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The brain correlates of words and their referent actions and objects appear to be strongly 
coupled neuron ensembles or assemblies distributed over defined cortical areas. In this 
work we describe the implementation of a cell assembly-based model of several visual, 
language, planning, and motor areas to enable a robot to understand and react to simple 
spoken commands. The essential idea is that different cortical areas represent different 
aspects of the same entity, and that the long-range cortico-cortical projections represent 
hetero-associative memories that translate between these aspects or representations.  

1. Introduction 

The brain correlates of words and their referent actions and objects appear to be 
strongly coupled neuron ensembles in defined cortical areas (Pulvermuller, 
1999). Being one of the most promising theoretical frameworks for modelling 
and understanding the brain, the theory of cell assemblies (Hebb, 1949; Palm, 
1990) suggests that entities of the outside world (and also internal states) are 
coded in overlapping neuron assemblies rather than in single ("grandmother") 
cells, and that such cell assemblies are generated by Hebbian coincidence or 
correlation learning. One of our long-term goals is to build a multimodal 
internal representation using several cortical areas or neuronal maps, which will 
serve as a basis for the emergence of action semantics, and to compare 
simulations of these areas to physiological activation of real cortical areas.  
In this work we describe a cell assembly-based associative model of several 
visual, language, planning, and motor areas implemented on a robot to 
understand and react to simple spoken commands (cf. Fay et al., 2004). The task 
is to find certain fruits in a complex visual scene according to spoken or typed 
commands. This involves parsing and understanding of simple sentences, 
relating the nouns to concrete objects sensed by the camera, and coordinating 
motor output with planning and sensory processing. 
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2. Language, finite automata, neural networks and cell 
assemblies 

In this section we briefly review the relation between regular grammars, finite 
automata and neural networks. Regular grammars can be expressed by 
generative rules A→a or B→bC where upper case letters are variables and 
lower case letters are terminal symbols from an alphabet Σ. 
Regular grammars are equivalent to deterministic finite automata (DFA). A 
DFA can be specified by M=(Z,Σ,δ,z0,E) where Z is the set of states, Σ is the 
alphabet, z0∈ Z is the starting state, E⊆Z contains the terminal states, and the 
function δ:(Z,E)→Z defines the state transitions. A sentence s=a1a2...an∈Σ* is 
well formed with respect to the grammar if δ(...δ(δ(z0,a1),a2),...,an)∈E. 
DFAs can be simulated by neural networks: For this it is sufficient to specify a 
simple model of recurrent binary neurons by N=(C,D,W,V,c0), where C 
contains the local cells of the network, D is the set of external input cells,  W 
and V are binary matrices specifying the local recurrent and the input 
connections (Fig.2). The network evolves in discrete steps, where a unit is 
activated (ci(t)=1) if its potential xi(t)=(Wc(t-1) + Vd(t-1))i exceeds threshold 
Θi, and deactivated (ci(t)=0) otherwise. A simple emulation of the DFA requires 
one neuron ci for each state zi, one neuron dk for each input symbol ak, synaptic 
connections wij=dkj=1 for each state transition (zi,ak)→zj and thresholds Θi=1.5. 
If at the beginning only neuron c0 is active the network obviously simulates the 
DFA. A biologically more realistic model would interpret the nodes in Fig.1 not 
as single neurons but as groups of nearby strongly interconnected neurons, i.e., 
local cell assemblies. This architecture has two additional advantages: First, it 
enables fault tolerance since incomplete input can be completed to the whole 
assembly. Second, overlaps between different assemblies can be used to express 
hierarchical relations between represented entities.  

Figure 1. DFA (left), neural network (mid), and cell assemblies (right). 
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3. Cortical language model 

The language system consists of a standard HMM-based speech recognition 
system on the word level, and a cortical language system which can analyse 
streams of words detected with respect to simple regular grammars (Knoblauch 
et al., 2004). Fig. 2 shows the 15 areas of the language system. Each area is 
modelled as a spiking associative memory of 400 neurons (Knoblauch & Palm, 
2001). Binary patterns constituting the neural assemblies are stored auto-
associatively in the local synaptic connections by Hebbian learning. 
The model can roughly be divided into three parts. (1) Auditory cortical areas 
A1, A2 and A3. (2) Grammatical areas A4 and A5-X. (3) Simple “activation 
fields” af-X that coordinate the activation or deactivation of the grammar areas.   
When processing language, first auditory input is represented in area A1 by 
primary  linguistic features (such as phonemes), and subsequently classified 
with respect to function in A2 and content in A3. The main purpose of area A4 
is to emulate a DFA in a similar way as the neural network in Fig. 1. Each node 
corresponds to an assembly representing a grammatical state, and each edge 
corresponds to a state transition stored in delayed recurrent hetero-associative 
connections of area A4. E.g., processing of a sentence "Bot show red plum" 
would activate the state sequence S→Pp→OA1→O1→ok_SPO corresponding 
to expectation of processing of a subject, a predicate, an object or attribute, and 
finally an object. If the sentence was not well formed with respect to the 
grammar, then the sequence terminates in an error state.  

Figure 2. Architecture of cortical language areas.  
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Finally, the robot has to "understand" the sentence by transforming the word 
stream into an action representation. This is the purpose of areas A5-X which 
correspond to different grammatical roles. A5-S represents the subject "bot", 
A5-P the predicate "show" and A5-O1a/O1 the object "red plum" (Fig. 2).  

4. Action processing 

Our system for planning, action, and motor processing can be divided into three 
parts (Fig 3). (1) The planning/goal areas represent the robot's goal after 
processing a spoken command. Sequence assemblies in area G1 represent lists 
of actions necessary to complete a task, e.g., seek→point for the command 
“show object”. Area G2 represents the current subgoal, and the remaining GX 
areas properties of involved objects. (2) The “motor” areas MX represent the 
motor command necessary to perform the current subgoal, and also control the 
low level attentional system. (3) Again there are “activation” fields (afX) and 
additionally “evaluation fields” that can compare representations of  different 
areas. For illustration we describe the task „bot show red plum“, where the robot 
has to point onto a red plum in the vicinity. First the robot has to understand the 
command as described in section 3 which activates the A5-representations. This 
information is routed to the goal areas where the first part of the sequence 
(seek→point) gets activated in G1. Similarly, object information is routed to 
areas G2, G3, G3attr. Since the plum’s location is unknown, there is no activity 
in area G4. After checking semantics, corresponding assemblies in the motor 

Figure 3. Architecture of the cortical action model. 
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areas are activated. This activates the attentional system and initiates the robot 
to seek the plum. Finding the plum activates corresponding visual assemblies in 
areas VX. The evaluation fields detect this and initiate areas G1, G2 to switch to 
the next state "point" of the action sequence. The robot will then adjust its 
“finger position” represented in area S1 in order to point to the plum. The 
matching of the positions will be detected by the evaluation fields and this 
eventually activates the final state in G1. 

5. Conclusion 

We have described the implementation of a cell assembly-based model of 
cortical language and action processing on a robot (cf. Knoblauch et al., 2004; 
Fay et al., 2004). The model consists of about 40 neuron populations each 
modelled as a spiking associative memory containing many "local" cell 
assemblies stored in local auto-associative connections (Knoblauch & Palm, 
2001). The neuron populations can be interpreted as different cortical and 
subcortical areas, where it is a long term goal of this project to establish a 
mapping of our “areas” into real cortex (Pulvermuller, 1999).  
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