USAAMRDL-TN-25

JUL 27 1977

V

SOR

May 1977

Approved for public release; distribution unlimited.

Prepared for FUSTIS DIRECTORATE U. S. ARMY AIR MOBILITY RESEARCH AND DEVELOPMENT LABORATORY DDC Fort Eustis, Va. 23604

DISCLAIMERS

يحجي والمتدار والمراجعة المراجع والمتحد والم

...

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

When Government drawings, specifications, or other data are used for any purpose other than in connection with a definitely related Government procurement operation, the United States Government thereby incurs no responsibility nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission, to manufacture, use, or sell any patented invention that may in any way be related thereto.

Trade names cited in this report do not constitute an official endorsement or approval of the use of such commercial hardware or software.

DISPOSITION INSTRUCTIONS

Destroy this report when no longer needed. Do not return it to the originator,

. . . .

. . . .

.

en 1

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
	ACCESSION NO. 3 RECIPIENT'S CATALOG NUMBER
USAAMRDL-TN-25	2
. TITLE (and Subtitio)	S. TYPE OF REPORT & PERIOD COVER
AN ASSESSMENT OF THE HOVER PERFORM THE XH-59A ADVANCING BLADE CONCEPT STRATION HELICOPTER	ANCE OF / / Technical Note .
STRATION TELICOFTER,	
AUTHOR(=)	8. CONTRACT OR GRANT NUMBER(a)
Donald N./Arents	
Euslis Directorate, U. S. Army Air Mobility Re	earch and AREA & WORK UNIT NUMBERS
Development Laboratory	
ATTN: SAVDL-EU-SYA	1 1L263110157/17
Fort Eustis, Virginia 23604	12. ALPORT DATE
The set	11 V May 1077
(J-1-) p	13. NUMBER OF PAGES
	<i>i</i> 19
14. NONITORING AGENCY NAME & ADDRESS(If different from C	antrolling Office) 18. SECURITY CLASS. (of this report)
	Unclassified
	154. DECLASSIFICATION/DOWNGRADIN
	SCH FOULE
Approved for public release; distribution unlimit 17. DISTRIBUTION STATEMENT (of the obstract entered in Block 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reviewe side If necessary and identi- Helicopters Helicopter rotors Advancing blade concept Hovering	30, Il dillerent from Report)
 DISTRIBUTION STATEMENT (of the obstract entered in Bleek SUPPLEMENTARY NOTES KEY WORDS (Continue on reverse side If necessary and identi Helicopters Helicopter rotors Advancing blade concept 	70, If different from Report) (y by block number) (y by block number) characteristics of the XH-59A helicopter, whith Advancing Blade Concept (ABC). The study stics, aircraft and rotor figures of merit, and lights. The XH-59A's performance is also corr opters. This indicates that the XH-59A perfor-
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side If necessary and identified Helicopters Helicopters Helicopter rotors Advancing blade concept Hovering 10. ABSTRACT (Continue on reverse of M measurery and identified This report documents a study of the hovering was built to demonstrate the feasibility of the examined in- and out-of-ground hover character hover performance at 10- and 20-foot wheel he pared to the performances of other Army helic better than other helicopters, largely because it	20, If different from Report) fy by block number) r by block number) characteristics of the XH-59A helicopter, white Advancing Blade Concept (ABC). The study stics, aircraft and rotor figures of merit, and ights. The XH-59A's performance is also corr opters. This indicates that the XH-59A perfo lacks a tail rotor.
17. DISTRIBUTION STATEMENT (of the obstract entered in Block 18. SUPPLEMENTARY NOTES 18. KEY WORDS (Continue on returns side If necessary and identify Helicopters Helicopters Helicopter rotors Advancing blade concept Hovering 10. ABSTRACT (Continue on returns of M measurery and identify This report documents a study of the hovering was built to demonstrate the feasibility of the examined in- and out-of-ground hover character hover performance at 10- and 20-foot wheel he pared to the performances of other Army helic	(20, If different from Report) (7) by block number) (7) by block number) (7) by block number) (7) by block number) (7) characteristics of the XH-59A helicopter, whith Advancing Blade Concept (ABC). The study stics, aircraft and rotor figures of merit, and lights. The XH-59A's performance is also com- opters. This indicates that the XH-59A performance lacks a tail rotor. Unclassified
17. DISTRIBUTION STATEMENT (of the obstract entered in Block II. SUPPLEMENTARY NOTES II. SUPPLEMENTARY NOTES II. SUPPLEMENTARY NOTES II. SUPPLEMENTARY NOTES II. AUSTRACT (Continue on retwine side If necessary and identify Helicopters Helicopters Helicopter rotors Advancing blade concept Hovering II. ABSTRACT (Continue on retwine other N measuremy and identify This report documents a study of the hovering was built to demonstrate the feasibility of the examined in- and out-of-ground hover character hover performance at 10- and 20-foot wheel he pared to the performances of other Army helic better than other helicopters, largely because it	20, If different from Report) fy by block number) r by block number) characteristics of the XH-59A helicopter, white Advancing Blade Concept (ABC). The study stics, aircraft and rotor figures of merit, and ights. The XH-59A's performance is also corr opters. This indicates that the XH-59A perfo lacks a tail rotor. Unclassified SECURITY CLASSIFICATION OF THIS PAGE (Then Date)
17. DISTRIBUTION STATEMENT (of the obstract entered in Block II. SUPPLEMENTARY NOTES II. SUPPLEMENTARY NOTES II. SUPPLEMENTARY NOTES II. SUPPLEMENTARY NOTES II. AUSTRACT (Continue on retwine side If necessary and identify Helicopters Helicopters Helicopter rotors Advancing blade concept Hovering II. ABSTRACT (Continue on retwine other N measuremy and identify This report documents a study of the hovering was built to demonstrate the feasibility of the examined in- and out-of-ground hover character hover performance at 10- and 20-foot wheel he pared to the performances of other Army helic better than other helicopters, largely because it	(20, If different from Report) (7) by block number) (7) by block number) (7) by block number) (7) by block number) (7) characteristics of the XH-59A helicopter, whith Advancing Blade Concept (ABC). The study stics, aircraft and rotor figures of merit, and lights. The XH-59A's performance is also com- opters. This indicates that the XH-59A performance lacks a tail rotor. Unclassified

•

•

......

i....

FREFACE

An entering the second s

In 1971, the Eustis Directorate, U. S. Army Air Mobility Research and Development Laboratory, awarded a contract to the Sikorsky Aircraft Division of the United Technologies Corporation to design, fabricate, and test a research aircraft to demonstrate the feasibility of the Advancing Blade Concept (ABC). The first flight of the aircraft, designated the XH-59A, occurred in July 1973. In August 1973, the aircraft was extensively damaged in an accident, and flight-testing was stopped until rotor control modifications could be incorporated into a second \times H-59A aircraft. A low-speed test program to verify the control modifications and to buildup airspeeds to 80 knots was successfully concluded in September 1975.

An envelope expansion test program was initiated in November of 1975. In April and June of 1976, two hover performance flights were conducted with the second XH-59A aircraft. This report provides the results of these flights.

Flight-testing and data reduction were performed by Sikorsky Aircraft personnel. Onsite technical monitoring was performed by Eustis Directorate personnel.

ACCESSION for	
NTIS	R . Section
DOC	Si. Section
UNANNOUNC'D	G
JUSTIFICATION	177 mil.
BY Dist.	KCAJIN CORS
A	

TABLE OF CONTENTS

Page

PREFACE	3
LIST OF ILLUSTRATIONS	6
INTRODUCTION	7
Test Aircraft Test Techniques	8 8
TEST RESULTS	9
Out-of-Ground-Effect Hover Performance In-Ground-Effect Hover Performance	9 13
CONCLUSIONS AND RECOMMENDATIONS	17
LIST OF SYMBOLS	18

. PRECEDING	PAGE SLANK NOT	FILMED	
	• · ·		

LIST OF ILLUSTRATIONS

1

ł

and the second second

Figure		Page
1	The XH-59A advancing blade technology-demonstrator aircraft	7
2	XH-59A out-of-ground-effect hover performance	9
3	XH-59A and current Army helicopter out-of-ground-effect hover performances	11
4	Aircraft figure-of-merit trends	12
5	XH-59A rotor figure of merit	13
6	XH-59A hover performance at a 10-foot wheel height	13
7	XH-59A hover performance at a 20-foot wheel height	14
8	Ground effect trends	16

INTRODUCTION

The Advancing Blade Concept (ABC) rotor system is a coaxial, counterrotating, hingeless rotor system that features extremely stiff rotor blades and rigid retention of blades to the rotor shaft. This rotor system is incorporated in the XH-59A technology-demonstrator aircraft, Figure 1.

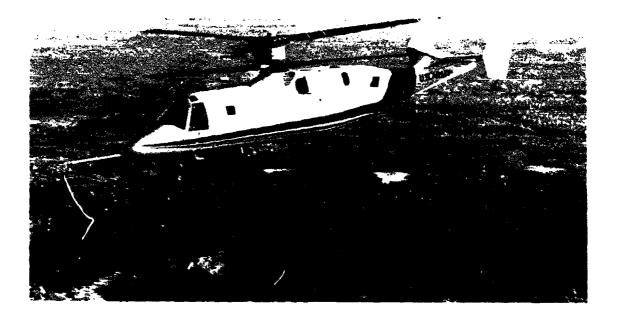


Figure 1. The XH-59A advancing blade technology-demonstrator aircraft.

The assessment of hover performance is important in the evaluation of the Advancing Blade Concept. This report takes a look at the hover performance of the XH-59A aircraft using hover data obtained during the initial envelope-expansion phase of the flight-test program.

XH-59A nondimensional hover data is shown for both the in-ground effect and the outof-ground effect and is compared with U. S. Army operational helicopter test experience.

TEST AIRCRAFT

The primary characteristics of the XH-59A aircraft are given in Table 1.

Number of blades, b	3 per rotor (6, total)
Number of rotors	2 (coaxial)
Chord (mean geometric - blade tapered), c	1.44 ft
Rotor radius, R	18.0 ft
Rotor solidity ratio (total, 6 blades), σ	0.127
Rotor disc area, A	1018 ft ²
Rotor RPM (100%), N _r	345 RPM
Rotor tip speed (100%), Ω R	650 fps
Rotor blade twist (nonlinear), θ_1	-10.0 deg
Design gross weight, W	9000 lb
Engine type	PWACL PT6T-3/T-400
Engine horsepower	1800 shp
Transmission rating (100% Nr)	1500 shp
Distance from bottom of wheels (oleos	
extended) to average rotor plane	10.8 ft

TABLE 1. CHARACTERISTICS OF THE XH-59A AIRCRAFT

TEST TECHNIQUES

The hovering height of the XH-59A was established by using a rope with weights located at wheel heights of 10, 20, 35, and 75 feet. The pilot adjusted the height as directed by a ground observer. Tethered hover was not possible since the XH-59A aircraft was not equipped with an external attachment point. Gross weight variations were obtained by varying fuel quantities, which were accurately recorded. The weights on the hover rope were also accounted for.

Power was measured by standard engine torquemeters, and data was obtained at referred rotor speeds ($N_r/\sqrt{\partial}$) of 92, 95, and 100%. Winds were approximately two knots or less during the testing.

TEST RESULTS

OUT-OF-GROUND-EFFECT HOVER PERFORMANCE

The nondimensional out-of-ground-effect (OGE) hover performance of the XH-59A helicopter is presented in Figure 2. This data was taken at 35- and 75-foot wheel heights. The tip Mach number range was from 0.53 to 0.58. The tabulated data is contained in Table 2.

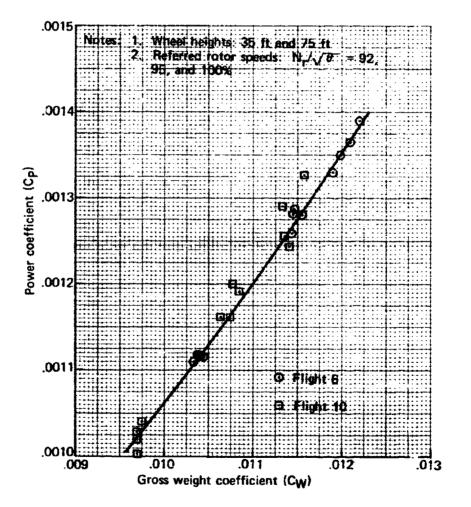


Figure 2. XH-59A out-of-ground-effect hover performance.

Wheel Height (ft)	Free Air Temp (^o C)	Pressure Altitude (ft)	Gross Weight (Ib)	Total Engine Power (hp)	Rotor Speed, N _r (rpm)
		Flight (3		
35	6.9	-170	- 10,665	1297	314.7
	6.9	-168	10,650	1304	321.9
	7.1	-169	10,625	1327	339.1
	7.2	-169	10,625	12 9 8	313.0
	7.0	-169	10,610	1315	322.4
	7.1	-166	10,600	1318	338.3
75	7.3	-132	10,600	1291	315.7
	7.2	-129	10,585	1288	322.9
	7.6	-126	10,550	1306	337.7
	7.5	-134	10,535	1276	316.0
	7.4	-131	10,520	1300	321.9
	7.5	-124	10,505	1309	338.6
		Flight 1	0		

TABLE 2. OUT-OF-GROUND-EFFECT HOVER DATA

-22? 1224 312.4 9968 35 9.7 9.7 -226 9953 1210 322.6 9.8 -225 9943 1236 322.6 9933 9.7 -224 1224 315.2 9923 323.3 -226 1226 9.8 -224 9908 1227 340.3 9.8 75 313.9 9.8 -185 9903 1162 -192 9883 1188 323.4 9.8 9873 1191 340.1 9.9 -186 9.9 -187 9853 1174 314.4 324.2 9.9 -189 9853 1195 **9**853 1210 340.0 10.0 -180

The XH-59A helicopter hover data is shown in Figure 3 in relation to a number of representative Army helicopters. A representative expression for the OGE hover capability is given in Reference 1 by the equation $C_W \approx 1.93 C_p \ 0.774$ for the Army helicopters tested. This equation is used in Figure 3 for the dashed-line extrapolation of Army helicopter data to higher disc loadings. The high disc loading data for the CH-54B is from Reference 2, which used a CH-54B tethered at a 145-foot whe'l height. The XH-59A data shows a gross weight coefficient, CW, about 3% higher than the representative expression, while the CH-54B data shows a decreasing weight coefficient, CW, as disc loading increases.

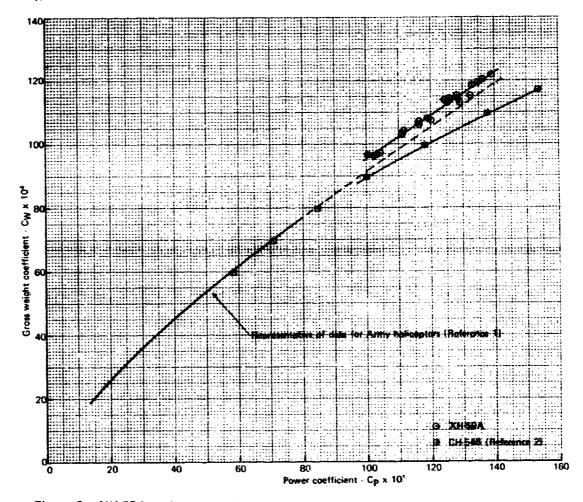


Figure 3. XH-59A and current Army helicopter out-of-ground-effect hover performances.

¹Lewis, Richard E., II, ARMY HELICOPTER PERFORMANCE TRENDS, Journal of the American Helicopter Society, Volume 17, No. 2, April 1972.

²Johnson, J. N., et al, LIMITED PERFORMANCE TESTS, CH-54B (TARHE) HELI-COPTER, USAASTA Final Report 72-40, February 1973. The XH-59A's aircraft figure of merit (M_A) is shown in Figure 4 in relation to the figure-of-merit trends for Army aircraft given in Reference 1. The CH-54B's aircraft figure of merit was calculated from nondimensional hovering performance given in Reference 2. The higher aircraft figure of merit for the XH-59A is attributed primarily to the deletion of the tail rotor and is above the 0.6 maximum value shown in Reference 1 for Army helicopters. The average aircraft figure of merit for the XH-59A was 0.67 for the data in the gross-weight range tested.

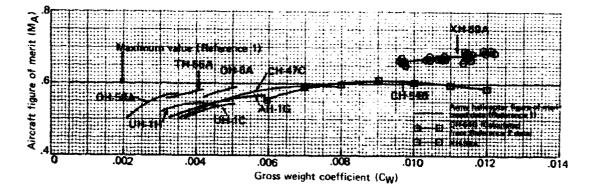


Figure 4. Aircraft figure-of-merit trends.

The rotor figure of merit (M_R) for the XH-59A can be assessed by estimating the vertical drag (download) and estimating transmission, accessory, and other losses. The vertical drag was calculated using the polar moment of inertia method of Reference 3, which is based on a single velocity distribution beneath a hovering rotor over areas of a characteristic shape and which yields a drag of 7.6% for an average helicopter fuselage and a drag of 5.0% for a cylindrical shape. Therefore, since the shape of the XH-59A is closer to that of a cylinder than to that of a standard helicopter, a download of 6% was considered representative, and the hovering rotor thrust was estimated to be 106% of the gross weight.

The XH-59A rotor figure of merit (M_R), based on the rotor power required, the 6% vertical drag (T = 1.06W), and an estimated 75hp transmission and accessory losses (rhp = shp -75), is plotted against the ratio of the thrust coefficient to the rotor solidity (C_T/σ) in Figure 5.

³ Engineering Design Handbook, HELICOPTER ENGINEERING, Part One, Preliminary Design AMCP 706-201, August 1974, Paragraph 3-2.1.1.9.

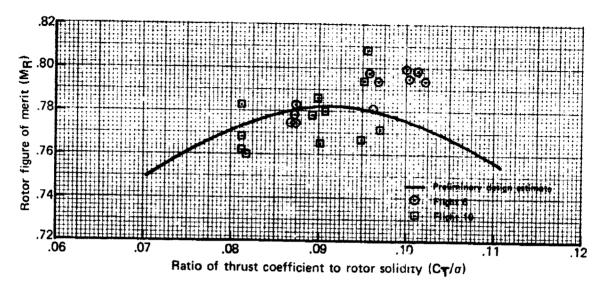


Figure 5. XH-59A rotor figure of merit.

IN-GROUND-EFFECT HOVER PERFORMANCE

1

The XH-59A nondimensional in-ground-effect (IGE) hover performance for 10- and 20foot wheel heights is presented in Figures 6 and 7 respectively. The tabulated data is contained in Table 3.

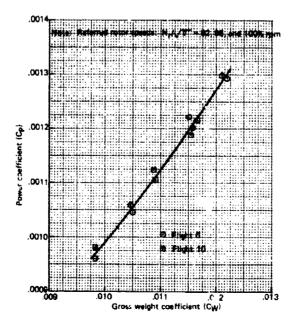


Figure 6. XH-59A hover performance at a 10-foot wheel height.

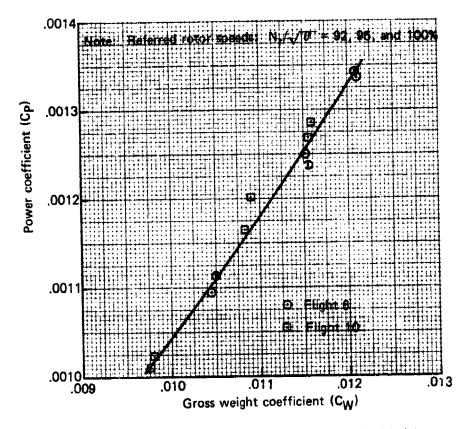


Figure 7. XH-59A hover performance at a 20-foot wheel height.

Wheel Height (ft)	Free Air Temp (^o C)	Pressure Altitude (ft)	Gross Weight (Ib)	Total Engine Power (hp)	Rotor Speed, N _r (rpm)
		Flight (6		
10	5.9	-177	10,755	1225	314.0
	5.9	-178	10,725	1244	321.8
	6.2	-174	10,725	1255	339.5
	6.2	-173	10,705	1235	314.7
	6.4	-172	10,705	1221	321.9
	6.5	-177	10,690	1253	338.5
20	6.3	-175	10,695	1234	315.2
	6.3	-176	10,695	1288	323.0
	6.4	-178	10,685	1314	338.2
	6.3	-177	10,675	1276	314.8
	6.5	-180	10,675	1267	322.4
	6.6	-179	10,660	1299	338.7
		Flight 1	0		
10	9.6	-239	10,123	1136	313.7
	9.5	-235	10,063	1132	323.5
	9.6	-237	10,053	1169	340.0
	9.6	-248	10,043	1108	313 5
	9.7	-238	10,038	1149	323.3
	9.6	-240	10,033	1143	340.1
20	9.7	-238	10,023	1199	313.4
	9.6	-237	10,018	1220	322.5
	9.8	-241	10,013	1224	340.6
	9.7	-233	9,983	1177	313.0
	9.8	-239	9,983	1192	323.3
	9.8	-240	9,963	1206	340.4

TABLE 3. IN-GROUND-EFFECT HOVER DATA

A comparison of the XH-59A data with the Army aircraft in-ground-effect trends of Reference 1 is presented in Figure 8. The XH-59A data is easily within the scatter band of data for the representative Army aircraft. The approximate empirical relationship between ground proximity and thrust is from Reference 1:

 $T_{IGE}/T_{OGE} = 1.0 + 0.01 x (1.0 + 0.5x)$

where x = 4.0 - 3.33 Z/D

and $Z/D \leq 1.2$

The XH-50A points on Figure 8 are calculated at a midrange power coefficient from Figures 2, 6, and 7 ($C_P = .0012$). The rotor height (Z) used for determining Z/D was the average height of the upper and lower rotors above the ground.

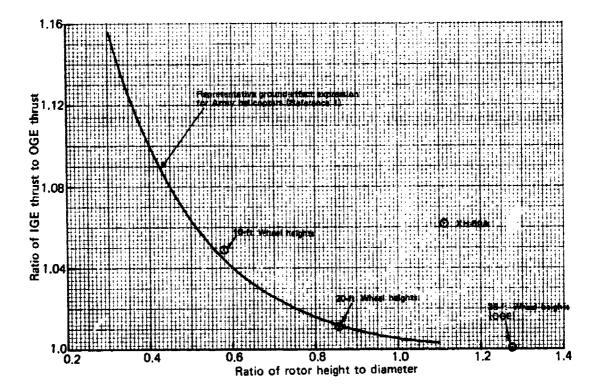


Figure 8. Ground effect trends.

CONCLUSIONS AND RECOMMENDATIONS

.

CONCLUSIONS

Hover performance of the XH-59A Advancing-Blade-Concept research aircraft compares favorably with the hover performances of operational U. S. Army helicopters. The primary reason for this favorable hover performance is the absence of a tail rotor with its attendant power requirement.

RECOMMENDATIONS

For a final assessment of the XH-59A's hover performance capability with the ABC rotor, more detailed and accurate measurements should be made of downwash, engine power, power distribution between the two rotors, vertical drag, and power-train and accessory losses.

An external point for tether-hover testing would provide a better means for measuring the thrust of the helicopter. All future test helicopters should incorporate external attachment points for hover testing.

LIST OF SYMBOLS

t, 1957 - 1947

A	Rotor disc area = πR^2 , ft ²
b	Number of main rotor blades
С _Р	Power coefficient = 550 shp/ $\rho A (\Omega R)^3$
с _Р В	Rotor power coefficient = 550 rhp/ $\rho A (\Omega R)^3$
с _т	Thrust coefficient = $T/\rho A (\Omega R)^2$
с _W	Gross weight coefficient = $W/\rho A (\Omega R)^2$
c	Rotor blade chord, ft
D	Rotor diameter, ft
IGE	In ground effect
MA	Aircraft figure of merit = .707 $C_W^{1.5}/C_P$
MR	Rotor figure of merit = .707 $C_T^{1.5}/C_{PR}$
Nr	Rotor speed, rpm
N _r N _r √θ	Rotor speed, rpm Referred rotor speed
•	
N _r ö	Referred rotor speed
N _r ö OGE	Referred rotor speed Out of ground effect
N _r ö OGE R	Referred rotor speed Out of ground effect Rotor radius, ft
N _r ö OGE R rhp	Referred rotor speed Out of ground effect Rotor radius, ft Rotor horsepower
N _r ö OGE R rhp shp	Referred rotor speed Out of ground effect Rotor radius, ft Rotor horsepower Engine horsepower
Nr ö OGE R rhp shp T	Referred rotor speed Out of ground effect Rotor radius, ft Rotor horsepower Engine horsepower Rotor thrust, Ib
Nr ö OGE R rhp shp T W	Referred rotor speed Out of ground effect Rotor radius, ft Rotor horsepower Engine horsepower Rotor thrust, lb Gross weight, lb
Nrö OGE R rhp shp T W Z	Referred rotor speed Out of ground effect Rotor radius, ft Rotor horsepower Engine horsepower Rotor thrust, lb Gross weight, lb Height of rotor above ground, ft

STREET STREET

)

ρAtmospheric density, slugs/ft³σRotor solidity ratio = bc/πRΩRRotor tip speed, fps

6158-77