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The brain correlates of words and their referetibas and objects appear to be strongly
coupled neuron ensembles or assemblies distribmted defined cortical areas. In this

work we describe the implementation of a cell addgthased model of several visual,

language, planning, and motor areas to enable @t tobunderstand and react to simple
spoken commands. The essential idea is that diffezertical areas represent different
aspects of the same entity, and that the long-raogéco-cortical projections represent

hetero-associative memories that translate bettvezse aspects or representations.

1. Introduction

The brain correlates of words and their refereribastand objects appear to be
strongly coupled neuron ensembles in defined airtezeas (Pulvermuller,
1999). Being one of the most promising theoretfcaineworks for modelling
and understanding the brain, the theory of cekkmbdies (Hebb, 1949; Palm,
1990) suggests that entities of the outside waaht (also internal states) are
coded in overlapping neuron assemblies rather ihaingle ("grandmother")
cells, and that such cell assemblies are geneflatedebbian coincidence or
correlation learning. One of our long-term goalstds build a multimodal
internal representation using several cortical am@aneuronal maps, which will
serve as a basis for the emergence of action smsamnd to compare
simulations of these areas to physiological aatwedf real cortical areas.

In this work we describe a cell assembly-based cathee model of several
visual, language, planning, and motor areas imphete on a robot to
understand and react to simple spoken commandgggfet al., 2004). The task
is to find certain fruits in a complex visual sceaezording to spoken or typed
commands. This involves parsing and understandingsimiple sentences,
relating the nouns to concrete objects sensed éydmera, and coordinating
motor output with planning and sensory processing.
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Figure 1. DFA (left), neural network (mid), andladsemblies (right).

2. Language, finite automata, neural networks and cell
assemblies

In this section we briefly review the relation been regular grammars, finite
automata and neural networks. Regular grammars hmnexpressed by
generative rules A-a or B-bC where upper case letters are variables and
lower case letters are terminal symbols from ahathet>.

Regular grammars are equivalent to deterministiitefiautomata (DFA). A
DFA can be specified by M=(Z,0,2,,E) where Z is the set of statasjs the
alphabet, #1 Z is the starting state,[Z contains the terminal states, and the
function 6:(Z,E)- Z defines the state transitions. A sentencea&=a[2* is
well formed with respect to the grammad(f..0(3(z,a),&),...,&)OE.

DFAs can be simulated by neural networks: For ithis sufficient to specify a
simple model of recurrent binary neurons by N=(@&D/,c,), where C
contains the local cells of the network, D is tle¢ af external input cells, W
and V are binary matrices specifying the local resmt and the input
connections (Fig.2). The network evolves in discretieps, where a unit is
activated (gt)=1) if its potential (t)=(Wc(t-1) + Vd(t-1)) exceeds threshold
©;, and deactivated j(€)=0) otherwise. A simple emulation of the DFA vags
one neuron;dor each state;zone neuron dfor each input symbol,asynaptic
connections yrd4=1 for each state transition;,&) -z and threshold®;=1.5.

If at the beginning only neuror & active the network obviously simulates the
DFA. A biologically more realistic model would imgeret the nodes in Fig.1 not
assingle neurons but as groups of nearby strongly intereoted neurons, i.e.,
local cell assemblies. This architecture has twatmeal advantages: First, it
enablesfault tolerance since incomplete input can be completed to thelevho
assembly. Second, overlaps between different adesntdan be used to express
hierarchical relations between represented entities
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Figure 2. Architecture of cortical language areas.

3. Cortical language model

The language system consists of a standard HMM-bapedch recognition
system on the word level, and a cortical languagtesn which can analyse
streams of words detected with respect to simpgjalee grammars (Knoblauch
et al.,, 2004). Fig. 2 shows the 15 areas of thguage system. Each area is
modelled as a spiking associative memory of 40Goreu(Knoblauch & Palm,
2001). Binary patterns constituting the neural eddies are stored auto-
associatively in the local synaptic connectiongdefpbian learning.

The model can roughly be divided into three paft3.Auditory cortical areas
Al, A2 and A3. (2) Grammatical areas A4 and A5-X) Simple “activation
fields” af-X that coordinate the activation or diéxaation of the grammar areas.
When processing language, first auditory inputdpresented in area Al by
primary linguistic features (such as phonemesyl smbsequently classified
with respect to function in A2 and content in A3.eTimain purpose of area A4
is to emulate a DFA in a similar way as the neastWork in Fig. 1. Each node
corresponds to an assembly representing a granahati&te, and each edge
corresponds to a state transition stored in delagedrrent hetero-associative
connections of area A4. E.g., processing of a seatéBot show red plum”
would activate the state sequencep—0A1—-01—o0k SPO corresponding
to expectation of processing of a subject, a petdjcan object or attribute, and
finally an object. If the sentence was not wellnfied with respect to the
grammar, then the sequence terminates in an dater s
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Figure 3. Architecture of the cortical action madel

Finally, the robot has to "understand" the sentdmcdransforming the word
stream into an action representation. This is thpgae of areas A5-X which
correspond to different grammatical roles. A5-Srespnts the subject "bot",
A5-P the predicate "show" and A5-01a/O1 the objed plum" (Fig. 2).

4. Action processing

Our system for planning, action, and motor processan be divided into three
parts (Fig 3). (1) The planning/goal areas represkat robot's goal after
processing a spoken command. Sequence assembhesairG1 represent lists
of actions necessary to complete a task, e.g.,—spelt for the command
“show object”. Area G2 represents the current sahgand the remaining GX
areas properties of involved objects. (2) The “mbtareas MX represent the
motor command necessary to perform the currentaalpgnd also control the
low level attentional system. (3) Again there aagetivation” fields (afX) and
additionally “evaluation fields” that can compampresentations of different
areas. For illustration we describe the task ,batsred plum“, where the robot
has to point onto a red plum in the vicinity. Fitts¢ robot has to understand the
command as described in section 3 which activéiteg\b-representations. This
information is routed to the goal areas where ih& part of the sequence
(seek-point) gets activated in G1. Similarly, object infation is routed to
areas G2, G3, G3attr. Since the plum’s locatiamisnown, there is no activity
in area G4. After checking semantics, correspondisgemblies in the motor
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areas are activated. This activates the attentgysiem and initiates the robot
to seek the plum. Finding the plum activates cgwasding visual assemblies in
areas VX. The evaluation fields detect this andatatareas G1, G2 to switch to
the next state "point" of the action sequence. Tdtmotr will then adjust its
“finger position” represented in area S1 in orderpbint to the plum. The
matching of the positions will be detected by thaleation fields and this
eventually activates the final state in G1.

5. Conclusion

We have described the implementation of a cell rabebased model of
cortical language and action processing on a r@foKnoblauch et al., 2004;
Fay et al.,, 2004). The model consists of about 4@are populations each
modelled as a spiking associative memory containingny "local" cell

assemblies stored in local auto-associative commectKnoblauch & Palm,
2001). The neuron populations can be interpretedlifisrent cortical and

subcortical areas, where it is a long term goathid project to establish a
mapping of our “areas” into real cortex (Pulverraull1999).
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