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Abstract Managing risks from extreme events will be a crucial component of climate
change adaptation. In this study, we demonstrate an approach to assess future risks
and quantify the benefits of adaptation options at a city-scale, with application to
flood risk in Mumbeai. In 2005, Mumbai experienced unprecedented flooding, causing
direct economic damages estimated at almost two billion USD and 500 fatalities. Our
findings suggest that by the 2080s, in a SRES A2 scenario, an ‘upper bound’ climate
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scenario could see the likelihood of a 2005-like event more than double. We estimate
that total losses (direct plus indirect) associated with a 1-in-100 year event could
triple compared with current situation (to $690-$1,890 million USD), due to climate
change alone. Continued rapid urbanisation could further increase the risk level. The
analysis also demonstrates that adaptation could significantly reduce future losses;
for example, estimates suggest that by improving the drainage system in Mumbai,
losses associated with a 1-in-100 year flood event today could be reduced by as much
as 70%. We show that assessing the indirect costs of extreme events is an important
component of an adaptation assessment, both in ensuring the analysis captures the
full economic benefits of adaptation and also identifying options that can help to
manage indirect risks of disasters. For example, we show that by extending insurance
to 100% penetration, the indirect effects of flooding could be almost halved. We
conclude that, while this study explores only the upper-bound climate scenario, the
risk-assessment core demonstrated in this study could form an important quantitative
tool in developing city-scale adaptation strategies. We provide a discussion of sources
of uncertainty and risk-based tools could be linked with decision-making approaches
to inform adaptation plans that are robust to climate change.

1 Introduction

Many of the world’s cities are hotspots of risk from extreme weather events (e.g.
Munich Re 2004) and levels of risk in many cities are likely to grow due to a
combination of population growth and development and rising intensities of extreme
weather events. For example, Hanson et al. (2011, in this issue) demonstrate high
population and economic exposure to storm surge risks in many of the world’s largest
and fastest growing cities. These are also areas where adaptation can have significant
benefits. Managing risks from extremes will be a crucial component of adaptation
planning.

A challenge in planning adaptation relates to the quantification of the risks from
extreme weather events and the benefits of different adaptation measures. This study
presents an approach to quantifying city-scale risks that is based on Hallegatte et al.
(2011a, in this issue); here it draws on the principles of catastrophe risk modelling
commonly used in the developed world but simplified for application for a more data
sparse region and coupled with downscaled climate model projections. This approach
is applied to quantifying future flood risk in the city of Mumbai, India. Mumbai is
the main commercial and financial centre of India, generating about 5% of India’s
gross domestic product (GDP). The study also aims to demonstrate the importance
of capturing the indirect costs of disasters in risk and adaptation assessments.

The study follows the broad stages of an ‘impacts-based’ adaptation assessment
(Carter et al. 2007): firstly, characterising current levels of vulnerability and potential
future sensitivities (Section 2); secondly, quantifying relevant risks (Sections 3 and 4);
and thirdly, identifying adaptation options and evaluating their benefits (Section 5).
This study does not complete the adaptation assessment, it only aims to demonstrate
various elements; for example, it is limited in that it explores one (‘upper-bound’)
climate scenario and it looks at a limited set of adaptation options (and only benefits,
not costs). It also does not enter the next stage of applying decision methods and
forming strategies; though in Section 6 we provide a brief discussion of our approach
in this context. We note that this study is part of an ongoing body of research
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sponsored by the OECD; forthcoming research over the next year will expand on
this study with additional research from a number of local partners.

2 Mumbai: current vulnerability to flooding and future sensitivities

A logical first stage of any adaptation assessment is to understand levels of current
vulnerability to weather. Mumbai is prone to flooding and witnesses severe disrup-
tions almost annually; for example, between 2004 and 2007, Mumbai experienced
flooding each summer. But in July 2005, the city experienced the worst flooding in
its recorded history, resulting in damages estimated at around $1.7 billions USD and
around 500 fatalities (GoM 2005). Across Northwest India, the flooding crippled an
area of over 35,500 km?, affecting 20 million people and causing economic damages
of around $3-5 billions US (Swiss Re 2006; Munich Re 2006). Figure 1 shows a map of
the flood extent across the City and Suburban districts of Mumbai (which collectively

/" Ward Boundarles from PORTAL, MCGM.GOV. IN
[ Mumbai City Districk
[CtMumbai Suburban District

Fig. 1 Digitized flood extent map for the 2005 event (based on Gupta 2007), showing the city wards
and the location of the Mumbai City and Suburban Districts
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form the Greater Mumbai region) digitalised from Gupta (2007); around 20% of the
area was affected, with flood waters to a depth of 0.5 to 1.5 m in low-lying areas.

The root cause of Mumbai’s susceptibility to flooding is its geography, both natural
and manmade (Duryog Nivaran 2005). Firstly, the city’s location leaves it exposed
to heavy rainfall during the summer; typically, 50% of the rainfall during the two
wettest months, July and August, falls in just two or three events (Jenamani 2006).
This situation is aggravated by the manmade geography; large areas of the land are
reclaimed and are situated only just above sea level and below the high-tide level.
This inhibits natural runoff of surface water and the complicated network of drains,
rivers, creeks and ponds drain directly in the sea, meaning that during high tides, sea
water can enter the system preventing drainage and in extreme cases, leading to salt
water deluge. This occurred during the July 2005 event; a massive inundation of the
drainage systems caused as almost 1000 mm of rainfall fell on the city in 24 h was
combined with a failure of the system as sea water entered during high tide.

Future levels of flood risk are also potentially sensitivity to climate change and
other drivers of risk. Urbanisation has been an important driver of increased flood
risk in the city. For example, it is estimated that urbanisation alone has contributed to
a two or three fold increase in runoff in the city. The drainage systems of the city are
now inadequate to cope with heavy rainfall and are impeded by urban encroachment
and channel blockages. Continued rapid urbanisation, particularly in the absence
of effective spatial planning and improved drainage systems, is likely to lead to an
increase in flood risk in Mumbeai.

Over the coming decades, the pressures of urbanisation may be aggravated
by manmade climate change. Like many other areas, the Northwest of India has
observed a statistically significant warming of annual mean surface air temperatures
over the past century (IPCC 2007, Figure 3.9). While no statistically significant trend
in annual rainfall has been observed in the past three decades (IPCC 2007, e.g. Figure
3.13), there are signs of an increased contribution to annual rainfall from very wet
days (Alexander et al. 2006). In the future, an increase in rainfall volume and/or
intensity could increase the risk of severe flooding. Global climate models (GCMs)
give a divergent picture of how precipitation will change in Northwest India over
this century. For example, the ensemble mean of the GCM projections assessed in
IPCC (2007) suggests a small average increase in the summer precipitation (roughly
5% of 1990 levels by the 2090s), however this small average masks large positive
and negative changes projected by individual models. The strong uncertainty in this
region is driven by the inability of the current generation of GCMs to adequately
represent the detailed topography of South Asia and the cloud microphysics involved
in tropical convective processes.

3 Quantifying current and future flood risk in Mumbai

The risk quantification approach used in this study follows a standard catastrophe
risk modelling framework, which combines estimates of hazard, exposure and vul-
nerability (Grossi and Kunreuther 2005). This framework provides an estimate of
the direct economic damages and population exposed to flood events with different
probabilities of occurrence. In this study, probabilities are represented as return
periods of events, i.e. a 1 in 200 year return period (denoted yr RP) event has a
0.005% annual probability of occurrence. To this framework we add an additional
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component (Section 4) that estimates the indirect damages from flood events. To
inform adaptation decision-making it is also important to consider fatalities or
injuries, but this is beyond the scope of this study. In this analysis, we explore only the
effect of changes in rainfall on levels of risk. Without effective adaptation, continued
rapid urbanisation and sea level rise would combine with rainfall changes to further
increase levels of risk.

3.1 Hazard quantification

This sub-section describes the approach to quantify the current and future frequen-
cies of heavy rainfall events for Mumbai and the generation of simulated flood
footprints. There are two key challenges in quantifying flood hazard: the short length
of available rainfall records for the city and the inadequacies of climate models in
projecting changes in rainfall at a city-scale (IPCC 2007).

Rainfall observations are taken from the Santa Cruz Indian Meteorological
Department (IMD) station located in the Mumbai Suburban District (closest to
the most extreme flooding). This 30-year record is extended empirically using the
WXGEN weather generator (Williams et al. 1985; Sharpley and Williams 1990a, b;
Wallis and Griffiths 1995) to create a 200-year simulated record. The simulation
is based on six key statistical characteristics of the timeseries analysed from the
historical data.! A further challenge highlighted by the analysis is that the rainfall
that led to the 2005 flooding far exceeded any daily amount measured since records
began; in the 24 h starting at 8:30am on 26th July 2005, 944 mm of rainfall was
measured at Santa Cruz. Including such an outlier in an analysis based on a short
rainfall timeseries has the potential to skew the findings of the study. For this reason,
two simulated time series were constructed, one including the July 2005 event in
the statistical analysis (denoted Hist_SZ_I) and one disregarding it (Hist_SZ_X).
Return periods of daily maximum rainfall for Santa Cruz are estimated by fitting
a simple lognormal distribution to the 200-year time series (Fig. 2). The analysis
suggests that the event that led to the 2005 flooding had a return period of at least
around 150 years, and possibly much greater than 200 years. It is not possible to
pinpoint the frequency with greater accuracy given the short-length of the available
rainfall record. We assume that the return period of a 2005-like event will lie
between our two estimates (from Hist_SZ_X and Hist_SZ_I); that is, around 1 in 200
years.

Future precipitation projections for the 2080s are taken from the PRECIS model
(Jones et al. 2004); a high resolution regional climate model based on HadCM3. The
2080s timescale is selected as this is relevant to many long-term infrastructure and
building decisions being taken today. PRECIS is selected as Kumar et al. (2006)
notes that only the HadCM3 and CSIRO models are able to adequately represent
present-day rainfall extremes in western India and PRECIS is shown to provide a
good representation of the spatial patterns of relevant seasonal rainfall and extremes.
However, the HadCM3 seasonal mean rainfall projections are at the upper bound of
estimates across the IPCC model ensemble (IPCC 2007); in fact, only slightly over
half of the 21 models assessed project an increase in precipitation over Northwest

IThe average rainfall, standard deviation, skew coefficient, probability of wet day followed by dry
day, probability of wet day followed by wet day and the number of rainy days.
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Fig. 2 Estimates of the return
period of daily maximum
rainfall at Santa Cruz
historically and in the 2080s
(under a high-end scenario).
Further details on each
estimate shown are given in
the text, where (1) 2080s
Projection is denoted
A2_SZ_X; (2) Historical,
including 2005 is denoted
Hist_SZ_I; and (3) Historical,
excluding 2005 is denoted
Hist_SZ_X. Note that
A2_SZ_X is comparable to 0-
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India. The model is driven with the A2 SRES emissions scenario (Nakicenovic et al.
2000). Under this scenario, PRECIS projects a 3.6°C increase in mean temperatures
a 6.5% increase in seasonal mean rainfall across India by the 2080s. Given the
uncertainties in climate, a full adaptation assessment would explore the implications
of a range of model-based climate scenarios; this is beyond the scope of this study.
The findings of this study alone could be considered indicative of an upper-end
estimate of possible future risks; we would not consider this a ‘worst-case’ estimate as
it is not clear that the range of current climate model projections fully represent the
range of uncertainties. Our interpretation is that given current understanding, this is
one of a set of equally probable scenarios.

The PRECIS results are first downscaled and extended using WXGEN to create
a 200-year rainfall timeseries comparable to the simulated records for the Santa
Cruz station. The downscaling involves mapping the change in the statistical char-
acteristics of rainfall between the Baseline (1961-1990) and 2080s Projected (2071-
2100) precipitation in the PRECIS model for the relevant grid box. These statistical
characteristics are the same six characteristics used to drive WXGEN. These changes
are then mapped as linear multipliers onto the statistical characteristics analysed at
Santa Cruz (Hist_SZ_X) to estimate future statistical characteristics at the location.
The final step is to run WXGEN with these ‘future characteristics’ to generate
the new 2080s time series (A2_SZ _X). This procedure assumes that the statistical
relationships between the large-scale (the PRECIS baseline) and small-scale (Santa
Cruz) timeseries remain unchanged such that it is appropriate to map ‘future’
statistical characteristics between each. This assumption is untested and therefore
introduces uncertainty into the findings.

Figure 2 demonstrates that by the 2080s, the intensity of extreme rainfall could
be increased at all return periods. The increase is particularly strong for the shorter
return period (more frequent) events. For example, under this scenario, the intensity
of a 2-5 year return period event has close to doubled. The analysis suggests that
the return period of an event of July 2005 scale is reduced to around 1-in-90 years

Fig. 3 a Fifty-year return period flood maps for present day (left) and 2080s (right). b One-hundred-p»
year return period flood maps for present day (left) and 2080s (right). ¢ Two-hundred-year return
period flood maps for present day (left) and 2080s (right)
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in 2080 under a SRES A2 scenario. Even though this analysis has several limitations
and is based on only one climate model, this result shows a high potential sensitivity
of flood risk to climate change and provides a justification for further investigation.

Given that urban flooding in Mumbai is mainly pluvial, we would expect an
increase in the frequency of extreme rainfall to translate into an increase in flood
hazard (all else being equal). Rivers in Mumbai tend to act as open drains during
extreme rainfall events, carrying excess surface water to the sea and major flooding
can occur when the rainfall rates exceeds the drainage capacity of these rivers. Here,
we use an urban flood model to simulate the relationship between rainfall and flood
extents. There are three main river basins in the study area; here, we focus on
Mithi River Basin, where some of the greatest flood damages occurred in 2005, and
extrapolate to city-scale in later sections. The Mithi basin is directly fed by the rainfall
observed at the Santa Cruz station. The modelling approach uses the Storm Water
Management Model (SWMM), modified to represent the Mithi Basin (for details,
see Appendix A), to generate hypothetical flood footprints which correspond to the
2005 event and for the simulated rainfall events with the return periods of 50, 100 and
200 years, for today (Hist_SZ_X) and in the 2080s (A2_SZ_X). Figure 3 shows the
estimated flood extents and depths for these simulated events. With climate change,
we see an extension of the area flooded at each return period and an increase in flood
depth. A limitation of this analysis is that it does not take into account the potential
effect of sea level rise in reducing the effectiveness of the drainage systems.

Applied to the 2005 flood event, we find that the SWMM model underestimates
the observed flood extent by around 20%, likely due to the low resolution of the
elevation data used. This relationship can be used to calibrate the simulated return-
period flood footprints. Table 1 shows the uncalibrated area of the Mithi Basin
flooded for each simulated event.

3.2 Exposure mapping

An exposure map shows the spatial distribution of all the people or properties in
the study area. This is compared with the flood footprint to estimate the ‘affected
exposure’. We assume an unchanged city (i.e. population and properties at their mid-
2000s values). Population and growth factors can be applied to this to estimate future
exposure.

A digitalised population map was developed from publicly available 2001 census
data (MCGM 2008). The data, at ward-level, was distributed evenly over a 100 m
grid. The distribution of residential, commercial and industrial property types was
derived by analysing observations from the IRS LISS III satellite (Indian Remote
Sensing Satellite, Linear Image Self Scanning I11) fused with a panchromatic image

Table 1 Comparison of (uncalibrated) flood extent areas under different simulated rainfall scenarios
(A2_SZ_X) for the Mithi Basin generated by the SWMM model

Simulated event ID Today 2080s
2005 event 16 -

50 years RP event 12 14
100 years RP Event 12 16
200 years RP Event 12 17
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at a resolution of 10 m. Six exposure types were defined: two residential (low
density and high density), three commercial (low-rise retail and offices, high-rise
office blocks and skyscrapers) and one industrial. The total insured values (TIVs) of
these properties were based on the RMS India Earthquake Model® (INEQ), which
incorporates proprietary insurance data. This data is distributed onto the 100 m grid
according to the exposure types. Across the two study districts, we estimated a TIV
of $480 million USD, $520 million USD and $1,960 million USD for the residential,
commercial and industrial exposures, respectively. The TIV can be converted to a
total value if the insurance penetration is known. Here, the insurance penetration
is assumed to be roughly around 8% for residential properties, 14% for commercial
properties and 17% for industrial properties, based on RMS proprietary data. Note
that these estimates have a high uncertainty and that the exposure estimates are
highly sensitive to this quantity.

Combining the exposure maps with the observed flood footprint from the 2005
flooding (Fig. 1), it is possible to calculate the ‘affected exposure’ across Greater
Mumbai in 2005 (Table 2). This demonstrates, for example, that 35% of the resident
population lived in areas directed affected by the flooding.

Table 3 uses the same methodology but with the simulated flood footprints for
the Mithi River Basin (Fig. 3), giving estimates of the affected exposure at different
return periods in that area of the city.

We can extrapolate from these Mithi affected exposure estimates to create
‘ballpark’ estimates of the affected exposure across the whole of the Greater Mumbai
area (Table 4), using the relationship between the observed affected exposure across
these districts for July 2005 (from Table 2) and the simulated affected exposure in
the Mithi Basin (from Table 3). The uncertainty introduced by this extrapolation
is large, for example, it assumes that the relationship between Mithi and Mumbai
flooding remains the same for all flood events.

3.3 Estimating vulnerability

Vulnerability here refers to the damage cost to a property expected for a given level
of water depth. This is expressed in terms of the mean damage ratio; that is, the
monetary damage as a proportion of the total value of affected property. Usually in
risk modelling, vulnerability is defined by a set of ‘damage curves’. However, because
of the lack of reliable data on building vulnerability in Mumbai, and to provide
preliminary estimates, we define only an average mean damage ratio for an affected
residential, commercial or industrial property type (i.e. three ratios). A consequence
of using a mean damage ratio instead of a vulnerability curve is that only the change
in flood extent is taken into account and the change in flood depth is not in spite of

Table 2 A comparison of total exposure over the Greater Mumbai area to the affected exposure for
the July 2005 flood event (using population data for 2001 and the observed flood footprint)

Area Population Exposure (in $ million USD)

(km?)  (thousands)  Residential ~Commercial Industrial — Total

Total 372 12,800 6,000 3,710 11,530 21,240
Affected 78 4,200 1,880 1,070 2,110 5,060
Percentage affected  20% 35% 30% 30% 20% 20%

@ Springer



148 Climatic Change (2011) 104:139-167

Table 3 Modelled ‘affected’ exposures for different return period flood events for the Mithi Basin,
in comparison to the simulated July 2005 event

Area Population affected Affected exposure Mithi Basin ($ million USD)

(km?) (thousands) Residential ~ Commercial — Industrial
Simulated 2005 16 1,220 375 180 590
50 years RP: present 12 710 250 70 0
50 years RP: future 14 975 315 145 0
100 years RP: present 12 710 250 105 0
100 years RP: future 16 1,225 375 180 560
200 years RP: present 12 715 250 105 0
200 years RP: future 17 1,275 375 180 590

its potential importance. For example, in Fig. 3c, one can see that in the 2080s, floods
are expected to become larger and deeper than today. The estimate of how flood
losses will change is therefore underestimated compared with a more comprehensive
analysis.

The average mean damage ratio that is used here is estimated based on published
estimates of damages from the July 2005 event. While it would be preferable to use
multiple events, this data was not available. The data available for 2005 was also very
limited; for this reason, three approaches were used to estimate the vulnerability,
then the results compared to produce a single estimate with an uncertainty range.
The three approaches used were:

e Using published economic loss estimates: The mean damage ratio was given by
the ratio of the direct economic loss to affected exposure for the July 2005 event.
Estimates of residential damages (GoM 2005) were used directly to estimate
the residential mean damage ratio. The commercial and industrial economic
damages were derived from the total economic damage, using the proportions
indicated by their affected exposures. The total direct economic losses at state
level were obtained from the Dartmouth Flood Observatory (2008) and Swiss Re
(2006); we assume that 50% of these damages occurred in the Greater Mumbai

Table 4 Estimated affected exposures for different return period flood events

Area Population Affected exposure across the Mumbai City
(kmz) (thousands) and suburban districts ($ million USD)
Residential Commercial Industrial

Simulated July 2005 78 4,270 1,875 1,070 2,120

50 years RP: present 55 2,470 1,250 430 0.0

50 years RP: future 67 3,400 1,565 860 0.0

100 years RP: present 56 2,470 1,250 645 0.0

100 year RP: future 78 4,270 1,875 1,070 2,010

200 year RP: present 57 2,490 1,250 645 0.0

200 year RP: future 80 4,440 1,875 1,070 2,120
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Table 5 Estimated direct total economic losses for different return period flood events for Mumbai,
excluding infrastructure

Estimated direct losses [excluding infrastructure] ($ million USD)

Residential Commercial Industrial Total
Simulated July 2005 100-300 170-400 220-660 490-1,370
50 years RP: present 70-210 80-190 0 150-400
50 years RP: future 90-260 120-290 0 210-550
100 years RP: present 70-210 90-220 0 160-430
100 years RP: future 100-310 180420 200-630 490-1,350
200 years RP: present 70-210 90-220 0 160-430
200 years RP: future 110-320 180430 220-680 510-1,420

area? and that around 70% of these losses were related to residential, commercial
and industrial damages (extracting infrastructure as given in Hallegatte et al.
(2011b), in this issue), giving total losses of 1.7 billion USD.

e Using insured loss estimates: Here, the mean damage ratio was given by the
ratio of the insured loss (from RMS insurance claims data) to affected insured
exposure (from the RMS INEQ model) for the July 2005 event. The benefit of
this approach is that these estimates are more widely available and they require
no assumption about insurance penetration.

e Using RMS proprietary vulnerability curves: Simplified flood vulnerability
curves for a generic industrial, commercial or residential facility were combined
with estimates of flood depth across the Mumbai City and Suburban Districts
(obtained from media reports) to derive a mean damage ratio. The mean flood
depths were assumed to be around 0.1-0.25 m in Mumbai City and 0.25-0.5 m in
the Suburbs based on Gupta (2007) and local media reports.

Drawing together the results from each of these approaches, we estimate an average
mean damage ratio of: 5-15% for residential properties; 15-35% for commercial
properties; and 10-30% for industrial properties. These ranges are relatively narrow,
giving confidence in the individual estimation approaches.

3.4 Direct damage estimates for Mumbai

The direct damage costs are defined as the costs of repairing or replacing assets
that have been damaged or destroyed (at the pre-event price level). Table 5 gives
estimates of the direct damages from flooding in Mumbeai for different return period
rainfall events. This is calculated by applying the average mean damage ratios
(derived above) to the affected exposure estimates (from Table 4). The ranges reflect
the uncertainty in vulnerability. Table 6 gives an estimate of the total direct losses
including infrastructure losses; where these losses are assumed to be around 40% of

2Estimated based GoM 2003, e.g. Greater Mumbai accounted for slightly over half of the total
residential property losses.
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Table 6 Estimated total direct
losses for different return
period flood events for

Estimated total direct losses (including
infrastructure) $ million USD

Mumbai including Present-day 2080s
infrastructure losses Simulated July 2005 690-1910 -
50 years RP 210-570 290-760
100 years RP 230-600 690-1890
200 years RP 230-600 720-1990

the total value of residential, commercial and industrial losses (see Hallegatte et al.
2011b in this issue). The loss estimates for the July 2005 event ($690-$1910 million
USD) are roughly in line with the $1.7 billion losses estimated above.

The results suggest that losses associated with a 1-in-50 year extreme rainfall event
could rise by 35%, but losses associated with a 1-in-100 year event could rise by 200%
(i.e. triple) and for a 1-in-200 year event, losses could rise by up to 230%.

It should be noted that this study’s estimates of future costs do not take into
account population and economic growth. In reality, the Indian urbanization rate
and economic production are increasing very rapidly and this is likely to continue
to increase flood risk in Mumbai in the absence of adaptation. For instance, the
population of the Mumbai Metropolitan Region increased from 13 to 17 million
inhabitants from 1991 to 2008. In 2025, it has even been estimated that the Mumbai
population might increase to up to 28 million inhabitants (Regional Plan for Mumbai
Metropolitan Region 1996-2011, by the Mumbai Metropolitan Region Development
authority). This will not only increase the exposure to flooding, but also put further
strain on the natural and manmade drainage systems if improvements are not
implemented, potentially increasing hazard and risk levels. In addition, without
improvements to the drainage systems, sea level rise will reduce their effectiveness
and further increase hazard and risk levels.

4 Evaluating the total economic impacts of flooding

Direct losses, the costs of replacing and reconstructing damaged buildings and
infrastructure, account for only a fraction of total cost of a disaster, particularly in
the case of large-scale events (Tierney 1997; Pielke and Pielke 1997; Lindell and
Prater 2003; Hallegatte et al. 2007). After an event, the total economic costs can
be amplified through: (1) spatial or sectoral diffusion of direct costs into the wider
economic system over the short-term (e.g. through disruptions of lifeline services,
such as communication and transportation networks) and over the longer term (e.g.
sectoral inflation due to demand surge, energy costs, company bankruptcy, job losses,
larger public deficit, or housing prices); (2) social responses to the shock (e.g. loss of
confidence, change in expectations, indirect consequences of inequality deepening);
(3) financial constraints impairing reconstruction (e.g. low-income families cannot
finance rapidly the reconstruction of their home); and (4) technical constraints
slowing down reconstruction (e.g. availability of skilled workers, difficulties in equip-
ment and material transportation, difficulties in accommodating workers). These
additional losses are described as indirect economic costs. These costs are dependent
on the scale and timing of the event and on local conditions; as such, they are difficult
to project. However, estimates of indirect costs must be included in decision-making
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to ensure a fair cost-benefit analysis of protection infrastructures or mitigation
actions. Understanding the key mechanisms that regulate indirect effects may also
provide useful knowledge on how to respond to a disaster.

Indirect costs can be defined as the reduction in production of goods and services,
measured in terms of value-added (to avoid double-counting issues). These costs
are important, as they participate in the reduction of available consumption, and
therefore in the impact on welfare. For example, if a $100 m plant is destroyed and
immediately rebuilt, the total loss would be $100 m; whereas, if reconstruction is
delayed by 1 year, the total consumption loss will be the sum of the replacement cost
(the direct cost) and the value-added of 1 year of production (the indirect cost). Here,
our estimates of indirect costs include business interruption in the event aftermath,
value added losses during the reconstruction period and loss in housing services. The
value of such production losses, in a broad sense, can be very high in some sectors,
especially when basic needs are at stake (housing, health, employment, etc.). Of
course, the real cost of a disaster is not only economic, and also includes fatalities,
injuries, moral damages, historical and cultural losses, environmental losses, societal
disruptions. In this study, however, we consider only the economic costs.

4.1 Indirect loss estimation

This study uses the Adaptive Regional Input-Output (ARIO, see Hallegatte 2008)
model to assess indirect economic losses in the Mumbai Metropolitan Region.? This
dynamic model represents the ‘amplifying’ processes described above, taking into
account changes in production capacity due to productive capital losses and adaptive
behaviour in disaster aftermaths. Details of the model and methodology are given
in Appendix B. It should be noted that the uncertainties in this type of modelling
are large, and therefore, results should be interpreted as indicative of the scale of
potential damages.

Indirect losses are calculated by sector based on the upper bound of the direct
loss estimates given above. To achieve this, direct losses estimates are distributed
by sector. Residential losses are assumed to only affect households, while industrial
and commercial (and infrastructure) losses are divided between the ARIO sectors
dependent on their activity and size (Table 7). The distribution of infrastructure
losses is made according to empirical observations on previous events. Table 7 shows
the distribution of direct losses between sectors for the July 2005 event; sectors 15
(“electricity, gas and water supply”) and 16 (“transportation”) have the largest direct
losses because if we take into account public infrastructures, these sectors have the
highest quantity of productive capital.

4.2 Case study of July 2005

Using the ARIO model, the local Input-Output (I0) table and the loss distribution
per sector (Table 7), one can simulate the consequences of the flooding on the

3The economic model, therefore, considers a region that is larger than just the city of Mumbai. We
assume, however, that the Mumbai Metropolitan Region is only affected by the flood losses in the
Greater Mumbai, where direct losses are estimated. Input-Output data for the region are from Pohit
(2000).
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Table 7 The ARIO sectors and their equivalent RMS exposure type

ARIO sector RMS exposure Sector-by-sector
type distributed direct loss
in 2005 (million USD)
1 Primary Industrial 39.4
2 Food products Industrial 39
3 Beverages related Industrial 0.9
4 Cotton textiles Industrial 253
5 Wool, silk, jute etc... Industrial 22.6
6  Textile products Industrial 16.5
7  Wood and wood products Industrial 1.1
8 Paper and paper products and printing Industrial 14.2
9  Chemicals and chemical products Industrial 43.7
10 Petro-products Industrial 98.2
11 Basic metals and alloys Industrial 26.1
12 Machinery and equipment Industrial 117.5
13 Transport and equipment Industrial 26.7
14 Construction Industrial 39.8
15 Electricity, gas, water supply Industrial and infrastructure ~ 227.5
16 Transportation Industrial and infrastructure 279.4
17 Rest of manufacturing Industrial 59.1
18 Storage and warehousing Industrial 91.9
19 Communication Commercial 10.6
20 Trade Commercial 140.8
21 Hotels Commercial 11.1
22 Banking Commercial 53.6
23 Insurance Commercial 13.4
24 Education, research, health Commercial and infrastructure 122.0
25 Public administration Commercial and infrastructure 127.3
26 Household Residential 300.0

The final column illustrates the distribution of the estimates direct losses by sector for the July 2005
event

Mumbai economy. This simulation is reproduced in Fig. 4, which displays the change
in value added (VA) in the 25 sectors (x-axis) as a function of time in months (y-axis).
The simulation shows both the reduction in VA in the months following the event,
and the VA increase in construction sector (sector #14) due to reconstruction needs.
The losses and gains partly compensate, but the aggregated VA loss (without housing
sector) for the Mumbai Metropolitan Region is still $395 million, for $1.5 billion of
direct losses. This reduction corresponds to 1.4% of annual regional GDP; a very
significant economic impact. Given that we have no empirical information on the
economic impact of the July 2005 floods, we are not able to validate these results in a
detailed manner. A further study on job losses would be a good indicator of welfare
losses; unfortunately, consistent data including formal and informal employment in
Mumbai could not be found.

The model also provides an assessment of the “production loss” in the housing
sector. Indeed, houses and residential buildings produce a housing service that plays
a major role in ensuring local well-being. The decrease in housing services because of
damaged houses and buildings has, therefore, to be taken into account. The model,
because it reproduces the reconstruction period and duration, can assess the total
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Fig. 4 Sector-by-sector change in value added (in %). Note the large increase in production in
the construction sector (#14), and the increase in the wood and wood-product sector (#7), due to
intermediate consumptions of the construction sector

loss in housing service production. In the July 2005 case, the model estimates this
loss at $30 million. The overall indirect loss, i.e. the sum of the “production loss” in
the housing sector and the aggregated VA loss, is estimated to be $425 millions.

It should be noted that the long term effects (here, more than 20 months after
the shock) are due to a budgetary constraint: households that have gone into debt
(or have reduced their savings) in order to pay for reconstruction, consume less
while they pay off their debt or rebuild their savings, thus reducing the local final
demand. In the case of Mumbiai, this effect is important because the flood insurance
penetration rate is very low. For example, in developed countries, the large insurance
penetration and government aid for the non-insured (typically) prevent or mitigate
this kind of long-term demand effects.

4.3 Link between direct losses and total losses

Indirect economic losses, i.e. the decrease in the values added in all sectors during
the reconstruction phase, are found to be significant in this analysis, and are strongly
non linear with respect to direct losses. This nonlinearity arises from the coupled con-
tributions of different factors. First, a larger disaster causes larger production losses
at a given point in time. Second, a larger disaster leads to a longer reconstruction
period and, therefore, production losses last for a longer period. Third, in the case of
a big disaster and a non-homogenous repartition of damages, production bottlenecks
appear in the production system; one or several sectors are not able to produce
enough to satisfy the intermediate demands of other sectors. As a consequence,
these sectors have in turn to reduce their production. These forward propagations
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amplify the initial shock. The two first factors are illustrated in Fig. 5, which shows
the reconstruction dynamics in a 100-year return period event in present conditions
(i.e. $600 millions direct losses) and in a simulated July 2005 event (i.e. $1.9 billions),
corresponding to a return period of between 130-years and more than 200-years in
present conditions. In the second case, the instantaneous reduction in value added
exceed 6% of the pre-event level the month of the event, while it is only about 1% in
the first case. Moreover, total production is back to its initial level about 1 year after
the shock in the first case, while it takes more than 2 years in the second case.

As aresult, indirect losses amount only to around $100 millions for the 100-year re-
turn period event compared to $425 millions for the July 2005 event; that is, for direct
losses multiplied by 2.5, the indirect losses are multiplied by 4. Figure 6 illustrates the
non-linearity between direct and indirect losses: we created hypothetical disasters,
with the same reparation of losses as for July 2005 flooding, but multiplying the

Fig. 6 Relationship between 4000
direct losses due to an event
and VA losses (productive

sectors plus housing sector)
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Table 8 Upper estimation of total losses (direct+indirect, including loss in housing services) due to
various types of events in present-day and future conditions

Type of event Projected flood losses ($ million USD)
Present-day 2080s
Direct Indirect Total Direct Indirect Total
losses losses losses losses losses losses
Simulated July 2005 1,910 425 (18%) 2,335
50-year RP 570 95 (14%) 665 760 130 (15%) 890
100-year RP 600 100 (14%) 700 1,890 415 (18%) 2,305
200-year RP 600 100 (14%) 700 1,990 445 (18%) 2,435

In parenthesis is the contribution of indirect economic losses to the total losses

total amount of direct losses by a factor ranging from 0 to 6, therefore investigating
hypothetic events causing up to $8 billion in losses. The ARIO model provided the
amount of indirect losses for each of these disasters; at roughly $8 billions of direct
losses, the indirect losses become equal to half the direct losses.

4.4 Future evolutions of flood risks in Mumbai

With a higher probability of larger direct costs from flooding in the 2080s (Section 3),
we would expect: (1) more significant indirect costs in the future; and (2) for indirect
costs to account for a larger proportion of the total losses. This finding is shown in
Table 8 below. For example, the total losses for a 100-year return period event are
projected to be more than a factor 3 greater by the 2080s. The contribution of indirect
losses to total losses increases from 14% ($100 millions) in present-day situation to
18% ($415 millions) in the 2080s.

Figure 7 shows the reconstruction dynamics for various types of events in present
and future (2080s) conditions, compared to the simulated July 2005 event. It shows
that there are qualitative differences between 50-, 100- and 200-year RP events

Fig. 7 Variations of total VA 0
as a function of time for the 50,
100 and 200 years return n l
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today and the future events. The future 100 and 200 year event, indeed, are close
to the July-2005 event, which is really exceptional in the current climate. In Mumbai,
therefore, and according to this modelling exercise, the July 2005 event represents
a useful proxy for what can be expected to occur on average once a century in the
future.

5 Adaptation to flood risk in Mumbai

Following the 2005 flooding, the Government of Mumbai established a fact-finding
committee (FFC) (the CHITALE Committee) to investigate the causes of the dis-
aster and make recommendations to reduce future risks. Several recommendations
were made, with much emphasis on measures to improve the city’s drainage systems,
and were accepted by the Maharashtra state cabinet in May 2006. Simultaneously,
the government launched the Mithi River Bed Restoration Plan, expected to be
completed in June 2010. The plan incorporates several risk reducing measures, in-
cluding: (1) restoring and widening river and drainage channels; (2) improvements to
infrastructure and housing (including retrofitting and renovation of cessed buildings
and improvements to the condition of informal settlements); (3) land use policies
and planning; (4) extended risk transfer initiatives; and (5) improved preparedness,
including monitoring, early warning, emergency planning, risk modelling and risk
education (MEERP 2007).

While these actions are commendable, they do not appear to consider the poten-
tial impacts of climate change on the long-term planning horizon. Not considering
climate change in present-day disaster risk management can increase potential
future vulnerability and limit flexibility to adapt, leading to costly maladaptation
(Fankhauser et al. 1999). In addition, to the changes in rainfall explored in this study,
Mumbai will also be exposed to sea level rise and potential increases in the risks
associated with of heat waves, tropical cyclones and storm surges. Managing these
combined risks could require significant revision of urban planning practices across
city to integrate disaster risk reduction and climate change adaptation measures (as
well as greenhouse gas mitigation) into day-to-day urban development and service
delivery activities (Revi 2005).

To demonstrate the importance of an integrated approach to disaster risk re-
duction and climate change adaptation, below we provide a simple analysis of the
potential risk reducing benefits of four potential policy options, two relevant to
reducing direct losses from flooding and two relevant to reducing indirect losses.
These are not intended to guide specific policy (they are too simplified to do so) and
do not represent a complete list of options, but do serve to demonstrate the potential
of adaptation to limit climate change damages and the need to incorporate it into
decision-making around disaster risk management today.

Reducing direct losses from flooding Figure 8 shows the estimated total losses
(direct and indirect) associated with a 1-in-100 year flood event in Mumbai under
five scenarios (respectively, from left to right in Fig. 8): (1) present-day; (2) the 2080s
(note, under the one ‘high-end’ climate scenario considered in this study and with
an unchanged city); (3) the 2080s, with a reduction in the vulnerability of properties
(e.g. representing strengthened building codes); (4) the 2080s, with an improvement
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Fig. 8 The estimated total 2500
(direct + indirect) losses for a
1-in-100 years flood event in
Mumbeai under five scenarios
(from left to right): (1)
present-day; (2) 2080s—using
the one ‘high-end’ scenario
considered in this study and an
unchanged city; (3) 2080s,
assuming properties are made
more resilient and resistant to
flooding (e.g. through building
codes); (4) 2080s, assuming the
drainage system is improved
such that it can cope with a
1-in-50 years rainfall event;
and (5) combined property
and drainage improvements
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in the drainage system; and (5) the 2080s, with a combination of reduced vulnerability
of properties and improved drainage. The ‘lower vulnerability’ scenario assumes
a 15% reduction in vulnerability for a 1-in-100 year event (achieved through, for
example, building improvements incentivised by building codes) and the improved
drainage scenario assumes that the drainage system has been upgraded such that it
can cope effectively with a (2080s) 1-in-50 year rainfall event.* The uncertainties in
individual estimates are great and the effectiveness of measures will depend strongly
on the quality of implementation, however, the figure demonstrates that with certain
options or combinations of options, Mumbai may be able to offset the increase
in risk due to climate change (even under this high-end scenario) and also that
such measures can also have significant benefits today; for example, upgrading the
drainage system such that it could cope with a 1-in-50 year event today, could reduce
losses from a 1-in-100 year event by around 70%.3

Reducing indirect losses from flooding The ARIO model allows us to assess the
benefits of sets of policies that aim to enhance disaster recovery; reducing the lost
production due to property damages and therefore the indirect costs of flooding.
Two instruments are explored here: firstly, increasing flexibility in the capacity of
the construction sector, to speed reconstruction; and secondly, the provision of
insurance.

4A 50-year standard is higher than what is usually used for drainage system (i.e. 10 or 20 years), but
the Mumbai climate and the vulnerability of the city to heavy precipitations may justify such a strict
standard.

5The impact of an improved drainage system is assessed very simply in this study and so should be
treated as illustrative only. To make this estimate, we define a relationship between affected exposure
(E) and rainfall (P) at each return period (i.e. Egrp = f(Prp)) from the original ‘un-adapted’ scenario.
For the adapted scenario, we estimate a new function f* (by shifting f) such that Esyp = 0. We then
assume: (i) no flooding for rainfall events with a return period of up to 50 years; and (ii) rainfall with
a return period of above 50 years leads to an affected exposure (E’) given by E’gp = {'(Pgp).
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Adaptive capacity of the construction sector Increasing the flexibility of capacity
of the construction sector means that damaged buildings and infrastructure can be
repaired or replaced more quickly following a disaster, reducing lost production. This
can represent, for example, the ability of workers to increase their productivity, or
the possibility of workers and equipments from outside the affected region to move
there to speed up reconstruction. ARIO allows us to explore the benefits of such
flexibility in terms of avoided indirect costs through running scenarios of its sectoral
overproduction parameters. We find that, for the July 2005 event, the indirect effect
of the disaster on the local economy can vary by a factor of 4 (Fig. 9), depending on
the amplitude and quickness of response of the construction sector.

From a policy perspective, this high sensitivity is good news, as it suggests that
large economic losses can be avoided with increased flexibility in the construction
sector production capacity. The flexibility depends heavily on the pre-event con-
ditions; for example, if idle capacities are present (e.g. unused equipment) they
can be mobilized to cope with the disaster (West and Lenze 1994; Hallegatte and
Ghil 2008b), whereas if capacities are fully used then no additional capacity can be
mobilized. The flexibility of the construction section could be enhanced through:

e Enabling qualified workers to settle down temporarily in the affected region (e.g.
by providing working permit or helping workers to find accommodation).

e Organising and sharing reconstruction resources among regions, states or cities
and setting super-national policies to ensure reconstruction capacity is adequate
to cope with possible disasters.

e Empowering governments to mobilizing their workers (e.g., soldiers) and their
equipments to speed up reconstruction.

Past disasters illustrate the barriers to efficient reconstruction and suggest good
practices. For instance, in the Katrina aftermath, many qualified workers from the
entire U.S. moved to New Orleans to help reconstruct the city and capture higher
construction-sector wages. Most of these workers, however, had to leave the area
rapidly because they could not find proper accommodation or because of insufficient

Fig. 9 Indirect losses to direct 08¢
losses ratio, as a function of
the amount of direct losses, for
four sets of adaptation
parameters

| No overproduction {120% ; 3 months }

0.7 {120% ; 6 months }

0.6
0.5
0.41
0.3}

0.21

0.1
{150% ; 6 months }
{150% ; 3 months }

Ratio indirect losses / direct losses

0 2000 4000 6000 8000
Direct losses (million USD)

@ Springer



Climatic Change (2011) 104:139-167 159

public services. Providing housing to temporary workers, therefore, seems to be
extremely important to speed up reconstruction. Also, these workers left the region
because the reconstruction of many buildings was delayed by legal problems, either
due to delays in insurance claim payments or to the slow approval of building
permits. For reconstruction to be as effective as possible, therefore, it seems that all
administrative and legal issues must be solved rapidly, to benefit for the mobilization
of internal and external resources.

The benefits of insurance Financial constraints can play a significant role in de-
laying reconstruction (Benson and Clay 2004), and can even lead to a suboptimal
reconstruction with consequences on productivity (Hallegatte and Dumas 2008a).
Insurance allows individuals to share risks; in exchange for a regular premium
payment individuals receive a payout if they experience damage. This means that
individuals do not absorb all their reconstruction costs and have fast access to capital
in the aftermath of a disaster.

We can use the ARIO model to investigate the benefits of insurance by exploring
the sensitivity of indirect losses to the insurance penetration rate (y) assumed in
the model. In ARIO, the insurance penetration affects the response to the shock
through two mechanisms: first, if the insurance penetration of households is low,
they have to pay for their reconstruction (either directly, or by getting into debt and
then paying off later), and reduce their consumption in order to so. Second, if the
insurance penetration of firms is low, firms have to pay for reconstruction, reducing
their profits. As a portion of these profits normally goes to local households, this
affects the household budget, also reducing their consumption.

Figure 10 illustrates the effect of insurance penetration on the household’s budget,
for a July 2005 like flood estimated using the ARIO model. Three scenarios are
included: (1) y = 0, equivalent to the absence of insurance system, but with an
access to credit; (2) the current value of flood insurance penetration estimated by
RMS (y = 0.08 for households, y = 0.15 for firms); and (3) y = 1, representing the
situation where all the reconstruction is paid for by insurance. It is important to note

Fig. 10 Household budget as a 100
function of time, for three
different penetration rates:

y = 0 (no insurance), current
value estimated by RMS (y =
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by the insurance system)

-100 |

v=1 (full insurance)
-200

RMS estimates

Household budget change (USD)

-300 | v = 0.08 (households) i
v=0.15 (businesses)
y= 0 (no insurance)
-400 1 1 . . . " "

0 12 24 36 48 60 72 84 96 108 120
Time (months)

@ Springer



160 Climatic Change (2011) 104:139-167

that our “insurance penetration rate” does not represent the fraction of the total
amount of houses that is insured, but the fraction of the total value of goods that is
insured (never equal to one in the real world, because of ceilings or deductibles).
Moreover, this analysis investigates only disaster situations, in which insurance
provides instantaneous net benefits, not non-disaster situations, in which insurance
is a net cost. So, we investigate insurance benefits, which should be compared with
its costs in a full analysis of adaptation options.

Where the budget is positive in Fig. 10, it can be interpreted as the total amount
of savings of households, and where negative it represents debt. We assume that the
budget is equal to zero before the disaster and that it tends to return to the initial
situation. Figure 10 shows that the lower the penetration rate the more households
have to get into debt in order to pay for their reconstruction. When the penetration
is very large, households make savings after the disaster. This occurs because in this
case, the decrease in production is more important than the decrease in demand
(through the decrease of incomes). Households are rationed and consume less than
what they would like to and as a result, they involuntarily save money.

Variations in household budget affect the local demand, as households in debt
reduce their consumption. This decrease in demand affects local production in the
long term, as shown in Table 9. When the reconstruction is paid for by the insurance
system, indirect losses are reduced by 37 %, compared to the best guess situation, and
by 42% compared to the no-insurance situation. This demonstrates that even though
the gap between two insurance systems does not exceed 0.1% of the baseline value-
added at a given point in time, the overall effect on total indirect losses can be very
important.

The difference in indirect losses between the no-insurance and the full-insurance
cases arise from two factors. First, in presence of insurance or perfect access to credit,
businesses and households can restore their productive environment and equipment,
allowing for a more rapid recovery of the economic activity. Second, insurance
prevents a reduction in the final demand from affected businesses and households
that have to rebuild their savings or pay back their debt. In this analysis, it is the
second mechanism that explains the difference, since households are assumed to
have full access to credit in absence of insurance. With a limited access to credit,
a case that will be investigated at a later stage, indirect losses would be even larger
than in the worst case presented here.

These results provide insight on the aggregated losses that can be avoided at
the macroeconomic level due to a well developed insurance system. In addition, a
generalized insurance scheme (that can be accessed by all households and businesses)
would help the poorest households and the most fragile businesses to cope with
floods. This means that insurance would yield macroeconomic benefits (estimated
here), and microeconomic benefits at the household level (not explicitly estimated
here, but suggested by Fig. 10). Microeconomic benefits include in particular the
avoidance of increased poverty and inequality. Even though they are difficult to

Table 9 Total indirect losses,

. ) Insurance penetration rate Total indirect losses ($ million USD)
as a function of the insurance

penetration rate, for a ) 455
July-2005-like flood RMS estimates 425
1 265
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estimate in monetary terms, these benefits should be taken into account, e.g. in the
cost—benefit analysis of the implementation of a micro-insurance scheme.

Flood insurance coverage would, therefore, be an interesting strategy to reduce
flood vulnerability and improve aggregate economic resilience in Mumbai, and
to prevent poor households from falling into poverty after a flood. Insurance,
however, has a cost between disasters and create affordability issues, which are
not investigated here. Also, insurance has to be combined with risk-reducing land-
use planning and other regulations to avoid incentivising over-development and
growth in exposed areas. In the UK and for many commercial properties in the
developed world, flood insurance is obtainable from the private insurance market.
For residential coverage, many countries have established national flood insurance
systems (e.g., the French Cat-Nat system, the Florida Hurricane Catastrophe Fund).
These systems may provide useful models for Mumbai; a full discussion of their
relative advantages and disadvantages is beyond the scope of this paper. It is worth
mentioning the benefits of insurance relative to other ‘financial safety pools’. Local
and familial solidarity is an established mechanism in many developing countries,
but the disadvantage is that access to funding can be slower and limited, and may
be impossible when an area or family are all affected at the same time (as is often
the case for large-scale disasters like floods). Government support is often necessary
to some extent (for instance, after Katrina, the U.S. Federal government more or
less replaced insurance for households that had no flood insurance; Lubell 2006).
But relying on it creates inefficient uncertainty for economic actors (e.g., because,
after an event, they cannot know the exact scope of the government support they
will receive) and can lead to moral hazard (e.g. if households know that they will
be compensated by government, they will have little incentive to reduce their own
risks or to pay for insurance). International support (grants or goods provided to
affected people) can help reconstruction, but (in addition to the moral hazard issue)
is very volatile and unpredictable. Finally, an improved access to credit (especially
for the underprivileged) can help during the post-disaster period; e.g. the government
guaranteeing reconstruction credits. As a conclusion, if the frequency and intensity
of extreme events in Mumbeai is to increase, the development of the insurance system
and other financial services could have significant benefits in combination with other
existing risk sharing mechanisms.

6 Discussion: adaptation planning and uncertainty

This study has demonstrated a number of approaches to enable an adaptation plan-
ner to quantify risks associated with climate change and the benefits of adaptation.
An important limitation of this study is that it does not attempt to fully quantify
the uncertainties in the analysis. Uncertainty is incorporated at each stage of an
analysis (Table 10). Fully quantifying uncertainties at each stage is likely to lead
to the characteristic ‘explosion’ of uncertainty (Carter et al. 2007). A number of
previous studies have suggested that a ‘policy-first’ approach, where the quantitative
analysis is designed from a policy perspective (rather than a scientific perspective)
to evaluate the desirability of specific adaptation options against a set of defined
objectives, would help to narrow uncertainties in the analysis (Dessai et al. 2009).
Recognising the scale of the uncertainties, such a process can utilise methods such as
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Table 10 Summary of uncertainties incorporated into final estimates

Source of uncertainty ~ Description

Present-day hazard Includes uncertainties introduced by statistical analysis of rainfall events
from short data records; the urban flood model; and extrapolations from
one catchment (Mithi) to city-scale. Figure 2 suggests that uncertainties
related to statistical analyses could be large (e.g. estimates of rainfall
at given return periods were doubled when the 2005 event was included
in the analysis)

Future hazard Includes uncertainties in emissions scenarios; climate modelling, flood
modelling, and those introduced by statistical downscaling
Exposure Our approach to estimating property values is sensitive to uncertain

estimates of insurance penetration. Estimates of future exposure trends
can be expected to significantly impact estimates of risk and the
benefits of adaptation

Vulnerability Uncertainties in estimates of 2005 vulnerability were quantified by the
analysis (Section 3.3) and could be further refined through study of
other flood events. Extrapolation of 2005 vulnerability estimates to
future events incorporates uncertainty

Indirect loss modelling Local economic data are largely unavailable, and there is a large
uncertainty in the current local economic structure. Economic modelling
of disaster consequences is difficult and various modelling strategies
coexist (e.g., CGEs, Input-Output, econometric models), leading to
large differences in results

robust decision-making to design strategies that are flexible under a range of climate
scenarios (Lempert and Collins 2007; Hallegatte 2009; Ranger et al. 2010). These
types of approaches still require quantification of potential risks and benefits of
adaptation. For example, the risk-based tools presented here are able to demonstrate
that there are strong benefits from a number of adaptation measures with or without
climate change. The tools can also be used to identifying if and where current disaster
risk management plans may become future maladaptations and how these plans
could be adjusted to make them robust to long-term climatic changes.

Each of the uncertainties outlined in Table 10 could significantly affect estimates
of risk. Some are likely to be irreducible on the timescales that many adaptation
decisions must be made; for example, uncertainties related to emissions scenarios
and climate models. However, many of the other uncertainties are reducible and
further study in these areas could help to refine risk estimates in the near-term. Of
particular importance is monitoring and research into understanding current levels
of hazard, exposure and vulnerability; these elements form the starting point of an
analysis of risk and therefore, reducing these uncertainties is likely to be of high value
in adaptation decision-making as well as present-day disaster risk management.

7 Conclusions

This study has demonstrated the application of a series of tools aimed at quantifying
risk and the benefits of adaptation to inform adaptation strategies, using the case
of flood risk in Mumbai. While the study does not aim to provide a complete
assessment, it does demonstrate the significant current vulnerability of Mumbai to
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heavy precipitation, as well as the high potential sensitivity to climate change and the
strong need for effective and integrated climate change adaptation.

The findings of the study show that disaster risk management and adaptation can
have significant benefits both today and in the future, for example, our estimates
suggest that by upgrading the drainage system in Mumbai, losses associated with
a 1-in-100 year flood event today could be reduced by as much as 70%, and
through extending insurance to 100% penetration, the indirect effects of flooding
could be almost halved, speeding recovery significantly. Given the uncertainties in
future rainfall projections, it may be prudent to explore win—-win measures that
provide benefits under the broad range of climate scenarios—we demonstrate that
upgrading the drainage system and supporting an effective insurance mechanism may
be examples of such no-regrets measures, others include spatial planning to manage
new construction out of high risk areas and increasing public risk awareness.

The Government of Maharashtra has laid out comprehensive plans to reduce and
better manage risks associated with flooding in Mumbai. However, it is not clear
whether these plans adequately account for the potential increases in flood hazard
with climate change. Several studies have shown that not considering climate change
in long-term planning and investment decisions today can lead to potentially costly
maladaptation. In planning disaster risk reduction, it is also important to consider
other hazards to which the city is exposed and the effects of climate change on
each (in particular, sea level rise, heavy precipitation, storm surge, high tides and
tropical cyclone risks). Policies to limit long-term flood hazard will need to be
considered alongside policies related to other risks and objectives (e.g. improving
overall housing quality or reducing greenhouse gas emissions) to identify synergies
and minimise conflicts. For example, measures to mitigate sea level rise and inland
flooding must be considered in tandem as sea level rise could impair any drainage
improvements in the city.

Further research is also required to consider the implications of uncertainties
in climate projections for adaptation planning in Mumbai, for example, this study
should be extended through the use of multiple projections from a range of available
Global Climate Models and Regional Climate Models. A single scenario of future
climate, as used here, is not by itself adequate to inform robust adaptation decisions.
Uncertainties in climate model projections are not likely to be significantly reduced
on the timescale of many adaptation decisions and therefore, further research is
required to demonstrate the integration of quantitative risk analysis tools, like those
presented here, with approaches to decision-making under uncertainty. We also
discuss the benefits of focussing research and monitoring towards reducing the more
‘reducible’ uncertainties associated with managing extreme events, in particular
related to understanding levels of current hazard, exposure and vulnerability; such
investments would have significant benefits for both climate change adaptation and
present-day disaster risk management.

Appendices
A SWMM: urban flood modelling in Mumbai

The Storm Water Management Model (SWMM) was been developed by the US
Environmental Protection Agency for use in the urban hydrology and is widely
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Table 11 The input assumptions of the SWMM model for the Mithi River Basin

Summary of input assumptions and data sources

Rainfall data as collected and simulated from the Santa Cruz IMD rainfall station

The total catchment is divided into 9 sub-catchments with channel characteristics taken from
Google Earth

The Slope values in % are derived from SRTM Digital Elevation Model (DEM)

The soil is assumed to have a slow infiltration rate (Hydrologic Soil Group C). The impervious area
depression storage is assumed to be 5 mm

Assume manning’s coefficient of 0.014 for irregular channels and impervious area; and 0.035 for
pervious areas (based on Sharma and Gupta 2006)

Infiltration parameters from Soil Conservation Service Curve Number, based on the land use type

The Kinematic Wave method of flow routing is used

Tidal effects are neglected

applied in flood simulation studies. The basic model components include the physical
characteristics of the basin such as topography, soil types, land use characteristics,
and climate characteristics such as evaporation, temperature and precipitation.
SWMM has the capacity to model every aspect of urban drainage; combining sewers
and the natural drainage, whereas other river flood models are generally restricted
to natural drainage. This makes it most appropriate for modelling flood risk in the
Mumbeai area.

One of the most important inputs to the model is topographic data in the form
of a digital elevation model (DEM). This data is obtained from the Shuttle Radar
Topography Mission (SRTM). The SRTM instrument obtained elevation data on a
near-global scale to generate the most complete high-resolution digital topographic
database of Earth. The 90 m DEM derived from SRTM has been used as primary
source for elevation data and is smoothened using standard interpolation techniques.
The DEM is further enhanced through validation against topographic maps from the
Survey of India.

Table 11 gives an overview of the input assumptions and data sources used in the
SWMM model for the Mithi River Basin. It should be noted that tidal effects are
neglected in this analysis, giving a potential negative bias on flood extent estimates.
Further information on SWMM can be located at: http://www.epa.gov/ednnrmrl/
models/swmm/index.htm

B The ARIO model

The ARIO model (Hallegatte 2008) is based on IO tables and a hybrid modelling
methodology, in the spirit of Brookshire et al. (1997). The model takes into account
(1) the propagation among sectors of reduced productions due to disaster damages;
(2) the propagation among sectors of reduced demands due to disaster damages;
(3) the large demand in the construction sector due to reconstruction needs; (4) the
economic-agent behaviours to cope with disaster consequences (e.g., by increasing
their production when demand is large, or by finding alternative suppliers when the
original ones cannot produce); (5) the limitations in resource movement between
sectors (e.g., the construction sector cannot grow instantaneously by hiring workers
from other sectors; it is limited by the availability of qualified workers); (6) the
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interaction with outside the affected regions (through imports and exports). Im-
portantly, the model assumes that the economy will eventually return to its initial
situation. Also, impacts outside the Mumbai region are not assessed, because these
impacts are distributed over a large number of economic actors, and are therefore
small (often negligible) on a per capita basis.

The model is applied to Mumbai using sector-by-sector macroeconomic data from
the National Council of Applied Economic Research downscaled to the Mumbai
region. For this study, we introduced three main modifications in the ARIO model
initial setting, which is used in the Copenhagen case study in this project (Hallegatte
et al. 2011b):

e The modelling of reconstruction demand has been modified to take into account
the urgency in reconstruction. In the new version, it is assumed that, in absence
of any constraint in construction-sector production capacity, all damages would
be repaired 3 months () after the disaster. Of course, because of technical,
financial, and practical constraints, the actual reconstruction time can be much
longer.

e The rationing scheme is modified. In the current version, there is a three-stage
rationing: (1) intermediate consumptions are served first, to ensure that total
output is maximum; among industries, the rationing is proportional, with each
sector receiving the same fraction of its demand; (2) reconstruction needs and
local demand is served second, with again a proportional rationing between
the two; (3) exports are served last, if all other demands can be fully satisfied.
Compared with the previous version, this rationing scheme gives a higher priority
to local demands and lead to more optimistic results.

e When applying ARIO to Mumbai, the assumption that all losses are paid by
insurance claim is not acceptable any more. According to RMS, flood insurance
penetration in Mumbai is around 8% for households and 15% for businesses.
The fact that businesses and households have to pay for their reconstruction can
have important impacts on the reconstruction duration and causes a crowding-
out effects on consumption and investment. Budget constraints (for households
and businesses) may thus have macroeconomic consequences that need to be
accounted for. To do so, we assume first the businesses pay their reconstruction
by reducing the profits they redistribute to households. As a consequence, house
hold income will decrease. Second, household budget constraints have been
introduced. In this modeling, we assume that households can borrow to fund
their reconstruction (without borrowing constraints), but that they then have to
pay back over a 2-year period. To reimburse this additional debt, they reduce
their consumption and investment. This factor introduces a consumer backward
propagation in addition to the mechanisms described in Hallegatte (2008).

References

Alexander LV et al. (2006) Global observed changes in daily climate extremes of temperature and
precipitation. J Geophys Res 111:D05109. doi:10.1029/2005JD006290

Benson C, Clay E (2004) Understanding the economic and financial impact of natural disasters. The
international bank for reconstruction and development, The World Bank, Washington D.C.

Brookshire DS, Chang SE, Cochrane H, Olson R, Rose A, Steenson J (1997) Direct and indirect
economic losses for earthquake damage. Earthq Spectra 13:683-701

@ Springer


http://dx.doi.org/10.1029/2005JD006290

166 Climatic Change (2011) 104:139-167

Carter TR, Jones RN, Lu X, Bhadwal S, Conde C, Mearns LO, O’Neill BC, Rounsevell MDA, Zurek
MB (2007) New assessment methods and the characterisation of future conditions. In: Parry ML,
Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts,
adaptation and vulnerability. Contribution of working group II to the fourth assessment report
of the intergovernmental panel on climate change. Cambridge University Press, Cambridge,
pp 133-171

Dartmouth Flood Observatory (2008) http://www.dartmouth.edu/~floods/Archives/index.html

Dessai S, Hulme M, Lempert R, Pielke R Jr (2009) Climate prediction: a limit to adaptation? In:
Adapting to climate change: thresholds, values, governance. Cambridge University Press. Avail-
able at http://sciencepolicy.colorado.edu/admin/publication_files/resource-2626-2009.01.pdf

Duryog Nivaran (2005) South Asia disaster report 2005. http://www.duryognivaran.org/sa_
annualdisaster.php#

Fankhauser S, Smith J, Tol R (1999) Weathering climate change: some simple rules to guide adapta-
tion decisions. Ecol Econ 30

Government of Maharashtra (GoM) (2005) Maharashtra floods 2005: relief and rehabilitation.
http://mdmu.maharashtra.gov.in/pdf/Flood/statusreport.pdf

Grossi P, Kunreuther H (2005) Catastrophe modeling: a new approach to managing risk. Huebner
international series on risk, insurance and economic security. Springer, New York

Gupta K (2007) Urban flood resilience planning and management and lessons for the future: a case
of study in Mumbeai, India. Urban Water J 4(3):183-194

Hallegatte S (2008) An adaptive regional input—output model and its application to the assessment
of the economic cost of Katrina. Risk Anal 28(3). doi:10.1111/j.1539-6924.2008.01046

Hallegatte S (2009) Strategies to adapt to an uncertain climate change. Glob Environ Change 19:240-
247

Hallegatte S, Dumas P (2008a) Can natural disasters have positive consequences? Investigating the
role of embodied technical change. Ecol Econ 68(3):777-786

Hallegatte S, Ghil M (2008b) Natural disasters impacting a macroeconomic model with endogenous
dynamics. Ecol Econ 68(1-2):582-592

Hallegatte S, Hourcade J-C, Dumas P (2007) Why economic dynamics matter in assessing climate
change damages: illustration on extreme events. Ecol Econ 62(2):330-340

Hallegatte S, Henriet F, Corfee-Morlot J (2011a) The economics of climate change impacts and pol-
icy benefits at city scale: a conceptual framework. Clim Change. doi:10.1007/s10584-010-9976-5

Hallegatte S, Ranger N, Mestre O, Dumas P, Corfee-Morlot J, Herweijer C, Muir-Wood R (2011b)
Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study
on Copenhagen. Clim Change. doi:10.1007/s10584-010-9978-3

Hanson S, Nicholls R, Ranger N, Hallegatte S, Corfee-Morlot J, Herweijer C, Chateau J (2011)
A global ranking of port cities with high exposure to climate extremes. Clim Change. doi:
10.1007/510584-010-9977-4

IPCC (2007) Climate Change 2007: the physical science basis. In: Solomon S, Qin D, Manning M,
Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Contribution of working group I
to the fourth assessment report of the intergovernmental panel on climate change. Cambridge
University Press, Cambridge, p 996

Jenamani RK (2006) Observational/Forecasting aspects of the meteorological event that caused a
record highest rainfall in Mumbai. Curr Sci 90(10):1344-1362

Jones RG, Noguer M, Hassell DC, Hudson D, Wilson SS, Jenkins GJ, Mitchell JFB (2004) Generat-
ing high resolution climate change scenarios using PRECIS. Met Office Hadley Centre, Exeter,
p 40

Kumar KR, Sahai AK, Kumar KK, Patwardhan SK, Mishra PK, Revadekar JV, Kamala K, Pant GB
(2006) High-resolution climate change scenarios for India for the 21st century. Curr Sci 90(3)

Lempert RJ, Collins MT (2007) Managing the risk of uncertain threshold responses: comparison of
robust, optimum, and precautionary approaches. Risk Anal 27(4):1009-1026

Lindell MK, Prater CS (2003) Assessing community impacts of natural disasters. Nat Hazards Rev
4:176-185

Lubell J (2006) Housing displaced families, in rebuilding urban places after disasters, lessons from
hurricane Katrina. In: Birch EL, Wachler SM (eds) University of Pennsylvania Press

MEERP (2007) Greater Mumbai disaster management action plan, risk assessment and response
plan, vol. 1. Maharashtra Emergency Earthquake Rehabilitation Programme, Government of
Maharashtra, Mumbai

Munich Re (2004) Megacities—megarisks: trends and challenges for insurance and risk management.
http://www.munichre.com/publications/302-04271_en.pdf

@ Springer


http://www.dartmouth.edu/~floods/Archives/index.html
http://sciencepolicy.colorado.edu/admin/publication_files/resource-2626-2009.01.pdf
http://www.duryognivaran.org/sa_annualdisaster.php
http://www.duryognivaran.org/sa_annualdisaster.php
http://mdmu.maharashtra.gov.in/pdf/Flood/statusreport.pdf
http://dx.doi.org/10.1111/j.1539-6924.2008.01046
http://dx.doi.org/10.1007/s10584-010-9976-5
http://dx.doi.org/10.1007/s10584-010-9978-3
http://dx.doi.org/10.1007/s10584-010-9977-4
http://www.munichre.com/publications/302-04271_en.pdf

Climatic Change (2011) 104:139-167 167

Munich Re (2006) Topics geo: significant natural catastrophes in 2005. http:/www.munichre.com/
app_resources/PDF/ts/geo_risks/04772_significant_natural_catastrophes_en.pdf

Municipal Corporation of Greater Mumbai (MCGM) (2008) http://www.mcgm.gov.in/

Nakicenovic N et al (2000) Special report on emissions scenarios: a special report of working group
III of the intergovernmental panel on climate change. Cambridge University Press, Cambridge,
U.K., 599 pp. Available online at: http://www.grida.no/climate/ipcc/emission/index.htm

Pielke RA Jr, Pielke RA Sr (1997) Hurricanes, their nature and impacts on society. Wiley, New York

Pohit S (2000) Income and employment effects in Mumbai region: an input-output approach. In: Pro-
ceeding of the XIII international conference on input-output techniques, University of Macerata,
Italy, 21-25 August 2000

Ranger N, Millner A, Dietz S, Fankhauser S, Lopez A, Ruta G (2010) Adaptation in the UK: a
decision making process. Grantham Research Institute/CCCEP Policy Brief, London School of
Economics and Political Science, London, UK

Revi A (2005) Climate change risk: an adaptation and mitigation agenda for Indian Cities. Environ
Urban 20(1)

Sharma M, Gupta K (2006) Storm water flow modeling of Mithi River in Mumbai Catchment. In:
2nd international IWA conference on sewer operation and maintenance, SOM 06, October 26—
28, 2006. Vienna, Austria

Sharpley AN, Williams JR (eds) (1990a) EPIC erosion productivity impact calculator: 1. Model
documentation. U.S. Department of Agriculture Technical Bulletin No. 1768

Sharpley AN, Williams JR (eds) (1990b) EPIC erosion productivity impact calculator: 2. User
manual. U.S. Department of Agriculture Technical Bulletin No. 1768

Swiss Re (2006) Natural catastrophes and manmade disasters 2005: high earthquake casualties,
new dimension in windstorm losses, Sigma Series No 2, 2006. http://www.swissre.com/resources/
€109a780455c56b897efbf80a45d76a0-Sigma2_2006_e.pdf

Tierney K (1997) Business impacts of the northridge earthquake. J Conting Crisis Manag 5:87-97

Wallis TWR, Griffiths JF (1995) An Assessment of the Weather Generator (WXGEN) used in the
erosion productivity impact calculator. Agric For Meteorol 73:115-133

West CT, Lenze DG (1994) Modeling the regional impact of natural disasters and recovery: a general
framework and an application to hurricane Andrew. Int Reg Sci Rev 17:121-150

Williams JR, Nicks AD, Arnold JG (1985) Simulator for water resources in rural basins. J Hydraul
Eng 111(6):970-986

@ Springer


http://www.munichre.com/app_resources/PDF/ts/geo_risks/04772_significant_natural_catastrophes_en.pdf
http://www.munichre.com/app_resources/PDF/ts/geo_risks/04772_significant_natural_catastrophes_en.pdf
http://www.mcgm.gov.in/
http://www.grida.no/climate/ipcc/emission/index.htm
http://www.swissre.com/resources/e109a780455c56b897efbf80a45d76a0-Sigma2_2006_e.pdf
http://www.swissre.com/resources/e109a780455c56b897efbf80a45d76a0-Sigma2_2006_e.pdf

	An assessment of the potential impact of climate change on flood risk in Mumbai
	Abstract
	Introduction
	Mumbai: current vulnerability to f looding and future sensitivities
	Quantifying current and future f lood risk in Mumbai
	Hazard quantification
	Exposure mapping
	Estimating vulnerability
	Direct damage estimates for Mumbai

	Evaluating the total economic impacts of f looding
	Indirect loss estimation
	Case study of July 2005
	Link between direct losses and total losses
	Future evolutions of flood risks in Mumbai

	Adaptation to f lood risk in Mumbai
	Discussion: adaptation planning and uncertainty
	Conclusions
	Appendices
	A SWMM: urban flood modelling in Mumbai
	B The ARIO model
	References



