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Abstract. Satellite-based rainfall estimates over land have

great potential for a wide range of applications, but their

validation is challenging due to the scarcity of ground-based

observations of rainfall in many areas of the planet. Recent

studies have suggested the use of triple collocation (TC) to

characterize uncertainties associated with rainfall estimates

by using three collocated rainfall products. However, TC re-

quires the simultaneous availability of three products with

mutually uncorrelated errors, a requirement which is difficult

to satisfy with current global precipitation data sets.

In this study, a recently developed method for rainfall

estimation from soil moisture observations, SM2RAIN, is

demonstrated to facilitate the accurate application of TC

within triplets containing two state-of-the-art satellite rain-

fall estimates and a reanalysis product. The validity of differ-

ent TC assumptions are indirectly tested via a high-quality

ground rainfall product over the contiguous United States

(CONUS), showing that SM2RAIN can provide a truly inde-

pendent source of rainfall accumulation information which

uniquely satisfies the assumptions underlying TC. On this

basis, TC is applied with SM2RAIN on a global scale in an

optimal configuration to calculate, for the first time, reliable

global correlations (vs. an unknown truth) of the aforemen-

tioned products without using a ground benchmark data set.

The analysis is carried out during the period 2007–2012

using daily rainfall accumulation products obtained at 1◦×1◦

spatial resolution. Results convey the relatively high perfor-

mance of the satellite rainfall estimates in eastern North and

South America, southern Africa, southern and eastern Asia,

eastern Australia, and southern Europe, as well as comple-

mentary performances between the reanalysis product and

SM2RAIN, with the first performing reasonably well in the

Northern Hemisphere and the second providing very good

performance in the Southern Hemisphere.

The methodology presented in this study can be used to

identify the best rainfall product for hydrologic models with

sparsely gauged areas and provide the basis for an optimal

integration among different rainfall products.

1 Introduction

Thanks to the combined use of microwave and infrared sen-

sors, the quality of available satellite rainfall estimates over

land has significantly increased in the few last decades. This

strategy – also known as multi-sensor approach – has pro-

duced a number of different satellite rainfall products that

either map infrared (IR) radiances to more direct passive mi-

crowave (PMW) retrievals (generally termed “blended” al-

gorithms) or morph PMW rainfall using IR measurements

(generally termed “morphing” algorithms). The new Global

Precipitation Measurement Mission (GPM; Hou et al., 2014)

has successfully expanded the concept of multi-sensor inte-

gration. Through the Integrated Multi-satellitE Retrievals for

GPM (IMERG) algorithm, rainfall estimates from the var-

ious precipitation-relevant satellite PMW and IR missions

are intercalibrated, merged and interpolated with the GPM

Combined Core Instrument product to produce rainfall accu-

mulation estimates with an unprecedented accuracy. Despite

these technical advancements, the precipitation community

still struggles to show a clear picture of the actual increased

accuracy of satellite rainfall estimates in many areas of the

world because validation studies rely upon the availability
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of high-quality (and sufficiently dense) ground-based rainfall

instrumentation (e.g. rain gauge and radars).

Many studies (e.g. Ebert et al., 2007; Sapiano and Arkin,

2009; Tian et al., 2007; Stampoulis and Anagnostou, 2012)

have investigated error associated with remotely sensed pre-

cipitation products by comparing their estimates with those

collected by ground-based observations assuming they rep-

resent the zero-error rainfall. However, the physical char-

acteristics of precipitation, particularly at finer spatial and

temporal resolutions, necessitate frequent, systematic and

sufficiently dense validation measurements – requirements

that are often not met within data-scarce regions of Africa,

Asia and South America. Indeed, despite their relative accu-

racy, the distribution of available gauges significantly varies

around the world. Much of the land surface (representing 25–

30 % of the Earth’s surface) have measurement networks, al-

though those networks with good gauge densities are limited

(Kidd et al., 2017).

The current networks of surface observations are therefore

often insufficient for the quantitative assessment of the error

associated with satellite rainfall estimates. Moreover, despite

the relatively higher accuracy of rainfall estimates that can

be obtained by rain gauges, they are not error-free (Peter-

son et al., 1998; Villarini et al., 2008). Therefore, evaluating

the performance of different satellite rainfall products with

ground-based observations is challenging due to the scarcity

of such observations and of the inherent error contained in

their estimates.

Based on the work of Adler et al. (2009), Tian and Peters-

Lidard (2010) estimated the uncertainties of satellite rainfall

estimates by using the measurement spread of coincidental

and collocated estimates from an ensemble of six different

satellite-based data sets, thus providing a globally consistent

methodology that does not require ground-based validation

data. The analysis yielded a lower bound estimate of the un-

certainties, and a consistent global view of the error charac-

teristics and their regional and seasonal variations. However,

the authors showed that the analysis is able to provide only a

relative estimation of the measurement uncertainties because

these data sets are not entirely independent measurements.

An alternative approach for assessing the quality of satel-

lite rainfall products was proposed by Roebeling et al. (2012)

and Alemohammad et al. (2015) based on the triple collo-

cation (TC) method (Stoffelen, 1998). The first applications

of TC concerned geophysical variables such as ocean wind

speed and wave height (Stoffelen, 1998). More recently, it

has been used extensively to estimate errors in soil mois-

ture (SM) products (Crow and Van Den Berg, 2010; Miralles

et al., 2010; Dorigo et al., 2010; Draper et al., 2013; Su et al.,

2014; Gruber et al., 2016). Given three estimates of the same

variable, the main assumptions of the method are the (i) sta-

tionarity of the statistics, (ii) linearity between the three esti-

mates (vs. the same target) across all timescales and (iii) ex-

istence of uncorrelated error between the three estimates.

In the work of Roebeling et al. (2012), the authors deter-

mined the spatial and temporal error characteristics of three

precipitation data sets over Europe (a visible/near-infrared

data set, a weather radar data set and gridded rain gauge

products) showing that it can provide realistic error esti-

mates. The authors ensured a Gaussian distribution of the

error by averaging the data set over a sufficiently long pe-

riod (10 days) and re-gridding to a sufficiently low spatial

resolution (0.25 × 0.25◦). Alemohammad et al. (2015) ap-

plied TC to 14-day cumulated rainfall estimates derived from

satellite, gauges, radars and models in order to retrieve the er-

ror and the correlation of each data set in the United States.

They also proposed the use of a logarithmic (i.e. multiplica-

tive) error model which almost certainly provides a more

realistic description of rainfall accumulation errors at fine

space/timescales. In addition, they calculated the theoretical

correlation of each product with the unknown truth by using

the extended TC (ETC) (McColl et al., 2014) by analysing

the covariance matrix of the three data sets.

TC can theoretically provide error and correlations of three

products (a triplet) without use of ground-based observations

– provided that each of the three products is afflicted by mu-

tually independent errors. However, given that state-of-the-

art satellite rainfall products use a highly overlapping set of

common sensors for the retrieval of rainfall (see Sect. 2.1,

for further details), there is an inherent difficulty in obtaining

triplets with mutually independent errors. Therefore, addi-

tional – highly independent – sources of rainfall accumula-

tion estimates are needed.

Recently, Brocca et al. (2014) developed a method for es-

timating rainfall accumulation amounts directly from satel-

lite SM observations based on the principle that the soil

can be treated as a “natural rain gauge”. In contrast with

classical satellite rainfall products, this new bottom-up ap-

proach attempts to measure rainfall by calculating the dif-

ference between two successive SM measurements derived

from a satellite SM product. In this respect, SM2RAIN of-

fers a unique opportunity for applying the TC analysis be-

cause, being wholly independent of any other rainfall esti-

mate, it can be used in place of a ground-based product. This

opportunity has not yet been explored and could provide an

appropriate basis for applying TC on a global scale without

requiring the availability of ground-based rainfall accumula-

tion data.

In this study, TC is applied to the rainfall accumula-

tion estimates derived from (1) ERA-Interim (Dee et al.,

2011), (2) SM2RAIN (Brocca et al., 2014) via inver-

sion of Advanced SCATterometer (ASCAT; Wagner et al.,

1999, SM data, (3) the NOAA Climate Prediction Cen-

ter morphing (CMORPH, raw version) (Joyce et al., 2004)

and (4) the TRMM Multi-satellite Precipitation Analysis

(TMPA) 3B42RT (Huffman et al., 2007) product over the

CONUS (note that 3B42RT and CMORPH do not include

gauge information in their retrieval algorithms). Thanks to

the ability of TC to provide the correlation against the “un-
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Figure 1. CPC gauge coverage during 2007–2012 expressed as average number of working rain gauges per day within each 0.25◦ spatial

grid cell.

known” truth (ETC; McColl et al., 2014), the assessment of

the products will be carried out in terms of correlation against

“true” rainfall values. As a result, the word “performance”

and “TC results” will be hereinafter referred to this correla-

tion (additional clarification is provided in Sect. 2.3).

An assessment of the reliability of subsequent TC results

is conducted by direct comparison with the analogous eval-

uation results obtained via direct comparisons with the Cli-

mate Prediction Center (CPC) Unified Gauge-Based Analy-

sis of Global Daily Precipitation (hereafter as CPC) product.

These assessments will be carried out with and without the

use of SM2RAIN rainfall accumulation products to isolate

the value of SM-based rainfall estimates for the evaluation of

global rainfall products. Note that, given the number of com-

mon sensors shared by CMORPH and TMPA 3B42RT, the

application of TC to the triplet containing both products will

serve to demonstrate the difficulties of using both of them

in the same triplet within the TC analysis and evaluate the

potential benefits of utilizing SM2RAIN-based accumulation

products in a TC analysis.

The paper is organized as follows. Section 2 contains data

and methods; in particular, the products used for the analysis

are described in Sect. 2.1, the theoretical background for TC

is in Sect. 2.2 and 2.2.1, the description of the performance

scores used for the evaluation of the results is discussed in

Sect. 2.3, and Sects. 2.4 and 2.5 describe SM2RAIN and

the experiment setup. Results are presented and discussed in

Sect. 3 and final remarks are presented in Sect. 4.

2 Data and methods

2.1 Rainfall and soil moisture products

2.1.1 CPC

The 0.5◦ × 0.5◦ gauge-based CPC product is used to evalu-

ate the satellite-based rainfall estimates over the CONUS and

verify evaluations provided by TC. Given the high rain gauge

density associated with this product across CONUS (Fig. 1),

along with the common practice of using ground-based rain-

fall data to validate satellite-based rainfall retrievals (Huff-

man et al., 1997), CPC is expected to provide a reasonable

proxy of true rainfall accumulation over the CONUS. Never-

theless, this assumption will be verified below. Figure 1 illus-

trates that the spatial density of CPC gauge coverage (calcu-

lated as average number of rain gauge observations per day)

during 2007–2012 is high in the Eastern CONUS and along

the western coast of CONUS but relatively lower in many

parts of the central CONUS. CPC rainfall observations are

aggregated to a 1◦ × 1◦ spatial resolution by simple averag-

ing.

2.1.2 ASCAT data

ASCAT (Bartalis et al., 2007) is a real-aperture radar in-

strument onboard the MetOp satellites which measures radar

backscatter at C band (5.255 GHz) and VV polarization. It

has a spatial resolution of 25 km (resampled at 12.5 km) and

is available since 2007. The surface SM product (equiva-

lent to a depth of 2–3 cm of the soil) is calculated from

the backscatter measurements through the time-series-based

change detection approach described in Wagner et al. (1999).

The SM is measured in relative terms (degree of satura-

tion) with respect to historical minimum and maximum val-
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ues. Here, we used the ASCAT data set produced using the

Soil Water Retrieval Package (WARP) (Naeimi et al., 2009)

(v5.5) from Vienna University of Technology (TU-Wien),

and distributed as SM product H109 by the EUMETSAT

Satellite Application Facility on Support to Operational Hy-

drology and Water Management (H-SAF). Prior to the ap-

plication of SM2RAIN to ASCAT data, the points character-

ized by a surface state flag (SSF) of the ASCAT product that

indicates frozen (SSF = 2), temporary melting/water on the

surface (SSF = 3) or permanent ice (SSF = 4) were excluded

from the analysis. For further details about the application of

SM2RAIN to ASCAT, the reader is referred to Sect. 2.4.

2.1.3 TMPA 3B42RT

TMPA 3B42RT, version 7 (http://trmm.gsfc.nasa.gov), com-

bines rainfall estimates from various satellite sensors. The

multisatellite platform uses the TRMM Microwave Imager

(TMI) on board of TRMM satellite, the Special Sensor Mi-

crowave Imager (SSM/I) on board the Defense Meteoro-

logical Satellite Program (DMSP) satellites, the Advanced

Microwave Scanning Radiometer for Earth observing sys-

tem (AMSRE) on board the National Aeronautic and Space

Administration (NASA) AQUA satellite, the Advanced Mi-

crowave Sounding Unit-B (AMSU-B) on board the National

Oceanic and Atmospheric Administration (NOAA) satellite

series and GEO IR rainfall estimates. The TMPA 3B42RT

estimates are produced in three steps: (1) the PMW esti-

mates are calibrated with sensor-specific versions of the God-

dard Profiling Algorithm (GPROF; Kummerow et al., 1996)

and combined, (2) IR rainfall estimates are created using the

PMW estimates for calibration, and (3) PMW and IR esti-

mates are then combined. The 3B42RT product is provided

by NASA with a temporal resolution of 3 h and a spatial reso-

lution of 0.25◦. The cumulated daily rainfall, available from

March 2000, is obtained by simply summing the eight 3 h

time windows for each day. The global coverage of the prod-

uct is +50◦/−50◦ latitude. To match the CPC spatial resolu-

tion, collocated TMPA 3B42RT estimates are aggregated to

1◦ spatial resolution by simple averaging.

2.1.4 CMORPH

CMORPH uses a Lagrangian approach to construct high-

resolution global precipitation maps from the satellite IR and

PMW observations (Joyce et al., 2004). This technique uses

precipitation estimates that have been derived from PMW ob-

servations exclusively, and whose features are transported via

spatial propagation information which is obtained entirely

from IR data. It incorporates precipitation estimates derived

from the PMW on board of the DMSP 13, 14 and 15 (SSM/I)

and NOAA-15, 16, 17 and 18 (AMSU-B) satellites as well as

AMSR-E and TMI aboard NASA’s Aqua and TRMM space-

craft, respectively. Precipitation estimates are obtained as fol-

lows. First, advection vectors of cloud and precipitation sys-

tems are computed using consecutive geostationary IR im-

ages in 30 min intervals. These advection vectors are then ap-

plied to propagate the precipitating cloud systems observed

by the PMW measurements along the advection vectors in

both forward and backward directions toward the target time

of the precipitation analysis. The final precipitation analysis

value at a grid box is defined as the weighted mean of the

estimates from the forward and backward propagations with

the weights inversely proportional to the time separation be-

tween the target analysis time and the PMW observations. In

this study, we used the daily (derived from 3-hourly aggre-

gation) estimates of precipitation at 0.25◦ latitude/longitude

resolution, distributed over the globe (+60◦/ − 60◦ of lati-

tude) by the NOAA Center for Weather and Climate Predic-

tion. Note that the CMORPH version used in this study is the

raw version which does not use gauge information. To match

the CPC spatial resolution, collocated CMORPH estimates

are aggregated to 1◦ spatial resolution.

2.1.5 ERA-Interim

The European Centre for Medium-Range Weather Fore-

casts (ECMWF) produces the ERA-Interim atmospheric,

ocean and land reanalysis. ERA-Interim provides medium-

range global forecasts for environmental variables including

soil temperature, evaporation, SM and rainfall. Products are

available from 1 January 1979 to now. The forecast model

incorporated in the ERA-Interim reanalysis is based on

the ECMWF Integrated Forecast System (Cy31r2) forecast

model (Dee et al., 2011), with a spectral horizontal resolution

of about 80 km and 60 vertical levels. The ERA-Interim fore-

cast precipitation is the sum of two components which are

computed separately in the model: large-scale stratiform pre-

cipitation (Tompkins et al., 2007) and smaller-scale precip-

itation which originates solely from the parameterization of

convection (Bechtold et al., 2004). Further information can

be found at the ECMWF website (http://www.ecmwf.int). In

this study, daily precipitation values are obtained from the

temporal aggregation of ERA-Interim 12-hourly precipita-

tion accumulation estimates (http://apps.ecmwf.int/datasets/)

while co-location with CPC observations is determined by

the nearest-neighbour method. Note that we considered only

liquid precipitation in the analysis. Solid precipitation were

excluded by masking out periods experiencing snowfall (us-

ing the “large-scale snowfall” variable of ERA-Interim).

2.2 TC analysis: general concepts

Here we apply the method of McColl et al. (2014) to robustly

estimate the correlation of a particular rainfall measurement

system with the truth. Suppose we have three systems Xi ,

measuring the true variable t and afflicted by additive random

error

Xi = X′
i + εi = αi + βi t + εi, (1)
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where Xi (i = 1, 2, 3) are collocated measurement systems

linearly related to the true underlying value t with additive

random errors εi , and αi and βi are the ordinary least squares

intercepts and slopes. Assuming that the errors from each

system have zero mean (E(εi) = 0), are mutually uncorre-

lated (Cov(εi,εj ) = 0, with i 6= j ) and orthogonal with re-

spect to t (Cov(εi, t) = 0), the covariance between Xi is

Qij = Cov(Xi,Xj ) =
{

βiβjσ
2
t , for i 6= j

β2
i σ 2

t + σ 2
εi
, for i = j.

(2)

By defining the new variable θi = βiσt , known as the sen-

sitivity of the variable Xi , Eq. (2) becomes

Qij =

{

θiθj , i 6= j

θ2
i + σε2

i
, for i = j,

(3)

which is a system of six equations in six unknowns from

which we derive (McColl et al., 2014):

σ ε =

















√

Q11 −
Q12Q13

Q23
√

Q22 −
Q12Q23

Q13
√

Q33 −
Q12Q23

Q12

















. (4)

From Eq. (2), using the definition of the correlation and

covariance we can write

θi = ρt,Xi

√

Qii, (5)

where ρt,Xi
is the correlation coefficient between t and Xi .

Since
√

Qii is already estimated from the data, and we can

solve for θi using Eq. (4), ρt,Xi
(McColl et al., 2014):

ρt,X = ±

















√

Q12Q13

Q11Q23

sign(Q13Q23)

√

Q12Q23

Q13Q22

sign(Q12Q23)

√

Q13Q23

Q12Q33

















, (6)

which provides the temporal correlation of each product with

the unknown truth. Hereinafter, when talking about ρt,Xi
or

its squared value ρt,Xi
2, we will refer to the correlation of

the product Xi with the unknown truth. ρ will be also used

to refer to this variable but in more general terms.

2.2.1 Rainfall error model

It is generally accepted that a multiplicative model is more

appropriate for describing errors in rainfall estimates (Hos-

sain and Anagnostou, 2006; Tian et al., 2013). Based on this

assumption, Alemohammad et al. (2015) proposed the appli-

cation of TC to the rainfall by introducing a multiplicative

error model:

Ri = aiT
βi eεi , (7)

in which R is the rainfall intensity estimate from product i,

T is the true rainfall intensity and ai is a multiplicative error.

By transforming Eq. (7) in the log space we obtain an equa-

tion equivalent to Eq. (1), where X = log(R), t = log(T ) and

αi = log(ai). In this way, the development of TC expressed

in Eqs. (2)–(6), can be applied to the – potentially more rel-

evant – case of multiplicative rainfall accumulation errors.

The resulting log RMSE can then be back-transformed into

linear rainfall accumulation errors by exploiting a Taylor se-

ries expansion of the logarithm operator (see Alemohammad

et al., 2015 for further details).

The main difficulty of this approach is its inability to con-

sider the presence of zero values in the rainfall time series.

To reduce their presence, Alemohammad et al. (2015) con-

sidered fortnightly rainfall estimates and simply removed re-

maining zeros in this time series. This has two implications.

First, the fortnightly rainfall error may differ from the error of

a shorter accumulation period (e.g. daily) because the daily

signal has a substantially different character with respect to

the fortnightly one due to the higher presence of zero values.

Second, the method may not be appropriate in very dry cli-

mates, where even fortnightly values of rainfall can contain

a significant number of zero accumulation values.

For the reasons mentioned above, we apply TC in two dif-

ferent ways: (i) to the rainfall time series using an additive er-

ror model and (ii) to log-transformed rainfall estimates using

the multiplicative error model (by first removing rainfall ac-

cumulation values equal to zero). Comparisons of these two

different approaches will provide insights regarding the ap-

propriateness of various error model assumptions for rainfall

estimates at a daily accumulation timescale.

2.3 Performance scores

In Sect. 2.2, it has been demonstrated that TC can provide

both error variances and correlation against an unknown truth

for three collocated estimates of the same variable. When

dealing with error variances, the products have to be rescaled

to a common reference data space. However, such a rescal-

ing imposes spatial patterns within the derived error metric

which reflects the climatology of the chosen reference (Gru-

ber et al., 2016). To this end, McColl et al. (2014) noted that

correlation coefficients can provide important new informa-

tion about the performance of the measurement systems with

respect to the absolute error variances obtained via Eq. (4)

with the added advantage of not requiring the arbitrary def-

inition of one system as a scaling reference. Indeed, ρ2 rep-

resents the unbiased signal to noise ratio, scaled between 0

and 1, which provides a measure of the relative similarity

between two signals, independently from their phase differ-

ences. This was also underlined by Gruber et al. (2016), who

showed that ρ2 is the complement of the f RMSE = σ 2
ε /σ 2

introduced by Draper et al. (2013) (ρ2 = 1−f RMSE), which

was used previously to remove the dependency of the error

variance pattern on the spatial climatology of the chosen ref-
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erence. Gruber et al. (2016) also pointed out that the absolute

error variance provides only limited information about the

true data set quality because a certain amount of noise can be

either acceptable or unacceptable depending on the strength

of the underlying signal (i.e. its variance). Therefore, we fo-

cus here only on ρ2 or, analogously, on its root square ρ, i.e.

Eq. (6).

As discussed above, a key goal is determining the rela-

tive accuracy of TC correlations obtained with and without

the use of SM2RAIN-based rainfall accumulation products.

Assuming that RXi
(or simply R) is the Pearson correlation

coefficient between the product Xi and CPC, the main ques-

tion is, how accurately can (TC-based) ρt,Xi
, which utilize

no ground observations, reproduce spatial patterns in (CPC-

based) RXi
? We should expect a bias between the two (i.e.

RXi
≤ ρt,Xi

) because – while relatively accurate – CPC es-

timates still contain representativeness errors (due to limita-

tions in rain gauge density) and measurement errors due to

wind and instrument inaccuracies. In contrast, Eq. (6) pro-

vides the correlations with an error-free truth. Nevertheless,

if the TC hypothesis holds, the relative rank between the

products predicted by TC should accurately reflect that ob-

tained via direct comparisons with ground observations.

In order to evaluate the similarity between correlation-

based maps of ρt,Xi
and RXi

a spatial correlation index SC

was calculated as the spatial Pearson correlation coefficient

between maps of RXi
and ρt,Xi

. The closer SC is to 1, the

more spatially similar the two maps are and the more satis-

fied the assumptions of TC. In addition, based on the values

of ρt,Xi
and RXi

, we are able to sort the products according

to their relative performance for each pixel in the analysis.

That is, considering three products Xi , the rank value to be

assigned to each product i will be 1 if ρt,Xi
is the highest,

3 if it is the lowest and 2 if it is neither. If the same is done

with RXi
, the consistency of the resulting rank maps for each

product provide feedback regarding the validity of assump-

tions underlying the application of TC. For the quantification

of the discrete maps, we also calculate the number of pixels

providing equivalent relative sorting of the products based on

RXi
vs. ρt,Xi

.

2.4 SM2RAIN and its application to ASCAT data

SM2RAIN (Brocca et al., 2014) is a method of rainfall esti-

mation which uses two successive SM retrievals to estimate

the rainfall accumulated between the two retrievals. It ex-

ploits the soil water balance equation with appropriate sim-

plifications valid only for liquid precipitation (Tian et al.,

2014):

Z∗ds(τ )/dτ = p(τ) − r(τ ) − e(τ ) − g(τ), (8)

where Z∗ is the soil water capacity (soil depth times soil

porosity), s(τ ) is the relative saturation of the soil or rela-

tive SM; τ is the time; and p(τ), r(τ ), e(τ ) and g(τ) are

the rainfall, surface runoff, evapotranspiration and drainage

rates, respectively. Under unsaturated soil conditions, and as-

suming negligible evapotranspiration rate during rainfall and

Dunnian runoff, solving Eq. (8) for rainfall yields

p(τ) = Z∗ds(τ )/dτ + as(τ )b. (9)

Note that in Eq. (9) the drainage rate has been expressed

with a power law function of the type g = asb (Famiglietti

and Wood, 1994), where a and b are two model parameters.

When the soil is fully saturated, no rainfall can be estimated

from SM; however, at the scale of satellite pixel, the soil is

rarely saturated (except in some exceptional places like trop-

ical forests).

The SM2RAIN parameters a, b and Z∗ can be estimated

either by using a rainfall data set as a reference or assigned

based on soil properties. In this study, in order to maximize

the independence of SM2RAIN predictions, SM2RAIN pa-

rameters were not calibrated and were instead assumed con-

stant in space as in Koster et al. (2016). In particular, the

drainage rate (the second term in Eq. 9) was assumed lin-

early related with SM (b = 1) and a = 3.7 mm day−1 and

Z∗ = 62 mm based on results obtained in previous studies

(Brocca et al., 2014). Note that Z∗ does not have a significant

influence on the results because we are using a correlation-

based metric. In addition, it should be noted that, while maxi-

mizing the independence of SM2RAIN rainfall accumulation

estimates, the use of this default calibration approach results

in sub-optimal SM2RAIN performance. Superior SM2RAIN

can easily be obtainable via calibration against existing satel-

lite rainfall accumulation products.

Daily rainfall estimates from SM2RAIN were obtained

by using linearly interpolated (at 00:00 UTC) ASCAT data

with a maximum allowable data gap of 5 days. The obtained

0.25◦ × 0.25◦ rainfall estimates were then aggregated to the

1◦ × 1◦ spatial resolution through simple averaging of the

collocated pixels with CPC. Finally, 1◦ × 1◦ grid cells were

masked if more than 50% of their sub-grid areas consisted

of ASCAT observations characterized by a SSF equal to 2, 3

or 4. Hereinafter, the thus obtained product is referred to as

SM2RAIN for simplicity.

2.5 Experimental setup

A TC analysis was carried out using five different

daily rainfall accumulation triplets: (1) ERA-Interim-

SM2RAIN-3B42RT (Triplet A in the following), (2) ERA-

Interim-SM2RAIN-CMORPH (Triplet B), (3) ERA-Interim-

3B42RT-CMORPH (Triplet C), (4) ERA-Interim-3B42RT-

CPC (Triplet D) and (5) ERA-Interim-CMORPH-CPC

(Triplet E). Triplets A and B are used to assess the ability of

SM2RAIN to provide meaningful TC results. Triplet C pro-

vides an alternative to triplets A and B which contains two

rainfall satellite products (with potentially cross-correlated

errors). Triplets D and E serve only to evaluate the general

performance of the CPC product (within CONUS) and to

provide alternative triplets to A and B which use SM2RAIN.
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Table 1. Mean correlation with CPC (R) and TC-based correlation (ρ) for various triplets assuming additive and multiplicative error models.

The “Triplet” column refers to the naming convention applied in the text.

Additive error

ERA-Interim SM2RAIN 3B42RT CMORPH CPC

Correlation with CPC 0.68 0.57 0.52 0.57 –

Triplet Products Triple collocation

A ERA – SM2RAIN – 3B42RT 0.79 0.57 0.57 – –

B ERA – SM2RAIN – CMORPH 0.73 0.63 – 0.58 –

C ERA – 3B42RT – CMORPH 0.43 – 0.68 0.76 –

D ERA – 3B42RT – CPC 0.79 – 0.57 – 0.87

E ERA – CMORPH – CPC 0.76 – – 0.60 0.91

Multiplicative error

ERA-Interim SM2RAIN 3B42RT CMORPH CPC

Correlation with CPC 0.53 0.43 0.38 0.50 –

Triplet Products Triple collocation

A ERA – SM2RAIN – 3B42RT 0.63 0.53 0.43 – –

B ERA – SM2RAIN – CMORPH 0.68 0.55 – 0.62 –

C ERA – 3B42RT – CMORPH 0.43 – 0.68 0.76 –

D ERA – 3B42RT – CPC 0.65 – 0.42 – 0.84

E ERA – CMORPH – CPC 0.66 – 0.57 0.79

As a result, they will only be used for initial considerations

about TC robustness and to evaluate the relative quality of

the CPC product. Triplets A, B and C will be then used in the

remainder of the paper to demonstrate the potential utility of

SM2RAIN.

The analysis was carried out first across CONUS and

then on a global scale using only ERA-Interim, 3B42RT,

CMORPH and SM2RAIN during the period 2007–2012.

Over CONUS it was confirmed that the available sample size

was sufficient (about 500) over the entire study domain (Gru-

ber et al., 2016), while for the global analysis, grid cells with

inadequate sample size were individually masked out of the

analysis. The extended TC analysis was applied for both ad-

ditive and multiplicative error model assumptions. For the

latter, we first removed days with zero rainfall constituting

about 80 % of daily values and leaving approximately 450

non-zero daily values in the 2007–2012 time series and then

applied a log transformation to the remaining daily rainfall

estimates. This reduction in sample size may affect TC re-

sults by making the analysis with log-precipitation estimates

statistically less robust.

3 Results and discussion

In this section, we present the results obtained from the appli-

cation of TC (for both additive and multiplicative error mod-

els) by following the subsequent methodological steps: (1)

calculating TC-based correlations (ρt,Xi
) for Triplets A, B,

C, D and E over the CONUS and providing an assessment

of the CPC product (Sect. 3.1), (2) understanding the ade-

quacy of TC results based on the spatial similarity between

(TC-based) ρt,Xi
and (CPC-based) RXi

(along with their rel-

ative rank) over the CONUS in order to identify the optimal

configuration for applying TC and (3) applying the optimal-

configured TC on a global scale to calculate ρt,Xi
globally

for the selected rainfall products (Sect. 3.3).

3.1 Assessment of the CPC product

As described above, our first goal is to assess the relative

performance of the CPC product. Table 1 shows mean ρt,Xi

(obtained via the spatial average of 0.25◦ CONUS grid cells).

Regardless of the triplet or error model applied, the TC anal-

ysis summarized in Table 1 indicates that CPC is the most

accurate product (mean TC-based correlation close to 0.9

for the additive error model and close to 0.8 for the multi-

plicative one), which strengthens our assumption that within

CONUS, CPC can be used as a benchmark to evaluate the

optimal TC configuration for rainfall product evaluation. In

addition, its correlation spatial pattern (not shown) provides

very good performance almost everywhere except in the cen-

tral US, where the spatial density of available rain gauges

shown in Fig. 1 is relatively lower. Based on this, in the next

section we will consider the CPC product as an appropriate

benchmark for the selection of an optimal TC configuration

which does not utilize a gauge-based precipitation product

(and is therefore potentially applicable at a global scale).
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Figure 2. CPC-based (a–d) and TC-based (e–o) correlation coefficient obtained for the triplets: (i) ERA-Interim-SM2RAIN-3B42RT (Triplet

A: e–g), (ii) ERA-Interim-SM2RAIN-CMORPH (Triplet B: h–l) and (iii) ERA-Interim-3B42RT-CMORPH (Triplet C: m–o) during the

period 2007–2012 using an additive error model.

3.2 Optimal TC configuration

Figure 2a–d plot CPC-based Pearson correlation coeffi-

cients (i.e. RXi
) for ERA-Interim, 3B42RT, CMORPH and

SM2RAIN obtained with the assumption of additive error

model (for multiplicative error model results the reader is

referred to Fig. S1 of the Supplement). A comparison of

these results with TC-based correlations (i.e. ρt,Xi
) shows

that ρt,Xi
are biased high with respect to RXi

. This is ex-

pected given that CPC is not free of errors, whereas TC

should theoretically provide the correlation with respect to

an error-free truth.

The spatial agreement between ρt,Xi
and RXi

is exam-

ined in Table 2 and Fig. 2. In particular, Fig. 2 shows that

Triplets A (panels e, f, g) and B (panel h, i, l) accurately

reproduce CPC-based results plotted in Fig. 2a–d, although

they are characterized by higher values as underlined above

(see Sect. 2.3 for further details). This similarity is higher in

the eastern and western US and lower in the central US es-

pecially for ERA-Interim and SM2RAIN. This lower agree-

ment in the central US is likely due to the lower rain gauge

density of CPC here (see Fig. 1), which degrades the quality

of the CPC product as benchmark. However, in contrast, TC

results based on Triplet C predicts a substantial different be-

haviour with correlation patterns which differ substantially

relative to CPC-based benchmark results in Fig. 2a–d. This

suggests those triplets not containing SM2RAIN (or CPC)

provide unreliable results. In particular, the simultaneous use

of two satellite-based rainfall products in Triplet C leads

to an overly optimistic assessment of their performance.

This is likely due to cross-correlated errors in 3B42RT and

CMORPH rainfall accumulation products which cause TC to

misinterpret their mutual consistency as an indication of high

accuracy (Yilmaz and Crow, 2014).

It is often important to understand which is the best rainfall

product among those available in a specific location. As de-

scribed in Sect. 2.3, we ranked the products based upon how

well they compare relative to each other using both R and ρ.

Figure 3 shows the distribution – three products at time (pan-

els d–f, k–m, r–t) – of the relative rank based on comparisons

with the (CPC-based) RXi
of each triplet, while panels a–c,

g–i, and n–p of the same figure provide similar information

except that the relative rank is based on TC (i.e. ρ). The lat-

ter shows a very similar pattern with respect to CPC-based

rank for Triplets A and B; however, Triplet C yields again

a distinct pattern with ERA-Interim being the worst product

and 3B42RT and CMORPH providing complementary per-

formances. As in the comparisons discussed in Fig. 2, this

implies that triplets containing SM2RAIN (i.e. Triplets A and

B) provide more robust evaluation information than triplets

utilizing 3B42RT and CMORPH together.
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Table 2. Spatial correlation between ρt,Xi
and RXi

and percentage of rank correctly identified obtained for various triplets considered in the

study. The “Triplet” column refers to the naming convention applied in the text.

Spatial correlation

Triplet Products ERA-Interim 3B42RT CMORPH SM2RAIN

Additive error model

A ERA – 3B42RT – SM2RAIN 0.79 0.74 – 0.84

B ERA – CMORPH – SM2RAIN 0.86 – 0.61 0.84

C ERA – 3B42RT – CMORPH 0.96 0.28 0.07 –

Multiplicative error model

A ERA – 3B42RT – SM2RAIN 0.380 0.751 – 0.648

B ERA – CMORPH – SM2RAIN 0.265 – 0.798 0.570

C ERA – 3B42RT – CMORPH 0.508 0.508 0.706 -

% rank identified

Triplet Products ERA-Interim 3B42RT CMORPH SM2RAIN

Additive error model

A ERA – 3B42RT – SM2RAIN 80 % 81 % – 72 %

B ERA – CMORPH – SM2RAIN 65 % – 74 % 65 %

C ERA – 3B42RT – CMORPH 6 % 10 % 41 % –

Multiplicative error model

A ERA – 3B42RT – SM2RAIN 65 % 71 % – 60 %

B ERA – CMORPH – SM2RAIN 48 % – 51 % 67 %

C ERA – 3B42RT – CMORPH 11 % 15 % 50 % –

The same analysis carried out with the assumption of mul-

tiplicative error model (see Fig. S2 in the Supplement) shows

similar findings but larger differences between the spatial dis-

tribution of the rank obtained with CPC and the one with

TC, especially for Triplet B. To quantity this agreement, we

have calculated the percentage of pixels which are ranked the

same in both TC-band CPC results (% of rank identified in

Table 2). The table confirms the patterns observed in Figs. 3

and S2 of the Supplement with Triplets A and B yielding

the highest percentage of pixels with a common rank – rang-

ing from 65 to 81 % for the additive error model, and 48 to

71 % for the multiplicative error model. As discussed above,

inferior results are obtained in both cases for Triplet C (per-

centage of correct ranking between 5 and 60 %).

A quantification of the agreement between the spatial vari-

ations of the correlations both for additive and multiplicative

error models was also derived by the use of the spatial cor-

relation SC in Table 2. The table shows that for Triplets A

and B, when TC is used with the assumption of additive er-

ror model, SC is relatively high with values ranging from

0.61 to 0.84 while for Triplet C provides substantially lower

SC for 3B42RT and CMORPH. A slightly different situation

can be observed for the multiplicative error model. Here, SC

values are generally lower than those obtained by TC (based

on an assumed additive error model), likely due to the neces-

sity of removing zero-rain days, which modifies the original

precipitation time series and reduces the sample size of TC

calculations. In particular, ERA-Interim provides the worst

score. This is not clearly evident in the spatial distribution of

R and ρ (see Fig. S1 in the Supplement for further details)

which show some similarities at least for Triplets A and B.

In summary, the application of TC to the different triplets

shows the following:

1. CPC product performs relatively well over the CONUS

with a TC-derived correlation vs. truth of 0.9 (assum-

ing an additive error model) demonstrating its relatively

high quality here and supporting its application as a

benchmark data set within CONUS.

2. TC-based correlations are similar among the triplets

except for Triplet C (i.e. ERA-Interim, 3B42RT and

CMORPH). This is likely due to the existence of non-

negligible cross-correlated errors between 3B42RT and

CMORPH.

3. A comparison between ρt,Xi
and RXi

shows that ρt,Xi

are biased high with respect to RXi
. In addition, the pat-

tern of ρt,Xi
and RXi

is similar for all triplets except for

Triplet C, which shows inconsistencies relative to the

CPC benchmark for both the additive and multiplicative

error model assumptions. The agreement, measured in
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Figure 3. Rank based on CPC-based correlation (CPC-based rank in the figure) and TC-based correlation (TC-based rank in the figure) of the

triplets: (i) ERA-Interim-SM2RAIN-3B42RT (Triplet A: a–c for TC-based rank and d–f for CPC-based rank) , (ii) ERA-Interim-SM2RAIN-

CMORPH (Triplet B: g–i for TC-based rank and k–m for CPC-based rank) and (iii) ERA-Interim-3B42RT-CMORPH (Triplet C: n–p for

TC-based rank and r–t for CPC-based rank) during the period 2007–2012 using an additive error model.

terms of spatial correlation (Table 2), provides higher

scores for an additive error model assumption relative

to a multiplicative one. This is likely due to a reduction

of sampling power associated with the removal of daily

rainfall accumulations equal to zero, which are not ac-

ceptable in the log-transformation process. Therefore, it

is possible that the observed differences in TC perfor-

mance may shrink for larger sample sizes.

4. Retrieved spatial patterns of ρt,Xi
for the triplets con-

taining SM2RAIN (Fig. 2) show a higher degree of sim-

ilarity with (CPC-based) RXi
when we assume an ad-

ditive (vs. multiplicative) error model for daily rainfall

accumulations.

On this basis, we can conclude that (i) TC results are un-

reliable unless SM2RAIN is used in the triplets and (ii) the

assumption of multiplicative error model in the application

of TC at a daily timescale does not appear necessary.

3.3 Application of optimized TC approach

Based on the superior performance for Triplets A and B un-

der the assumption of additive error model, we will apply

this particular TC configuration approach to assess the per-

formance (in terms of ρ) of daily rainfall accumulation es-

timates derived from 3B42RT, CMORPH, SM2RAIN and

ERA-Interim first over the CONUS (Sect. 3.3.1 and Fig. 2)

and then on a global scale (Sect. 3.3.2 and Fig. 4).

3.3.1 CONUS

Over CONUS, ERA-Interim shows relatively better perfor-

mance in western and eastern US with respect to the cen-

tral US, where SM2RAIN is slightly superior. 3B42RT and

CMORPH perform reasonably well in eastern and along the

west coast of the US while demonstrating worse performance

in the central US. In contrast, SM2RAIN performs worse in

northern US probably due to the lower accuracy of the AS-

CAT data at high latitudes. The spatial pattern of these corre-
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Figure 4. Global correlation of the 3B42RT (a), CMORPH (b), SM2RAIN (c) and ERA-Interim (d) products obtained by TC using Triplet

A (ERA-Interim-SM2RAIN-3B42RT) for 3B42RT, ERA-Interim and SM2RAIN and Triplet B (ERA-Interim-SM2RAIN-CMORPH) for

CMORPH.

lations is similar to those found in Gottschalck et al. (2005)

and Ebert et al. (2007), who showed a generally lower level

of correlation of satellite-only rainfall products in the central

US due to the effects of snow cover and frozen surface condi-

tions. This corroborates results presented in Alemohammad

et al. (2015) using TC, who found a similar pattern of correla-

tion of 3B42RT in a box covering a large part of southeastern

US (however, the authors here assumed a multiplicative error

model and fortnightly rainfall accumulation estimates).

3.3.2 Global

On a global scale, 3B42RT (Fig. 4a) shows relatively good

performances in eastern and central South America, south-

ern and central Africa, southern and eastern Asia, eastern

Australia, and southern Europe, while it performs relatively

worse in central Asia, western Australia and in the southern

part of the Sahel. The performance of CMORPH (Fig. 4b) is

similar to 3B42RT with slightly lower correlations in Aus-

tralia, in the Horn of Africa and in southern Asia. SM2RAIN

(Fig. 4c) performs reasonably well in Africa (except in the

tropical forest), Australia, Mexico, eastern South America

and India and generally in the Southern Hemisphere, while

worse results are obtained in the Northern Hemisphere, in

the tropical forests and at high latitudes. In contrast, ERA-

Interim (Fig. 4d) provides much better results in the North-

ern Hemisphere with respect to the south of the planet (e.g.

South America and southern Africa) and performs relatively

poorly in central and northern Africa as well as in the tropical

forests.

The results for 3B42RT and SM2RAIN are similar to those

obtained in Brocca et al. (2014) who calculated the Pearson

correlation coefficient with the Global Precipitation Clima-

tology Center (GPCC; Schamm et al., 2014) data set. Sim-

ilar findings are also presented in Yong et al. (2015) (Ta-

ble 2 of their study), who compared different versions of

the 3B42RT product against global CPC observations in the

US, East Asia, Europe and Australia. In their study, the best

results were obtained in Australia and in East Asia (Eu-

rope showed slightly lower performance) while lower perfor-

mances were obtained in the US as in our analysis. Further

comparisons can be also considered with the recent work of

Beck et al. (2017), who, in attempting to create a high-quality

rainfall product specifically tailored for hydrological mod-

elling, compared different satellite and modelled products

globally with the Global Historical Climatology Network-

Daily (GHCN-D; Menne et al., 2012) database. Their results

(in terms of spatial pattern of correlation) are consistent with

those obtained in our study over the US, East Asia and the

Middle East for CMORPH and 3B42RT, while less agree-

ment is observed in Australia. For ERA-Interim, the results

agree with our study in the US, Europe and generally are

better in the Northern Hemisphere, whereas they show some

differences with SM2RAIN results in Australia, Africa and

in South America, although in these areas the low number

of available rain gauges cannot provide a clear picture of the

real performance of the analysed products. Substantial dif-

www.hydrol-earth-syst-sci.net/21/4347/2017/ Hydrol. Earth Syst. Sci., 21, 4347–4361, 2017



4358 C. Massari et al.: Performance of global rainfall estimates

ferences between our study and the studies of Beck et al.

(2017) and Yong et al. (2015) can likely be attributed to the

quality of the benchmark data set used for the evaluations.

This is the main limitation of rainfall validation studies re-

lying upon ground-based observations for assessment. With

our proposed TC-based approach, this issue can be overcome

because ground observations are no longer required.

An interesting feature of the global evaluation of the prod-

ucts (Fig. 4a–d), but also over the CONUS between 3B42RT

(or CMORPH) and SM2RAIN (Fig. 2 triplets A and B), is the

complementary nature of the products. Especially for Fig. 4c

and d, it can be seen that ERA-Interim performs very well in

the Northern Hemisphere and worse in the Southern Hemi-

sphere, whereas SM2RAIN is relatively good in the south

and worse in the Northern Hemisphere. Similar findings can

be seen between the two state-of-the-art satellite rainfall

products (i.e. 3B42RT and CMORPH) and SM2RAIN over

the CONUS with the first performing better in eastern US

and the second in the central and western US. This opens up

new possibilities for the integration of multiple products to

obtain a higher-quality merged rainfall estimate – as outlined

in Ciabatta et al. (2015) and in Beck et al. (2017).

4 Summary and conclusions

The assessment of the performance of satellite rainfall prod-

ucts on a global scale is challenging due to significant limita-

tions in the spatial coverage of high-quality, ground-based

rain gauge observations. Provided that its underlying as-

sumption are respected (see Sect. 2.2), TC provides an alter-

native approach for evaluating global rainfall products with-

out reliance on ground-based observations. Here, we de-

scribe how a new method for rainfall estimation based on

SM observations (i.e. SM2RAIN) provides a rainfall prod-

uct that is uniquely suited to satisfy the error independent

assumptions at the heart of the TC approach.

The extended version of TC introduced by McColl et al.

(2014) was applied to provide the correlation with the

(unknown error-free) truth for each of the products ap-

plied within a particular triplet. To assess the robustness of

correlated-based results obtained with TC, we used an area

characterized by a high-quality rainfall product (CPC data

set over the CONUS; see Fig. 1) with the assumption that it

represents a good proxy of the true rainfall field. Therefore, if

TC assumptions hold, Pearson correlation coefficients com-

puted against CPC should match those of TC – at least in

terms of their relative values. Since we have two different

error model options (i.e. additive and multiplicative) for the

application of TC to rainfall data, we explored both.

Results demonstrate that daily rainfall accumulations pro-

vided by the CPC product are indeed relatively high quality

compared to competing products (Table 1), thus supporting

the assumption that it provides an acceptable proxy of the

true rainfall field. Once it is established as a credible bench-

mark, CPC is used to evaluate (1) what type of triplets can

be considered for a robust application of TC, and (2) which

model error assumption can be considered more appropri-

ate. Triplets containing SM2RAIN and assuming an addi-

tive error model (Table 2) appear to provide the most ro-

bust TC results. Based on this, an optimal TC configuration

was applied (for the first time) to globally evaluate daily rain-

fall accumulation derived from the 3B42RT and CMORPH,

ERA-Interim and SM2RAIN products (Fig. 4a–d) without

the use of any ground-based data. Results demonstrate the

relatively high performance of daily rainfall accumulations

derived from the satellite rainfall products (i.e. 3B42RT and

CMORPH) in eastern North and South America, southern

Africa, southern and eastern Asia, eastern Australia, and

southern Europe, as well as complementary performances

between ERA-Interim and SM2RAIN, with the first perform-

ing reasonably well in the Northern Hemisphere and the sec-

ond providing very good performance in the Southern Hemi-

sphere.

Based on the results obtained, we can therefore conclude

the following:

1. Despite the abundance of satellite rainfall estimates,

their relative dependency impedes their use within the

same triplet for the TC analysis, thus alternative inde-

pendent products must be used for obtaining meaningful

TC results. In particular, the use of two remotely sensed

rainfall products in a single triplet entails significant risk

of a biased TC analysis.

2. Wholly independent daily rainfall accumulation prod-

ucts obtained from SM2 RAIN are uniquely valuable for

obtaining robust global evaluation statistics in absence

of ground-based gauge observations. This is important

not only for simple validation purposes but also for hy-

drological studies and applications within developing

countries, where ground-based rain gauge networks are

often limited or absent and an alternative product has to

be chosen.

3. At the time/space scales examined here, the assump-

tion of additive error model provides reasonable and

robust results and no advantage is observed for a log

transformation of the time series (which allows for the

consideration of a multiplicative error model). However,

this result is likely to be scale dependent and implies at

the timescale resolution of this analysis is sufficiently

coarse such that averaging produces approximate ad-

ditive/Gaussian distributions (via the central limit the-

orem). Therefore, different results may be obtained at

finer timescales.

4. Both state-of-the-art satellite rainfall estimates (i.e.

3B42RT and CMORPH) and SM-based rainfall esti-

mates (i.e. SM2RAIN) performances are affected by the

presence of snow cover and frozen soil conditions – thus
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these rainfall estimates may be unreliable at high lati-

tudes and in mountainous regions. In these areas, a re-

analysis product (i.e. ERA30 Interim) provides higher-

quality rainfall estimates and should be considered in

place of satellite-based estimates. SM-based rainfall es-

timates also work reasonably well in semi-arid climates

(e.g. Sahel, central Australia and Mexico) where the

state-of-the-art satellite products report problems due

to sub-cloud evaporation of hydrometeors (Ebert et al.,

2007). Conversely, in wet climates (e.g. tropical forests)

3B42RT and CMORPH seem to be the only reliable op-

tion given that neither SM2RAIN nor ERA-Interim pro-

vide reasonable results.

5. Given the existence of complementary performances

among the products, TC can potentially be a valuable

tool for the characterization of their relative perfor-

mances so as to be used for data fusion and assimilation

experiments for obtaining more accurate rainfall esti-

mates.

The question of whether this analysis is valid for differ-

ent spatio-temporal scales remains to be addressed and will

be addressed in future studies. Also, removing zeros for ob-

taining log-transformed rainfall may not be ideal for testing

the validity of the model error assumptions since it shortens

the sample size, thus providing less robust TC results. Other

strategies should be considered.

Data availability. This study is based on third-party data. The ci-

tations to the data sets along with the data providers can be found

in the data description section (Sect. 2). The reader can find nec-

essary information for downloading the data in the website of the

providers.
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