPRAISAL OF HYMAN'S APPROACH

Hyman (1969) attempts to calibrate a trip distribution model using the concept of evidence in Bayes' equation. By taking the log-odds form of Bayes' equation (Trıbus, 1969, p. 83), he develops the evidence for hypothesis H_{l} over H_{2}, with respective distributions $\left\{\hat{p}_{i j}\right\}$ and $\left\{\hat{p}_{i j}{ }^{*}\right\}$, where $\hat{p}_{i j}$ represents the proportion of trips between zones 1 and j predicted by H_{1}.

$$
\begin{equation*}
\frac{1}{T} e v\left(H_{1} \mid D X\right)=\sum_{i} \sum_{j} p_{i j} \log \hat{p}_{i J}-\sum_{1} \sum_{j} p_{i j} \log \hat{p}_{1 \jmath}^{\star} \tag{2.1}
\end{equation*}
$$

where $p_{1]}=$ the proportion of observed trips between
i and J
$D=$ the sample data
$X=$ the conditions for the survey*

Hyman states that the choice of H_{1} which maximizes (2.1) yoelds a distribution (meanang hypothesis) gaving the best possible fit to the : survey data. He then defines

$$
\begin{equation*}
E\left(H_{1} \mid D X\right)=\sum_{i} \sum_{j} p_{1 j} \log \hat{p}_{2 j} \tag{2.2}
\end{equation*}
$$

and states that the cholce of parameters which maxımızes this expression, subject to the constraint
$\sum_{i} \sum_{j} \hat{p}_{i j}=1$
yields a distribution giving a best possible fit to the data.
Several points of criticism are in order. First, Hyman is confusing the issues of parameter estimation and hypothesıs evaluation. These are two distinct topics (Mackie, 1972, p. 35). Secondly, because of the framework that he has set up, the approach becomes neither strictiy a Bayesian nor a hypothesis testing approach. Hyman's assumption is that there is no prior evidence for one hypothesis over the other
(Hyman, 1969, p. 106). This reduces the problem from a Bayeszan one to simply maximizang the likelıhood of a hypothesis on the data.

Second, Hyman states that maximizing equation (2.1) yields the hypothesis whach best fats the observed dastribution and thrm, after dropping a texm in the equation, states that maximizang equation (2.2) Yoelds parameter values which give H_{1} a best fit. Since there is no prior evidence to support one hypothesis over the other, how without calibrating both hypotheses, can there be evidence for H_{1} over H_{2} ? Further, since the likelihood for H_{2} is assumed to be zero, Hyman must be assuming that this hypothesis cannot be calibrated, 1.e., a uniform distrabution. Since the concept of evidence applies to any competing distrabution, and since such competıtors that can be calibrated exist, i.e., the intervening opportunities model (Hutchinson, 1974, pp. 107113), or the Charnes, Raike and Bettenger (1972) model, Hyman's simplifyang assumption as unreasonable.

As a maximum lukelihood method of parameter calibration, Hyman's (1969) approach is correct. As a Bayesian approach, as it is credited in the literature (Evans,1971, p. 23; Batty and Mackre, 1972, p. 210; Wilson, 1974, p. 318), it is not. A Bayesian approach requires the hypothesis to be caliorated a priori and then to be altered by the data. Since the prior hypothesis in Hyman's framework is discounted, the approach only considers the likelihood of the hypothesis based on the data, and thus is not strictly Bayesian. The reader should refer to Sheppard (1974, pp. 62-63) for a description of a Bayesian framework for parameter calibration.

Hyman's work emphasizes the fact that point estamation ls the only valid approach to parameter calibration, since, in effect, he ends up taking this approxch in equation (2.2). Other authors have app ruached the parameter calibration problem using statistical theory on foint estamation. Evans (1971) and Karby (1974) use the method of maxamum likelihood as a parameter estimation technique. Following a brief outline of the mechanics of the method, thear work will be reviewed.

THE MAXIMUM LIKELIHOOD ESTIMATOR

The method of maximum likelihood in point estimation can be described as follows. Consider a random variable t and a sample of T andependent observations, $t_{1 j}$ from the same distributiun, where $t_{1 J}$ represents the number of trip interchanges between zones 2 and J. The probability of observing $t_{i j}$ is $\phi\left(t_{i j} \mid \beta\right)$, where the form of ϕ is known but, the value of B is not. The joint probability of the observations, whach is a function of the unknown parameter β, is called the likelihood function.

$$
\begin{equation*}
L\left(t_{i j} \mid \beta\right)=\prod_{i j} \Pi \phi\left(t_{i j} \mid \beta\right) \tag{2.3}
\end{equation*}
$$

According to the maximum likelihood prancıple, we choose as our estimate of β that value which maximizes the joint probability of the actual observations. The conditions for a maximum are thus:
and

$$
\begin{equation*}
\frac{\partial^{2} L}{\partial b^{2}} \cdot 0 \tag{2.5}
\end{equation*}
$$

 of 8 (Freeman; 1963, p. 254), then equations (2.4) and (2.5) can be written

$$
\begin{equation*}
\frac{\partial}{\partial \beta} \log L\left(t_{1 j} \mid \beta\right)=\frac{\partial}{\partial \beta} \sum_{1} \sum_{j} \phi\left(t_{1 j} \mid \beta\right)=0 \tag{2.6}
\end{equation*}
$$

1
and

$$
\begin{equation*}
\frac{\partial^{2}}{\partial \beta^{2}}\left[\sum_{1} \sum_{j} \phi\left(t_{1 j} \mid \beta\right)\right]<0 \tag{2.7}
\end{equation*}
$$

to derive the optimum value of B.
The maximum likelihood estimator has several desirable properties \}
which make it preferable to other point estimation approaches (Larson, 1969, p. 223), and the reader is referred to the literature (Freeman, 1963, pp. 257-262; Larson, 1969, pp. 233-250) for a descrıption of these properties.

Having described the maximum likelihood approach, let us examine ats applacatıon to parameter calibration in spatial interaction modelling.

THE DEVELOHMENT OF CALIBRATI(N STATISTICS FREM THE
METHOD OF MAXIMUM LIKELIHOOD

Thas section will review the work of Evans (1971) and Kirby (1974). Basically, it will develop the calibration statistics by the likelihood estimator from the authors' different mathematical approaches, and will define the conditions required for deriving best parameter estimates.

EVANS APPROACH TO CALIBRATION
Evans (1971) derıves optımum parameter values for spatial anteraction models of the form:

$$
\begin{equation*}
\bar{p}_{2 j}=a_{i j} b_{j} \exp \left(-\beta c_{i j}\right) \tag{2.8}
\end{equation*}
$$

where $\hat{p}_{1 j}$ is defined as the probability of a trip orıgınating in zone 1 and having zone j as its destination. He assumes we are glven a sample of trip interchanges, $\left\{t_{i j}\right\}$, from which the proportion of $\left.t r\right\} p$ between each i and j can be calculated:

$$
\begin{equation*}
p_{i j}=\frac{t_{i j}}{T} \tag{2.9}
\end{equation*}
$$

where T is the number of observations in the sample. If we interpret
the trap proportions to represent probabilities (indiley, 1965, p. 3; Freund, 1952, p. 112), and thedr joint distribution to be multinomial (Evans, 1971, p. 23), the lakelihood for E on the sample will be (Edwards, 1972, 1. 19)

$$
\begin{equation*}
P\left(\hat{p}_{2 j}=p_{1 j}, \forall_{1, j}\right)=\frac{T!}{i \prod_{1 j}!i r\left(\hat{p}_{1 j}\right)^{t}} \frac{1 J}{1{ }_{1 j}} \tag{2.10}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{1} \sum_{j} \hat{p}_{13}=1 \tag{2.11}
\end{equation*}
$$

or, on converting (2.10) to log-form:

$$
\begin{aligned}
\log p\left(\hat{p}_{i j}=p_{1 j}, \hat{\forall}_{1, j}\right)= & \log T!-\sum_{i} \sum_{j} \log t_{i j}! \\
& +\sum_{i} \sum_{j} t_{i j} \log \hat{p}_{i j}
\end{aligned}
$$

Evans maximizes the likelihood of the sample on the joint distribution of $\hat{p}_{1 j}$'s.

$$
\max \log P\left(\hat{p}_{i j}=p_{i j} \cdot V_{i, j}\right)=\log T!-\sum_{i} \sum_{j} \log t_{i j}!
$$

$$
+\sum_{i} \sum_{j} t_{i j} \log \hat{p}_{i j}
$$

S.T. $\quad \sum_{i} \sum_{j} \hat{p}_{i j}=\sum_{i} \sum_{j} a_{i} b_{j} \exp \left(-\beta c_{i j}\right)=1$

Forming the Lagrangian,

$$
\begin{align*}
\Lambda=\log T!-\sum_{i} \sum_{j} \log t_{1]}! & +\sum_{i} \sum_{j} t_{1]}\left\{\log a_{1}+\log b_{j}-B c_{1]}\right] \\
1 & +\lambda\left[1-\sum_{i} \sum_{j} a_{1} b_{j} \exp \left(-B c_{1 j}\right)\right] \tag{2.14}
\end{align*}
$$

and differentiating with respect to the unknowns a_{i}, b_{j} and B ylelds the first order conditions for $\log p\left(\hat{p}_{i j}=p_{i j}, \forall_{i, j}\right)$ to be a maxımum.

$$
\begin{equation*}
\frac{\partial \Lambda}{\partial a_{i}}=\sum_{j} \frac{t_{i j}}{a_{i}}-\lambda \sum_{j} b_{j} \exp \left(-\beta c_{i j}\right)=0 \quad \text { for all } i \tag{2.15}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \Lambda}{\partial b_{j}}=\sum_{i} \frac{t_{i j}}{b_{j}}-\lambda \sum_{i} a_{i} \exp \left(-\beta c_{i j}\right)=0 \quad \text { for all } j \tag{2.16}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \Lambda}{\partial \beta}=-\sum_{i} \sum_{j} t_{i j} c_{i j}+\lambda \sum_{i} \sum_{j} c_{i j} a_{i} b_{j} \exp \left(-B c_{i j}\right) \tag{2,17}
\end{equation*}
$$

Equation (2.15) is rewritten as

$$
\begin{equation*}
\sum_{j} t_{i j}=\lambda \sum_{j} a_{i} b_{j} \exp \left(-\beta c_{i j}\right) \tag{2.18}
\end{equation*}
$$

and by summing (2.18) over i :

$$
\begin{equation*}
\sum_{i} \sum_{j} t_{i j}=\lambda \sum_{i} \sum_{j} a_{i} b_{j} \exp \left(-\beta c_{i j}\right) \tag{2.19}
\end{equation*}
$$

Combining (2.13) and (2.19) gives

$$
\begin{equation*}
\lambda=\underset{i}{\mathcal{L}}\left[\mathrm{t}_{1 J}=\mathrm{T}\right. \tag{2.20}
\end{equation*}
$$

1
Therefore, substitutang for λ into (2.15), (2.16) and (2.17), and rearranging terms results in the first order conditions on (2.12).

$$
\begin{equation*}
\sum_{j} a_{i} b_{j} \exp \left(-\beta c_{i j}\right)=\frac{1}{T} \sum_{j} t_{i j}=\sum_{j} p_{1 j} \quad \text { for all } 1 \tag{2.21}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i} a_{i} b_{j} \exp \left(-B c_{i j}\right)=\frac{1}{T} \sum_{i} t_{i j}=\sum_{i} p_{i j} \quad \text { for all } j \tag{2.22}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{i} \sum_{j} c_{i j} a_{i} b_{j} \exp \left(-\beta c_{i j}\right)=\frac{1}{T} \sum_{i} \sum_{j} c_{i j} t_{i j}=\sum_{i} \sum_{j} c_{1 j} p_{1 j} \tag{2.23}
\end{equation*}
$$

Sufficient second order conditions for the maximum are:

$$
\begin{equation*}
\frac{\partial^{2} \Lambda}{\partial a_{i}}<0, \forall_{j} \frac{\partial^{2} \Lambda}{\partial b_{j}}<0, \forall_{i} ; \frac{\partial^{2} \Lambda}{\partial \beta}<0 \tag{2.24}
\end{equation*}
$$

From (2.15), (2.16) and (2.17),

$$
\begin{array}{ll}
\frac{\partial^{2} \Lambda}{\partial a_{i}}=-\frac{1}{a_{i}^{2}} \sum_{j} t_{i j}<0 & a_{i} \in R \\
\frac{\partial^{2} \Lambda}{\partial b_{j}}=-\frac{1}{b_{j}^{2}} \sum_{i} t_{i j}<0 & b_{j} \in R \tag{2.26}
\end{array}
$$

$$
\begin{align*}
\frac{\partial^{2} \Lambda}{\partial \beta}=-\lambda \sum_{i} \sum_{j} c_{1 J}^{2} a_{1} b_{j} \exp \left(-\beta c_{1 J}\right) & <0 \tag{2.27}\\
& \text { for } a_{1}, b_{j}>0
\end{align*}
$$

Since by definition $a_{2}>0, b_{j}>0$, the second order conditions hold. Therefore, the best parameter values are attained when:
(1) the proportion of trips generated in zone i by the model agrees with the proportion observed in the sample (2.21),
(2) the proportion of trips attracted to tach zone j by the model agrees with the proportion observed in the sample (2.22), and
(3) the average generalized cost of travel is the same in both the model and the survey (2.23).

Because the maximum likelihood estimator generates as many equations as unknowns, then theoretically, the system should be solvalle for a unique set of values a_{i}, b_{j} and β. However, because of the large number of terms usually involved in the system of equations, Evans (1971, p. 30) has proposed an iterative procedure which converges to the optimum solution. Mackie (1972) has shown how the optimization methods discussed in Chapter 1 can be applied to statistics derived by the maximum likelihood estimator, to solve for the parameter values.

KIRBY'S APPROACH TO CALIBRATION

Kırby, on the other hand, assumes that the sample matrix of $t_{1,}$'s from a traffic survey is only one estimate of the number of journeys from each 1 to 3. He hypothesızes that $1 f$ the results of several andependent surveys were avallable, a mean number of journeys on each interchange could be established. However, in most circumstances, this addutional 1 nformatıon is not avaılable.

The model to be calibrated estamates the mean number of journeys from 1 to j,

$$
\begin{equation*}
\hat{t}_{i j}=a_{i} b_{j} f\left(B, c_{i j}\right) \tag{2.28}
\end{equation*}
$$

and the observation, $t_{i j}$, is regarded as belonging to a probabilaty density function with mean $\hat{t}_{i j}$. The probability $\phi\left(t_{i j}\right)$ of obtamning an observation $t_{i j}$ is assumed to depend only upon the values $t_{1 j}$, the mean $\hat{t}_{i j}$, and certain properties independent of both i and j (Kirby, 1974, p. 99), sutch as the sampling process.

Therefore,

$$
\begin{equation*}
\phi\left(t_{i j}\right)=\phi\left(t_{i j} \mid \hat{t}_{i j}\right) \tag{2.29}
\end{equation*}
$$

Kirby then finds the compound probability of obtaining the sample a matrix of trips, $\left\{t_{i j}\right\}$, which is, as defined above, the likelihood function.

$$
\begin{equation*}
L=\prod_{i j} \Pi \phi\left(t_{i j} \mid \hat{t}_{i j}\right) \tag{2.30}
\end{equation*}
$$

Sance the mean value is unknown from the observation, but is generated in the model

$$
\begin{equation*}
L=\Pi \prod_{1} \| \phi\left(t_{1 j} \mid a_{i} b_{j} f\left(B, c_{1 j}\right)\right) \tag{2.31}
\end{equation*}
$$

$$
\begin{equation*}
\log L=\sum_{i} \sum_{j} \log \phi\left(t_{i j} \mid a_{i} b_{j} f\left(\beta, c_{i j}\right)\right) \tag{2.32}
\end{equation*}
$$

Maximizing the log-likelihood maximizes the compound probability of obtaining the base year matrix of journeys (Kirby, 1974, p. 99). Solving the first order conditions with respect to the unknowns yields parameter values which maximize (2.32). These are

$$
\begin{align*}
\frac{\partial \log L}{\partial a_{i}} & =\frac{\partial \log \phi}{\partial \hat{t}_{i j}} \cdot \frac{\partial \hat{t}_{i j}}{\partial a_{i}} \\
& =\sum_{j} \frac{\partial \log _{i}}{\partial \hat{t}_{i j}} b_{j} f\left(B, c_{i j}\right) \\
& =\frac{1}{a_{i}} \sum_{j} \frac{\partial \log _{j}}{\partial \hat{t}_{i j}} \cdot \hat{t}_{i j}=0 \tag{2.33}\\
\frac{\partial \log L}{\partial b_{j}} & =\frac{1}{b_{j}}\left[\frac{\partial \log _{i} \phi}{\partial \hat{t}_{i j}} \quad \hat{t}_{i j}=0\right. \tag{2,34}
\end{align*} \quad \text { for all i, } \quad \text { for all,j, } \quad l
$$

$$
\begin{align*}
& \frac{\partial \log L}{\partial \beta}=\frac{\partial \log \phi}{\partial \hat{t}_{i j}} \cdot \frac{\partial \hat{t}_{1 \eta}}{\partial \beta} \\
& =\sum_{i} \sum_{j} \frac{\partial \log \phi}{\partial \hat{t}_{1 j}} a_{i} b_{j} \frac{\partial f}{\partial B} \\
& =\sum_{i} \sum_{j} \frac{\partial \log _{i j} \hat{t}_{i j}}{\hat{t}_{i j}} \cdot \frac{\partial f}{\partial \beta} \\
& ==\sum_{i} \sum_{j} \frac{\partial \log \phi}{\partial \hat{t}_{i J}} \hat{t}_{i j} \frac{\partial \log f}{\partial f} \cdot \frac{\partial f}{\partial \beta} \\
& =\sum_{i} \sum_{j} \hat{t}_{i j} \frac{\partial \log \phi}{\partial \hat{t}_{i j}}\left(\frac{\partial \log f}{\partial \beta}\right)=0 \tag{2.35}
\end{align*}
$$

If the a_{i} and b_{j} are defined to be strictly positive, i.e., each zone attracts and generates interzonal trips, the conditions for optimum parameter estimation become:

$$
\begin{align*}
& \sum_{j} \frac{\partial \log \phi}{\partial \hat{t}_{i j}} \cdot \hat{t}_{i j}=0 \tag{2.36}\\
& \sum_{i} \frac{\partial \log \phi}{\partial \hat{t}_{i j}} \cdot \hat{t}_{i j}=0 \\
& \sum_{i} \sum_{j} \hat{t}_{i j} \frac{\partial \log _{i j}}{\partial \hat{t}_{i j}}\left(\frac{\partial \log f}{\partial \beta}\right)=0
\end{align*}
$$

Assume the probability density function of the variable $t_{1 j}$ to be Poisson. Then,

$$
\begin{equation*}
\left.r_{\phi\left(t_{i j}\right.} \mid \hat{t}_{i j}\right)=\frac{\left.\hat{(t}_{i j}\right)^{t_{1 j}}}{t_{1 j}!} \exp \left(-\hat{t}_{1 j}\right) \tag{2.39}
\end{equation*}
$$

By substituting (2.39) into (2.36), (2.37) and (2.38), first order condotions for the maximum likelihood estimator are derived.

$$
\sum_{j} \frac{\partial}{\partial \hat{t}_{i j}}\left(\left(-\hat{t}_{i j}\right)+t_{i j} \log \hat{t}_{i j}-\log t_{i j}!\right] \hat{t}_{i j}=0
$$

$$
\sum_{j}\left(-1+\frac{t_{i j}}{\hat{t}_{i j}}\right) \quad \hat{t}_{i j}=0
$$

$$
\begin{equation*}
\sum_{j}\left(-\hat{t}_{i j}+t_{i j}\right)=0 \tag{2.40}
\end{equation*}
$$

$$
\text { for all } i
$$

Similarly,

$$
\begin{equation*}
\sum_{i}\left(-\hat{t}_{i j}+t_{i j}\right)=0 \tag{2.41}
\end{equation*}
$$

for all j
and

$$
\begin{equation*}
\sum_{i} \sum_{j}\left(-\hat{t}_{i j}+t_{i j}\right) \frac{\partial \log f}{\partial \beta}=0 \tag{2.42}
\end{equation*}
$$

Providing an appropriate transformation is made on the cost funct:on, $\log f\left(\beta, c_{1 J}\right)$, the statistics derived from Kırby's apmroach are identical to the statistics derived by Evans (1971), although the two are developed on different mathematical frameworks.
-

ASSUMPTIONS OF THE TWO DERIVATIONS

In order to understand why the two approaches yaeld the same conditions on the parameters, it is necessary to look into the assumptions, both implıcit and explıcıt, made by both Evans (1971) and Kırby (1974) about the sample data.

Evans (1971) examines the macro-state of the distribution. He 25 interested in finding the joint probability of observing a given matrix of trips, and he defines this to be a multinomal denisity function, assuming that the sample proportions, $p_{i j}$, differ from the mean $\hat{p}_{i j}$ by reason of chance arising in the sampling of trips (Evans, 1971, p. 23). Thus, for the multinomial, the distribution variable is defined as a probability. Maximization of the density function with respect to the parameters, after applying the required constraint on the variable $\left(\sum_{i} \sum_{j} p_{i j}=1\right)$, yields conditions for deriving optimum parameter estimates. Evans, therefore, is explicitly assuming the variation of trips between each $i-j$ interchange to be a product of chance in the sampling process.

Kirby (1974), on the other hand, examines the micro-states of the distribution. The maximum likelihood estimator requires certain assumptions, whether explicit or implicit, made upon the nature of the distribution of trips between each i-j pair. Kirby (1974, p. 99) calls this
the sampling distribution. However, it is more appropriate to define the nature of the distribution to be a probability density function of the variable $t_{1 j}$, to avoid confusing the terminology with the trip distribution, derived by the model, or with sampling theory.

Therefore, the probability density function must be known in order to use the likelihood function to estamate the parameters. This density function describes the probability that the value of $t_{1 j}$, will be observed between a given $1-j$ pair. The lakelihood is found by taking the compound probability of the density functions describing the mıcro-states. The parameters, thus derived, generate a macro-state distrıbution. If the poisson density function describes the variation of $t_{i j}$ in the micro-states, the maxımum likelihood estimator derives 1 dentical conditions for optimum parameter values to Evans' (1971) method of maximizing the likelihood of the multinomial density function. This may be explained by reexamining the assumptions which Evans (1971) makes about the variation of trips between each i-j interchange.

By assuming the joint probability of the observation to be multanomial; Evans (1971), contrary to his assumption of random error in sampling, is implicitly assuming the probability density function for a simple interchange to be binomial. Thus, the trip proportions are from a probability density function with mean

$$
\begin{align*}
\mu & =T \hat{p}_{i j} \tag{2.43}\\
& =\hat{t}_{i j} \tag{2.44}
\end{align*}
$$

and variance

$$
\begin{align*}
\sigma^{2} & =T \hat{p}_{i j}\left(1-\hat{p}_{1 j}\right) \tag{2.45}\\
& =\hat{t}_{i j}\left(1-\hat{p}_{i j}\right) \tag{2.46}
\end{align*}
$$

Kırby (1974) in assuming the variation of trips between each 1-J interchange to be Poisson, is implyıng a probabılity density function with mean

$$
\begin{equation*}
\mu=\hat{t}_{i j} \tag{2.47}
\end{equation*}
$$

and variance

$$
\begin{equation*}
\sigma^{2}=\hat{t}_{i j} \tag{2.48}
\end{equation*}
$$

Identical conditions for optimum parameter values have been deduced from both approaches, even though there is a fundamental contradiction in the variance of travel on each $i-j$ pair. However, the difference between the two probability density functions describing the microstates may not be significant, because the variance of the binomial density function, implied in the multinomial, approaches the mean $\hat{t}_{i j}$ as $\hat{p}_{i j}$ approaches zero. This means that if the number of interchanges in the system is large and the proportion of trips (which equals $\frac{\hat{t}_{i j}}{\sum \sum \hat{t}_{i j}}$)

on each interchange $1 s$ small, the density functions are approximately the same. Freeman (1963, p . 105) suggests that practical working values for N and $\hat{p}_{i j}$ are $N>50$ and $\hat{p}_{1 J} \leq 0.10$. A system of n zones generates $N=n^{2}$ interchanges. Therefore, for a large number of zones, the $F_{1 j}$ may bmall enough for the assumptions made by the two approaches to be equivalent.

The assumption of a foisson or binomial density function describing the variation of $t_{2 j}$ on each interchange gives a, statement about the variation of travel between the two zones. Kırby (1974, p. 99) relates the density function to trip purpose, and asserts that one expects to observe a greater variance for certain trip purposes, such as shopping or recreational travel, than more regular travel patterns, such as the journey-to-work.

Statistıcal condations derived by the maxımum likelıhood estımator, with the implicit assumption of a poisson distribution describing the variation of travel, are usually employed in model calibration of work trips (Batty and Mackie, 1973; Batty, Foot, et al., 1973, p. 359). Although the poisson is known to describe the variation of traffic on a road reasonably well (Kirby, 1974, p. 103), and interzonal travel might vary in a similar manner, it is possible that the Poisson has too great a variance to accurately portray the variation of journey-to-work trips.

Kirby (1974, p. 101) suggests that other statistics, based on different density functions, which can also be derived by the maximum likelihood estimator, may be more appropriate for modelling journey-to-
work travel. One needs to examine the higher moments of $t_{1 j}$, disaggregated by trip purpose in order to derive the appropriate statistics against which to callbrate the model.

GENERAL CONDITIONS REQUIRED BY THE MAXIMUM LIKELIHOOD LSTIMATOK

The conditions derıved by the maxımum likelihood estimator define statistics which are calibrated against the model to derıve "best" parameter estimates. Because the statıstics are derived from statistical estimation theory, they yield the most pertinent irformation from the sample data to $\stackrel{F}{F}$ ve the model a best fit to the survey. For the single parameter spatial interaction model, the maximum likelıhood estimator yields $2 n+1$ condations for the $2 n+1$ unknowns. The first $2 n$ conditions (equations (2.36) and (2.37)) require the balancing factors, a_{i} and b_{j}, to be such that some function of the trip-origins and trip-ends generated by the model agree with the same function of origins and destinations in the sample. The actual form of the function is dependent upon the probability density function which describes the variation of the variable, $\hat{t}_{i j}$. The statistic derived to calibrate the parameter, β, (equation (2.38)) is dependent on the density function of $\hat{t}_{i j}$, and some function of travel cost between zones i and j.

The cost function describes the generalized cost of travel between each i-j pair and is some combination of distance, time and direct money charges to the trip-maker (Evans, 1973, p. 40). It is assumed to have the following properties:
and

$$
\begin{equation*}
\frac{\partial^{2} f}{\partial c_{1 J}}>0 \tag{2.50}
\end{equation*}
$$

As the cost of travel between two zones increases, the cost function decreases the number of journeys between the zones, ceteris paribir: and the function decreases such that the amount of travel between two zones decreases at a decreasing rate.

For a given probabılıty dansity function, several statistics related to generalized cost can be derived. If the generalızed cost function is defined as:

$$
\begin{equation*}
f\left(B, c_{i j}\right)=\exp \left(-B h\left(c_{i j}\right)\right) \tag{2,51}
\end{equation*}
$$

where h is some transformation on the generalized cost of travel, then, using Kirby's general conditions and assuming the density function of $\hat{t}{ }_{1}$ to be Poisson, the calibration statistic is derived as follows. From equation (2.42)

$$
\begin{align*}
& \sum_{i} \sum_{j} \hat{t}_{i j} \frac{\partial \log f\left(\beta, c_{i j}\right)}{\partial \beta}=\sum_{i} \sum_{j} t_{i j} \frac{\partial \log \cdot f\left(\beta, c_{i j}\right)}{\partial \beta} \tag{2.52}\\
& \sum_{i} \sum_{j} \hat{t}_{i j} h\left(c_{i j}\right)=\sum_{i} \sum_{j} t_{i j} h\left(c_{i j}\right) \tag{2.53}
\end{align*}
$$

Hyman (1969, F. 109) derives calibration statastacs for several cost functions and argues that each function may be appropriate for different trap furpoots. He suggests the exponential model

$$
f\left(B, c_{1}\right) \quad \text { txp }\left(\begin{array}{ll}
\left.-6 c_{2}\right) \tag{2.54}
\end{array}\right)
$$

1.t.,

$$
\begin{equation*}
h_{1 j}\left(c_{1 j}\right)=c_{i j} \tag{2.55}
\end{equation*}
$$

as an appropriate measure of cost in the journey-to-work. This transformation $1 s$ often used for this purpose in modelling applications (Wilson, et al., (1969), p. 339), and it is this cost functaon which makes Kirby's callbration statistics equivalent to Evans' (1971). The calibration statistic derived under the assumption of a Poisson density function describing the variation of $t_{i j}$ over each interchange yields, from (2,53) and (2.55)

$$
\begin{equation*}
\sum_{i} \sum_{j} \hat{t}_{i j} c_{i j}=\sum_{i} \sum_{j} t_{i j} c_{i j} \tag{2,56}
\end{equation*}
$$

since

$$
\begin{equation*}
\sum_{i} \sum_{j}^{i} \hat{t}_{i j}=\sum_{i} \sum_{j} t_{i j}=T \tag{2.57}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\sum_{i} \sum_{j} \hat{t}_{i j} c_{i j}}{T}=\frac{\sum_{i} \sum_{j} t_{2 j} c_{i j}}{T} \tag{2.58}
\end{equation*}
$$

'therefore,

$$
\begin{equation*}
\sum_{i} \sum_{j} \hat{p}_{i j} c_{1 j}=\bar{c} \tag{2.59}
\end{equation*}
$$

The parameter B is calibrated against the mean trip cost, and is at its optimum value when the mean trip cost predicted by the model equals the mean trip cost observed in the sample.

In general, if the probability density function is assumed to be Poisson, the likelihood estimator calibrates the parameter β against the mean value of the transformation on cost. Optimum conditions state that the mean value of the cost transformation generated in the model must equal the mean value of the transformation observed in the sample: It will be shown in the next chapter, that a different density function, the normal, yields other statistics.

To summarize, the balanoing factors of the spatial interaction models are determined by statistics describing the variation of the $t_{\text {if }}$. The model parameter, β, is calibrated to a statistic which is a function of the probability density function of the $t_{i j}$, and the deterence function, which is a measure of the cost of travel between two zones. Tho work of Hyman (1969) and. Kirby (1974) relates the doterence function and density function to trip purpose. Since different combinations of these functions yiold different calibration statistics, one
particular combination may be the more appropriate against which to calibrate the parameter, depending upon the trip purpose beang modelled.

SUMMARY

This chapter has discussed the maximum likelihood approach to parameter estimation. It has argued that parameter calibration is a problem of point estimation, not hypothesis evaluation, and has reviewed the different mathematical approaches of Evans (1971) and Kirby (1974). It has been found that the same key conditions are derived by the two mathematical approaches.

The chapter has looked at the implicit and explicit assumptions that each approach makes on the sample data, and it has been found that in the context of spatial interaction modelling, the assumptions are approximately the same. The chapter concludes by examining the various calibration statistics which can be generated by altering the assumptions made on the variable $t_{i f}$ and the trip cost, and notes that a particular statistic may be better suited for the calibration of a specific trip purpose.

CHAPTER 3

THE LEAST SQUARES METUOD OF PARAMETER ESTIIMATION

INTRODUCTION

This chapter will examine another approach to point estimation which has been applied in the context of spatial interaction models. This is the method of least-squares. As in the previous chapter on maximum likelihood, it will briefly outline the general principles of the ledst-squares estimator. This will be followed by an application of Ceast-squares to the parameter calibration problem through an outline of the work of Cesario (1975). The advantage of this estimator . will then be shown by developing the same calibration statistics as least-squares by the maximum likelihood estimator. It will be shown that maximum likelihood makes very stringent assumptions about the data to derive the same calibration statistics as least-squares, and that any less strict assumptions about the data result in different calibration statistics. The chapter will conclude by interpreting the least-squares statistics in the context of spatial interaction modelling and will suggest situations when the least-squares estimator is appropriate in moded calibration.

Consider n random variables with known and possibly different means and known and possibly different variances. The variable t_{i}, can be thought of as the outcome of a random sample of size 1 from a population with mean

$$
\begin{equation*}
\hat{t}_{i j}=f\left(\mu_{k}\right) \tag{3.1}
\end{equation*}
$$

and variance, σ^{2}, where μ_{k} represent the parameters of the model. The observation can thus be represented by

$$
\begin{equation*}
t_{i j}=\hat{t}_{i j}+\theta_{i j} \tag{3.2}
\end{equation*}
$$

where $\theta_{i f}$ is an error term.
The least-squares principle states that the best linear unbiased estimator of the parameters, μ_{k}, is the one which minimizes the doviations of the sample variance, defined by

$$
\begin{equation*}
e_{i j}^{2}=\left(t_{i j}-\hat{t}_{i j}\right)^{2} \tag{3,3}
\end{equation*}
$$

The estimates for the parameters are chosen so that when substituted into (3.3), 1.0.,

$$
\begin{equation*}
s=\sum_{i} \sum_{j} e_{i j}^{2}=\sum_{i} \sum_{j}\left(t_{i j}-f\left(\mu_{k}\right)\right)^{2} \tag{3.4}
\end{equation*}
$$

they produce the least possible value for S.
The first order condition for (3.4) being a minımum is:

$$
\begin{equation*}
d s=0 \tag{3,5}
\end{equation*}
$$

Sufficient second order conditions require:

$$
\begin{equation*}
d^{2} s \text { positive definite } \tag{3.6}
\end{equation*}
$$

Therefore, the optimum values of the parameters, μ_{k}, are derived when

$$
\begin{equation*}
\frac{\partial}{\partial \mu_{1}} \sum_{i} \sum_{j}\left(t_{i j}-f\left(\mu_{k}\right)\right)^{2}=\frac{\partial}{\partial \mu_{r}} \sum_{i} \sum_{j}\left(t_{i j}-f\left(\mu_{k}\right)\right)^{2}=0 \tag{3.7}
\end{equation*}
$$

and the principal minors, $\left|H_{1}\right|, \ldots,\left|H_{r}\right|$, of the bordered Hessian,

$$
|H|=\left|\begin{array}{llll}
\frac{\partial^{2} S}{\partial \mu_{1}} & \cdots & \cdot & \frac{\partial^{2} S}{\partial \mu_{1} \partial \mu_{r}} \tag{3.8}\\
\cdot & \cdot & \cdot & \cdot \\
\cdots & \cdot & \cdot & \cdot \\
\frac{\partial^{2} S}{\partial \mu_{r} \partial \mu_{1}} & \cdots & & \frac{\partial^{2} s}{\partial \mu_{r}^{2}}
\end{array}\right|
$$

are greater than zero.
The least-squares estimator has several properties which make it the best linear unbiased estimator of the parameters, μ_{k}, and the reader is referred to Freeman (1963, p, 265) and wonnacott and wonnacott (1970, pp. 21-30) for a discussion of these characteristics. Specifically, it is called the "best" Innear unbiased estimator because the estimates of the μ_{k} havo minimuin varionoe (soe Freoman, 1965, p. 265) for a note on the correspondence botwoon "best" and minimum variance).

Let us now examine the application of the least-squares approach In the spatial interaction context.

THE dEVELOPNENT OF CALIBRATION STATISTICS IROM THE MLTHOD qF LEAST-SQUARES: CESAKIO'S APPROACH

Cesar1o (1975) approaches the problem by considering a set of observations $\left\{t_{i j}\right\}$ and an ostimate for the mean values of $t_{i j}$,

$$
\begin{equation*}
\hat{t}_{i j}=a_{i}, b_{j} f\left(\beta, c_{i j}\right) \tag{3.9}
\end{equation*}
$$

where a_{i}, b_{j} are balancing factors and β is the parametor of the model which must be estimated.

The least-squares principle requires the minimization of the sum of squared residuals. Therefore, minimize

$$
\begin{align*}
s & =\sum_{i} \sum_{j}\left(t_{i j}-\hat{t}_{i j}\right)^{2} \tag{3,10}\\
& =\sum_{i} \sum_{j}\left(t_{i j}-a_{i j} b_{j} f\left(B, c_{i j}\right)\right)^{2} \tag{3.11}
\end{align*}
$$

First ordef conditions for the minimization of S require:

$$
\begin{equation*}
\frac{\partial s}{\partial a_{i}}=\frac{\partial}{\partial a_{i}}\left[\sum_{i} \sum_{j}\left(t_{i j}-a_{i} b_{j} f\left(\beta, c_{i j}\right)\right)^{2}\right]=0 \tag{3.12}
\end{equation*}
$$

$$
2 \sum_{j}\left(t_{i j}-a_{i} b_{j} f\left(\beta, c_{i j}\right)\left(-b_{j} f\left(\beta, c_{i j}\right)\right)=0\right.
$$

Upon rearranging terms

$$
\begin{equation*}
a_{i} \sum_{j} b_{j}^{2} f\left(B, c_{i j}\right)^{2}-\sum_{j} t_{i j} b_{j} f\left(B, c_{i j}\right)=0 \tag{3.13}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{j} \hat{t}_{i j}^{2}-\int_{j} \hat{t}_{i j} t_{i j}=0 \quad \text { for all } i \tag{3.14}
\end{equation*}
$$

Similarly

$$
\begin{align*}
& \frac{\partial S}{\partial b_{j}}=\frac{\partial}{\partial b_{j}}\left[\sum_{i} \sum_{j}\left(t_{i j}-a_{i} b_{j} f\left(B, c_{i j}\right)\right)^{2}\right]=0 \tag{3.15}\\
& b_{j} \sum_{i} a_{i}^{2} f\left(B, c_{i j}\right)^{2}-\sum_{i} t_{i j} a_{i} f\left(\beta, c_{i j}\right)=0 \tag{3.16}
\end{align*}
$$

or

$$
\begin{equation*}
\sum_{i} \hat{t}_{i j}^{2}-\sum_{i} \hat{t}_{i j} t_{i j}=0 \quad \text { for all } j \tag{3.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\partial S}{\partial B}=\frac{\partial}{\partial B}\left[\sum_{i} \sum_{j}\left(t_{i j}-a_{i} b_{j} f\left(\beta, c_{i, j}\right)\right)^{2}\right]=0 \tag{3.18}
\end{equation*}
$$

$$
\begin{align*}
& 2 \sum_{i} \sum_{j}\left(t_{1 j}-a_{i} b_{j} f\left(\beta_{i}, c_{2 j}\right)\right)\left(-a_{1} b_{j} \frac{\partial f}{\partial \beta}\right)=0 \\
& \sum_{i} \sum_{j} a_{i}^{2} b_{j}^{2} f\left(\beta, c_{i j}\right) \frac{\partial f}{\partial \beta}-\sum_{i} \sum_{j} t_{1 j} a_{i} b_{j} \frac{\partial f}{\partial \beta}-0 \tag{3.19}
\end{align*}
$$

or

$$
\begin{equation*}
\sum_{i} \sum_{j} \hat{t}_{i j} 2 \frac{\partial \log f}{\partial \beta}-\sum_{i} \sum_{j} \hat{t}_{i j} t_{i j} \frac{\partial \log f}{\partial \beta}=0 \tag{3.20}
\end{equation*}
$$

Sufficient conditions for S to be a minimum exist if the secondorder conditions (3.8) are satisfied.

$$
\begin{align*}
& \frac{\partial^{2} s}{\partial a_{i}^{2}}=\sum_{j} b_{j}^{2}-f\left(\beta, c_{i j}\right)^{2}>0 \tag{3.21}\\
& i \frac{\partial^{2} S}{\partial b_{j}^{2}}=\sum_{i} a_{i}{ }^{2} f\left(\beta, c_{i j}\right)^{2}>0 \tag{3.22}\\
& \frac{\partial^{2} s}{\partial \beta^{2}}=\frac{\partial^{2}}{\partial \beta^{2}} \sum_{i j} \sum_{j}\left(t_{i j}-\hat{t}_{i j}\right)^{2} \\
& =\sum_{i} \sum_{j}\left[a_{i} b_{j}\left(\frac{\partial^{2} f}{\partial B^{2}}+f \frac{\partial^{2} f}{\partial B^{2}}\right)\right]-\sum_{i} \sum_{j} t_{i j} a_{i} b_{j} \frac{\partial^{2} f}{\partial \beta^{2}} \\
& =\sum_{i} \sum_{j} a_{i} b_{j} \frac{\partial^{2} f}{\partial \beta^{2}}\left(a_{i} b_{j}+a_{i} b_{j} f\right)-\sum_{i} \sum_{j} a_{i} b_{j} \frac{\partial^{2} f}{\partial \beta^{2}} t_{i j} \\
& =\sum_{i} \sum_{j} a_{i} b_{j} \frac{\partial^{2} f}{\partial \beta^{2}}\left(a_{i} b_{j}+\hat{t}_{i j}\right)-\sum_{i} \sum_{j} a_{i} b_{j} \frac{\partial^{2} f}{\partial \beta}\left(t_{i j}\right)>0 \tag{3.23}\\
& \text { for } a_{i}, b_{j}>0 \text { all } 1, j \text {. }
\end{align*}
$$

The first order conditions yield $2 n+1$ equations for the $2 n+1$ unknowns so a unique solution exists. However, because of the non-lınear character of the $2 n+1$ normal equations, Cesario (1975, p, 14) devises an iterative procedure which converges to the optimum solution.

Also, the first order conditions differ from the conditzons derived by the maximum lakelihood estimator in the previous chapter. Instead of requiring correspondence of trip-end and trip-origin totals, consistency is achieved on the sum of squares of the row and column elements (Cesario, 1975, p. 15). The parameter β is calibrated against a more complex statistic (equation (3.20)), which is a function of the squared trip matrix elements, and of the generalized cost function.

A purpose of this chapter, as previously stated, is to examine the assumptions made by the least-squares estimator on the data $\left\{t_{i j}\right\}$, and to compare these assumptions with those of the maximum likelihood estimator. This discussion will lead to an assessment of the behavioral hypotheses implied in maximum likelihood assumptions.

ASSUMPTIONS OF THE LEAST-SQUARES APPROACH AND A COMPARISON TO MAXIMUM LIKELIHOOD

The calibration statistics derived from the method of least-squares (equations (3.14), (3.17), and (3.20)) yield unbiased parameter values with minimum variance. The significance of this property is that it can be proved by the Gauss-Markov theorom on a very waak set of assumptions (Wonnacott and Nonnacott, 1970, pp. 48-51). Spacifically, the leastsquares estimator requires no assumption about the shape of the density

置
function of the error term (Wonnacott and Wonnacott, 1970, p. 21). This means the estimator requires no information about the density function of the variable $t_{1 j}$.

The importance of thas assumption can be shown by developing identleal calibration statistics as those of least-squares, by the method of maxamum likelihood. Since the maximum likelihood estimator requares the probability density function of $t_{i j}$ to be known, then the assumption on the denstiy function by maximum likelinood can be examined to compare the two methods of point estimation.

Let us consider the distribution of the observation, $t_{i j}$. If the probability density function of this variable is assumed to be normal, with mean $\hat{t}_{i j}$, the probability of obtaining the observation $t_{i j}$ is

$$
\begin{equation*}
\phi\left(t_{i j} \mid \hat{t}_{i j}\right)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\left(t_{i j}-t_{i j}\right)^{2} / 2 \sigma^{2}\right] \tag{3.24}
\end{equation*}
$$

Using the general maximum likelihood conditions developed by Kirby (1974, p. 100), and upon substituting the probability density function defined above, the following first order conditions for optimum parametor values result.

$$
\begin{align*}
& \sum_{j} \frac{\partial \log \phi}{\partial \hat{t}_{i j}} \hat{t}_{i j}=\sum_{j}\left(t_{i j}-\hat{t}_{i j}\right) \hat{t}_{i j}=0 \quad \text { for all } i \tag{3.25}\\
& \sum_{j}\left(t_{i j}-\hat{t}_{i j}\right) \hat{t}_{i j}=0 \quad \text { for all } j \tag{3.26}\\
& \sum_{i} \sum_{j}\left(t_{i j}-\hat{t}_{i j}\right) \hat{t}_{i j} \frac{\partial \log I}{\partial \beta}=0 \tag{3.27}
\end{align*}
$$

The conditions (3.25), (3.26) and (3.27) are 1 dentical to the leastsquares conditions (equations (3.14), (3.17) and (3.20)) agarnst whach to calmbrate farameter values. However, in order to derive these identheal conditions, where the least-squares estimator makes no assumptions about the data, the maximum likelihood estimator must assume the $t_{1 j}$ to be normally distrabuted wath comon, constant variance.

The assumption of a normal probabllaty density function for $t_{1 y}$ is not at issue here. Several properties of the normal make it an appealing density function to assume in the context of spatial interaction modelling. First, the normal is a reasonable description of the behavior of many observable phenomena, and its application is generally a valid description of observable data (Freeman, 1963, p. 14l). Second, the normal probability density function is the limiting form of many other density functions, including the polsson. The noprat approximates other probability density functions when the mean, is large (Wetherill, 1967, p. 71). Since the $\hat{t}_{i j}$ on many interchanges are likely to be large values, i.e., $\hat{t}_{i j} \geq 30$, the normal-will reasonably approximate the data (Freund, 1952, p. 233). There are some inconsistencies if the $t_{\text {if }}$ are assumed. normally distributed, such as the assumption of the variable being continuous when in fact it is discrete, and the allowance of negative values of the variable $t_{i j}$ when the mean is small. However, the maximum likelihood estimator places a severe restriction on the varionce of the $t_{j j}$ when the density function is assumed normal. Conditions identical to least-squaros can only bo derived by maximum likelihood if the variance of each $t_{i j}$ is constant and equal over all interchangas. Since tho moans $\left(\hat{t}_{i j}\right)$ can diffor by sovoral hundred trips,
this assumption about the variance is not reasonable. If we attempt to relax this restriction on the variance by assuming it to be proportional to the mean, 1.e.,

$$
\begin{equation*}
\sigma_{i j}^{2}=\alpha^{2} \hat{t}_{i j}^{2} \tag{3.28}
\end{equation*}
$$

where a is the coefficient of variation, a different set of conditions is derived. Since the probability density function of the variable $t_{i j}$ is now:

$$
\begin{equation*}
\phi\left(t_{i j} \mid \hat{t}_{i j}\right)=\frac{1}{\alpha \hat{t}_{i j} \sqrt{2 \pi}} \exp \left[-\left(t_{i j}-\hat{t}_{i j}\right)^{2} / 2 \alpha^{2} \hat{t}_{i j}^{2}\right] \tag{3.29}
\end{equation*}
$$

then

$$
\log \phi=-\frac{1}{2 \alpha^{2}}\left[\frac{\left(t_{i j}-\hat{t}_{i j}\right)^{2}}{\hat{t}_{i j}^{2}}\right]-\log \hat{t}_{i j}-\log \alpha-\log \sqrt{2^{\prime \prime}}
$$

Using the method of maximum likelihood, the first order conditions for optimum parameter estimates are from equations (2.36), (2.37) and (2.38):
all i

Simplarly

$$
\begin{equation*}
\sum_{i}^{t_{i j}} \frac{t_{i j}}{\hat{t}_{i j}}\left(\frac{t_{1 j}}{t_{i j}}-1\right)=\sum_{i} a^{2} \quad \text { all } \tag{3.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i} \sum_{j}\left[\frac{t_{i j}}{\hat{t}_{i j}}\left(\frac{t_{i j}}{\hat{t}_{i j}}-1\right)\right] \frac{\partial \log f}{\partial \beta} w \sum_{i} \sum_{j} \alpha^{2} \frac{\partial \log f}{\partial \beta} \tag{3.33}
\end{equation*}
$$

Furthermore, the coefficient of variation must be ostimated.

$$
\begin{equation*}
\frac{\partial \log f}{\partial \alpha}=\frac{\partial}{\partial \alpha} \sum_{1} \sum_{j} \log \phi \theta_{0} 0 \tag{3.34}
\end{equation*}
$$

$$
\begin{aligned}
& \sum_{j} \frac{\partial \hat{l o g}_{i j} \phi \hat{t}_{1 j}}{\partial \hat{t}_{i j}}=0 \\
& \sum\left[-\frac{1}{2 \alpha^{2}}\left(-\frac{2 t^{2}}{\frac{t^{3}}{i j}}+\frac{2 t_{12}^{2}}{t_{i j}^{2}}\right)-\frac{1}{t_{1 j}}\right] \hat{t}_{1 j}=0 \\
& \sum_{j} \frac{1}{a^{2}}\left(\frac{t^{2} i j}{t^{2}}-\frac{t_{i j}}{t_{i j}}\right)-1=0 \\
& \sum_{j}^{t_{i j}}\left(\frac{t_{i j}}{t_{i j}}-1\right)=\underset{j}{t_{i j}} \underset{j}{2}
\end{aligned}
$$

$$
\begin{align*}
& \frac{\partial}{\partial a} \sum_{i} \sum_{j}\left[-\frac{1}{2} \alpha^{-2}\left(t_{i j}^{2} \hat{t}_{i j}^{-2}-2 t_{i j} \hat{t}_{i j}^{-1}+1\right)-\log \hat{t}_{i j}\right. \\
& -\log \alpha-\log \sqrt{2 n}] .-0 \\
& \sum_{i j} \sum_{j} \frac{1}{a^{3}}\left(\frac{t_{i j}}{t_{i j}}-1\right)^{2}-\frac{1}{a}-0 \\
& \sum_{i j} \sum_{j}\left(\frac{t_{i j}}{t_{i j}}-1\right)^{2}-\sum_{i} \sum_{j} a^{0} \tag{3.35}\\
& \left.a^{2}=\frac{1}{1} \sum_{i}^{1} \sum_{j} \frac{t_{1 j}}{t_{i j}}-1\right)^{2} \tag{3.36}
\end{align*}
$$

The $n+2$ conditions are derived by tho method of maximum likelihood on the agsumption of normally distributed varlables, $t_{i j}$, with moan $\hat{t}_{i f}$ and vardance

$$
\begin{equation*}
o_{i j}^{2}=\frac{1}{T} \sum_{1 j} \sum_{j}\left(\frac{t_{d 1}}{x_{d j}-1} t_{d j}\right) \hat{t}_{i j}^{2} \tag{3.37}
\end{equation*}
$$

It can be aeen that the maximum dikedihood eatimator can only derive the aame conditiona for optimum paramoter calibxation as the principle e of least-aquarea, if the variabloa $t_{\text {if }}$ are anamed to be normally diatritbuted with a common, conatant varianoe. Whe leant-aguarea eatimator derive theae game conditiona, although it makon no aasumptiona about the data.

Draper and Smith (1966. pp, 60-61) auggeat the maximum 11kelihood oatimator ag boing appropriate if tho dangity function of tho variable La known, aince the conditiona derived for optimum paramoter valuoa will
\therefore
will be different than least-squares conditions, with the excoption of a nomal probability density function with common, constant variance for all variablea. If the donaity function is not known, however, leastsquares is the better estimator to use, Ihis is oxactly what Kirby (1974, p. 102) states. The least-squares esitimator is appropriato if nothing is known about the sampling distribution lmoaning probability donaity function of the variable $t_{i f}$.

Howover, the comparison of assumptions by the two ostimators, to derive identical calibration atatistica, suggesta that tho maximum likolíhood assumptiona roquire an overapocification of the data to derivo calibration atatiaticg. Since the loastnaquares eatimator makes no asaumption about tho varlable, $t_{i j}$, there ia no bohavioral hypothoala rolating to trip purpose impliod in the oalibration atatiatica. The maximum likelihood eatimator, on tho othar hand, must mako a atringent, if not uncoaligtic, agsumption about tho nature of the probability donalty function of $t_{i j}$. If tho assumption la not nocosaary, then porhapa tho bohavioxal hypotheaes "emboddod" in calibration atatia* tioa aro not at lasue, and showid not bo conalderod whon oatimating paramotoro for difforont trip purposeg, If thio is tho oasor then trip purpose should only bo a factor in the generalizad cost function.

STAIISTICAL CONDIMIONS REQUIRED BY THE

LEASI'-SQUARES ES'TIMAIOR

The conditions derived by loast-squares, defining gtatistics againgt which the model paramoters aro calibrated, are more complex than maxdmun likolifood conditions, Because the conditiona are functions of tho sums of the aquared row and colum olementa, tho calibration atatigtica cannot bo diroctly rolatod to obaervablo phonomeva in the eample matrix.

Conaldor the calibration atatiatic derived by leant-gquareu for the parameter β

$$
\begin{equation*}
\sum_{i} \sum_{j}^{*} \hat{t}_{i j} 2 \frac{\partial \log f}{\partial \beta}-\sum_{i} \sum_{j} \hat{t}_{i j} t_{i j} \frac{\partial \log f}{\partial \beta} \tag{3.38}
\end{equation*}
$$

If wo apply the aame tranaformation on the genoraliaed cout function aa In the provious chapter,

$$
\begin{equation*}
f\left(\beta, \alpha_{1 f}\right) \omega \exp \left(-\beta n\left(\alpha_{1 y}\right)\right) \tag{3,39}
\end{equation*}
$$

oquation (3.38) bocomoa

$$
\begin{equation*}
\sum_{i} \sum_{j} \hat{t}_{d j}^{2} n\left(o_{d j}\right)=\sum_{d j} \hat{t}_{d j} t_{d j} n\left(o_{i j}\right) \tag{3.40}
\end{equation*}
$$

Laastmequarea conditiona do not onlibrate a againat a man value that oan bo oaloulatod from tho data, as in maximum idkolihood conditiona, aface tho modaj prodictiona, $\hat{t}_{i j}$, ontor both addos of the ocruation (1,0.,

(3.41)).

The sonsitivity of the calibration atatistic has not been discussed In tho IItoraturo, although tho least-squares astimator has boon uaed to calibrato doubly conatralned spatial interaction modols ('lamor, 1961, Cogario, 2975). Howevor, Turner (1970) roports that paramoter valuea for aingly conatrainod intoraction modela, calibratod by laatsquaran, may converge to a local optimum, giving a falae aolution (Batty and Mackio, 1972, p. 210).

In general, the leaut-squares eatimator calibratos the paramotor against a atatiatic which ds a function of the modud predictions, t_{i} ' the observation, $t_{1 j}$, and the tranaformation on cost, the latter boing asaumed to be opocific to trip purpose (Hyman, 1969, p, 109). The balanolng factora, a_{1} and b_{y} are dotermined no that thore da conalatency for the sum of aguaro of row and column olemonte between the prediction and the data.

SUMMARY

This chapter has diacusaed anothor approach to point oatimationg. the mothod of least-gquarea. It has ahown that tho loast-squaraa oatimator derives conditiong for optimum values without making any aosumptiona about the probability denglty function of tha variable, $t_{i j}$. Furthorn more, it has ahown that tho maximum Idkedihood oatimator oan doxivo the samo aot of oonditions only if vory reatridetivo aseumptiona aro mada about the nature of the denaity funotion, and that any attompt to rolax
these assumptions results in different conditions on the parametora. From this gtudy, it is suggostod that maximum likolihood assumptions may not relate to bohavioral hypothesea concorning trip purpose. The chapter concludes by examining the loast-squaras statistics and intorproting thoir moaning with reapoct to the ample.

INTMODUCIITON

Ihis chaptor will dincusa the abaumptions mado by tho modallor whon calibrating a modol of apatial intoraction, Theas aro diatinct from the aasumptions on the data impliod by the atatiatical ontimatora, reviowed in the previous two chaptors. Inatead, they aro the aasumptions which muat be made about the obeervation, or trip aurvey, and about the variablao which mugt bo defined in ordor to give the paramotore numerdcal valuea,

Tho chaptor will oxamino thoo agoumptiona by firat diacuasing tho information availablo to tha modellor from tho trip aurvey in terma of aamplo aise and method of aamping. It will thon diacuas tho oxtont to which the obaervations may doviato from the actual or maan valuoa, oapoodally in a trafflo aurvey, whore a ginglo random samplo do ugually taken to calibxate the model. It will alao look at how genoralised ooat is ueually dotinod in tho oalibration atatiatica dorivod by maximum 11kolihood and loast-gquarog, and will outlino somo woaknoauag to tho approach: .

Tho chapter will go on to review the basic criticiems which have been raised throughout the paper. It will identify three research areas which ahould be oxamined. The paper will then propose a framework for testing the hypothoses.

THE "PROHLIEM" OF MODEL CALIERAIIION

The urban modellor is faced with the problom of applying a mathomatical abstraction of a physical syatom to a dofined oot of activitiag, from which mugt be generated empirically-relevant output (Lowry, 1965 , p. 160): The modeller assumos that a apecifically chosen hypothesia aufficiently deacribea the phenomono ho la atudying. The "problem" of modal caldbration is thua one of defining the varlables againat whd ch to entimate the paramoters of the modol, and of optimadly "fitting" the hypothoad to dample data.

The accuracy of the apatial intoraction modol'a output ia closely rolated to the roliability of tho sample data, or trip ourvoy, for it is againat theae data that the model is calibrated, regardlesa of which calibration etatiatica aro omployed, The modoller take those data, usuadly a small parcontago of the population (Chatorfoo, et al., 1974, p. 3), as a eatiafactory ropresentation of the actual diatribution, or moan valued, ho la attompting to mathematically deacribo. Tho model da oaldbrated to thase data, or more proctaoly, the model paramotora ara artimated from the obsarvation.

Qiven the paramoter valuo detorminod from the aample, the moded io applied to tho population from whioh tha namplo 10 drawn, to genorate the
existing distribution, or can be applied to projected activity variables to conditionally predict future distributions.

Tho model prodictiona aro conditional upon throe basic assumptions.

1. The hypothosis is a suitable dogeription of the phenomenon under atudy.
2. The survey, against which the moded is calibrated, is a valid ropresentation of the phenomenon undor atudy.
3. Tho parametor values determined from the sample data, and the functional rolationshipa deacribing bohavior, remain conatant over soale and over time (if used to make conditional predictions in the future).

Thia papar doos not intond to teat the validity of tho firat angumption, It assumoe that tho spatial interaction model reasonably describoa the diutribution of travel in an urban area. Nor io it roncernod with the effocte of acale or time on the gonerated diatribution, Although theae two dasues muat be more thoroughly researchod (Shephord, 1974, pp. 52-68, Wilaon, 1974, p. 391), the 1asue which will bo disoussed in the chaptor is the rodiability of tho sample data.

Thia lasue will bo examinod in two parte. One will deal with tho trip eurvoy, and tho othor will oxamine and assoas the variablog whioh givo tho paramotera numorioal valuea.

THE TRAVEL SURVEY AND ITS RELATIONSHIP TO THE
POPUIA'IION I'I' RLPRESLNTS

Travol data, usad to calibrato trip distribution models, aro obtainod prinarily from origin-dostination gurvoys, of which there axo two kinds. Theso aro home-interview and roadride-interview survoys. To determino oxisting intornal traved pattorns, homo-interviow survoys art usually conductod (Chatorjoo, at wh., 1974, p. l). Thu aroa is divided Into a sot of zonos, and tho aurvoy ia conductod by intorviowing a smald parcontage of householda in onch zono randomly. In trip distribution 'modoliling, tho survey finda tho doatination zone of each houachold for. the particular trip purpoae boing modeliad.

After tho ourvoy has beon taken, the rosults aro aggregated into. a aample trip matsix, which doscribes the interaction in the aystom oboorvod In tho burvoy. From thia matrix, calibration atatiatics, defined by tho atatiatical ostimator used to oatimato tho paramotors, aro caloulatod.

The dasuo to bo diacuadod is the rolation the anmple boars to tho moan digtribution of tho population. In the context of trip diatribution, tho moan diatribution 10 tho avorage travol botwoon oach origin and doati= nation, for a apoolfiad trip purposo and in a dofinad time poriod, d.0., journoy-ta-work tripa in a two-hour poak poriod, Tho major factor Influencing tho corrogpondanco betwoon tho obsorvod and actual diatribum tions is the aanplo arino of obaarvationa. Tho aurvoy data upon which the paramotoro are oatimatod aro conaddorad to bo a random amplo of IT variablon, and of gample ade equal to ono. The gurvey, which iu but one
ostimate of the number of fournays betwoen each zone pair for a given time period, may or may not corrospond to the actual travol pattom.

The actual number of trips betweon oach $1-j$ pair varieg from day-today, and can bo represented by a probability donsity function, 4 , with moan $\hat{t}_{i j}$ and variance $a_{i j}{ }^{2}$. The sampling diatribution of tho mean traved on oach intorchange, is rolated to the actual diatribution by the following fundamontal rolationship.

Considor 2 random amples takun from a population having mean $t_{\text {if }}$ and variance $\sigma_{i y}{ }^{2}$. The mean valuo, \bar{x}, of the random samiles, will bo diatributed in a sampiing diatribution with moan

$$
\begin{equation*}
\mathrm{E}(\bar{x})=\hat{t}_{i j} \tag{4.1}
\end{equation*}
$$

and varianco

$$
\begin{equation*}
\sigma^{2}(\vec{x})=\frac{\sigma_{i j}^{2}}{2}\left(\frac{N-2}{N-1}\right) \tag{4.2}
\end{equation*}
$$

when taken from a population of finite aize, N (Fround, 1952, p. 230). These rolationohips roveal that, on the avorago, the amplo moan equala the population'moan, and the variability of the samplo mean is oqual to or leas than the variability of the random variable of the population. Tho variability of the nample moan docreases an the numbar of random amploa takon incroanea (Fround, 1252, p. 231).

Sinco, in actual atudios, only one trip gurvay if uaually takion (Kirby, 1974, p. 99), the variance of tho samplo mean ide as largo as the variance of the variablo $t_{\text {if }}$ in the population. Thia varialice may bo
large for cortain trip purposes (kirby, 1974, p. 99). thorefore, the data, againgt which tho modod ia calibratod, may significantly miaroprosent the muan Lravol distribution.

This suggesta that bettor data for calibrating spatial intoraction modola can be obtainod simply by taking moro than a single trip survey In the area boing modolled, since trip surveys involve a considorable expense, in terms of timo and monoy, the correspondenco botwoon a eingle random sample and the man travol detribution ahould bo investigatod to determine whothor roliable model prodictione can be gonarated on tho basia of a ginglo samplo.

VARIABLE DLFINITION IN CALIBRATION STATIS'TICS

The prooiao ompirical definition of variabloa is important becauie It affocts tho values of tho modol paramotorn (Lowry, 1965, p. 163). The rolationmhip betwoen variabla dofinition and paramotor valuos can be aoon in tho calibration atatistica dorivod by tho atatiatical oatimatora In tho provious two chaptors.

Tho maximum likolihood ostimator, undor tho aonumption of a poiason doneity function, calibratos tho paramotar β againat a tranalormation of the gonoralizsed ooot of travol botwoon 1 and 1.

$$
\begin{equation*}
\sum_{i j} \sum_{j} \hat{t}_{1 j} h\left(c_{j j}\right)-\sum_{1} \sum_{j} t_{i j} h\left(c_{d j}\right) \tag{4,3}
\end{equation*}
$$

whare

$$
\begin{equation*}
h\left(c_{i j}\right) \cdot \frac{\partial \log E}{\partial \beta} \tag{4,4}
\end{equation*}
$$

The least-squares estimator calibrat. - B againgt the same transformition of cost.

$$
\begin{equation*}
\sum_{i j} \sum_{j} \hat{t}_{i j} h\left(c_{i j}\right)=\sum_{i j} \hat{t}_{i j} t_{i j} h\left(c_{i j}\right) \tag{4.5}
\end{equation*}
$$

In ordor to dorivo numorical valuos for tho paramaters, it is necossary to define the form of the genoralized cost function, and to define genoralized cost itaelf. Hyman (1969, pp, 108-109) auggeste aovoral coat functions and rolatos thon to difforent trip purpoasa. Wilaon (1974, p. 70) arguoa that if a function of the form

$$
\begin{equation*}
f\left(\beta_{1} c_{1 j}\right)=\operatorname{axp}\left(-\beta c_{1 y}\right) \tag{4.6}
\end{equation*}
$$

14 unod in tha apatial intoraction modol, tho travollar is parcoiving cogt IInoarly, Sovaral authors (Batty, 1970 c, Batty, 1971, Batty, Foot, ot al., 1974) have used thio cout function in modol application. Under thie asaumption, tho transformation on cont bocomas

$$
\begin{equation*}
h\left(o_{1 j}\right)-o_{1 j} \tag{4,7}
\end{equation*}
$$

and the calibration atatiation, from (4.3) and (4.4), bocome

$$
\begin{equation*}
\sum_{i j} \sum_{j} \hat{t}_{i j} o_{d j}-\sum_{1} \sum_{j} t_{d j} o_{d j} \tag{4,0}
\end{equation*}
$$

and

$$
\begin{equation*}
[\sum_{j} \hat{t}_{i j} \overbrace{}^{(2} c_{i j}-\sum_{i j} \hat{t}_{j j} t_{i j} c_{i j} \tag{4.9}
\end{equation*}
$$

Wisen (1974, p. 70) arguas that a power function of the form

$$
\begin{equation*}
f\left(\beta, c_{i j}\right)=c_{i j}^{-\beta} \tag{4,10}
\end{equation*}
$$

may be more appropriato for long diatanco traval, ainco marginal travol ovor long diatances is not likoly to bo porcelved in tho samo linenx fashion. O'sullivan (2968) has uad this cost function to describo interrogional froight flows. In this case, tho transformation on cout bucomos

$$
\begin{equation*}
h\left(c_{i f}\right)=\log _{.} c_{i f} \tag{4,11}
\end{equation*}
$$

and tho calibration atatiatica aro, from (4,3) and (4,5)

$$
\begin{equation*}
\sum_{i j} \sum_{j} \hat{t}_{i j} \log c_{i j}=\sum_{i} \sum_{j} t_{i j} \log c_{i j} \tag{4.12}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{i j} \sum_{i j}{ }^{2} \log a_{i j}=\sum_{i j} \hat{t}_{i j} t_{i j} \log a_{i j} \tag{4.23}
\end{equation*}
$$

Othor authora (Alonso, '2972, Datty and Naokide, 1972, Batty and Mackio, 1973) have usod the Tannor model, whare the coat function ia spocifiod by

$$
\begin{equation*}
f\left(\beta, c_{i j}\right)=c_{i j}^{-\beta} \exp \left(-\mu c_{i j}\right) \tag{1.14}
\end{equation*}
$$

Both the maximum Likalihood and loaut-squarou outhmiors dorive atatiation for oach paxamotor. Ihe atatiatica by maximum likulihood wo fatty and Mackio, 1973)1

$$
\begin{equation*}
\sum_{i j} \sum_{j} \hat{t}_{1 j} c_{1 j}-\sum_{i} \sum_{j} t_{i j} c_{i j} \tag{4.15}
\end{equation*}
$$

and

$$
\begin{equation*}
i_{i} \quad \sum_{i} \sum_{j} \hat{t}_{i j} \log c_{1 j} \omega \sum_{i} \sum_{j} t_{i j} \log c_{1 j} \tag{4.16}
\end{equation*}
$$

Tho atatiotica from lonet-aquarou arti

$$
\begin{align*}
& \sum_{1} \sum_{j} \hat{t}_{1 j}^{2} c_{1 j}-\sum_{1 .} \sum_{j} \hat{t}_{1 j} t_{d j} o_{1 j} \tag{4.17}\\
& \sum_{i} \sum_{j} \hat{t}_{1 j}{ }^{2} \log c_{i j} \times \sum_{i} \sum_{j} \hat{t}_{1 j} t_{1 j} \log o_{1 j} \tag{4,2a}
\end{align*}
$$

In tho ditoxaturo, oaroful conaideration has hoen givon to epocifying the form of tho cont funotion. llowovor, genoraliagd oosestin moat readinga, ham boon dofinod almply as trip Zangth, 1.0., trip diytanco. Thaty io a doparture from the dofindtion of "ooet" in oarilox atudies. Wilaon, ot ah., (19ag) asaumo travol cost to bo a dinoar function of aovaral factorel travel time, waiting time (for trangit), trip length, parking oouta, and a modal "ponalty". Tho proodao dofindtion of cost in thia utudy 10 a
reandt of extenalve work in people'a valuation of coat for different modes of tranaportation (Widson, et al., 1069, pp, 341-342): Although Wifaon (19P2, D. 14) atatey that for triy diatribution furpouna, the eoat function oan be truncated to the form,

$$
\begin{equation*}
a_{1 j}-a_{1} b_{i j}+a_{2} o_{i j}+a_{3} d_{i j} \tag{4,19}
\end{equation*}
$$

where $b_{i j}$ traved time
${ }^{1 J}$ " exceas wadting time
$\mathbb{a}_{1 j}$ trip length

$$
A_{1}, A_{2}, A_{3} \text { " parametere to be eatimated (by regreasion) }
$$

There ia ne eyddence in the diterature whath indsoatea trip dangth to be an appropriate auxrogate for generaliged opat of travel. Trip length would appear to be a poor maasure of travod coat undox conditiona of. congeation in tho urban area, or when politiand atratogiog, guoh as inoreajing parking goata in the cho aro invelved.

From equation (4,7), it can bo acen that if txip dength ie uged as a gurregato for kxip coat: caldbration gtathatio may be readily gadoutated fing, the ample data, ainco inter-menad diatancos are easdly dotexmined. Fram (4,0)

$$
\begin{equation*}
\frac{1}{x} \sum_{j} \int_{j}^{n_{i j}} a_{d y}=\sum_{1} \sum_{d y} a_{i y} \tag{4,20}
\end{equation*}
$$

whero \bar{C} mean trif length (obaorved).

 the highes motonte of the diatribution dotermino the ${ }_{i j}$ donst ty functiden
4 to bo folason. Other conditions may make tho atatiatio unguitable ag Wedl. lox example, ghopping models oannot be oadibxatod to mean trip dongth beaame tha trip pattern, aprom, 18 not known, (Oponghaw. 1973, p. 367 .

Variabio doidnition da important in dotormining paramator valueg, and paxamater eatimation i a clogoly rolated to moded pextormanca
 dirooted towaxds tho practae dozindtion of tha gonoxidiaed cost variabde
 tion.

From-the pirecoding digeuggion in chaptang two, thwoe ind tour,

 maxtmum ikkethood oatimation monumas the ty to way on cach intorohanga
 arn bo mokatod to trip puxpoge, "adnco the vaikanoo at travol ores a given

fiod deneity filnation glolda a unigue bet of oalibxation atatistiog, optimum parameter valuog, derived from the maximum likelihood egtimator, depend upon the travel purpore being modelled.

The least-squarea oetimator, on the other hand, makee ne abaumptione about the data. ondy one get of cadibration atatistion are derivod, regardiose of the data. Therefore, the optimum paramater valueg derived by leastasquares are not dependent upon the probability density function of $t_{i j}$, and thus do not reguise any asoumptions about trip purpose. Whereas the maxdmun dikedihood eatimator makes very reatriotive asamptions about the data, the leastesquarea eatimator makes very weak onea,

Does this moan that if the data roally do ariae in the way postulated by the maximum ilkedtheod egtimator, the parametor valueg derived by this method WIII, give the data a batter ait to the data than the leastsquares astmatorf If 60, then Kirby'e (1874) asceition that trip pure spoge, and honco der oharactarigtic probability dondity funotion, must be speaifiod, bafore optimum paramater values can be dexivod, in correot. The problem to thus to cotermize whether these asaumptions axe nocoseary to give the model a beat $84 t$ to the data.

Arother problem area concorne the radationehip the random ample boark to the agtual diatzibution from which it id taken. Aasuming thare fa come vardation in txaval between caoh Interchange, typloadly with
 gurvey, the vardence of the cample mean 10 al darge as the vandaneo in tha aptuai bxayed on the Interohanges 8tnoc the variation on a given Intorchange can be largo. a aingle nandem amplo may not bo a roltablo monmomentation of the mean uravol diatibution, which the meded is trying
to prediot. since the paramotere are oalibratod agalnat the ample, it La Important to detexmine whether a audtable correapondence between the sample meana and aotual meane exiate.

The third problom area concerns the defindtion of variablee in calle bration etatiatios. It has been otated that paramoter valuea depend upon the empdrifoal dofinition of the moded variablea (Lowry, 2965, p. 263), and that moded porformance 1 a dependent upon the parametar valuos derived by the oallbration atatiatido. If trip length da not a adtable aurrogate for the genoradiaed cogt variable in the maximum'dikedihood' and deast-aquares alibration statiation, then oadibration agadnat tho variabie yiedda a predieted diatribution having a aub-optimad itt to the gurvey data, The problem is therefore to empinicaily detemine what generaliued traved cogt is for oaddbration purposeg.

The next acetien wdil grepose a rasearoh deaton to regolve somo of thoas isaura, .

A Bognacil dagron To bxamina wa zapuad
IN CAMTRRAMION

This paper now proporer to conetruet a examowerk upon which to examine two of the desuon daguased in the previous sectien. The ixamem work is deadgnod to test whathor the asauptsona about the data, impiled by the maximum dikelthood ontimater, daxdvo paxametex values which give the medel a botton 4 ity to tho ampla than leankesquares, whith makes no implact asemputions. Tha sramowonk in aldo doatgned to áseasa, whether

bution, upan whith to callbrate apatial intoraction modela. The duaua of variable definition muat be resolved by emprioal examination. in the proposed framework, which ta a hypothotiond example, thia factor camot: be atudied, but can be oontrelzed, to provent it from biauing the sesulta of the other two dagues.

The paper proporea a hypathetioal exampla, consiating of a "typucal" urban area of mederate aize, divided into a bet of honea of equal aran. We are given the number of origine and destinations in each zone, and the generalized cogt of travel on each interchange ia assumad to be the intergonal digtances. Given this information, wo intend to uae a zpeodfiod funotion of coat and parameter value, B, to defino a diatribution of tripa in an urban aroa.
ny conatructing the framowork in thia mannex, we poaseas more data than does the modeller whon he applies the moded in an empdrioad atudy. Pirgt, wo know the aotual diatribution of travod in the urban aytuem. dacond, we know the cost funation that determines the impedence to traved In the syatem, Finaldy. we know how coet in defined in the alistribution.

If wo take andom aimplo from the gonerated diatribution, we ean (2) make a atatistiad meanure of corxespendence batwoen the amphe and the aotual uxip diabrityution, and (2) eadibrate apatiad. Interaction model of the oume somin with the atatatitial eatimatora reviewod in ohapton two and thwo, so as to compare tho distributiong generated Srom the eatimated paramotorg whth the esimpia.

Wo havo information abert govorad factore in the oadjbration procem dure wheh hauadiy muat be asumed in practiod cadibrakion applioations,
1.e., the funotion of generailaed coat and the dofinition of cost in the oadibration gtatiatiog, IInoe theae factora are controdigd in the proposed iramework, any differonoot between the ogtimated diftritutiona (by maxdram likeldhood and laagt aquaroul, wild roaudt from the oadjbration atatiation only, Ihda enablou us to evaduate the performance of tho two eatimatorg agadnat the tampla.

Whe noxt chanter will dofine gyoodito hypothaeen in the two axeas of reboaroh, and will degoribo the hypothatiod urlan area to bo modediad. Ihda wid enable us to uge the framework for analyand the probleme,

 BELIAVIORAL CONATDERAYIONG ON MODAL DERPORMANCA

INURODUCAION

Chapter four defined the framework upon which the two calibration iaguas are to be teated. It now remaing to clearly derine the hypotheses ennoerning the relationohip of the sample date to the mean travel diatribution, and the goodnegs-ofnat of the moded prediations uaing different methode of paramoter eatimation, to the trip gurvey.
rravel ia te be diatributed in a hypothatioal uxban ayatem. The dayatomay vaxiation of tripa widt ba deacribed by a apectfied grobam bldity dengity function. A four per cont random sample wdd then be taken from a diatribution of travel on a "given" day. The anadyade Widi constat of two operatione: In the ifrat, the corrreaponderioe of the candem aample to the mean travel distribution will be examined. The resuite of thite toet wid give us an indication of whather the singia tuip suryey gusidedently mopmesents the moan diatuibution for
 digkibution the modol ite intonded to predjat.

Socond, the epatial interaction moded will be calibrated to the mample data by both the maximum 11 kel dhood and least-aquarea atatiatical oatimatora. The intention ia to draw the ample data from travel diatributions whose olemonta are diapezaed around moan valuan, aocordiny to apecifled probability tenalty funotiona. In the firat example, the denaity funotiona of the matrix elemente, the tije will be podazon.

* In the gecend, the denalty funotiona wild be normad with common, cosnatant varianco. The oorroarondence of the moded prediatione (uading the paramotera eatimated by the twe eatimation techniques) to the random sample, will then be examined.
\qquad : +1

The maxdmum $2 d k e d$ dhood atatiatiog will make the pame assumptions about the data in both examplea. They will aseume a potason denatty funotion for each $t_{\text {if }}$, The leagt-gquarea atatiatios, by deinition, Whll not change in the two examplea, However, in the geoond case, the deast-aguarea atatiatioa wid de dentioal to maximum likadhood atatiatioa, which aceume a nomad donaity function for the ${ }_{i j}$. with comnon, constant variance. Thde is exactly how the data wild ocour.

We ghould, therefore, expect that if conedderation of trip purpose and ite oharacteriatio prolaability donadty funetion in important in dexiving optimum prameter valuos, whioh give the moded a boat fitt to the data, then the maximum dikeliheod eatimatore hould give the mated A better fit to tho data in the furet oxample, and the deast-8guares : Coty or should otva the moded bottor itt in the aocond example. If,
 by the two outimatort, ia not adgnificant, then we can ooncludo that tyip puxperse not nevegeaxy comsadration in moded oasibration, and
the apecification of undque calibration atatiatioa for apecifle trip purposea de not neogaty to darivo optimum parameter valuan.

Whese daqua can formally be atated an hypotheaea to bu teated in the analyoda, Given the condations in the experlinents

1. A alaple trip aurveg ia a rodiable representation of the mean datribution of travel. Thita will bo conadderod verified if thare is a high degrea of correapondences (mensured by some epeaified oriterion) betweon the aample matrix and the mean trip matrix.
2. The oadibration teehnique whoge agamptiona are approm priate to the conditions of the data provideo better parameter eatimatea. This will bo oonsidered vorified if the gamameter vadued genorate a dideribution giving the moded a signdficantily bottax fit (maasured by goma apocifiod exdtertion) to the bampla.

If the aceond hypothosit 18 true, thon trip puxpese, distingudghed by its oharactoriatio probabidity denaity function dequribing the . variance of the $t_{i y}$. elemonts over oach ditarchange, ahould bo dneoxpom rated inte oalibmation atatiatios.

The analyade has been developed to examine thege hypothotea. However, before the andyade de perfoxmed, the exiterion for moasuring goodnegeor-fit mugt be dofined and its agamptione noted, to epeatiy the dimate to the osnolusdeng whiel axe to be dxawn frem this atudy,

TIIS RELAIIONGUIF BETWHLN OPYIMUM IFIT AND
QRyTMUM HARAMGIYS VALUBS

The atatiatical astimatary, diacuated in chaptera two and thxoe, dotormine optimum parameter valuos whioh may or may not give the model an optimum fit to tho aamplo data. In eatimating paramotera by thozo technigues, wo muat be aware of the two adternative meanings of "bast" parameter values. The parametere may be the bost eatimates in that they are optimum whth reapect to the atathotioad outdmatar. Alternatively, they may be thorbeat adtimates beonuse they give the moded an optimum fit to the amplo data. Ia thare a undque solution Involved, and de eo, what conditions axe neceseany to ghatiationdiy ostimate parameter values whioh give tide modek an optimum goodneasmofe It to tho sample data?

Indtiadiy, one must detexmine whether the optimadity oonditions of a statistioal astimator axa autidoient fox optimining the moded's
 metion values by a statigtioal ogtimation tochnique, guoh as maximum 1tkedinood on leastogquares, we ahould mensure the moded's goodnoesmone Fit to the samplo data with a conrelation gitatistio, guoh as the coostim odent of detexmination $\left\langle R^{2}\right)^{2}$, on ohdmguared $\left(x^{2}\right)$, both of whioh measure the comroapendence of the model's output to the data. This. he guggegtal given us the overall indication we noed to doterndne whethor the param
 corregponds optimally to the data. It alao helpe ua choose batwaen differont forma of function, guoh ne tho travel topedanoe funotion.

It romatio uncloar why correlation atatiatios ahould bo mora roliable In moaguring tho moded'g goodneag-of-fit than maximun likoldhood ox leategguarea mothoda. In them, the measurea of oorrobpondence betwoen the prediated varlablea and tho samplo data are atill based yon Implacit asaumptiona about the data (aee Chapter d), batty (19700, P. 112) applies the cooffiodent of determination to meature goodnosenoffit and aseumes the gtatiatio to be noxmaliy distributed. Yot thore is no ovidence which siapparts thig aagumption. Given tho fnconadetenolea Whioh oan ardae in the applioation of this otatiatio fage 9), it is proaumptuous to make any ascumptiona about 1 as adatribution without making a thorough invegtigation of its propertios, gince the atatistio. Lo mbirsed, consiatent, and affiodent onty if the data ocour in tho way postulated by the atatietio, then one oannot dnfer that it gives any botear indaation of goodneasmoemit than gtatdatioad ootimators, such as maximum 1tkedthood or Least-gguaroa.

The agsumptions made by the ohi-gquared atatyatio about the afta are not as otridet athoge made by otheretatiatios, Also, its disemim bution ta guoh, that fas the numbor of degreen of froedom on the atatian tio inoreases, tho adutxibutden of ohimaquared approsiohes the nomad. In epatial Interaction mododitng, thore in likely to be a large number of degroes of froctem whon uaing the atatistio. due to the number of varta=

(Wathord11, $2007,8.202$)

$$
\begin{equation*}
n^{2}-1-(n+n+1) m n^{2}-2 n-2 \tag{5,1}
\end{equation*}
$$

for a ayatom of elfty origine and ifety doatimatfona, tho atat of the hypothetical ayetem in the analyada, the nbatiotio hag 2400 dogroun of froedom, which meana the adatribution of ohdmaguaced in aproximatoly nusmad.

IThis arbltracily impores a normad dongdty funotion on the tif' Whitoh may bo inappropriate in gpatiad interaction modadifig. whorefore, Ita moasuro dofit may bo no more valld than any othor gtaliatioal moaduxe. Wethar111 (1967, p. 203) notea that thexe axe afton better togta whioh may bo ueed when the data havo eomo other than a nomal Aistribution. Furthermoze, othor roatriotiong aonoexning oxpeated Erequenades (Wathaxill, 1967 , D. 203) make tho atatistio avon leas attráodvo to apply in tho apatial intermation contoxt.

How, then, can wo moasuxe whathex opitimum paxamoter valuea, derived from a atatiatioal oetimaton, generata a diatribution whioh yielde an optimum fity to the data? olnce the cozrodation otatiatios diacussod above may not be rediable sox that purpose, they oannot rosiolve this daghe.

We attil requixe etatatio to moanuxe the coxrespendence betwoen

 Whioh are ofmitar, not to make any inferences as to the proditetions'
goodnaseofefit. ay ueing this correlation atatiatio moroly to get a "fool" for the almiarity or diadinilarity of the two datributions, we are romaining joonsiatent in the uso of the otatiatie.

 Is an abatraotion of a "typiond" urban ayatem and ia intended to ba an Inatrument through whioh a apecfitiod aet of tripa oan be diatributed. From the diatribution, a trip aurvey widt be taken to aalibrate the gpatial interaction model by the mothoda of maximum dikodifreod and leaetmaquarea.

The aren in divided into fifty gonea, each of which la equad int gife. Wach wone, ia numberad for idontifleation, and la manuadiy allom oated spocified proportions of tripeoriging and deatinations. whis operation doubly-sonatraing the diatribution of trips in the eyatem. The yonos oan be aggregated to foxm sevarad digtingt aubwareas (outidned by dark boundariog), which refloot difterent land use oliarateriatioe of a typioal urban area. The outer submareas reprosent the cuburban or readdenthal gotore of tho "odey". and axe charnoterimed by many oxigina and few dogtinatione in each gone. The inner uubareas ourbounaing the oentrad area have a groator number of dogtinations but stidi qenerate a significant volume of bravets The contral aren is the CBD, with many destinations and few txifmeriging: The proportions of origina gnd doatinations allogated to oach yone áre deadgned to refioce a graduad therease in destinations towards the centrad area from tha

dutekirts (Table 1).
Although this is an idealized representation of the urban syetem, it enables us to generate a distribution of trips over the aren and to avoid many problems which beset modellers in empirical studieg. The configuration of the area is designed to be assymetrical to prevent any trivial golutions from occurring in the generation of tripg or the calibration of the model. By dividing the area into zones of equal size, and by strictiy defining the number of origins and destinations in each, instead of using proxies for attractiveness, biases are prevented from entering the problem (Wilson, 1974, p. 69).

In the idealized system, we are assuming the zone eize to be gmall enough to account for all of the potential inter-zonal interaction (Batty, foat, et al., 1973, pp. 353-354). Also, the example considerz internal travel only. This avoids the related problems of dumm zones and closure, which usually must be taken into account in spatial interaction modelling (Batty, Foot, et al., 1973, pp. 362-364).

The distribution to be generated and modelled is for a single broad classiffcation of trip purpose. From the allocation of origins and destinations in the system, the distribution that results may well characterize journeys-to-work. Travel is considered in one direction only, from home to work. This is the general modeling procedure in urban transportation studies (Ben-Akiva, 1973, p. 34).

Under these idealized conditions, 100,000 trips will be generated in the system by a spatial interaction model with known parameter values. The generated distribution will be defined to be the mean distribution of daily trips that occur over a specified time period (e,g., a year)

TABLE 1
teIf origins and destinations allocated to each zone

In the urban area. The dafly number of journeys on each intexchange will be allowed to vary from this mean by, first, a poieson density furiction and eecond, a normal dengity function. It is from thege dietributione : that four per cont random eamples will be drawn. The spatial interaction model will then be calibrated by the statistical estimators against there data, to determine the optimum parameter values. Thes algorithms which perform these operations will be described in the following sectiorf

- A DESCRIPTION OF THE ALGORITHMS IN THE ANALYSIS

The reaearch design is basically a controlled experiment consist-: ing of two parts, each having a different function. The first part involves afgtem simulation. Its function is to generate the variables with which to make comeopondence measures. These measures are necessary to evaluate the competing hypotheses.

The sequence of operations in the analysis is ghown in Figure 5. . The remainder of this section briefly deacribes each of the operations.

System simulation:

The first operation in the analygis is DISTRIBUTION. Its function is to generate travel throughout the hypothetical urban area. The trip 1 matrix is generated by a spatial interaction model of the form: .

FIGURE 5: Sequance of operations in the Analysis

$$
\begin{equation*}
t_{1 j}=A_{1} O_{i} B_{j} D_{j} \exp \left(-e d_{1 f}\right) \tag{5.2}
\end{equation*}
$$

where O_{1} the number of trip origins in zones 1

$$
\begin{aligned}
& D_{j} \text { " the number of trip-destinations in zone } f \\
& d_{i f} \text { - the distances between zonces } 1 \text { and } f \\
& b \text { a parameter meaguring the extent to which travel } \\
& \text { is congidered } \\
& A_{1}, B_{f} \text { origin-specific and deetination-opecific balancirig } \\
& \text { eactors. }
\end{aligned}
$$

The value of β is arbitraxily specified $(6=0.02)$. Since B io regarded as a measure of the extent to which-distance (in our case) is considered when travè decisions are made (Evans, 1973, p. 40), we expect this parameter value to affect the digtribution of tripg in guch a way that the mean trip length becomes longer. This tende to promote more travel from the perfpheral guburban areas over longer diatances to the concentrated employment areas in and around tho CBD. This pattern of travel would be expected over an efficient tfanoportation network. The balancing factors are determined for this parameter value from the following equations (wileon, $\{970, \mathrm{p} .16)$.

$$
\begin{array}{ll}
A_{i}=\frac{1}{\sum_{j} B_{j} D_{j} \exp \left(-\beta d_{i j}\right)} & \text { for all } 1 \\
B_{j}=\sum_{i} A_{i} O_{i} \exp \left(-B d_{i j}\right) & \text { for ail } \quad \tag{5,4}
\end{array}
$$

The model distributen 100,000 trips throughout the fifty zone syatem on 2500 interchanges. The variables which rake up the rasulting $50 \% 50$ trif matrix represent the mean travel gronetated ovor these freterchanger.

Gince we expect the volume of travel to fluctuate on any given fintarchange, the function of PRoESERVE is to construct a nesw trip matri\% which reflects this day-to-day variation. The operation assumes that a apecified probability density function deseribes the variation in travel on each interchange, i.e., Potagon or normal, and usea random numbers to construct a trip matrix which would bo likely to rosult if travel varied in thig manner.

SAMPLE takes a four per cent "home-interview survey" which la uged to calibrate the model. The origing in each zone are selected at random and their destinations are tabulated. The reaults are aggregated to produce a sample trip matrix, from which calibration gtatistics, specific to the maximum Ifkelihood or least-squares estimator, are calculated.

Thege statigtics are input into CALIBRATION to eatimate the model parameter B, and balancing factors A_{1} and B_{j} for aach statigtical estimation tochnique. Trip matrices, generated by thege estimated parameter values, are subsequantly constructed and are input into the second stage of the analyais.

Corrempondence Meagureg:
Only one measure of coriespondence is used to tegt the hypotheses. In spite of its apparent weaknesses (pp. 17-18), corregpondence between trip matrices is measured by the coefficient of determination. This
statistic is chosen primarily brecauge it is computationally aimpla and relatively ressy to interpret. Although more rellable measuross of fit axe avallable, such as the chi-equared statistio or the "erpeoled Infomation" etatietio (Morphet, 1975), throse axe not rasily arsileatsle, since many of the zonal interchangos in the bample trip matrix and the generated trip matricess are zero. Interchanges with $t_{i j}$ elementes equal to zero make thene statietices undefined. To uns the chi-zquared or "expected information" statistic requires the removal of zero elementes in the trip matrix, either by zonal aggregation or by excluding these clements from the analyais. Both of theae methode, than, maasure the correspondence between matrices on reduced information. For the pur-. poses of this analyeis, the coefficient of determination is the most satisfactory meagure of coxrespondence of those taken into conalderation. The reliability of the trip aurvoy in regregenting the mean diatribution of tripe 18 determined by measuring the correspondence between the mample trip matrices generated in gAMPLE and the mean trip matrix generated by DISTRIBUTION. The maximum likelihood and least-squares estimators are compared by measuring the correspondence botween the trip matrices generated by the parameters derived in CALIBRATION, and the sample trip matrix output from SAMPLE.

These measures of correspondence ghould enable us to examine Whether the hypotheses defined above are correct.

THE RELJABTLITY OF A GINGLE TRIP BUPNEY IN

MOEEI, CALTBEATION

Twe proliminary testa were made to show the corregrendence of the trip matrices with elomonts varying by poleson and normal dersity functions, defined ass D_{P} and D_{N} ranpectivaly, to the mean trip matrix, one tast maasured the correspondence betwean the actual population-sized matrices. The other measured the corraspondences between ample-aized matricon.

In the first test, it was found that the correspondence of both D_{p} and D_{N} to the population-sized mean distribution was very close. The R^{2} value of D_{p} to the mean distribution was .9958 . The R^{2} value of D_{N} to the mean was. 9998.

The second test measured the correspondence of four per cent samplen drawn from D_{P} and D_{N} to a four per cont sample drawn from the mean distribution. In this case, the R^{2} value of the poisson sample to the mean bample was .9636 . The R^{2} value of the normal gample to the mean gample was eomewhat higher, at .9878 .

In order to determine whether these differences in the R^{2} values are significant, it is necessary to examine the structure of the statigtic and the characteristics of the trip interchange data it is measuring. Conoider the R^{2} statistic.

$$
\begin{equation*}
R^{2}=1-\frac{\sum_{i} \sum_{j}\left(\hat{t}_{i j}-t_{i j}\right)^{2}}{\sum_{i j} \sum_{j}\left(t_{i j}-\frac{1}{i} \sum_{i j} \sum_{j} t_{i j}\right)^{2}} . \tag{5.5}
\end{equation*}
$$

Ginces N is the numbar of variablan, $t_{i j}$, thes denominator of inian oxpreasion is aimply thes sum of squarod doviations of tif elementa from the moan. Thes mean numbers of trifa per intarchange is: - '

$$
\frac{100,000}{2,500}=40
$$

Considax tho charactarigtica of tho data, A largo proportion of thes $t_{i f}$ alemonts is aignificantly lase than the mear. This implien that the denominator of the statiatic will in turn ba largo. .

The numerator of f^{2} is the sum of squared deviations of the predicted valucs, $\hat{t}_{i j}$, from the observed values. For gmall intorzonal volumes, the magnitude of the numerator will be small, regardicse of the dansity function of the $t_{i f}$.

What in lact is happoning in these corrospondenco tests in that because of the high proportion of low volume interchanges, which deviato gignificantly from the mean, the valuo boing subtractod from unity in equation (5.5) is oxtromely mall. Thorefore, significant differonces in tho aigtribution matricos aro, in offoct, "buried" in insignificant difforances in tho F^{2} valuos.

Tho charactaristics of tho data, therefore, render interpretation of those valuos extromely difficult, if not impossible.

Although, thoro appoarg to bo a better correspondence between D_{N} and tho mean distribution than betwoen D_{p} and the mean distribution, the gignificance of differences in correspondence cannot bo adcurately determined.

Tabla 2 dioplaya tho distribution of trifs from a chosin zono, which is roprosentatives of tha ontira sysiom, accoraing to the there population-alzod motricom. The tables emptadelzes tho fact that whille -tho polason distributlon diffora from both tha moan and normal distributiona, thia difforence in only rofloctod in the third docimest placo of the R^{2} atatiatic.

Op the othor hand, when samplemstzed dintributiont are belnes compared, the danominator of the f 2. term le much amallor than when popu-lation-stzed distributions axs being compared. Although tha total number of variables remains the sams, the tarm $\sum_{i} \sum_{j} t_{i f}$ is only four por cent of the total number of trips distributed in thes eystam. Thes moan number of trips per intarcharige, then, ia only 1.6 . The doviations of $t_{i j}$ from the mean are thus much lens and the right hand term in equation (5.5) becoman proportionately largax. The eame difforences in corranpondence botween two matrices will produce difforent F^{2} values Lor aifferent ecalea of investigation. We expect, thexefore, the groator diferencos in R^{2}. values betwoon the poiseon and normal samples to regult partialiy from the gensitivity of the f^{2} statistic to changes in scale. But tho information lous regulting from taking a umall sample cannot be precisely determined.

These preliminary testa emphasize the difficulties of using R^{2} as a measure of correspondencel Although larger values of the otatistic indicate better corrospondence with the data, it is difficult to determine how much better this correspondence is. This problem can be partially overcome by graphically asgessing as well as analytically assessing the results of the test, to assist in the interpretation of
table 2

THE MEAN, POIGDON AND NOHAM, TENVEL PATTYEN
GENERATED EPOM ZONE TWENTY-FIVF.

DESTINATION ZORE	$t_{1 j}$	$\begin{gathered} t_{1)} \\ (\mathrm{BOT}: \%(\text { ON }) \end{gathered}$	$\stackrel{t}{1 f}_{(N O \operatorname{HML})}$	DESTINATICN ZONE	${ }^{t} 1$ (MEAN)	$\begin{gathered} \left.t_{1}\right) \\ (\text { bot:30N }) \end{gathered}$	$\begin{gathered} { }^{1} 19 \\ (\text { NOWMML }) \end{gathered}$
1	0	0	0	26	1	1	1
2	3	3	3	27	13	11	14
3	1	0	1	28	17	17	18
4	- 3	- 3	3	29	191.	165	194.
5	35	2 40	36	30	37	44	36
6	39	48	40	31	13	10	13
7	78	73	77	32	1	1	1
8	46	45	45	33	52	45	50
9	18	20	18	© 34	15	8	15
10	1	0	1	35	6	7	6
11	1	3	1	36	1	2	1
12	0	0	0	37	12	13	13
13	0	1	0	38	11.	12	11
14	0	1	0	39	10	7	10
15	13	8	12	40	2	2	2
16	32	31.	31	41	17	13	17
17	26	32	26	42	64	60	62
18	284	288	282	43	62	69	62
19	160	168	163	44	20	19	20
. 20	32	28	34	45	8	11	8
21	1	2	2	46	5	5	5
22	2	3	2	47	23	24	23
23	1	3	1	48	13	10	13
24	0	1	0	. 49	3	6	$3)$
25	1	1	1	50	1	2	r

tha π^{2} valuan.

To dotarming the raliatility of a singlo random samplo in repronenting thas man diatrjbution of traval in thes urtan aran, tha polamon and normal samplas can bo acalad up to the population fise and comparad to the actual mean alatribution. f^{2} valuos, ahowing tha corrospeondoncis of thes two random samples, drawn from D_{P} ard D_{H}, scalod up to thes perpulathon sizes to tha moan dimtribution, aro. 8874 and .8969 respectivaly. Thares is a significant decrease in correspondonce to thes mean trip matrix. R^{2} valuos of D_{p} and D_{N} to the moan wers. 9958 and .9998 roupuctivoly. Aftex sampling and acaling, the corrospondonco ham roon roducod by approximatoly ton por cont.

Dospite the roduction in corrospondonce, Batty (1970c) has suggestod that R^{2} vajues of 0.9 atill indicate suitaric "ifts" to the moan distribution. However, it is ugeful to vinualizo what this R^{2} values means in the spatial interaction context. Figuro 6 showe how travel is distributed from ono of the zones, zone twonty-ilve, to all destinations, as prodicted by the scaled-up values of the two random samples, compared to the mean dibtribution of tripa. Notes Tho linen connocting tho number of tripg to each zone have no interprotivo value. Thrie function is simply ono of illustration, in this and in gucceeding diagrams.)

The ifgure shows that the rankom gamplos aro sensitive to major traffic flows out of the zone, but tend not to account for fow volume interchangos. This.is due to the "coarseness" of the sampling process, Which is rolated to sample sizo. The probability of obsorving travel 1 on a low-volume interchange during a home-interview gurvey is much

FIGURE 6s Scalod-Up Sample Predictions and the hoan Distribution of Trips Goneratod Irom Zono Twonty-Pivo
smaller than the probabilities of observation on interchanges of high volume. Clearly, as the sample saze increases, it is more likely that some of these trips will be observed, if the survey $1 s$ truly random (Chatrrjer, st al., 1974). However, a four per cent sample, consisting of only fifty-six "intervices" or sample points in this origin zone, is not large enough to observe this residual travel.

The other point to note 2 s the consistent under-estimation by the samples of high-volume interchanges, and the over-estimation of medium volume interchanges (Figure 7). Although part of this inaccuracy may be due to the scaling-up of the samples (by a factor of twenty-five), there appear to be other unidentified factors which affect the sample predictions. The effect that, this phenomenon has upon model predictions - will be discussed later in this chapter.

The analysis has enabled us to draw several conclusions concerning the relationship of the samples to the mean trip distribution.

1. There exists a reasonable degree of correspondence between the two sample trip matrices and the mean trip matrix, although significantly reduced from the correspondence of the actual trip matrices to the mean trip matrix.
2. A small random sample tends to be a coarse representation of the actual distribution. Low volume interchanges are generally not observed in such a sample. However, the probability of observing these interchanges is a function of sample size, l.e., they are more likely to be observed in larger samplas.

FIGURE 7: The Deviation of Scaled-Up Poisson and Normal Samples from
3. High volume interchanges appear to be under-estimated and medium volume interchanges appear to be cyerestimated in the sample. The effect of this will be examined in the following section.

A COMPARISON OF MODEL EPEDICTIONS GENEPATED BY THE

MAXIMUM LIKELIHCOD AND LEAST-SQUAFES ESTIMATORS

The analysis in this section involves measuring the correspondence between the predictions generated by parameters derived by two competing statistical estimators, under two different assumptions about travel over the interchanges in the system.

The correspondence, measured by R^{2}, between the model predictions and the sample data $2 s$ given in Table 3.
LEAST-SQUARES, AND THE SAMPLE DATA USED TO CALIBRATE THE MODEL

	Model Estimated By M. L. Statistics	Model Estimated By L. S. Statistics
Sample Drawn from D_{P}	R^{2}	R^{2}
Sample Drawn from D_{N}	.8815	.8784
	.8924	.8911

The measures of goodness-of-fit, in both cases, are made with resirect to the sample distribution against which the model $1 s$ calitrated. This is exactly the game procedure as practiced in model arplication.

The values in Table 3 indicate the differences in correforodence to the sample data to be only marginal. When the probability density function Coter ${ }_{1 j}$ is Polsson, the parameters generated by maximum likelihood statistics do not give the model a better fit to the sample data than do the parameters generated by least-squares, even though the maximum likelihood statistics assume the $t_{i j}$ to occur exactly as postulated. Furthermore, when the density function of $t_{2 J}$ is normal, with common, constant varlance, the parameters generated by maximum likellhood statistics, which assume $t_{i j}$ to be poisson, do not give the model a significantly poorer fit to the sample data, than the parameters derived from least-squares statistics, even though the statistical conditions, assumed in the maximum likelihood statistics are incorrect.

For one zone, the simlarity in correspondence of the two distributions is qualitatively assessed in Figures 8 and 9 . Comparison of the figures shows the predictions generated by maximum likelihood and least-squares to be almost identical, in fact, exactly identical when the density function of t_{25-j} is normal. One distribution can certainly not be preferred to the othèr, given this information.

Another feature shown in the figures is the over-estimation of high volume interchanges, and the under-estimation of medium volume interchanges by the models calibrated by the methods of maximum likelihood and least-squares. This agrees with the findings of Batty, and appears to be a characteristic feature of the gravity model. It tends to offset the characteristics of the sample trip matrix noted earliex, i.e., that

FIGURE 8: Comparison of Haximum Likelihood and Least-Squares Predictions with Poisson Sample for Trips Generated from Zone Twenty-Five

FIGURE ϕ : $\frac{\text { Comparison of Maximum Likelihood and Least-Squares Predictions }}{\text { With Lormal Samole for Trips Generated from Zone Twenty-Pive }}$
high volume interchanges are under-estimated and low volume interchanges are over-estrimated.

The effect that samule inarcuracies and the compensetion tendencies of the gravity model have upon the model's correspondence to the mean trip distribution can be seen in Figure 10. In this figure, the model output has been scaled up by a factor of twenty-five for comparative purposes.

Figure 10 compares the mean volume of traffic generated from zone twenty-five to all destination zones, to the scaled-up traffic volume as predicted by the model calibrated by maximum likelihood aga.nst sample data in which each $t_{i j}$ is normally distributed. Since the model predictions are essentially identical for both calibration methods, under both assumptions about $t_{i j}$, a single set of modell predictions suffices.

Generally, the fit of the model to the mean trip distribution, from this origin-zone, is quite good. The over-compensation effect of the gravity model tends to negate the characteristics of the trip survey noted earlier, and model predictions reasonably approximate the mean travel volume originating from zone twenty-five. Those interchanges carrying only residual traffic are not accounted for in the model. This is due to the "coarseness" of the random sample, as outlined earlier.

The results of the analysis, therefore, contradict the second hypothesis defined in the chapter. The definition of trip purpose by characteristic probability density functions in the calibration statistics does not necessarily give the model a better fit to the trip survey or

FIGURE 10: Scaled-Up Model Predictions as Calibrated by Maximum Likelihood and the Mean Trip Distribution Generated from Zone Iwenty-Eive
to the mean distribution of trips in the system. Although Kirby (1974) has shown that there are certain theoretical requirements which must be satisfied to derive best parameter valuea, in practice, these requirements do not apprar to be necessary.

The remaining issue to be resolved 15 why these requirements do nót have to be upheld in modelling practice.

FACTORS IN MODEL APPLICATION WHICH REDUCE THEORETICAL
$\frac{\text { CALIBRATION REOUIREMENTS }}{}$

Two factors can be identified which contribute to the contradiction of the second hypothesis. They are related to certain assumptions implied in the development of theoretical requirements for calibrating the model, which do not hold in practice. The first assumption concerns the effect that different density functions have upon the trip pattern in the system. The second assumption involves the sensitivity of the model itself.

If a specific probability density function is to be specified in ∇ the calibration statistics, we are assuming that the trip pattern generated by that density function is significantly different from the trip \%
patterns generated by any other functions. Intuitively, this assumption appears reasonable. By assuming different density functions, we are trying to represent the characteristic variances in the day to day travel, specific to different trip purposes, over the set of interchanges in the system. We are expecting these variances to generate different aggregate travel patterns.

The analysis has taken two probability density functions, ϕ_{1} and
ϕ_{2}, to be poisson and normal respectively, with variance

$$
\begin{align*}
& \sigma^{2}\left(\phi_{1}\right)=t_{i j} \tag{5,6}\\
& \sigma^{2}\left(\phi_{2}\right)=\left(0.2\left(t_{i j}^{\prime}\right)\right)^{2} \approx 4 \tag{5.7}
\end{align*}
$$

where $t_{i j}^{\prime}$ is the median number of trip interchanges in the gystem $\left(t_{i j}^{\prime}=11\right.$ trips). It has then generated a travel pattern for each of these assumptions about the variance of $t_{i j}$, and has taken a single random sample from each distribution. Instead of finding the travel patterns to be significantly different, the analysis has found the correspondence of each to be very similar. The similarity in correspondence may be due to the fact that the majority of interchanges in the system carry small traffic volumes. Over these interchanges, the variance in volumes for both ϕ_{1} and ϕ_{2} will be essentially the same.

Other factors, such as the effect of sampling on the shape of the density function (Kirby, 1974, p. 99), may also influence the correspondence of the two trip patterns. However, this has not been researched in this study.

The charactexistics of the travel pattern, therefore, may be such, that the differences between different "behavioral patterns" (identified by different probability density functions) may not be distinct. The effect of different statistical assumptions on the data in calibration statistics will thus be minimal.

The second, and perhaps more important factor concerns the sensitavity of the spatial interaction model to changes in the value of the parameter, B. Although little mention of this aspect is made in the literature, there is some evidence (Batty, 1970c, p. 111; Batty, 1971, p. 426; Batty and Mackie, 1972, p. 215) to suggest that the fit of the model to the sample remaing relatively invariant, regardless of the correlation statistics used, over wide ranges of parameter values.

Recalling Table 3 , the correspondence of the distributions generated by the model to the samples are very gimilar. Table 4 displays, the parameter values generating the digtributions which produce these measures of correspondence.

TABLE 4

MEASURES OF CORRESPONDENCE AND PARAMETER VALUES OF MODELS ESTIMATED BY MAXIMUM LIKELIHOOD AND LEAST-SQUARES

| Model Estimated By | |
| :---: | :---: | :---: |
| M. L. Statistics | Model Estimated By |
| L. S. Statistics | |

The table indicates that the best parameter values (meaning the parameter values closest to the actual value) are obtained when the assumptions implied in the calibration statistics are satisfied by the data. But it aiso indicates that similar measures of correspondence can
be achieved from significantly different values of the parameter. This lack of sensitivity may be an indication of the robustnesg of the model, i.e., the capability of the balancing factors A_{i} and E_{j} to adjuft the $t_{i j}$ elements.

If the model is insensitive to chances in parameter values, then the specification of probability density functions in calibration statistics is no longex at issue if correlation statistics are used to measure the model'g goodness-of-fit. This is because the model will most likely produce acceptable results, regardless of the calibration statistic defined.

It can be seen that if the two assumptions implied when gevelofing the theoretical requirements for calibrating spatial interaction modells -- concerning the different trip patterns generated by different pobability density functions, and the sensitivity of the model itself -are not satisfied in practical model calibration, the theoretical requirements become no longer necessary. The problem in model calibration becomes one of estimating parameter values as quickly and efficiently as possible.

SUMMARY

This chapter has presented the results of the analysis proposed in Chapter 4. It first formally outlined the two hypotheses to be tested, and defined the statistic to be used to measure the goodness-of-fit. In doing so, it specified the restricted conditions under which the hypotheses can be tested, to prevent the misinterpretation of results.

After degcribing the hypothetical area over which travel wiat diftributed and trate made, the chaptex outlined the oprations in the analysie which produce the distributions to be examined.

The regults of the analysis, which are limited in their content $k y$ the restricted test framework, as outlined in the introduction to the chapter, show that the random sample appears to suitably corresrond to the mean travel distribution. This implies that reliable results can be generated by thr spatial interaction model calibrated to thas data.

The chapter also shows that statistical assumptions in the maymum likelihood calibration statistics, which are necessary to satisfy theoretical requirements for calibrating the model, do not significantly affect model performance. The chapter concludes by comparing the model output in relation to the sample, and then dentifies factors which appear to eliminate the theoretical requirements for model calibration.

The final, and following chapter will summarize the findings of the paper and will suggest areas for further research.

CHAPTER 6

$\square m$
SUMMARY AND CONCLUSIONS

This paper has attempted to analyze two issues in the calibration of spatial interaction models. The first igsue concerne the theoretical requirements for calibrating spatial interaction models as proposed by Kirby (1974). The second involves the reliability of the random sample in representing the mean travel distribution in the area to br modelled. The paper has been developed through four sections.

Chapter 1 has defined the problem of model calibration ard has described the characteristics of the spatial interaction morlel which make it difficult to calibrate. It has then assessed the different approaches to model calibration which have evolved since the development of the Lowry model, and has stresged the shortcomings in each method. The chapter has argued that statistical estimation techniques possess properties which make these methods preferable to other calibration approaches.

Chapters 2 and 3 have examined the two principal methods of statistical estimation. These are the methods of maximum likelihood and least-squares. Chapter 2 has further argued that calibration is a problem of point estimation, and not hypothesis evaluation. It has therefore rejected Hyman's (1969) approach as a method of parameter estimation.

The paper has examined the two conflicting mathematacal interfretations of the maximum likelihood estimator in calibratini the spatial interaction model. It has been shown that under certain condition:, the 1 mplacit assumptions in each can be reconciled, even though the calibration froblem 15 afprodiched from two dreferent persiretives. Furthermore, the conditions under which these two approaches are complementary are lıkely to be observed when callbrating urban spatial interaction. Chapter 2 has gone on to define the statistical conditions which are necessary to satisfy the theoretical requirements of the maximum likelihood calibration statıstics. It has stressed that the parameter estimates derıved by the maximum likelihood estımator are unbiased only if the trip data correspond to these assumptions.

The chapter has then reviewed the work of Kırby (1974), who has attempted to apply behavioural hypotheses to the maximum likelihood calibration statistics. It has stated that the different calibration statıstıcs which can be derived from the maximum likelıhood estimator may represent different trip purposes which occur in the urban system. These trip purposes are characterized by different probability density functions over the inter-zonal interchanges and must be explicitly input into the maximum likelihood estimator in order to derive appropriate calibratıon statistics.

Chapter 3 has examined the least-squares estimator as a method of model calibration, as proposed by Cesario (1975). Through an examination of its properties, it has been found that unlike the method of maximum likelıhood, the least-squares estimator makes no implicit assumptions about the distrabution of trips over the zonal interchanges,
and thus imposes no behavioral assumptions on the calibration technique. The paper has compared the two methods of statistical estimation b_{F} imposing conditions on the maximum likelihood estimator so that it yields the same calibration statistics as the least-sguarni sitimator. It has shown that whle the princir le of least-sguares makes no imylicit assumptions about the sample data, the method of maximum likelihood must make very restrictive assumptions, in order to derive identical calibration statistics.

Thus, it has been shown that there appears to be a basic contradiction in the assertion of behavioral notions embedded in calibration statistics. Theoretically, the least-squares estimator can derive unbiased parameter estimates without making any assumptions about the probability density functions of the trip interchanges. Conversely, the maximum likelihood estimator can only yield unbiased parameter estimates by making implicit, and sometlmes unrealistic assumptions about the nature of the traffic flow over the zonal interchanges. It follows that if indeed the trip distributions derived from the competing methods are similar, the behavioral properties of the maximum likelihood estimator are non-existent.

The fourth chapter has examined related problems in model calibration. Specifically, it has discussed the reliabillty of the sample observation, the trip survey, in representing the mean distribution of trips in the urban system. This is critical because it $1 s$ the mean distribution whach the spatial interaction model is assumed to generate. If travel over the set of interchanges varies from day to day, the random sample will retain these deviations from the mean. These

blases will then be generated through the model. The paper has stressed that the magnitude of this bias must be examined in order to assess the quality of the model's output.

Second, the chafter has examined how the key variable in calibraTion statistics has been defined in the literature. This is the generalızed cost variable, which has been defined as distance, time and various combinations of both. While it has concluded that the problem of varıable definition can only be resolved through empirical examınatıon, the chapter has proposed a hypothetıcal analytical framework, which controls the bias which can be introduced through variable misspecification. The paper has proposed to apply this framework to both. the problem of determining the reliability of the sample observation, and to the problem of determining the existence of behavioral notions in maximum likelihood calibration statistics to see whether theoretical calıbration requirements are necessary to derive unblased model results.

The final section has presented and discussed the results of the analysis proposed in Chapter 4. After briefly discussing the concepts of best parameter estimates and optımum goodness-of-fit in order to interpret the outcomes of the analyses, the paper has formulated several conclusions.

The paper has found that in the constructed hypothetical framework, the trip survey, drawn at random, retains the essential characteristics of the mean trip distribution. It has found that the sampling process inherently loses some information about the distribution, especially concerning low volume interchanges, and has postulated that
the information loss $1 s$ directly attributable to sample size.

The analysis has also found that the satisfaction of the theore: tical requirements for calibrating spatial interaction models dors not have any appreciable effect on the goodness-of-fit of tre generated distribution to the data. This serves to contradict the behavioural hypotheses about calibration statistics, as asserted by Kirby.

A further result has been observed in the analysis which suggrests further study. An inherent property of the distribution generated $\mathrm{b}_{\mathrm{\prime}}$ the gravity model was observed in the analysis. This is the tendency for the model to over-predict high volume interchanges and underpredict medium and low volume interchanges. This characterisilc perfectly counter-acted an undesirable property of the random sample, that of under-estimating high-volume interchanges and over-estimating medium and low-volume interchanges. The result was a remarkably accurate macro-distribution of travel in the area.

A verification and explanation of these observations as clearly needed to reaffirm the usefulness of the spatial interaction model in the planning context.

The findings of this study can only be deemed tentative and this fact can only be appreciated through an evaluation of the analysis.

The problem of calibration has been approached by performing the same basic operations as would the analyst when applying the spatial interaction model to a real situation. A single random sample has been drawn from the population. Inferences about the felationship of the sample to the population, and about the fit of the generated distribution to the data have been based upon this lone sample only.

The principal difference, however, between the hypothetical framework and an empirical study has been that we have possessed additioncil information about the system and its variables that the analyst could not have collected. For example, we know exactly the function and variables which distributed the trips. We know how trips were distributed over the zonal interchanges, and the mean trip distribution. The empirical analogues are either unobservable or do not even exist in reality. We have used this information to test the modeller's assumptions (about the sample) and the theoretician's propositions (about statıstiçal requirements) with regards' to the issue of calibration.

Clearly, the design of the analysis could have been extended so that more conclusive results were obtained. Instead of a single random sample, several observations on the system could have been made to find an average correspondence to the mean distribution. Samilarly, the spatial interaction model could have been calibrated to each observation to yield a range of parameter values. These values could have then been used to generate several distributions to find an average measure of goodness-of-fit to the data. However, further research must initially be directed to the sensitivity $15 s$ ue of the spatial interaction model, and at the statistical measure used in the analysis in order that the findings of this research endeavor be strengthened. These two points warrant additional comment.

Consider first the statistics used to measure goodness-of-fit in the spatial interaction context. The weaknesses of correlation statistics were brought out an Chapter 1. In spite of their weaknesses they are still recommended by modellers in order to measure model fit. But

It appears that little can be inferred, especially from the F^{2} statistic. Although its use does not require ary information loss throigh aggregation or omission of varlables, it has more perulutr roprtafs than originally suspected, as seen in Chapter 5 , which make it an especially poor statistic to use in spatial intriaction modelling. Clearly, what is needed 16 a statistic whose proferties make it especially adaptable to the spatial interaction context. Its distribution and assumptions should be known, it should be sensitive, remain invariant under transformation and should be defined over all values of $t_{i j}$.

Secondly, the whole question of model sensitivity should be extensively researched. It seems to be clear that if model predictions remain invariant or maintain their goodness-of-fit throughout a range of parameter values, calıbration methodologies become less of an issue. There is no point in interpreting statistical conditions in any context, including trip purpose, if a unique "best" optımum does not exist. Perhaps the best approach to this would be to plot the objective functions of the statistical estimators over the range of parameter values in question. This would enable us to determine not only the general sensitivity of the statistic about the optımum but also the reliability of the statistic, by observing its behavior over the parameter range.

If in fact, as is suspected from this analysis, the statıstics are generally insensitive to changes in parameter values around the optimum, research in the calibration field should be directed towards efficiency and reliability criteria rather than towards modifyıng

```
statistics to incorporate non-existent or unobservable behavioral phe-
nomena.
    Answers to the questions posed througnout this paper are necessar:'
to develop a sound theoretical and practical base for calibratirig spatial
interaction models. Although many points remain unresolved, this paper
can be regarded as another step in addressing these lssues.
```


BIBLIOGKAPHY

Alonso, L. (1972) A Reereational Tmip Making Model of the Sanich Pennineula. Department of Geography, Uriversity of Reading: M.Sc. Dissertation.

Batty, M. (1970a) "Models and Projections of the Space Economy", Tir: Planning Review, 41, 121-147.

Batty, M. (1970b) "An Activity Allocation Model for the NottinghamshireDerbyshıre Subregion", Kegional Studies, 4, 307-332.

Batty, M. (1970c) "Some Problems of Calibrating the Lowry Model", Environment and Plomning, 2, 95-114.

Batty, M. (1971) "Exploratory Calibration of a-Retaıl Location Model Using Search by Golden Section", Environment and Plonning, 3, 411-432.

Batty, M. (1972) "Recent Developments in Land Use Modelling: A Review of Bratish Research", Urban Stidies, 9, 151-177.

Batty, M. and S. Mackie (1972) "The Calıbration of Gravity, Entropy and Related Models of Spatial Interaction", Envirorment and Planming, 4, 205-233.

Batty, M. and S. Maokie.(1973) "Auto Calibration of Trip Distribution Models", Traffic Engineering and Control, 12, 2.

Batty, M., D.H.S. Foot, L. Alonso, G. Bray, M. Breheny, D. Constable, K. Dugmore, R. Ellender, J. Shepherd and J. Willıams (1973) "Spatial Systems Design and Fast Calibration of Activity Interactıon-Allocation Models", Regional Studies, 7, 351-366.

Batty, M., R. Bourke, D. Cormode, M. Anderson-Nicholls (1974) "Experiments in Urban Modelling founty Stracture planning: The Area 8 pilot Model", Environment and Plarning $A, 6,455-478$.

Ben-Akıva, M. (1973) Structure of Fassenger Travel Demand Models. Department of Civil Engineering, Massachusetts Instatute of Technology: Ph.D. Dissertation.

Cesarlo, F.J. (1975) "Least-Squares Estimation of Trip Distribution Parameters", Tranaportation hosearch, 9, 13-18.

Charnes, A., W. Raike and C.O. Bettinger (1972) "An Extremal and Information-Theoretic Characterization of Some Interzonal Transfer Models", Socio-Ëconomic Planning Licirrara, 6, 531-537.

Chatterjee, A., G.G. Makowskı and K.C. Sinha (1374) Reliability Ant.ais of Origin-bestination umeva and Dketerminati, of Optimal Samsle Size. Natıonal Technical Information Service. Springfield, Virginia.

Cripps, E.H. and D.H.S. Foot (1969a) "The Empirical Development of an Elementary Residential Location Model for Use in Subregional Planning", Environment ond Manning, 1, 81-90.

Crıpps, E.H. and D.H.S. Foot (1969b) "A Land Use Model for Subregıonal plannıng", Rejional Studies, 3, 243-268. .

Draper, N.R. and H. Smith (1966) Asplied Regression Analysis. New York: John Wiley.

Edwards, A.W.F. (1972) Likelihood. Cambridge: Cambridge Unıversity Press.

Evans, A.W. (1971) "The Calıbration of Trip Eistribution Models with Exponential or Similar Cost Functions", Transportation Research, 5, 15-38.

Evans, S.P. (1973) "A Relationship Between the Gravity Model for Trip Distribution and the Transportation Problem in Linear Programing", Tronsportation Research, 7, 39-61.

Freeman, H. (1963) Introduction to Statistical Inference. Reading:, Addison-Wesley.

Freund, J.E. (1952) Modern Elementary Statistics. Englewood Cliffs: Prentice-Hall. Prentice-hail.
Hill, D.M., D. Brand and W.B. Hansen (1965) "Prototype Development of Statistical Land Use Model for Greater Boston Region", Highway Research Record, 114, 51.

Hutchinson, B.G. (1974) Principles of Urbon Tronsport Systems Planning. New York: McGraw-Hill.

Hyman, G.M. (1969) "The Calibration of Trip Distribution Models", Environment and Plonning, 1, 105-112.

SIsard, w. (1960) Methods of Regional Analysis. Cambrıdge: M.I.t. press.
Kixby, H.R. (1974) "Theoretical Requirements for Calibrating Gravity Models", Trancyortation kecearci, 8, 97-104.

Larsort H.J. (1969) Introduction to Erobability Theory and Statistical Inference. New York: John Wiley.

Lindley, D.V. (4965) Introduction to Probability and Statictics from a Bquesion Viewpoint. London: Cambradge University fress.

Lowry, I.S. (1963) "Location Parameters in the P1ttsburgh Model", Papets: The Regional Ecience Ascociation, 11, 145-165.

Lowry, I.S. (1965) "A Short Course in Model Design", Jourmol of the American Institute of Planners, 31, 158-165.

Mackie, S. (1972) The Calibration of Spatial Interaction Models. Department of Geography, University of Reading: Geographical Paper \#14, January.
;
Masser, 1. (1970) Notes on on Application of the Lowry Model to Mersyside. Department of Civic Design. Unıversity of Liverpool.

Morphet, R. (1975) "A Note on the Calculation and Calibration of Doubly Constrained Trip Distribution Models", Transportation, 4, 43-53.

Olsson, G. (1965) "Distance and Human Interaction: A Migration Study", Geografiska Annaler, 74B, 3-43.

Openshaw, S. (1973) "Insoluble Problems in Shopping Model Calibration When the Trip Pattern Is Not Known", Regional Studies, 7, 367-371.

O'Sullivan, P. (1971) "Forecasting Interregional Freight Flows in Great Britain", in M. Chisholm, A.E. Frey and P. Haggett (Eds.) Regional Forecasting. London: Butterworths, 443-450.

Reif, B. (1973) Models in Urban and Regional Planning. London: In Text Publishers.

Shannon, C. and w. Weaver (1949) The Mathematical Theory of Commonication. Urbana: University of Illinois Press.

Sheppard, E.S. (1974) Entropy in Geoaraphe: An Information Theoretis Approach to Bayesion Inference and Spatial Aralysis. Department of Geography, University of Toronto, Unpublished.

Siedmann, D.R. (1969) The Construction of an Urbon Growth Model. Delaware Valley Regional Planning Commission: Report \#l, Technical Supplement, Volume A, Philadelynia.

Tanner, J.C. (1961) Factore Affecting the Amown of Troffic. Poad Research Laboratory: Technical paper \#51, London.

Tribus, M. (1969) Rational Descmiptions, Decisions and Designs. New York: Pergammon.

Turner, G.C. (1970) Severnside Shorning Model: A Discussion of the Calibration Frocedure and Results. Nathaniel Lichfield and Assoclates: Working Paper \#9, London.

Turner, G.C. and R.J. Williams (1970) A Note on the Activitu Allocation Model for the Bristol Subregion. Department of Town Planning, University College, London: Discussion Paper \#9.

Webber, M.J. (1975) "The 'Meaning' of Entropy Maximizing Models", Paper presented at the Symposium on Mathematical Land Use Theory, McMaster University, Hamilton, April.

Wetherill, G.B. (1967) Elementam Statistical Methods. London: Methuen.

Wilson, A.G. (1970) Entropy in Urban and Regional Modelling. London: pion.

Wilson, A.G. (1974) Urban and Regional Madels in Geography and Planning. London: John Wiley.

Wilson, A.G., A.F. Hawkins, G.J. Hill and D.J. Wagon (1969) "Calibration and Testing of the SELNEC Transport Model", Regional Studies, 3, 337-350.

Wonnacott, R.J. and T.H. Wonnacott (1970) Econometmics. New York: John Wiley.

