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Abstract 

 

The United Kingdom Climate Impacts Programme’s UKCP09 project makes high-

resolution projections of the climate out to 2100 by post-processing the outputs of a 

large-scale global climate model. The aim of this paper is to describe and analyse the 

methodology used and then urge some caution. Given the acknowledged systematic, 

shared errors of all current climate models, treating model outputs as decision-relevant 

projections can be significantly misleading. In extrapolatory situations, such as 

projections of future climate change, there is little reason to expect that post-processing 

of model outputs can correct for the consequences of such errors. This casts doubt on 

our ability, today, to make trustworthy, high-resolution probabilistic projections out to 

the end of this century.  
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1. Introduction 

 

There is now a widespread consensus that global warming is real and in large part due 

to human activities.
1
 Simply knowing that the Earth’s surface will warm on the whole 

(or on average) has value for both mitigation
2
 and adaptation strategies, especially when 

accompanied by other physically understood aspects such as the greater rate of warming 

of land than of ocean and the warming amplification at higher latitudes. Nevertheless 

much greater detail is sometimes desired. The question is: to what extent can that desire 

                                                
1
 The existence of a wide-spread a consensus is documented in (Oreskes 2007); the evidence for the 

warming being anthropogenic is documented in the most recent IPCC report (Stocker et al. 2013); a 

shorter summary is (Dessler 2011, Ch. 3).  

2
 Knowing even roughly what is likely to happen may be reason enough not to go there. 
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be met effectively? The impact of climate change on humans (as well as other 

organisms) occurs at a local scale, and so ideally one would like to know what changes 

one has to expect in one’s immediate environment. For instance, how will the 

precipitation change in central London by the end of this century? Having reliable 

answers to such questions would have significant implications for water management, 

agriculture, health planning, and many other decisions. Robust, reliable answers would 

aid decision-making (Oreskes et al. 2010; Sexton et al. 2012; Smith and Stern 2011; 

Tang and Dessai 2012).  

 

The United Kingdom Climate Impacts Program’s UKCP09
3
 project aims to answer 

exactly such questions by making high-resolution probabilistic projections
4
 of the 

climate out to 2100 based on HadCM3, a global climate model (GCM) developed at the 

UK Met Office Hadley Centre. The IPCC has confidence that global climate models 

like HadCM3 have some skill at continental scales and above.
5
 This leaves open the 

question whether decision-relevant high-resolution projections could be constructed 

with today’s models. 

 

The aim of this paper is to describe and analyse the methodology used by UKCP09 and 

then urge some caution. While this methodology is the only complex model-error-

exploring methodology currently deployed to inform decisions with probability 

projections, UKCP09 is not an isolated phenomenon. In the UK a successor to UKCP09 

                                                
3
 ‘UKCP’ stands for United Kingdom Climate Projections and ‘09’ indicates that it was launched for 

public use in 2009. The project’s broad outline is documented in the Briefing Report (Jenkins et al. 2009) 

(a revised version has been published in 2010); the Science Report (J. Murphy et al. 2010) and two recent 

papers (Sexton et al. 2012) and (Sexton and Murphy 2012) provide a detailed exposition.  

4
 A ‘projection’ is the ‘response of the climate system to emission or concentration scenarios of 

greenhouse gases and aerosols, or radiative forcing scenarios […]’ (Solomon, 2007, 943}. Unlike 

predictions or forecasts, projections ‘depend upon the emission/concentration/radiative forcing scenario 

used, which are based on assumptions concerning, for example, future socioeconomic and technological 

developments that may or may not be realised and are therefore subject to substantial uncertainty’ (ibid.).  

5
 ‘IPCC’ refers to the Intergovernmental Panel on Climate Change, the international body for the 

assessment of climate change established by the United Nations Environment Programme (UNEP) and 

the World Meteorological Organization (WMO) in 1988. The Panel’s findings are documented in its 

Assessment Reports. The 4
th

 Assessment report was published in 2007 (Solomon et al. 2007), and the 5
th

 

has been released in phases from September 2013 to October 2014.  
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is being planned, and similar projects are under consideration around the world.
6
 The 

question whether UKCP09 provides decision-relevant projections is widely debated 

inside the UK; this paper is intended to raise the profile of that discussion, as the 

answers have implications that reach far beyond the political and scientific context of 

the UK. UKCP09 has great value as a worked example in the discussion of the strengths 

and weaknesses of climate simulation in support of good policy worldwide.  

 

Given the acknowledged systematic errors in all current climate models, the fact that 

many limitations are shared by models, and the fundamental limitations which come 

into play whenever one extrapolates with imperfect nonlinear models, model outputs 

cannot be assumed to contain the information necessary to produce reliable 

probabilistic, multi-decadal projections, particularly on local scales (Smith 2002; 

Thompson 2013; Frigg et al. 2014). Climate projections are extrapolatory in nature; they 

rely directly on the information content of the models regarding the interaction of 

relevant physical processes. If the model simulations are not of high fidelity, then it is 

questionable whether post-processing of model output, even if involving additional 

information from observations, would be sufficient to generate trustworthy,
7
 high-

resolution projections out to the end of this century. This paper elucidates the 

fundamental assumptions applied in UKCP09, facilitating the questioning of their 

relevance; this is of particular value because some are widely made in the interpretation 

of climate modelling experiments.
8
 

 

                                                
6

 Similar projects include: Cal Adap (http://cal-adapt.org/precip/decadal/), Climate Wizard 

(http://www.climatewizard.org/), ClimateimpactsOnline (http://www.climateimpactsonline.com/). 

7
 In this paper we shall use the word ‘trustworthy’ to denote probability forecasts, which one might 

rationally employ for decision-making purposes using probability theory in the standard way. Such 

probability forecasts are expected to be robust and reliable, the kind a good Bayesian would make. There 

may be many justifiable and interesting scientific reasons to construct probability forecasts; our criticism 

of  them in this paper  is only in regard to their direct use in decision support (as, for instance,  illustrated 

in the worked examples of UKCP09).  

8
 Uncertainty in climate modelling has been given considerable attention, among others, by Parker 

(2010a, 2013) and Winsberg (2010; 2012). Our discussion has a different focus in that it deals specifically 

with local climate projection and concentrates on post-processing.  
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In Section 2 we discuss the aims of UKCP09. In Section 3 we outline the method used 

to generate high-resolution climate projections. We give considerable space to the 

description of UKCP09’s methods for two reasons. First, even though UKCP09 is 

widely discussed, its ways and means in generating projections are terra incognita 

outside a narrow circle of experts. We take this paper as an opportunity to make the 

main outlines of this complex scheme accessible to a wider audience. Second, our 

criticisms are directed against particular (independent) assumptions of the scheme, and 

without first introducing these assumptions our discussion would lack a foothold. In 

Section 4 we discuss the project’s handling of structural model error, which is based on 

what we call the core assumption and the proxy assumption, and we argue that both 

assumptions are untenable. In Section 5 we expose general challenges to employing 

emulators in the climate context, and UKCP09’s use of emulators in particular. In 

Section 6 we discuss the choice of prior probability distributions and in Section 7 we 

draw attention to issues with initial conditions and downscaling. In Section 8 we 

consider the issue whether the UKCP09 projections are intended for actual use. In 

Section 9 we reach the conclusion that the UKCP09’s projections should not be 

regarded as trustworthy projections for quantitative decision support, and propose an 

initial list of necessary properties for trustworthy projections.  

 

 

2. UKCP09:  Aims and Results  

 

Modelling endeavours can pursue different goals: uncovering mechanisms, 

understanding causal structures, explaining manifest behaviour, aiding the application 

of a theory and generating projections are but a few items on a long list. Many of these 

goals can be (and indeed have been) pursued with climate models. The declared aim and 

purpose of UKCP09 is to provide decision-relevant projections, on which industry and 

policy makers can base their future plans. The UKCP09 Briefing Report states:  

 

‘To adapt effectively, planners and decision-makers need as much good information as possible on 

how climate will evolve, and supplying this is the aim of the new projections of UK climate 

change in the 21st century, known as UKCP09. They are one part of a UK government programme 

of work to put in place a new statutory framework on, and provide practical support for, 

adaptation.  
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The projections have been designed as input to the difficult choices that planners and other 

decision-makers will need to make, in sectors such as transport, healthcare, water-resources and 

coastal defences, to ensure that UK is adapting well to the changes in climate that have already 

begun and are likely to grow in future.’ (Jenkins et al. 2009, 9) 

 

In a system as complex as the world’s climate, it is absurd to produce a point projection 

(i.e. a projection saying that a particular event will happen at a particular time with 

certainty). UKCP09 produces what they dub ‘probabilistic projections’, which 

 

‘assign a probability to different possible climate outcomes recognising that […] giving a range of 

possible climate change outcomes is better, and can help with robust adaptation decisions, but 

would be of limited use if we could not say which outcomes are more or less likely than 

others.’(ibid., 23)  

 

The challenges many decision makers have to address arise at a local level: flood 

barriers have to be built in a particular location and to a chosen height, water storage 

facilities have to be built in suitable locations and so on. For this reason, local user-

relevant information about the impacts of climate change is the most useful, assuming 

of course that it is not mis-informative (Smith and Stern 2011).   

 

UKCP09 tries to meet the demand for decision-relevant information at the local level by 

producing highly specific information (ibid., 6-7). Probabilities are given for events on a 

25km grid (which means, for instance, that the projections may differentiate between 

the impacts of global climate change in London and Oxford, two cities that are only 

about an hour apart by train). Projections are made for finely defined specific events 

such as changes in the temperature of the warmest day in summer, the precipitation of 

the wettest day in winter, or the change in summer-mean cloud amount, with projections 

blocked into overlapping thirty year segments which extend to 2100. As indicated in the 

graph on p. 36 of the Briefing Report, it is projected, for instance, that under a medium 

emission scenario there is a 0.5 ‘probability level central estimate’
9
 for the reduction in 

summer mean precipitation in central London to be between 20% and 30%.
10

 The 

                                                
9
 We take this phrase to refer to the median of the probability distribution. 

10
 The full set of UKCP09 predictions is at http://ukclimateprojections.defra.gov.uk/. 
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worked examples provided in UKCP09 state explicit design criteria implying this finely 

defined interpretation is intended. 

 

 

3. The Architecture of UKCP09  

 

These projections are generated with a method involving both global climate models 

and elaborate post-processing techniques, where ‘post-processing’ here refers to 

operations carried out on model-outputs with the aim of transforming bare simulation 

results into probabilistic projections. In this section we outline the method with the aim 

of making its architecture visible and identifying key assumptions. The method can be 

divided into seven parts: modelling, observation, parameter uncertainty, structural 

model error, statistical inference, emulation, and downscaling.
11

   

 

Part 1 – Modelling. The cornerstone of UKCP09’s exploration of the future of the 

global climate is HadCM3, which is a coupled atmosphere-ocean general circulation 

model developed at the Hadley Centre in the UK. The model includes an atmospheric 

model, a land surface model and an ocean model (which includes a sea ice model) and a 

coupler.
12

 The coupler mediates  interactions  (such as heat and momentum exchanges) 

between models. Simulations of processes in the climate system come from nonlinear 

partial differential equations (PDEs), which define the evolution of continuous fields 

representing the state of various aspects of the climate system. It is possible neither to 

integrate PDE’s exactly, nor to measure perfectly the continuous fields required to 

initialise them. In practice equations are discretised (in space and in time). HadCM3’s 

atmospheric component has 19 levels with a resolution of 2.5 degrees of latitude by 3.75 

degrees of longitude, which produces a global grid of 96 x 73 grid points. This is 

equivalent to a surface resolution of about 417 km x 278 km at the Equator, reducing to 

295 km x 278 km at 45 degrees of latitude. The oceanic component has 20 levels with a 

                                                
11

 Our account of the method is based on (J. Murphy et al. 2010, Ch. 3) and (Sexton et al. 2012). 

12
 See http://www.metoffice.gov.uk/research/modelling-systems/unified-model/climate-models/hadcm3 

(information retrieved on 23 March 2014). Further information about HadCM3 can be found at 

http://badc.nerc.ac.uk/view/badc.nerc.ac.uk__ATOM__dpt_1162913571289262. 
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horizontal resolution of 1.25 x 1.25 degrees, and a longer time-step than the atmospheric 

model.  

 

These models include literally thousands of dynamical variables (the state of each grid 

point is described by a number of variables such as temperature and pressure). 

Collectively these variables form the model’s state space X . The time evolution of 

these variables is hoped to mirror the evolution over time of relevant physical variables. 

These models also include hundreds of parameters (some of them representing physical 

constants; others defining or controlling small scale processes such as cloud formation 

which are not resolved explicitly, some purely numerical with no physical counterpart). 

Parameter values enter, for example, into the transfer of heat, moisture or momentum 

between the surface and the atmosphere, the reflectivity of sea ice, cloud albedo and 

behaviour, and convection at sub-grid scales.  

 

To aid the discussion to follow, let us introduce some notation. Let X  be the model’s 

state space, and the model’s state at time t  is x(t) = {x
1
(t), x

2
(t),...}∈X . Let 

α = {α
1
,α

2
,...}  be the vector of all parameters in the model. The time evolution of 

HadCM3 is ϕ
t

C
(x;α ) , meaning that (given an initial condition x

0
 at time t = 0  and a 

value of α ) ϕ
t

C
(x;α )  specifies the value of the system’s dynamical variables )(tx  for 

time t  > 0 (where t=0 can be in the past or the future). That is, ϕ
t

C
(x;α ) :X→ X

 
maps 

X  onto itself and one can write x(t) =ϕ
t

C
(x

0
;α ) . At some places in what follows it is 

important to emphasise that α  assumes a particular value a . In these cases one writes ‘

ϕ
t

C
(x

0
;a) ’ as shorthand for ‘ ϕ

t

C
(x

0
;α = a) ’. If a particular set of values for the 

parameters are chosen one speaks of a model version (D.A. Stainforth et al. 2005). 

Hence, ϕ
t

C
(x;a)  is a model version of ϕ

t

C
(x;α ) . 

 

Values of x(t)  cannot be computed with pencil and paper methods; a computer is used 

to numerically calculate ϕ
t

C
(x;α ) . Even today’s powerful computers take a long time to 



 9 

make a run
13

 of  ϕ
t

C
(x;α ) , and so a less complex model is used for most calculations. 

To this end an ocean model consisting of a so-called slab model is adopted (i.e. an 

ocean with no currents and a uniform effective depth of 50m). The role of the oceans in 

transporting heat is nevertheless represented by an applied atmosphere/ocean heat flux. 

The result of this manoeuvre is HadSM3, a computationally less demanding model.
14

 

We write );( αφ x
S

t
 to denote the time evolution of this model, where we take it as 

understood that the vectors x  and α  vary with the model structure; they are larger in 

HadCM3 than in HadSM3 which has fewer variables and fewer parameters.  

 

Part 2 – Observations. UKCP09 provides a method for making projections that 

incorporates information from observations (Sexton et al. 2012, 2513). It is assumed 

that there is a vector y  representing the climate of the world between 1860 and 2100 (J. 

Murphy et al. 2010, 51). There is a vector space Y  of which y  is a member. The vector 

y  is ‘a large collection of quantities, where each component is typically indexed by 

type, and by location and time’ (Rougier 2007, 249). It is worth noting that there is no 

simple relation between x  and y  (nor between X  and Y ): the former reflects the 

model’s state at a given time while the latter is a summary of the world’s true climate 

across a certain time interval.
15

 

 

The vector y  can be decomposed into a historical and a future component (where the 

convention is adopted that the present is part of the historical component): y = (yh , y f ) . 

                                                
13

 A ‘run’ is the calculation of the value of x at some particular future instant of time given a certain 
0
x  

and a set of specific values for α . It is synonymous with the term ‘simulation’. With today’s climate 

models a run of a hundred years may take between hours and months depending on the model’s 

complexity and resolution and on the computing hardware utilised. 

14
 Going from HadCM3 to HadSM3 roughly doubles the speed of the model. 

15
 We note that the notion of a vector representing the world’s climate raises many serious questions.  

Which variables ought to be included? At what time and length scales should its components be defined? 

And more fundamental, how is climate (as opposed to weather) to be defined in the first place. The 

documentation of UKCP09 provides little information about how these issues have been resolved. Since 

nothing in our discussion depends on the definition of y we don’t pursue this issue further.  
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Likewise Y  can be separated in historical and a future component: Y = Yh ×Y f
, where ‘

× ’ denotes the Cartesian product.   

 

Observed quantities are denoted by o , and the values found in actual observations are 

 o  (that is, the outcome of an observation is  o = o ); hence 
 
o∈Y

h
.
16

  As no observation 

is perfectly precise, one might consider measurement error. The errors are typically 

assumed to have a Gaussian distribution. For ease of notation it is assumed that 

observations and their errors are arranged in vectors of the same structure as the past 

component of the climate and so one can write:  

 

 
o = yh + e ,            (1)  

 

where e  is the Gaussian error distribution.
17

 

 

Part 3 – Parameter Uncertainty. One problem in determining the future values of x  is 

that ‘the available information is seldom precise enough to allow the appropriate value 

of a given parameter to be accurately known’ (J. Murphy et al. 2010, 37).
18

  Not 

knowing what value of α  to use in calculations, yet assuming there is one, ‘gives rise to 

the parameter component of model error’ (ibid.).
19

  

                                                
16

 Given our provisos about the definition of y , selecting observations as indicators of the climate vector 

is an equally difficult task. UKCP09 use so-called ‘pseudo-observations’: ‘We obtain these by using two 

or three alternative data sets for each observed quantity, from which we generate 100 pseudo-observations 

made by adding random linear combinations (where coefficients sum to one) of the different data sources 

[…] regridded onto the HadSM3 grid’ (Sexton et al. 2012, 2517). Again, nothing in the discussion to 

follow depends on how exactly observations are treated and so we set this issue aside.  

17
 Of course these distributional assumptions are often questionable; for example they cannot hold for 

precipitation which is positive definite. 

18
 Arguably parameters of an imperfect model are not uncertain but rather indeterminate, as there is no 

ideal set of parameter values which will make the model adequate for all predictive purposes, as would be 

the case if the model structure was perfect and the values of the parameters were well defined but simply 

unknown (Du and Smith 2012).   

19
 This assumption is controversial. (Smith 2006) argues that for imperfect models appropriate values 

(leading to trustworthy forecasts) may not exist.  For want of space we set these worries aside and 
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The technique of a perturbed parameter ensemble (PPE) is designed to address this 

difficulty (Allen and Stainforth 2002).
20

 The leading idea of a PPE is to calculate the 

future values of x  for a number of different values of α , where these values ideally are 

chosen in a manner that sample the diversity of reasonable values. If, for instance, we 

are uncertain about the ‘best’ value of parameter α
2
 but believe that it lies between 

min,2a  and 
max,2

a , then one carries out calculations of x  for many values in the interval 

],[ max,2min,2 aa .
21

 The variability of the outcomes provides a sense of the sensitivity of the 

model. Calculating future values of x  for a number of different parameter values 

amounts to constructing a PPE because the variation of the parameter values amounts to 

perturbing the parameter yet without changing the mathematical structure of the model 

(because the formulation of the equations remain unchanged).  

 

Given the complexity of a model like HadCM3 relative to state-of-the-art computational 

capacity only a relatively small number of runs are available. The question then is how 

to construct a PPE for a model with 100s of parameters if one only has a small number 

of runs. UKCP09 first limits this problem by restricting attention to predominantly 

atmospheric parameters and then solicits parametrisation experts to identify those 

parameters which they believe control the crucial processes in the system, on which the 

future values of x  depend sensitively; these experts are then asked to specify plausible 

intervals for these
22

 parameters (J. Murphy et al. 2010, 37, 49). This process led to the 

identification of 31 crucial parameters and the definition of their associated plausible 

intervals.  

 

Restricting attention to these 31 parameters, one can ask: what is the variation of future 

values of x  given the diversity in α ? UKCP09 quantify uncertainty in x  

                                                                                                                                       
proceed as if the question was one of uncertainty not indeterminacy; for more on this point see (Smith and 

Stern 2011).  

20
 We note in passing the lack of unanimity on whether the second ‘P’ of PPE stands for ‘parameter’, 

‘parameterization’, or ‘physics’. 

21
 For a discussion of what ‘best’ might mean see also (Parker 2010b).  

22
 Note the difference between the range of reasonable model-parameter values within the model and the 

uncertainty in the value of the corresponding physical parameter, when such a thing exists. 
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probabilistically, meaning that they specify a distribution over the uncertainty interval 

associated with α . The choice made is the following:  

 

‘we used trapezoidal distributions for the continuous parameters whereby the middle 75% of the 

expert range was considered equiprobable, and then probability density reduced linearly to zero at 

the extreme values. For the discrete parameters, the different levels were considered equiprobable. 

Parameters are assumed independent so that it is straightforward to determine probabilities for 

every possible combinations [sic] of parameter values.’ (Sexton et al. 2012, 2517) 

 

We write T (α )  to refer to this distribution.  

 

Part 4 – Model Error. UKCP09 uses what they call the ‘best input assumption’: ‘that 

for a given climate model there exists a best set of model parameters, [a* ], that provide 

the best simulation of the true climate, y ’ (Sexton et al. 2012, 2521). They add that 

‘due to imperfections in the climate model, even the best input has deficiencies in 

simulating the true climate’ (ibid.). The response to this point is to introduce the so-

called discrepancy term d . This term is defined as the distance between the best model 

simulation and the true climate.
23

  

 

A form of the discrepancy term is determined as follows. Use the climate model

ϕ
t

S
(x

0
;α )

 
to calculate the components of a vector that has the same structure as y . Call 

this vector Φ(α ) , where the explicit mention of α  indicates its dependence on the 

parameter α ; obviously Φ(α )∈Y . The vector for the best input assumption is Φ(a*) . 

Assuming some metric on Y , the discrepancy is the difference between y  and Φ(a*) .   

On the assumption that it is well-defined, the value of the discrepancy is uncertain 

(meaning imprecisely known, not indeterminate) and so should be expressed as a 

probability distribution ε .  So one can write (Sexton et al. 2012, 2521):
24

 

                                                
23

 There are a host of challenges here, as climate is a distribution, the model climate and the real climate 

are not in the same state space, whatever notion of ‘best’ is taken the simulation model will not be ‘best’ 

for all target variants, and so on. These points raise important questions about how the distance is 

measured and what the discrepancy is intended to represent in practice in the climate case.   

24
 UKCP09 expresses this by writing (in our notion) y =ϕ(a*)+ε ; see equation (1) in (Sexton et al. 

2012, 2521). However this is not a correct formal expression of the concept of a discrepancy term 
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y = Φ(a*)+ ε        (2) 

 

As above, this equation can be decomposed into a historical and a future part:  

 

yh = Φh (a*)+ εh  

y f = Φ f (a*)+ ε f
       (4) 

 

The discrepancy term therefore 

 

‘effectively represents how informative the climate model is about the true climate, and it 

measures the difference between the climate model and the real climate that cannot be resolved by 

varying the model parameters. Such differences could arise from processes which are entirely 

missing from the climate model, or from fundamental deficiencies in the representation of 

processes which are included, through (say) limited resolution or the adoption of an erroneous 

assumption in the parameterisation scheme.’ (Sexton et al. 2012, 2515, emphasis added)
25

 

 

In brief, by adding the discrepancy term to the model one can glean  ‘what the model 

output would be if all the inadequacies in the climate model were removed, without 

prior knowledge of the observed outcome’ (Sexton et al. 2012, 2521).  

 

The use of the discrepancy term is based on two assumptions. The first assumption is 

‘that the climate model is informative about the real system’ (ibid., original emphasis). 

This amounts to saying that at least for the best input parameter a*  the model output is 

close to the real climate: ‘[ a* ] is not just a ‘statistical parameter’, devoid of meaning: it 

derives its meaning from the physics in the climate model being approximately the same 

as the physics in the climate’ (Rougier 2007, 253). We call this the informativeness 

assumption.  

 

                                                                                                                                       
because, as noted above, y and x are not members of the same vector space and hence cannot be added. 

For a discussion of ‘subtractability’, see (Smith 2006) and references therein. 

25
 See also (J. Murphy et al. 2010, 63-64).  
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The second assumption concerns the distribution ε  and says that this distribution is 

Gaussian. We call this the Gaussianity assumption. It is then also assumed that ε  and e  

and α  are ‘probabilistically independent’ (ibid.). 

 

Not being omniscient, one cannot just make a comparison between model outputs and 

reality. A crucial leap UKCP09 makes is to use a multi model ensemble (MME) as a 

proxy for the truth:  

 

‘Our key assumption is that sampling the effects of structural differences between the model 

chosen for the PPE and alternative models provides a reasonable proxy for the effects of structural 

errors in the chosen model relative to the real world.’ (Sexton et al. 2012, 2516) 

 

‘this approach is based on the assumption that structural differences between HadSM3 and other 

models are a plausible proxy for the uncertain effects of structural errors in how HadSM3 

represents climate processes in the real world.’ (Sexton et al. 2012, 2526)  

 

‘It is based on the judgement that the effects of structural differences between models can be 

assumed to provide reasonable a priori estimates of possible structural differences between 

HadSM3 and the real world. We take a given multi-model ensemble member as a proxy for the 

true climate, and use our emulator of HadSM3 to locate a point in the HadSM3 parameter space 

which achieves the best multivariate fit between HadSM3 and the multi-model member’ (J. 

Murphy et al. 2010, 64) 

 

The MME in question contains 12 models (see (Sexton et al. 2012, 2519) for details). 

The view expressed in these quotations is that measuring the average distance of 

HadSM3 to a set of different models yields a similar result as measuring its distance to 

the real world. We call the view that a MME is a trustworthy proxy for the real world 

the proxy assumption. 

 

So the aim is to determine the parameters of the distribution ε  by comparison of the 

outputs of HadSM3 with the outputs of other models in an MME. The leading idea 

behind the actual calculations is to first determine the best HadSM3 analogue for each 

model in the ensemble. Having found the best analogue, one can calculate the error b , 

essentially the difference between the two model outputs. The procedure is repeated for 
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each MME member, giving 12 b ’s. From these the mean and the covariance matrix of 

ε  are determined.
26

 

 

Under the proxy assumption, this procedure quantifies the additional uncertainty due to 

structural model error. One can then add this uncertainty to the uncertainty about values 

of y obtained in Part 3 and thereby obtain the total uncertainty, which now includes an 

estimate of the uncertainty due to structural model error. As noted by Murphy et al. 

(2007) it is important to stress that this is a lower bound. 

 

Part 5 – Statistical Inference. UKCP09 provides probabilistic projections. With the 

above in place one can now say how statistical inferences are drawn from the 

information gathered in Parts 1-4. The aim is to calculate 
 
p(

y f | o) , the probability of a 

particular future climate 
 


y f ∈Y f

 given past observations. We use ‘
 
p(

y f | o) ’ as a 

shorthand for ‘
 
p(

y f | o = o) ’; and the same convention is used below for 

 
p(

y f | o,a) ,

 
p(a | o)  and p(a) .  

 

On the assumption that the discrepancy term compensates for any difference between 

model outputs and the true climate, the only residual uncertainty is parameter 

uncertainty. As per Part 3, this uncertainty is assumed to be understood and quantified – 

by the trapezoidal prior distribution T (α )  – and so one can use the law of total 

probability to calculate the value of 
 
p(y f | o = o)  as a function of the parameter 

uncertainty: 

 

 
p(

y f | o) = p(

A∫

y f | o,α ) p(α | o)dα ,    (5) 

 

where A  is the 31-dimensional uncertainty interval  [a1,min ,a1,max ]× ...× [a31,min ,a31,max ] .  

 

Applying Bayes’ theorem to 
 
p(α | o)  yields the posterior distribution: 

 

                                                
26

 For details see (Sexton et al. 2012, 2525-27). 
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p(

y f | o) =

1

p( o)
p(

A∫

y f | o,α ) p( o |α ) p(α )dα ,    (6) 

 

where 
 
p(o = o)  can again be expanded using the law of total probability:  

 

 
p( o) = p(

A∫ o |α )p(α )dα .       (7) 

 

This is the core equation of UKCP09.
27

 

 

Let us have a look at the terms in the equation. The last term in the integral is the 

trapezoid distribution over the uncertainty intervals: p(α ) = T (α ) . The middle term is 

the likelihood function. It evaluates how likely the actual observations are in light of the 

climate model and the discrepancy term. Recall that yh = Φh (a*)+ εh . Generalising, let 

yh (α ) be the climate retrodicted by the model for parameter α . Trivially we have 

yh (α ) = Φh (α )+ εh . Furthermore recall o = yh + e . Hence 

 

o = Φ
h
(α )+ ε

h
+ e .       (8) 

 

Finally recall further that ε
h

 and e  are distributions. Hence this equation provides 

probability distribution for the probability of past observations conditional on the 

parameter α .  This gives a probabilistic weight to the actual observation  o , and this 

weight is the probability 
 
p( o |α )  (also known as the likelihood function).  

 

The first term in the integral can be dealt with in the same way. y f = Φ f (a*)+ ε f
 

induces a probability distribution Φ f (α )+ ε f
, which depends on α , over future 

climates and this distribution can be used to give a probabilistic weight to the future 

climate under consideration, 
 


y f . This is probability 

 
p(

y f | o,α ) . 

 

                                                
27

 This is equation (5) in (Sexton et al. 2012, 2523); for a discussion of the derivation see (Rougier 2007). 
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The above integration is over the entire interval A . Such an integration can be carried 

out only if both Φ
h
(α )  and Φ f (α )  are known for all values of α  in A . This is not the 

case. In fact, to explore the uncertainty of future values of x  brought about by the 

variation in these 31 parameters, 280 runs were made with HadSM3 (the simplified 

model). Later 17 runs with HadCM3 (the larger model) were added and information 

from the two combined.  

 

Part 6 – Emulator. Emulation is a powerful tool which aids understanding the 

behaviour of complex computer models when the total number of runs is constrained by 

technology. The small number of runs underlying UKCP09 does not approach a 

complete exploration of the parameter space. Indeed it is too small to provide an 

understanding of the diversity of outcomes. And to carry out the above integrations one 

would have to know how Φ
h
(α )  and Φ f (α )  depend on all parameter values and not 

only the ones used in the actual model runs. Filling the gaps between any finite number 

of model runs in a large parameter space is the task performed by a statistical tool called 

an emulator.
28

 

 

The emulator predicts the output x  for any parameter value at any time t . For a fixed 

initial condition and a particular future time t , ϕ
t

S
(x;α )  specifies a functional 

relationship between α  (which now is the independent variable) and x  at the time of 

interest  (now the dependent variable). This relationship defines a surface in X , so 

ϕ
t

S
(x;α )  is referred to as the target surface. Assuming that x  is a sufficiently smooth 

function of α , an emulator is built giving values of x  for all α . The emulator does not 

attempt to recreate the internal dynamics of the model but rather, builds up a 

distribution for each outcome solely on the basis of the data points obtained in 

simulations and statistical assumptions. An emulator is akin to a statistically satisfying 

curve-fitting algorithm; it is more than mere curve-fitting in that provides a distribution 

from which ‘curves’ (the mean, the median) can be extracted complete with local 

accuracy estimates. Let us denote the surface over output variables that the emulator 

                                                
28

 Note that emulators may elsewhere be called ‘surrogate models’, ‘meta-models’, and ‘models of 

models’. A general introduction to emulation (unrelated to UKCP09) can be found at 

http://mucm.aston.ac.uk/MUCM/MUCMToolkit/index.php?page=MetaFirstExample.html.  
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provides by ψ
t
(x;α ) . For the known points at which a climate model run is available 

one must have ψ
t
(x;α )=ϕ

t

S
(x;α ) . As a statistical tool the emulator does not provide an 

exact curve ψ
t
(x;α )  because the exact location of the curve ψ

t
(x;α )  is uncertain 

(except at the simulated points). Rather the emulator provides a distribution of the 

location of ψ
t
(x;α )  in X . We call this distributionΨ(x;α ) .  

 

What we have just sketched is what we call a complete emulator. It is complete in the 

sense that it emulates the complete set x(t) = {x
1
(t), x

2
(t),...}  of dynamical variables. On 

the basis of the values of {x
1
(t), x

2
(t),...}one can then compute the various climate 

variables we are interested in, for instance global mean temperature, daily mean 

precipitation, etc. This is because climate variables of interest are functions of the 

complete set of dynamical variables (complete relative to the model, that is). Let v be a 

climate variable of interest, then we can write: v(t) = f (x
1
(t), x

2
(t),...) , where the 

specifics of f depend on v and {x
1
(t), x

2
(t),...} . If, for instance, {x

1
(t), x

2
(t),...}  contains 

temperatures and if v is GMT, then f is simply a weighted average.  

 

A complete emulator is expensive to build. So in practice what is being built is what we 

call a targeted emulator. A targeted emulator is one that emulates a particular climate 

variable v (e.g. GMT) directly rather than first emulating {x
1
(t), x

2
(t),...} and then 

calculating GMT from the {x
1
(t), x

2
(t),...}  using f.  So a targeted emulator takes as 

input the parameters α = {α
1
,α

2
,...}  and provides as output the variable of interest, e.g. 

GMT, as a function of α = {α
1
,α

2
,...}  and time t. Such an emulator provides a 

distribution Ψ(v;α ) . If v  is a scalar then the emulator is a scalar emulator; if v  is a 

vector, it is a multivariate emulator. UKCP09 uses a multivariate emulator that emulates 

a vector with 12 components, where the components are climatic variables such as the 

sea surface temperature, precipitation, etc. (Sexton et al. 2012, 2518).
29

 

 

                                                
29

 UKCP09 does so indirectly in the sense that it emulates the coefficients of a set of basis vectors for the 

output space in question. Nothing in the discussion that follow depends on this.  
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The crucial point is that the emulator replaces the model in the process of statistical 

inference: ‘Put simply, the ensemble of model evaluations is used to build the emulator, 

and then the emulator is used in the inference’ (Sexton et al. 2012, 2523); see also 

(Rougier 2008, 827.829). This means that in actual calculations the vectors Φ
h
(α )  and 

Φ f (α ) , which determine the probabilities
 
p( o |α )  and

 
p(

y f | o,α )  in the above integral 

are calculated not with the model itself but with the emulator instead.  

 

Taking the results from Parts 5 and 6 together we gain an important insight: in actual 

calculations the probabilities offered as projections are computed on the basis of three 

items: emulator probabilities Ψ(v;α ) , the discrepancy distribution ε , and the 

distribution T (α ) , along with the observations  o  and their uncertainties e . 

 

Part 7 – Downscaling. The model calculations are done on the HadSM3 grid, which 

has a resolution of approximately 300km. UKCP09, however, provides projections on a 

much finer scale of 25km. In order to generate projections at that level of detail, a 

downscaling method is introduced to derive such information from the global model 

simulations done in Part 1: ‘Finally, to make the projections suitable for impacts and 

adaptation assessments, we use a further ensemble of the Met Office regional climate 

model (HadRM3) to downscale the projections from the global Met Office model to a 

resolution of 25 km’ (J. Murphy et al. 2010, 40). Dynamic downscaling of this sort 

involves running a high-resolution limited area regional model over the geographical 

domain of interest, with the boundary conditions provided by a global model. In 

UKCP09 this final stage involves an ensemble using HadCM3 (Murphy et al. 2010). A 

scaling process (referred to as timescaling) is also used to derive time dependent 

information through the 21st century because the HadSM3 simulations generate only 

the equilibrium response to doubling atmospheric carbon dioxide (Murphy et al. 2010). 

This downscaling and timescaling are critical steps in the process which enables 

UKCP09 to offer time-dependent information at local scales. The details, however, are 

beyond the scope of this paper and are not critical to the other issues discussed below. 

 

The endeavours of these seven parts taken together produce the projections we have 

seen in the last section. We now turn to a discussion of these projections. We discuss 

each of the crucial ingredients in turn.  
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4. Structural Model Error 

 

Accounting for structural model error is a critical step in any application for decision 

support. The discrepancy term and the use of emulation provide important new tools to 

this end. The effective and appropriate use of these tools hinges on the informativeness 

assumption and the proxy assumption. We do not dispute the deep importance of these 

new tools in general, nor the need to improve traditional approaches to model error, but 

in this section and the one that follows we discuss the efficacy of these tools as 

deployed in UKCP09.    

 

 

4.1 The Discrepancy Term and Structural Model Error 

 

Let us start by explaining in more detail the challenge that leads to the introduction of 

the discrepancy term. The issue is structural model error (SME) (Beven 2012; Kennedy 

and O'Hagan 2001; McWilliams 2007; Smith 2002). Like every model, HadCM3 has its 

imperfections. That is to say that in specifying ϕ
t

C
(x;α ) , a number of strongly 

idealising assumptions are made in terms of the relationship between model and reality. 

There are known flaws forced upon us by technological limitations. These include 

distortion of the topography of the earth: mountain ranges like the Andes are 

systematically too smooth and too short,  small volcanic islands chains, some  easily 

visible in satelite photographs due to the effect they have on atmospheric circulation via 

cloud tracks, do not exist in the model, and of course cloud fields themselves cannot be  

simulated realistically at the available resolution. Recall that most model runs on which 

UKCP09’s projections are based are done with HadSM3, which has an ocean with no 

dynamically resolved currents and a uniform depth of 50m everywhere. Solutions of the 

discretized PDE differ  from those of the original PDE, and the PDE itself differs from 

the true equations of the world (assuming such equations exist at all).
30

 

                                                
30

 Furthermore, there are limitations to our scientific understanding of the climate system and there may 

be relevant factors and process that we are simply unaware of – there may be unknown unknowns which 

would lead us to alter the equations of the model even under our current computational constraints. 
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Inasmuch as SME is due to shortcomings in the equations of the model, the challenges 

it poses to producing projections cannot be resolved by varying the model’s parameters. 

If a model has SME this means that the  time evolution of an ensemble will, eventually, 

differ from  that of a better model and indeed reality itself (if a relevant distribution can 

be associated with reality). Because this difference is due to the mathematical structure 

of the model equations no adjustment of the parameters in a  model of that structure can 

remove this difference (Smith 2002). The crucial question is: how soon do nontrivial 

effects of SME manifest themselves in a given situation? And to what extent can a 

model with SME still be informative about the target system? On what timescales does 

the science underlying the model suggest that a decision maker is likely to encounter a 

big surprise if the model outputs are taken as trustworthy?  

  

UKCP09 proposes the discrepancy term as a solution to SME. The message is that the 

uncertainties due to SME can be estimated and taken into account in projections.  

Adding this term to actual model runs is presented as giving us ‘what the model output 

would be if all the inadequacies in the climate model were removed, without prior 

knowledge of the observed outcome’ (Sexton et al. 2012, 2521), and the UKCP09 

science report calls the discrepancy term ‘an appropriate means of quantifying 

uncertainties in projected future changes’ (J. Murphy et al. 2010, 66). In this section we 

consider whether its use for the provision of quantitative decision support is justified. 

For the sake of argument we grant the assumption that the discrepancy is Gaussian and 

focus on the informativeness and proxy assumptions. 

 

 

4.2 The Informativeness Assumption 

 

Recall that the informativeness assumption says that the distance between the model and 

the truth is relatively small; so small indeed that ‘the physics in the climate model being 

[sic] approximately the same as the physics in the climate.’ (Rougier 2007, 253). How 

good is this assumption?  

 

That systematic errors in the models in question lead to non-trivial macroscopic errors 

of simulation, of the past and of the future, is not disputed (James M. Murphy et al. 
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2007). In nonlinear models such as HadCM3 even extremely small SME can result in 

there being a significant discrepancy between model and target (Judd and Smith 2004; 

McWilliams 2007; Frigg et al. 2014). Seager et al. (2008) have noted their inability to 

reproduce a realistic dust bowl of the 1930’s even given the observed sea-surface 

temperatures. This is not a negligible shortcoming when one is focused on the resolution 

offered by UKCP09. Given these systematic errors there are lead times at which the 

failure of the model to simulate realistic weather
31

 results in differences in feedbacks, 

which cause the climate of the model to differ from that of the planet. When the models 

used are not close to the target, simple linear transformations are inappropriate and the 

informativeness assumption fails. The informativeness assumption is a crucial building 

block in the edifice of UKCP09 and if that assumption fails, then the accuracy and 

decision-relevance of projections is called into question.
32

  

 

The same conclusion can be reached from a different angle. Figure 1 shows the various 

model global mean temperatures (GMT) over the period 1900 to 2000 for the CMIP5 

ensemble (Meehl et al. 2009), the MME which is the updated version of CMIP3 used by 

UKCP09 (Sexton et al. 2012, 2519) – the figure for CMIP3 is very similar. Note that 

while all models show warming between 1900 and 2000, their average temperatures 

differ by as much as 3 degrees and the details of their temperature curves vary 

tremendously. Aggregate variables such as GMT  ‘smooth out’ local variation so, of 

course, different local behaviours can give rise to the same average behaviour. That the 

models’ GMTs differ significantly, however, is an indication that their local climates are 

also significantly different. Local features such as sea ice, snow coverage and surface 

vegetation will vary and thus local feedbacks in the models will be substantially 

different from each other, and from those in reality. The magnitude of the range of 

global mean temperature hindcasts of the last century, casts significant doubt on the 

viability of the informativeness assumption for 25 km projections to the end of this 

century. 

                                                
31

 Even today’s best climate models do not simulate blocking realistically. For a discussion of this point 

see (Smith and Stern 2011) and Hoskins’ review of UKCP09 (available at  

http://ukclimateprojections.metoffice.gov.uk/23173). 

32
 The question of what good science should report on the lead times beyond those on which quantitative 

guidance is informative is a separate issue. 
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Figure 1: Model global mean temperatures over the period 1900 to 2000 for the CMIP5 ensemble. 

 

 

There is also a statistical argument based on results due to Murphy et al. (2004, 2007), 

which is clear on the limitations noted here, casting doubt on the informativeness 

assumption. Murphy et al. consider 32 climate variables v
(i )

, i = 1,..., 32 . For each of 

these variables there is a time series of past observations. These form a vector m
(i )

 with 

the components m j

(i )
, where j  ranges over the available data points (to keep notation 

simple we assume that there are n  data points for all 32 variables; nothing here depends 

on that). One can then calculate the mean and the variance of each time series: 

µ (i ) = (1 / n)Σ
j=1

n
m

j

(i )
 and σ (i )

= (1 / n)Σ
j=1

n
(m

j

(i ) − µ (i ))2 . Assuming that the error is 

Gaussian, these two parameters define a Gaussian G (i )
(v
(i )
) = cexp[(v

(i ) − µ (i ))2 / 2σ (i )2
] , 

where c  is a normalisation constant. One can then introduce the distance variables 

δ (i )
:= (v

(i ) − µ (i )) /σ (i ) , and so the Gaussian becomes G (i )
(v
(i )
) = cexp[(δ (i )

)
2
/ 2] . The 

quantities δ (i )  measure the difference of v
(i )

 from the observational mean in terms of 
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the observational standard deviation. If, for instance δ (i )
= 2  for a specific value of v

(i )
, 

then this value is two standard deviations away from the observational mean.  

 

Murphy et al. then consider a PPE of 53 different model versions of HadSM3, where 

the model parameters that are varied and their uncertainty ranges are chosen on the basis 

of expert advice (ibid., 769). These model runs produce hindcasts for the v
(i )

, which we 

denote by ‘ v(i )(α ) ’ to indicate that they are produced by a model version defined by 

specific value of the parameters α . The G
(i )

 can then be used to give a probabilistic 

weight to the model version in the light of the observations by plugging 

δ (i)(α) = (v(i) −µ (i)) /σ (i)  into the Gaussians. If for instance, one then finds δ (31)
(α ) = 16

this means that the value the model version defined by α  predicts for variable 31 is 16 

standard deviations away from the observational mean. One can then calculate the 

average of the 32 δ (i )
(α ) for a model version. This number is known as the climate 

prediction index (CPI). Murphy et al. calculate the CPIs for all 53 model versions and 

find that it varies between 5 and 8. This means that the average of the model’s 

retrodictions are 5 to 8 standard deviations away from the observations. This, in turn, 

means that the actual observations are extremely unlikely by the lights of the model! In 

their Figure 4 (ibid., 771) they also give the values for the individual δ (i )
(α ) . For some 

variables these values are relatively small (between 1 and 2), but for some variables 

they range between 23 and 24. Many of the climate variables used by UKCP09 – see 

Sexton (2012, 2518) for a list – are among the 32 considered in Murphy et al. and so 

this result has implications for UKCP09. If actual observations turn out to be extremely 

unlikely by the light of the model then why might one hold that the model is 

quantitatively or probabilistically informative about the climate? It is worth noting that 

this need not undermine the model’s value as a research tool for understanding climatic 

processes; nor need it imply that the model is uninformative at all temporal and spatial 

scales for all variables. It does however call into question the validity of the 

informativeness assumption as a justification for the use of the discrepancy term in the 

UKCP09 projections.  

 

 

4.3 The Proxy Assumption 
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The proxy assumption is the assumption that measuring the average distance of 

HadSM3 to the 12 members a multi model ensemble yields a result that is close to what 

one would find if one were to measure HadSM3’s distance to the real world. The 

discussion of this assumption is complicated by the fact the literature on the subject 

exhibits a certain degree of inconsistency. On the one hand the method is illustrated and 

advertised as delivering trustworthy results; on the other disclaimers that effectively 

undermine the crucial assumptions are also included, sometimes parenthetically or deep 

within technical discussions.
33

  

 

The first reason cited in support of the proxy assumption is that multi model averages 

give a better representation of climate than any individual model: ‘Indeed, the 

multimodel ensemble mean has been shown to be a more skilful representation of the 

present-day climate than any individual member (Reichler and Kim 2008)’ (Sexton et 

al. 2012, 2526). While often true in a root-mean-square sense, it is not at all clear what 

implications this holds for probabilities derived from multimodel ensembles (Smith et 

al. 2014). 

 

It is acknowledged that ‘systematic errors to all current climate models persist’ (Sexton 

et al. 2012, 2526). In making climate projections, the models are being used to 

extrapolate to a state of the system which has not been seen before. The crucial factor 

for such a task is whether our tool for producing projections – be it a model or a multi-

model mean – can claim to be sufficiently close to reality.  In a complex nonlinear 

system on times longer than a mixing time such closeness must be achieved for all 

variables which we believe could impact the response of our variables of interest. More 

fundamentally, two senses of skill appear to be mixed here: (a) the skill of a point 

forecast like the ensemble mean and (b) the skill of a probabilistic forecast like a 

Bayesian distribution. In each case, note the contrast between ‘more skilful’, which is a 

comparative quality a model possesses relative to other models, and ‘skilful’, which is 

an intrinsic quality of a model (referring to its skill in supporting decisions). Being more 

skilful is of little relevance unless the original model truly is skilful. Furthermore, when 

                                                
33

 An example is (J. Murphy et al. 2010, 63-69). 
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skilful is defined in terms of a single performance index (Reichler and Kim 2008; James 

M.  Murphy et al. 2004) there are nevertheless significant errors in variables which 

might be expected to substantially influence changes in the future. No evidence is given 

that more skilful can be equated with skilful in terms of a single performance index. The 

literature on model errors suggests that this is also true for many individual variables of 

undeniable importance for future climate change. 

 

The second reason mentioned in support of the proxy assumption is that ‘the structural 

errors in different models can be taken to be independent’ (J. Murphy et al. 2010, 66) 

and that therefore the ensemble samples uncertainty well. However, immediately after 

we are warned that   

 

‘Whilst there is evidence for a degree of independence […], there is also evidence that some errors 

are common to all models […], due to shared limitations such as insufficient resolution or the 

widespread adoption of an imperfect parameterisation scheme. From this perspective, our 

estimates of discrepancy can be viewed as a likely lower bound to the true level of uncertainty 

associated with structural model errors.’ (J. Murphy et al. 2010, 66) 

 

And then the conclusion is drawn that: ‘The main (and inevitable) limitation, however, 

is that it [the proxy assumption] does not account for the potential impacts of errors 

common to all climate models used in the prediction’ (Sexton et al. 2012, 2516). 

 

If there are common errors the proxy assumption fails, and as all of today’s models 

share the same technological constraints posed by today’s computer architecture they 

inevitably share some common errors such as limitations on the accuracy of topography. 

Indeed such common errors have been widely acknowledged (see, for instance, Knutti 

et al. 2010) and studies have demonstrated and discussed the lack of model 

independence (Jun et al. 2008a, 2008b; Bishop and Abramowitz 2013). Furthermore, 

the mathematical space of all possible climate models (if there is some such thing) is 

huge, and there is no reason to believe that the 12 models we de facto work with provide 

a representative sample, even of the subset of models that could be run under the 

constraints of today’s technology.   
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For these reasons, the assumption that the use of an MME will accurately quantify the 

distance to our true target is unjustified. It produces a distribution that is more consistent 

with the diversity of current models, but which need not reflect the uncertainty in the 

true future climate or even of our uncertainty in future climate given present day 

scientific understanding. And nota bene that the fear is not so much that the width of the 

uncertainty distribution is somehow too narrow, but rather that the distribution is simply 

in the wrong place: the mean of the distribution will shift significantly if the model 

simulations become realistic. Trying to predict the true climate with structurally wrong 

models is like trying to predict the trajectory of Mercury with Newtonian models. These 

models will invariably make misleading (and likely maladaptive) projections beyond  

some lead time, and these errors cannot be removed by adding a linear discrepancy term 

derived from other Newtonian models. Tests of internal consistency, or other methods 

to determine the lead times at which the projections are expected to be misleading 

would be of significant value. 

 

Echoing Murphy et al. (2007) we note that ‘[i]t is important to stress that our approach 

to the specification of discrepancy can only be expected to capture a subset of possible 

structural modelling errors and should be regarded as a lower bound’ (James M. 

Murphy et al. 2007, p. 2011). A lower bound on the discrepancy need neither yield 

trustworthy projections nor provide a suitable basis for quantitative decision support.  

 

 

5. Emulation 

 

As we have seen in Section 3, emulation is an intrinsic part of UKCP09. The technique 

used in UKCP09’s scheme is a Gaussian process emulator (related to Kriging). The 

leading idea of this approach is to treat ϕ
t
(x;α )  as an uncertain function and treat the 

values of ϕ
t
(x;α )  for any collection of input points α (1)

,...,α (k )
(where k  is the number 

of available model runs) as a multivariate Gaussian. Then a mean function η  and a 

covariance function λ  are chosen. The mean function gives a prior expectation of 

ϕ
t
(x;α )  for any α  and λ  gives the prior covariance between the values of ϕ

t
(x;α )  for 

different values of α . Typically η  and λ  contain adjustable parameters and the values 
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of the results of the model runs are used to adjust these parameters. The result of this 

process is the distribution Ψ(x;α ) . 

 

The complicated details of this process need not occupy us here. What matters is that 

this technique is based on the assumption that the target surface ϕ
t
(x;α )  exists and is 

smooth (Sexton et al. 2012, 2523). It also matters that the emulation can be expected to 

yield correct results only if a sufficiently large sample of points from the target surface 

is available to train the emulator. We now examine whether these assumptions are 

satisfied in UKCP09.  

 

There are serious questions regarding the existence of the target surface, and if it exists 

then its smoothness.
34

 The root of this problem lies in choosing the space for the 

emulation, and the rub lies with initial conditions. The problem comes in the form of a 

trilemma.  

 

First horn of the trilemma: For mathematical tractability one would like to have a target 

surface with as few dimensions as possible. This can be achieved by choosing a 

particular initial condition x
0
 and only varying the α . The target surface then has 31 

dimensions (it is a mapping from the 31 dimensional parameter space into X ). But this 

surface is uninteresting.  HadSM3 is a nonlinear dynamical system and one would 

expect the trajectory of future climate to depend sensitively on initial conditions. In 

Section 7.1 we will see that HadSM3 indeed exhibits this kind of sensitivity. Therefore 

the surface defined by ϕ
t
(x;α )  and x

0
 also varies with x

0
. When this variation with x

0
 

is not considered, any particular surface is incomplete in terms of statistical inference.  

 

Second horn of the trilemma: Staying in the 31-dimensional picture (i.e. the α  are the 

only independent variables), one could try to take the dependence on initial conditions 

into account by plotting a number of different points – corresponding to different initial 

conditions – for each value of α . The result of this is a swarm of points in X  where a 

                                                
34

 The challenges to smoothness posed by computations on a digital computer are ignored below. We note 

in passing that such challenges exist when, for example, a change in the least significant bit of   

x
0

 yield significant changes in the target variable (Lorenz 1968). 
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number of points are associated with every α . This idea suffers from two problems. 

The first is that UKCP09 simply does not have these points. Model runs for a number of 

different initial conditions are not available to sample this swarm informatively. The 

more fundamental problem is that by associating a swarm of points with every value of 

α  one has left the framework of emulation we started with because there now simply is 

no surface to emulate! Targeting an aggregate function (like the mean over initial 

conditions) is unhelpful if one is to maintain the fundamental assumption that one 

knows the target of the emulator exactly at points where the full model has been run.  

 

Third horn: One can expand the space and consider the Cartesian product of the state 

space and the parameter space A  , and regard ϕ
t
(x;α )  as a mapping from X × A  into 

X . This move turns the target surface into an object with tens of thousands of 

dimensions (simply because X  has tens of thousands of dimensions). This renders 

proper emulation untenable.  Attempting to emulate a target surface in a 10,000 odd 

dimensional space on the basis of around 300 points  (not even one point per 

dimension!) would leave the surface dramatically underdetermined.  

 

The conclusion is that whichever way emulation is done, it does not provide the desired 

statistical emulation.  

 

And finally there is also a model-world confusion in the use of the emulator even when 

it is used as a stand in for a single model: the x occurring in the relevant emulations is a 

model variable not a real-world variable. A perfect emulator could (more) quickly 

produce a distribution which accurately reflected the probability of the next full model 

run: not the probability of an event in the world. This is a serious cause for concern as 

long as the diversity of our model is believed not to reflect the uncertainty in the future 

of the real world (Smith 2002).  

 

 

 

6. The Trapezoid Distribution 
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When using Equation (5) to determine the 
 
p(

y f | o) , it is assumed that p(α )  is the 

trapezoid distribution T (α ) . This choice is crucial: p(α )  gives a weight to different 

model versions, and given that different model versions project different futures shifting 

these weights could, in principle, produce very different projections. So we have two 

questions. First, what justifies the choice of a distribution that is flat over the middle 

75% of uncertainty intervals and drops linearly at the extreme values in the case of 

continuous parameters and uniform over all options in the case of discrete parameters? 

Second, how sensitively do the results depend on these choices? 

 

We have been unable to find a justification for the choice of this distribution in the 

documentation of UKCP09. However, the reasoning looks familiar: as long as one has 

no reason to prefer one outcome over the other, one should not arbitrarily favour one 

outcome over the other and assign equal probabilities to both. This is known as the 

Principle of Indifference, which was given a canonical formulation by Laplace in 1814. 

The principle can be applied successfully to simple situation such as coin flips (where 

we have no reason to prefer one side to the other), but it suffers from a number of well-

known problems.
35

  

 

In the current context the most significant problem is the fact that the principle can be 

applied in different ways to the same situation, which leads to inconsistent probability 

assignments. This happens whenever a situation can be characterised by two inter-

definable quantities which (a) provide equally good descriptions of the situation and (b) 

are related to one another by a non-linear definitional relationship. Consider a simple 

example. Suppose you are a numismatic enthusiast and you will for the first time in 

your life get to see a rare coin. You have seen pictures of the coin and so you know that 

it is cylindrical with a height much less than its diameter. But you have no idea about its 

size. Plausibility considerations – people typically keep coins in their pockets! – lead 

you to think that its diameter δ  must be somewhere between 1cm and 5cm, but you 

know nothing else about the diameter. So you apply the principle of indifference to the 

diameter and put an even distribution over the interval [1,5] . From this you conclude 

                                                
35

 The principle and its problems are well documented in the philosophical literature on probability; see, 

for instance, (Salmon et al. 1992, 74-77). 
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that the probability of the coin having a diameter between 1cm and 3cm is 0.5. But a 

coin can equally well be described by the surface area of one side, σ . The diameter and 

the area are inter-definable: σ = π (δ / 2)2 . So given your assumptions about the 

minimum and the maximum diameter, you think that the coin will have a surface 

between (approximately) 0.785cm
2
 and 19.625cm

2
. Now you apply the principle of 

indifference to the surface, which yields a uniform distribution over [0.785,19.625] . So 

your probability that the coin has a surface between [0.785,9.42]  is 0.5. So far so good. 

But a coin with a surface of 9.42cm
2
  is also a coin with diameter of 3.46cm. So the 

principle of indifference tells us both that there is a 0.5 probability for the coin having a 

diameter between 1cm and 3cm, and that there is a 0.5 probability for the coin having a 

diameter between 1cm and 3.46cm. Since there is no reason to prefer, say, the diameter 

to the surface area to describe to coin, no probability assignment is preferred and we are 

faced with a contradiction.  

 

The same problem comes up in the parameter space of the climate model. At least some 

parameters (i.e. some components of the vector α ) are like diameter in that there are 

inter-definable quantities which are equally legitimate as a description of the physical 

situation and which relate to the original parameter by a non-linear function. An 

example is the so-called ice fall rate ρ , which describes how fast ice falls out of model 

clouds.
36

 But the same physical effect could just as well be described by the ice 

residence time τ , measuring how long ice stays within a model cloud. The two 

quantities are inversely proportional: 
 
τ 1/ ρ .  The situation is now exactly analogous 

to the coin example. The principle of indifference would suggest that we put an even 

distribution over certain intervals for both quantities, but these distributions will provide 

contradictory probabilities.  

 

One might try to mitigate the force of this objection by arguing that the choice of a 

particular p(α )  has no significant effect on the posterior probabilities 
 
p(

y f | o) . 

UKCP09 consider this issue (although not as a response to the principle of indifference). 

They acknowledge that ‘alternative and equally defensible prior distributions could be 
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 See (D.A. Stainforth et al. 2005; David A. Stainforth et al. 2007) for a discussion of the ice fall rate.  
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proposed’ but claim that ‘the results are quite robust to a number of reasonable 

alternative choices’ (Science Report p. 63). An investigation of this issue is presented in 

an appendix, where it is pointed out that: 

 

‘prior distributions are recognised as being themselves uncertain […] so we investigate two other 

choices: assuming uniform probability across the full expert range, and assuming uniform 

probabilities across a full range of values 15% larger than that specified by experts. The latter, in 

particular, is a conservative specification which assumes both that the experts systematically 

underestimated the extremes of their ranges, and that the extreme values can be assumed no less 

likely than values near the middle of the range.’ (J. Murphy et al. 2010, 143) 

 

It is found that ‘the impacts on the posterior projections are more modest, and the 

induced differences in probability are also relatively small compared with the 

uncertainties indicated by the UKCP09 distributions’ (J. Murphy et al. 2010, 144).  

 

Unfortunately, this is insufficient to set worries about alternative distributions to rest. 

The stability checks performed only vary the original distributions slightly and do not 

take radically different distributions into account, for instance the kind of distributions 

one would get for variables that are inversely related to the parameters used. On the 

basis of these checks it is impossible to assert that the projections are immune to 

difficulties arising in connection with the principle of indifference.  

 

 

7. Further Concerns 

 

Two further aspects of UKCP09’s methodology give rise to concerns: the incomplete 

discussion of initial condition uncertainty and the use of downscaling. We will address 

these briefly in this section.  

 

7.1 Initial Condition Uncertainty 

 

HadSM3 is a non-linear dynamical system and as such one would expect the trajectory 

of future climate to depend sensitively on initial conditions. Every model run assumes a 

particular initial condition and hence varying that initial condition only slightly could 

have produced very different results. So it is conceivable that varying the initial 
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conditions of the 297 model runs on which UKCP09 is based just by a little bit would 

have yielded different simulation results, and as consequence given rise to different 

probabilistic projections. What reasons are there to believe that this is not the case?  

 

In the introductory parts of the Science Report UKCP09 acknowledges the importance 

of initial condition uncertainty (J. Murphy et al. 2010, 26-28). They point out that we 

find ‘natural variability’ in the climate system: ‘Climate, at a global scale and even 

more at a local scale, can vary substantially from one period (for example, a decade or 

more) to the next, even in the absence of any human influences.’ (ibid., 26) This 

variability is seen as being (at least in part) due to ‘the chaotic nature of the climate 

system’ (ibid., 26). They submit that effects of natural variability can be explored by 

running the model for different initial conditions:  

 

‘By running the climate model many times with different initial conditions (a so-called initial 

condition ensemble) we can estimate the statistical nature of this natural variability on a range of 

space and time scales, and hence quantify the consequent uncertainty in projections.’ (ibid., 26) 

 

UKCP09’s initial condition ensemble consists of three members (i.e. three runs of 

HadCM3 under the same emission scenario but with different initial conditions). The 

conclusion drawn from an analysis of these three model runs is: 

 

‘It can be seen that, although each experiment [i.e. model run] shows the same general warming, 

individual years can be quite different, due to the effect of natural internal variability. If we look at 

changes at a smaller scale, for example those of winter precipitation over England and Wales […] 

we see that, although the three projections show similar upward trends of about 20% through the 

century, they are very different from year to year and even decade to decade.’ (ibid., 27)  

 

Three figures are produced (ibid., 26-7) showing how very different the projections are 

for the three model runs, driving home the point that initial condition uncertainty is not 

negligible.  

 

UKCP09 conclude their discussion by observing that ‘[t]he uncertainty due to projected 

natural internal variability is included in the overall uncertainty quantified in UKCP09’ 

(ibid., 27).  The above quotation is the last discussion of initial condition uncertainty in 
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the science report,
37

 however, and no further information is provided elsewhere.
38

 So it 

remains at best unclear whether, and if so how, initial condition uncertainty has been 

taken into account in the production of UKCP09’s probabilistic projections. 

 

One might then conjecture that a distribution built up over time from the trajectory 

starting in one particular initial condition is equivalent to that resulting from an initial 

condition ensemble. Daron and Stainforth (2013) gave this assumption a name: the 

kairodic assumption. The idea behind the kairodic assumption is that while individual 

trajectories may give rise to very different weather patterns, the overall distribution of 

weather events which makes up the climate remain the same for all trajectories, and for 

this reason it is unnecessary to sample initial conditions if one is interested in the 

climate distribution. There is no reason a priori to expect that a distribution is not itself 

IC dependent (Lorenz 1968). Arguably, there is every reason to expect it to be the case. 

The question is: how much does it matter and at what scales? Stainforth et al. (2007) 

show that initial conditions had a large impact on multi-year seasonal averages of large 

regional averages in HadSM3, and so we might expect them to be important.
39

 Deser et 

al. (2012) show that multi-decadal trends over the USA in climate models vary 

substantially with different initial conditions. Daron and Stainforth (2013) showed that 

the kairodic assumption is likely to be substantially misleading in a climate change like 

situation, where distributions are expected to change.  

 

An acknowledgement that averaging does not account for initial condition uncertainty 

can be found in the Science Report: 

 

A common way of reducing the effect of uncertainty due to natural variability on the projections is 

to average changes over a 30-yr period, as we did in the UKCIP02 scenarios (and do again in 
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 Initial conditions are mentioned again on p. 129, but no information beyond what has been said on p. 

26-27 is provided.  

38
 Initial conditions are briefly mentioned but not discussed in (Sexton et al. 2012) and in the Briefing 

Report (Jenkins et al. 2009). The Science Report (J. Murphy et al. 2010), a document of over 190 pages, 

dedicates three pages in the introductory part to the problem of initial condition uncertainty. 

39
 The multi-years averages in (2007) were 8 years long compared to 30 years in UKPC09. However, the 

problem pinpointed by Stainforth et al. is unlikely to disappear by moving from 8 year averages to 30 

year averages.  
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UKCP09). But even this still allows large differences in patterns of change […]; for example over 

Birmingham where two of the model experiments project approximately 30% increases, but the 

other projects just over 10%. The uncertainty due to projected natural internal variability is 

included in the overall uncertainty quantified in UKCP09.’ (ibid., 27) 

 

So the accepted wisdom that initial condition uncertainty can be well represented by 

variability within a single trajectory is untenable, and avoiding a serious exploration of 

the dependence of climate distributions on initial conditions by appeal to the kairodic 

assumption is unjustified. The lack of exploration of initial condition uncertainty 

therefore remains a concern. 

 

 

7.2 Downscaling  

 

There are many approaches to downscaling, and much could be said about alternative 

approaches regarding translating the coarse outputs of a GCM to information on the 

space and time resolution of phenomena of relevance to decision making. Such a 

discussion is unnecessary here, as it suffices to note that downscaling does not account 

for significant inadequacies in the coarse resolution data it takes as inputs. This is 

clearly stated in the internal Hoskins Review of UKCP09:
40

  

 

‘The focus on UK-scale climate change information should not obscure the fact that the skill of the 

global climate model is of over-whelming importance. Errors in it, such as the limited current 

ability to represent European blocking, cannot be compensated by any downscaling or statistical 

procedures, however complex, and will be reflected in uncertainties on all scales.’ 

 

Given the issues we have raised above regarding the interpretation of the GCM, we do 

not discuss the downscaling step in detail.   

 

There is some confusion regarding the role of GCMs, the computation of global 

averages and the use of downscaling in UKCP09.
41

 In the scheme used in UKCP09 a 
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 A summary of the review is available at http://ukclimateprojections.metoffice.gov.uk/23173. The above 

quotation has been retrieved on 7 March 2014.  

41
 We thank an anonymous referee for raising this concern.  
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regional climate model (RCM) is coupled to a GCM, and the RCM is used to simulate 

the local climate using the inputs from the GCM as boundary conditions. The GCMs 

considered in UKCP09 have coarse regional detail. If the regional detail is badly wrong, 

then the RCMs driven by that GCM output will produce misleading outputs. This does 

not necessarily imply, however, that global averages would have to be wrong too if one 

could somehow calculate such averages using the techniques discussed above. Whether 

they would is a question that need not occupy us here. It is entirely appropriate to say 

we are considering high-resolution projections and then focus primarily on the GCMs; 

focusing on GCMs is in no way synonymous with focusing on global averages.  

 

 

8. Is UKCP09 Intended For Actual Use? 

 

It has been suggested to us by an anonymous referee that we are attacking a straw man 

because the authors of the UKCP09 reports are well aware of these limitations and do 

not intend their results to be used for decision support. The Briefing report 

acknowledges that the probabilities provided are derived using a number of assumptions 

and that ‘probabilistic estimates are robust to reasonable variations within these 

assumptions’ (Jenkins et al. 2009, 6; emphasis added), and it emphasises that 

‘probabilistic projections are themselves uncertain’ (ibid., 25).
42

 Statements like these, 

so the referee continues, indicate that UKCP09 is aware of the limitations of their 

method. Their aim is to provide ‘as much good information as possible’ (ibid. 9) to 

decision-makers, and this, so the referee emphasises, is not equivalent to suggesting that 

UKCP09 provides decision-relevant projections.
43

  

 

UKCP09 places great emphasis on practical applications and on providing evidence for 

policy makers. We have seen in Section 2 that they aim to offer advice to ‘planners and 

other decision-makers in sectors such as transport, healthcare, water-resources and 

                                                
42

 Sometimes this observation comes in the guise of there being a cascade of uncertainty, with moderate 

confidence at the continental scale and less confidence at the local scale; see for instance (Jenkins et al. 

2009, 6 and 22). How exactly the point that local projections are uncertain is expressed is immaterial to 

the dialectic in this section.   

43
 These alternative readings are also discussed in Parker (2014). 
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coastal defences’ (Jenkins et al. 2009, 9). The Briefing Report observes that ‘The 

provision of probabilistic projections is the major improvement which the UKCP09 

brings to users’ (ibid., 23; emphasis added) and stresses that probabilistic projections 

‘can help with making robust adaptation decisions’ (ibid., 23). Finally, the information 

is used in ‘worked examples’, where problems like energy use and sustainability in 

school buildings, overheating risk for buildings, potential changes to snowfall in 

Snowdonia, UK marine shelf conservation, climate change and forestry adaptation, and 

flood management policy are assessed using the UKCP09 projections.
44

 Plainly, 

information is offered and treated as decision-relevant.  

 

The observation that projections themselves are uncertain and valid only within the 

assumptions made is potentially undermining: projections can be decision-relevant only 

if they are believed to be solid enough to bet on. One cannot at once maintain that 

projections are decision-relevant, and that they are only model-immanent and lack a 

definite connection to the real world. UKCP09 implicitly recognise this truism when 

they reassure the reader that model results are on the right track: 

 

‘Although it is important that prospective users understand the limitations and caveats, it is also 

worth emphasising that (a) current models are capable of simulating many aspects of global and 

regional climate with considerable skill; and (b) they do capture, albeit imperfectly, all the major 

physical and biogeochemical processes known to be likely to exert a significant influence on 

global and regional climate over the next 100 yr or so.’ (Jenkins et al. 2009, 45; emphasis added) 

 

‘The UKCP09 projections can make a useful contribution to assessing risks posed by future 

climate; they are appropriate for informing decisions on adaptation to long-term climate change 

which need to be taken on the basis of current knowledge […]’ (Jenkins et al. 2009, 46; emphasis 

added) 

 

Clearly the message is: while there may be inaccuracies, they are small enough not to 

undermine the practical usefulness of the probability projections. So, contrary to the 

referee’s objection, UKCP09 is committed to the decision-relevance of its projections. 

We have argued that this commitment is unwarranted.  
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 See http://ukclimateprojections.metoffice.gov.uk/23102 for details.  
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9. Conclusion 

 

We find little support for interpreting UKCP09’s projections as trustworthy projections 

for quantitative decision support, alongside significant doubts that the information 

required for such high-resolution projections is at hand today. Needless to say, 

questioning the evidence for a result does not amount to proving it wrong; our concern 

is that the premises of the argument do not warrant trust in the results. We suggest that 

necessary (not sufficient) conditions for a warrant of trust include the provision of: 

 

1. Evidence that the discrepancy term used in practice is sufficiently informative 

about the real system: specifically that the set of models share no known 

shortcoming and that the diversity of current models can be taken to capture the 

uncertainty in the true future climate. 

2. Evidence that the form of the discrepancy term (in the case of UKCP09, 

Gaussian) is sufficient to capture the structural errors that are sampled.  

3. Evidence that the Bayesian priors adopted (in the case of UKCP09 the trapezoid 

distribution) yield a robust outcome (under reasonable changes to the prior) and 

a relevant posterior (relevant to the risk management targeted).  

4. Evidence that the emulator provides the desired statistical emulation; in 

particular that the emulation problem is well-posed given the nature of the 

system as reflected in the model being emulated (nonlinear, chaotic, and so on), 

and that the emulation is effective out-of-sample. 

5. Evidence that every known uncertainty has been accounted for (in the case of 

UKCP09 initial condition uncertainty is neither sampled nor is its impact 

reflected in the projections).  

6. Evidence that each translation from model variables to corresponding variables 

in  the world (that is, from a future model state to a decision relevant quantity we 

will observe in the future
45

 accounts for all known model shortcomings, that 

those lost in translation are captured in the discrepancy, and that the implications 

of those missed are made clear. (While both the limited adequacy of 
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 Discussion of the translation between model variables and real world variables with similar names 

can be found in Smith (2000) and Smith (2002). 
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downscaling and the low fidelity in simulated blocking are openly 

acknowledged by UKCP09 in this regard, the implications these inadequacies 

hold for decision-making are not made clear.) 

7. Evidence and argument supporting a minimum lead time on which the process 

has a strong warrant of trust, and a maximum lead time beyond which 

projections are not expected to be trustworthy. These time-scales will, of course, 

vary with space and duration of the target variables. 

 

These seven elements stand individually. While resolving any one of them in the 

context of climate would be a major research achievement, the shift from being a 

valuable research programme which advances science to a trustworthy operational risk 

management tool for decision makers requires resolving each one. We do not claim this 

list is complete. In the context of UKCP09, each element on its own is sufficiently 

worrisome to cast doubt on the decision-relevance of the information as quantitative 

risk-management tool. On the available evidence UKCP09’s projections do not merit 

trust.   

 

In the case of decision support in the face of climate change this is a crucial point for 

two reasons. First, over-reliance on the reliability of such climate projections can 

undermine the ability to make robust decisions; better decisions could be made with a 

better understanding of the scientific uncertainties even when they cannot be presented 

in this quantitative fashion. Second, for the reasons outlined above, the detailed 

probabilistic projections might be expected to change
46

 substantially in future 

assessments, thus undermining the user communities’ trust in scientific outputs; 

particularly their presentation of uncertainty. 

 

It should be noted that the scientists who worked hard to make UKCP09 the best it 

could be were constrained by the structure of the project; the deliverables were defined 

before any viable approach to meet them was available in the peer-reviewed literature. 

Furthermore, the United Kingdom Climate Impacts Program, which is much broader 
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 Expected to change even without a deeper scientific understanding of the phenomena, or new 

observations. Scientific projects are always subject to change when our basic understanding of science 

changes, the question is whether they are mature conditioned on everything we know today. 
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than UKCP09, faced the problem of motivating users to engage with the real challenges 

and risks posed by climate change in the face of deep uncertainty regarding local 

impacts: the challenge of keeping users engaged and interested when the information 

they most immediately desire may lie beyond the reach of today’s science.  

 

Pointers to the fact that a naïve interpretation of UKCP09 probability distributions is 

untenable can be found within the UKCP09 material. The UKCP09 worked examples, 

however, clearly suggest the decision-making application of this material in ways 

which, if our criticisms hold true, would be expected to prove maladaptive. 

 

When the best available tool in terms of the utility of its deliverables is not adequate for 

purpose (trustworthy), it is not in fact ‘best available’. In this case good policy, decision 

making, and risk management would be based on trustworthy, if less desirable, 

deliverables. Where tools like UKCP09 are not trustworthy, what is? The aim of this 

paper was to pave the ground for an informed discussion of this question. As long as the 

prevailing view is that (something like) the probabilities provided by UKCP09 offer an 

attainable trustworthy option today, the issue of more informative approaches does not 

even arise. We hope we have illuminated a way to move forward to new horizons.  
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