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1 Introduction

Traditionally, taxi-service research has been conducted from a long-term, strategic point
of view and at the macroscopic level of detail. Issues such as competition and regulation,
including fleet sizing or pricing, have been explored for more than 40 years [1, 2, 3]. Over
the past decade, online management of taxis has become standard, and nowadays the
focus is on operating a taxi fleet both at the microscopic level of detail and in real
time. Due to advances in information and communications technology (ICT), various
innovative solutions, such as shared taxis [4], electric taxis [5, 6], and shared autonomous
vehicles [7], have reshaped the traditional taxi service.
Designing and implementing taxi and similar services requires the use of sophisticated

dynamic routing algorithms that are hard to analyze theoretically. Thus, simulation
tools are needed. However, the quality of results obtained with such tools depends
on the simulation method. In transport-related problems, simulation must incorporate
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realistically modeled dynamism of customer demand, traffic-flow phenomena, and fleet-
management operations. These aspects are even more crucial when considering taxi-like
services, owing to the dynamics of urban traffic flow and the volatility of demand. As far
as we know, of the many taxi simulation models built so far, the microscopic ones were
created for Singapore [8, 9], Barcelona [10], Berlin [11], and Mielec, Poland [12]. This
article presents the application of a wide-range microscopic model covering the city of
Berlin and the neighboring Brandenburg region to assess the performance of a real-time
dispatching strategy based on solving the taxi assignment problem.

2 Online Taxi Dispatching

Choosing the right simulator is of the utmost importance. Commercial micro- or nanosim-
ulators, such as Vissim, Aimsun, Paramics, and DynusT, either are unable to perform
network loadings with millions of persons or vehicles, or they do not trace persons or ve-
hicles throughout the whole day. Noncommercial approaches include the Transportation
Analysis Simulation System (TRANSIMS) [13], Simulation of Urban Mobility (SUMO)
[14], Mezzo [15], and the Multi-Agent Transport Simulator (MATSim) [16]. Out of
these, MATSim is arguably the least focused on traffic flow realism, but has the highest
computing speed and the best behavioral model on the trip-planning side; therefore, we
chose it as the simulation platform. To simulate taxi dispatching, we used MATSim’s
Dynamic Vehicle Routing Problem (DVRP) extension [17]. In this module, each driver
is modeled as an agent whose schedule is dynamically reoptimized by the optimization
algorithm in response to incoming events (such as request submissions and vehicle depar-
tures and arrivals). Fleet vehicles are simulated along with the whole traffic, and their
movement is monitored in order to detect any divergences from the schedule (such as
delays due to traffic congestion). Also, the interaction between the dispatcher, drivers,
and passengers is simulated in detail, including such actions as calling a ride or picking
up and dropping off passengers.

The following formulation of the taxi dispatching process describes the model imple-
mented for the needs of this study. It is an extended version of an earlier model used
for the assessment of rule-based dispatching strategies [11]. It deals with immediate
requests with unknown destinationsthat is, taxis are not prebooked, and no destination
information is provided in advance, which is typical for taxi services in Berlin.

Let N = {1, . . . , n} be the set of taxi requests (customers). The following sequence of
events is related to serving each request i ∈ N (see Figure 1). Taxi customer i calls a
taxi (event Ecall

i , time τ calli ) specifying the pickup location pi. Because only immediate
requests are considered, the customer’s desired departure time is τdepi = τ calli . A selected
taxi is dispatched toward pi at time τdispi (event Edisp

i ), and immediately after arrival, the
pickup starts (event Epick0

i , time τpick0i ). Once the passenger is picked up (event Epick1
i ,

time τpick1i ), he or she specifies the destination di and the taxi sets out immediately.
After reaching di, the drop-off begins (event Edrop0

i , time τdrop0i ). Once the passenger
gets out (Edrop1

i , time τdrop1i ), the taxi is ready to serve another request. Owing to the
stochasticity of taxi dispatching, times τdispi , τpick0i , τpick1i , τdrop0i and τdrop1i are estimated
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Figure 1: A taxi driver’s schedule and a passenger’s plan. A passenger has a daily plan
made up of activities and legs, including the presented taxi leg. This leg is
represented as a taxi request on the Dynamic Vehicle Routing Problem side
and is handled by a sequence of tasks dynamically computed by the optimizer
and executed by the driver.

until the respective events occur, and are therefore subject to change.
Request i ∈ N is open if it either has not been planned yet (that is, τdispi is unknown)

or if it is planned to be served but the taxi has not been dispatched yet, τdispi > τ curr,
where τ curr denotes the current time. Let L be the list of all open requests ordered by
τdepi . Each request i is inserted into L on submission Ecall

i and removed from L on taxi
dispatch Edisp

i . We do not consider vehicle diversion in this study, so taxi dispatch is an
irreversible operation.
Let M = {1, . . . ,m} be the set of vehicles. Each vehicle k ∈ M is available at location

ok within the time window [ak, bk). We assume that vehicles do not cruise, but remain
at the last served customer’s drop-off location. When no request has been assigned to
k, ok is k’s initial location and ak is the time the taxi starts operating. Otherwise, ok is
the drop-off location, di, and ak is the time the drop-off ends, τdrop1i , of the last request
assigned to k, i. Because di remains unknown until τpick1i , both ok and ak are unknown
temporarily as well, with the restriction that ak > τ curr. Let MA ⊆ M be the set of all
currently available vehicles, that is vehicles k ∈ M such that ok and ak are known and
bk > τ curr. In other words, while operating, a vehicle is cyclically unavailable between
the time it sets out to a new customer and then picks the customer up. Let M I ⊆ MA

be the set of all currently idle vehicles; available vehicle k ∈ MA is idle if ak ≤ τ curr.

3 Rule-Based Dispatching Heuristics

Owing to past technological constraints, taxi services still use simple rule-based algo-
rithms, such as first-come, first-served, to serve customers. In the era of radio taxi
dispatching systems, the longest waiting taxi in the zone where a taxi trip starts was
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dispatched to the customer. Nowadays, because of recent ICT advances, the dispatch-
ing decision more often is based on the taxis’ exact geographical locations, in order to
send the nearest one. All these strategies seem myopic and far from optimal and do not
exploit today’s technology.

The most popular strategy, nearest-idle-taxi, dispatches the nearest idle taxi, k∗ ∈ M I,
to the first request in the queue L, denoted by L[1], according to the following rule:

k∗ = argmin
k∈M I

tOk,L[1] (τ
curr), (1)

in which tOki (t) is the travel time from ok to pi, given the departure time t. A dispatch
decision is computed either when a taxi call is made and at least one vehicle is idle
(oversupply) or when a taxi becomes idle (for example, starts operating or completes an
earlier job) and at least one request is open (undersupply).

This strategy’s weak point is a limited choice of taxis under high demand when no
vehicle is idle, which results in ineffective, almost random, decisions. The performance
of dispatching can be improved by extending this strategy with the capability of looking
into the near future to predict availabilities of currently busy taxis in order to find the one
that will arrive earliest at the customer’s location. In this strategy, nearest-taxi, dispatch
decisions are planned sequentially for each request in L according to the following rule:

k∗ = argmin
k∈MA

(

max (ak, τ
curr) + tOk,L[1] (max (ak, τ

curr))
)

, (2)

and are updated whenever new information arrives (for example, a vehicle’s availability
prediction changes because of traffic delays, or a new request is submitted).

Despite this broadening of taxi choice, the nearest-taxi strategy still behaves my-
opically by processing requests sequentially according to first-in, first-out (FIFO) order.
This becomes the main problem in the case of undersupply, where the main focus should
be on providing the highest possible system throughput at the cost of violating the FIFO
rule and thus losing some fairness. To partially mitigate this issue, it is necessary to shift
the priority from customers to taxis. We can achieve this by modifying the behavior of
the nearest-idle-taxi strategy in the case of undersupply by dispatching a vehicle that
has just become idle, k ∈ M I, to the nearest open request, i∗ ∈ L, according to the
following rule.

i∗ = argmin
i∈L

tOk,i (τ
curr). (3)

This nearest-idle-taxi/nearest-open-request strategy is also called demand-supply balanc-
ing, because it tries to find a balance between demand and supply. It originates from
a study by Pius Egbelu and Jose Tanchoco on scheduling of automated guided vehi-
cles [18], in which the authors proposed order-initiated and vehicle-initiated assignment
rules. In addition, more formal specifications of the three strategies presented in this
section can be found in other work [11, 19].
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4 Online Taxi Dispatching as the Assignment Problem

Although both extensions to the classic nearest-idle-taxi strategy lead to improvements
in dispatching, the limited planning scope remains their apparent disadvantage, because
dispatch decisions are optimized only locally by considering a single request or vehicle.
To achieve higher-efficiency dispatching, we must take a more global look at its process.
One solution could be to cyclically recalculate the globally best assignment of all available
taxis to all open requests in response to new informationwhich we call the assignment
strategy. This can be done by solving the linear assignment problem [20], in which
variable xki represents the assignment of available vehicle k ∈ MA to open request
i ∈ L. The cost of serving request i by vehicle k, cki, is defined as the passenger wait
time from τ curr on, i.e.

cki = max (ak, τ
curr) + tOki (max (ak, τ

curr)) . (4)

If the number of open requests is larger than the number of available vehicles, |L| >
∣

∣MA
∣

∣, a set of dummy vehicles MD must be included so that |L| =
∣

∣MA
∣

∣ +
∣

∣MD
∣

∣. As-
signment of a dummy taxi to a request means that the request will remain (temporarily)
unplanned. The cost of assigning dummy vehicle k ∈ MD to request i ∈ L, cki, is the cost
of postponing i, and assumed to equal C. On the other hand, if the number of available
vehicles is larger than the number of open requests, |L| <

∣

∣MA
∣

∣, a set of dummy requests
LD is included into the problem formulation so that |L|+

∣

∣LD
∣

∣ =
∣

∣MA
∣

∣. Assignment of
a taxi to a dummy request means that the vehicle will not be dispatched; if this vehicle
is currently serving a request, it will become idle after completing it. The cost of not
being dispatch is cki = 0, k ∈ MA, i ∈ LD.
Assignments are periodically recomputed in reaction to new request submissions Ecall

i

and upon provision of a trip’s destination Epick1
i . Reoptimization can also triggered by

a change of the predicted taxi availability ak.

5 Adaptation for Large-Scale Simulation

Although the idea of modeling taxi dispatching as the dynamic assignment problem
seems natural, calculating the cost matrix for a large taxi fleet, such as the one in
Berlin, poses a big computational challenge if we want to use this strategy for real-time
taxi management. Because simple calculation of the cost for each vehicle-request pair
separately would take a prohibitively large amount of time, we introduced the following
enhancements:

• Reduced reoptimization frequency. The decision concerning rerunning opti-
mization is made every T reopt seconds, instead of every single second, which is the
simulation time step. Besides the reduction in the amount of computation, it also
makes dispatch decisions for larger sets of requests, which leads to better match-
ings in terms of overall system efficiency. The reduced reoptimization frequency
has a minimal negative impact on the dispatching quality by introducing an extra
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delay of T reopt/2 seconds, which is negligible as long as T reopt is reasonably small.
In this study, T reopt was 10 seconds.

• Reduced planning horizon. From all available vehicles, only those which are
available within the time horizon T horiz — that is, MAred = {i ∈ MA|ak ≤ τ curr +
T horiz}— are considered in the assignment procedure. The planning horizon should
not be shorter than the period between two consecutive reoptimizations (T reopt).
In this research, the default value of T horiz was 120 seconds. However, in the case
of undersupply,

∣

∣M I
∣

∣ < |L| — that is, when the focus is shifted toward achieving
a high throughput and thus not letting vehicles stay idle — T horiz was reduced to
30 seconds.

• Single-source to k-nearest-sinks (backward) shortest path search. Be-
cause executing a shortest-paths search separately for each (non-dummy) vehicle-
request pair is too slow, we used a multisink variant of Dijkstra’s algorithm instead.
It starts at a given source and ends after reaching a given number of sinks. If there
are fewer idle and soon-idle vehicles than open requests,

∣

∣MAred
∣

∣ < |L|, the search
starts from each vehicle’s location and moves forward until reaching Kreq nearest
requests. If the opposite is the case, it is more efficient to start at each request’s
location and move backward until paths to the first Kveh are found. Limiting
the search to only the subset of closest requests or vehicles implies that for many
vehicle-request pairs, the travel time is unknown. The cost of such assignments is
also unknown, and we must use a reasonably high constant value, T nopath, instead.
As long as the subsets are not too small, those assignments are unlikely to be se-
lected, and therefore, this speedup technique does not affect the assignment-based
strategy’s performance. For the Berlin case study, we set Kreq and Kveh to 40,
whereas T nopath was 172,800 seconds (2 days).

6 Taxi Berlin Scenario

At the time of this writing, 7,600 taxis are serving Berlin. Roughly 18,000 drivers are
registered and organized in 3,000 taxi companies. There is no centralized taxi dispatch,
but there are several radio taxi operators. In this article, we were able to utilize data
of Taxi Berlin, the city’s biggest radio taxi operator, with some 5,700 vehicles under
dispatch. Most of the taxis are equipped with GPS trackers that submit their current
location and occupation status at least once per minute. Apart from taxi dispatch, this
data is also used for real-time travel time prediction in Berlin [21].

6.1 Supply and demand

The supply and demand data from one week (15 April to 22 April 2014) was available in
this study, of which we chose the time frame between Tuesday 4:00 a.m. and Wednesday
4:00 a.m. for simulation. (Taxi demand and supply is the lowest around 4:00 a.m., so we
took it as the cutting point between days.) We postprocessed this data to a zone-based
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Figure 2: Hourly request submissions and active taxicabs. The average taxi serves less
than one request per hour. Taxi drivers adapt to the current demand; both
time profiles are highly correlated.

matrix of taxi trips for each simulation hour and used it as the simulated demand. On
the supply side, neither actual driver nor shift durations were available, owing to an
automatic data anonymization process that assigns vehicles new IDs every couple of
minutes. However, we computed the amount of vehicles logged into the system at any
time, as well as the amount of vehicles per zone in each occupation status in five-minute
intervals. Figure 2 shows the amount of taxis and requests served during the simulation
timeframe. Overall, 27,376 trips were registered; a strong morning peak was followed
by two smaller peaks in the afternoon and evening. The number of available vehicles
follows the demand.

We aggregated the extracted taxi demand into 518 zones. Within Berlin, these zones
are standardized quarters defined by the city administration as Lebensweltlich orientierte
Räume (LOR) [22], whereas in the surroundings, community boundaries are used. The
hotspot for taxi traffic in Berlin is around the city’s major airport, Tegel; the data
showed 3,799 trips to and from here. Given Tegel’s close distance to the city and no
direct rail link, taxis make up a comparatively high share of trips to and from Tegel.
Berlin’s second airport, Schönefeld, which is farther from the city and caters mainly to
budget airlines, is less relevant for the taxi business. Most other trips are either ending
or beginning in the city center. Figure 3 shows the origin of taxi trips within the city.

In Berlin, there are roughly 400 taxi ranks in operation where taxis tend to aggregate.
Figure 4 shows their locations and the average number of idle taxis in each zone. The
rank at Tegel Airport is notably the one with the most idle vehicles, and taxis can wait
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Figure 3: Daily taxi demand in Berlin by zone of trip origin. High demand, marked in
dark blue, originates mainly in most central parts of the city center and at
Tegel Airport.

there several hours for a ride. A more detailed analysis of the floating car data (FCD)
has been published before [23].

6.2 Simulation in MATSim

For the MATSim simulation, we used a network based on OpenStreetMap data and
comprising 11,353 nodes and 24,350 links. We generated time-specific link travel times
using an earlier simulation [24], which let us keep the simulation runtime low, because we
only needed to consider taxi traffic. We converted the extracted demand data from FCD
into MATSim plans. Locations for origins (see Figure 5) and destinations (see Figure 6)
within the zones were randomly distributed, as were the actual departure times within
each hour. This resulted in 27,386 agent plans with exactly one taxi trip each. A
simulation with these plans shows that there is very low stress on the taxi system and
vehicles are idle for a long time. However, to accommodate a comparably high share of
black-market (30 to 40 percent, according to estimations in [25]) and incorrectly tracked
rides, we used a scaling factor of 1.5 for the taxi demand.

In certain situations, such as bad weather conditions, public transport breakdowns,
or trade fairs or other big events, taxi demand can increase drastically. During a recent
railway strike, the data shows that the number of taxi trips doubled during the afternoon
peak, with the taxi supply increasing only by about 20 percent. To depict all these
fluctuations, we decided to scale the demand step-wise up to 5.0 while keeping the
original spatiotemporal distribution of requests. Figure 7 depicts a taxi’s trips over the
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Figure 4: Average amount of idle taxis per zone. Attractive zones for waiting, marked in
dark orange, are mainly around the rank at Tegel Airport and both the eastern
city center (the area around Alexanderplatz) and the western city center (the
area around the Zoo train station and Kurfürstendamm).

Figure 5: Departure locations of taxi trips in the simulation (red). The majority of taxi
trips start either in the city center or at Tegel Airport (northwest).
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Figure 6: Arrival locations of taxi trips in the simulation (blue). Overall, the demand for
taxi trips behaves rather symmetrically; that is, departure and arrival locations
do not differ significantly.

course of the day. The vehicle has clearly distinguishable trips around the whole city.
Just as in reality, one clear hotspot in the simulation is Tegel Airport. Figure 8 shows
the area around it at 8:00 a.m. Several taxis have just started a trip toward the city
center.

7 Results

We simulated the Berlin taxi scenario for each demand scale with three dispatching
strategies: the nearest-idle-taxi strategy; the nearest-idle-taxi/nearest-open-request strat-
egy, which can balance demand and supply; and the assignment strategy, which takes a
more global look while making dispatch decisions.

We based our evaluation on the following performance measures:

• The average passenger wait time, TW, in which the wait time of passenger i is
defined as τpick0i − τdepi .

• The 95th percentile of passenger wait times, TW95.

• The ratio of unoccupied (empty) to total drive time, RE, in which the rides to and
with passenger i take τpick0i − τdispi and τdrop0i − τpick1i amount of time, respectively.
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Figure 7: A simulated taxi’s daily trajectory (red) and overall driving taxis (blue trian-
gles) around 8:00 a.m. Vehicles tend to drive through the whole city as the
demand goes.

Figure 8: Taxi traffic (blue) around Tegel Airport during the morning peak. The airport
is the most important hub for taxi traffic in the city, with a steady flow of
pickups and drop-offs.
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Figure 9: Average wait time, TW, at different demand levels. Operation under high
demand is selective for taxi dispatching strategies. When all taxis are busy,
providing the highest possible throughput is the key to obtaining low wait
times.

Figure 9 and 10 present the averages and 95th percentiles for passenger wait time
at different levels of demand obtained with different strategies. Up to a scaling factor
of 2.5, all strategies perform comparably. At low demand, both rule-based heuristics
behave virtually the same way, and the assignment-based one does not offer any signifi-
cant improvement, because open requests usually are served by the nearest idle vehicle.
However, beyond 3.0, the FCFS way of handling requests results in a rapid increase of
TW, whereas shifting the focus from passengers to taxis assures an acceptable level of
service quality even when the demand is five times higher. As the demand grows, the
assignment strategy’s advantages over the simpler demand-supply balancing strategy
become more evident in terms of both passenger-oriented performance measures.

Figure 11 presents the ratio of empty to total drive time. As in the case of the
passenger wait time statistics, the first strategy performs the worst. In particular, from
the scaling factor of 3.2 on, trips to passengers are on average 50 percent longer than trips
with passengers. At this level of demand, the FCFS rule dispatches vehicles randomly:
whenever a taxi becomes idle, it is immediately dispatched to the longest waiting request,
regardless of the distance between them. The two other strategies result in much lower
shares of nonrevenue trips at high demand. In the worst case, pickup trips are only two
times shorter than drop-off trips for the demand-supply balancing strategy, and almost
three times shorter for the assignment-based approach. Better utilization of vehicles by
the assignment strategy leads to a higher throughput and consequently to lower wait
times. Interestingly, at high demand, RE stabilizes and even decreases as the average
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Figure 10: The 95th percentile of wait time, TW95, at different demand levels. Although
both the demand-supply balancing and assignment-based strategies shift pri-
ority from passengers to drivers by not following the FCFS rule, even the
less-lucky passengers (represented here by the 95th percentile) are served
quicker than if the rule is obeyed.

distance from vehicles to their nearest requests drops.

8 Conclusions

With ride-sourcing services such as Uber, Lyft, and Sidecar rapidly growing and entering
new cities, the rather conservative taxi market is undergoing revolutionary changes. The
growing competition has forced taxi operators to look for new opportunities of providing
better services at lower prices. One possible way of improving the performance is to start
thinking about a taxi fleet as a whole, and not as a collection of independent vehicles.
The proposed assignment-based strategy is a step in that direction.

In the future, we will focus on incorporating location attractiveness into the assignment
cost function to optimize the spatiotemporal distribution of idle taxis. We also plan to
extend the formulation of the assignment problem to electric taxis by including short-
term assignments of chargers to vehicles.
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Figure 11: The unoccupied to total drive time ratio, RE, at different demand levels.
The high throughput offered by the assignment-based strategy results from
the lowest share of the unoccupied drive time.
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