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Abstract: 

Much of our understanding of Earth’s past climate comes from the measurement of oxygen and 

carbon isotope variations in deep-sea benthic foraminifera. Yet, long intervals in existing records 

lack the temporal resolution and age control needed to thoroughly categorize climate states of the 5 

Cenozoic Era and to study their dynamics. Here we present a new, highly resolved, 

astronomically dated, continuous composite of benthic foraminifer isotope records developed in 

our laboratories. Four climate states – Hothouse, Warmhouse, Coolhouse, Icehouse – are 

identified based on their distinctive response to astronomical forcing depending on greenhouse 

gas levels and polar ice sheet volume. Statistical analysis of the non-linear behavior encoded in 10 

our record reveals the key role that polar ice volume plays in the predictability of Cenozoic 

climate dynamics. 

 

 

One Sentence Summary: 15 

During the last 66 million years Earth’s climate system response to astronomical forcing was 

state-dependent.  
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Global changes in Earth’s climate during the Cenozoic Era, the last 66 million years, have long 

been inferred from stable isotope data in carbonate shells of benthic foraminifers, which are 

single-celled amoeboid organisms that live on the seafloor. Carbon and oxygen isotope records 

from deep-sea benthic foraminifers are a proven, invaluable archive of long-term changes in 

Earth’s carbon cycle, deep-sea temperature, and seawater composition driven by changes in ice 5 

volume (1, 2). In 1975, Shackleton and Kennett (3) produced one of the first deep-sea benthic 

foraminifer stable isotope records of the Cenozoic. Despite being of low temporal resolution it 

revealed that Earth’s climate had transitioned from a warm state 60 to 40 million years ago (Ma) 

to a cool state 10 to 5 Ma. Over the last 45 years, many deep-sea benthic foraminifer stable 

isotope records of variable length and quality have been developed, resulting in a more detailed 10 

record of Cenozoic climate change. Compilations of these deep-sea isotope records provide a 

compelling chronicle of past trends, cyclic variations, and transient events in the climate system 

from the Late Cretaceous to today (1, 4-10). However, even the most recent benthic isotope 

compilations cannot accurately document the full range and detailed characteristics of Cenozoic 

climate variability on time scales of ten thousand to one million years. Age models and temporal 15 

resolution of Cenozoic benthic isotope compilations are either too coarse and/or include gaps, 

particularly prior to 34 Ma. These weaknesses hamper progress in determining the dynamics of 

the Cenozoic climate system (4, 9, 11), for example, because they prohibit application of 

advanced techniques of non-linear time series analysis at the required (astronomical) time-scales. 

The lack of highly-resolved, continuous, and accurately dated records constitutes a key limitation 20 

in our ability to identify and understand the characteristics of Earth’s evolving climate during the 

Cenozoic. 
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Here, we present a new astronomically tuned deep-sea benthic foraminifer carbon δ13C and 

oxygen δ18O isotope reference record uniformly covering the entire Cenozoic, developed in our 

laboratories using sediment archives retrieved by scientific ocean drilling (Fig. 1). To produce 

this new composite record, we selected 14 ocean drilling records, checked and revised their 

composite splices where necessary, and preferentially selected records utilizing the genus 5 

Cibicidoides and Nuttallides to minimize systematic interspecies isotopic offsets (1, 4, 12, 13). 

We additionally generated new benthic stable isotope data spanning the late Miocene and 

middle-to-late Eocene to fill intervals inadequately covered by existing records. We collated 

existing astrochronologies for all records, recalibrated them to the La2010b orbital solution (14) 

if required, and developed a new astrochronology for the middle-to-late Eocene (13). We 10 

estimate our chronology to be accurate to ± 100-kyr for the Paleocene and Eocene, ± 50-kyr for 

the Oligocene to middle Miocene, and  ± 10-kyr for the late Miocene to Pleistocene. The 

composite record is affected by some spatial bias arising from the uneven distribution of deep-

sea stable isotope data that mainly derive from low- to mid-latitudes (13). Nevertheless, the 

resulting new Cenozoic Global Reference benthic foraminifer carbon and oxygen Isotope 15 

Dataset (CENOGRID) provides a refined record with higher signal-to-noise ratio than any 

previous compilations ((13); text S1), and better coverage of the Paleocene, Eocene and late 

Miocene intervals (Fig. S32). The CENOGRID serves as an astronomically tuned high-definition 

stratigraphic reference of past global climate evolution for the past 66 million years. 

On time scales of ten thousand to one million years, global climate is a complex, dynamical 20 

system responding non-linearly to quasi-periodic astronomical forcing. By combining the latest 

high-resolution generation of Cenozoic deep-sea isotope records on a highly accurate timescale, 

CENOGRID enables the definition of Earth’s fundamental climates and investigation of the 
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predictability of their dynamics. We used recurrence analysis (RA) of the CENOGRID record 

(13, 15) to identify fundamental climate states that internally share characteristic and statistically 

distinctive dynamics. Recurrence is a major property of dynamical systems and RA provides 

information about non-linear dynamics, dynamical transitions, and even non-linear 

interrelationships (15), and facilitates evaluation of underlying dynamical processes – e.g., 5 

whether they are stochastic, regular, or chaotic. We present recurrence plots and their 

quantification of the benthic foraminifer δ13C and δ18O records to recognize different climate 

states and apply the RA measure of ‘determinism’ (DET) to quantify the predictability of 

Cenozoic climate dynamics. 

Four distinctive climate states emerge as distinct blocks from our recurrence plots of the δ18O 10 

CENOGRID record that we label Hothouse, Warmhouse, Coolhouse, and Icehouse state (Fig. 2). 

Block-like structures in the recurrence plots identify epochs where the dynamical system is 

‘trapped’ in a particular state. This interpretation of Cenozoic climate history is broadly 

consistent with previous interpretations but our recurrence plot analysis of the highly resolved 

CENOGRID data provides a more statistically robust and objective exposition of events. 15 

Detailed features of the four climate states can be inferred from the isotope profiles (Fig. 1) and 

scatter plots of the CENOGRID δ13C and δ18O data, and atmospheric CO2 concentration 

estimates (Fig. 2; (13)). Warmhouse and Hothouse states prevailed from the 

Cretaceous/Paleogene boundary (K/Pg, 66 Ma) to the Eocene-Oligocene Transition (EOT, 34 

Ma). During the Warmhouse, global temperatures were more than 5°C warmer than today (13) 20 

and benthic δ13C and δ18O show a persistent positive correlation with one another. The Hothouse 

operated between the Paleocene-Eocene Thermal Maximum at 56 Ma and the end of the Early 

Eocene Climate Optimum (EECO) at 47 Ma (16), when temperatures were more than 10°C 
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warmer than today and displayed greater amplitude variability. Transient warming events 

(hyperthermals) are an intrinsic feature of the Hothouse, wherein paired negative excursions in 

δ13C and δ18O reflect warming globally through rapid addition of carbon to the ocean-

atmosphere system. The two Warmhouse phases from 66 to 56 Ma (Paleocene) and 47 to 34 Ma 

(middle-late Eocene) share a similar temperature range but have distinct background δ13C 5 

isotope values and atmospheric CO2 levels (Fig. 2, S35). At the EOT, the Warmhouse 

transitioned into the Coolhouse state, marked by a stepwise, significant drop in temperature and a 

major increase in continental ice volume with large ice-sheets appearing on Antarctica (17) to 

establish a unipolar glacial state (18). The recurrence plots mark out the EOT as the most 

prominent transition of the whole Cenozoic, which highlights the important role of ice sheets in 10 

modulating Earth’s climate state (Fig. S33; (13)). 

The Coolhouse state spans ~34 Ma (EOT) to 3.3 Ma (mid Pliocene M2 glacial), and is divided 

into two phases by the marked shift in δ18O increase at 13.9 Ma related to the expansion of 

Antarctic ice sheets during the middle Miocene Climate Transition (mMCT; (19)). Warmer 

conditions culminating in the Miocene Climatic Optimum (MCO; ~17-14 Ma; (20)) characterize 15 

the first phase, followed by cooling and increasing δ18O during the second phase (Fig 2). RA of 

carbon isotope data documents an additional major transition in the carbon cycle around 7 Ma 

related to end of the late Miocene Carbon Isotope Shift (11, 21, 22). A major change in the 

correlation between benthic foraminifer δ13C and δ18O occurs during the Pliocene epoch (23). 

The Icehouse climate state (Fig. 2), driven by the appearance of waxing and waning ice sheets in 20 

the northern hemisphere, was fully established by the Pliocene-Pleistocene transition (24) (Fig. 

1, 2) with Marine Isotope Stage M2 at 3.3 Ma being a possible harbinger. The recurrence plots 

are less pronounced and more transparent from 3.3 Ma to today (Fig. 2, S34), suggesting that 
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Earth’s climate-cryosphere dynamics entered a state not comparable to anything seen in the 

preceding 60 or more million years. 

The CENOGRID allows us to scrutinize the state-dependency of climate system response to CO2 

and astronomical forcing on ten thousand to one million year time scales (13). Astronomical 

forcing throughout the Cenozoic is consistently uniform, but the RA indicates that the non-linear 5 

response in climate variability to this forcing is strongly influenced by the fundamental state of 

climate. Evolutionary spectrograms characterize the dominant climatic response to astronomical 

forcing during the Cenozoic (Fig. 3). We find that the prevailing climate state as characterized by 

atmospheric CO2 concentration and polar ice sheets seems to orchestrate the response and impact 

of climate processes to astronomical forcing. Modeled insolation-driven global temperature 10 

variability on astronomical time scales suggest that different temperature response regimes exist: 

eccentricity dominates temperature responses in low latitudes, precession in mid latitudes and 

obliquity in high latitudes (25). Thus, pronounced astronomical cyclicity in the CENOGRID 

could reflect climate-state dependent amplifications of latitude-specific climate processes. 

In the Hothouse and Warmhouse, as well as the first Coolhouse phase, eccentricity-related cycles 15 

dominate the CENOGRID indicating a strong influence of low-latitude processes on climate 

variations. Obliquity-related cycles are sparse in these intervals, but have been documented in 

other geochemical records (26, 27) exhibiting perhaps local lithological responses. Weak 

response in the obliquity-band during the Hothouse and Warmhouse intervals might be related to 

the absence of a high-latitude ice sheet that could have amplified climate response to obliquity 20 

forcing. The driving mechanism for the prevailing eccentricity cyclicity in the benthic δ13C and 

δ18O records is still unknown, but modeling suggests that low- and mid-latitude processes in the 

climate system respond in a non-linear way to insolation forcing (25, 28-30). In this regard, a key 
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feedback likely involves the hydrological cycle with highly seasonal precipitation patterns during 

intervals of strong monsoon response to precession-induced insolation change which could play 

a major role in the global distribution of moisture and energy (31-34). The expression of 

precession is apparently weak in the CENOGRID composite record despite the dominant 

eccentricity forcing, likely due to the long residence time of carbon in the oceans enhancing 5 

longer forcing periods (30, 35), as well as our strategy to avoid ‘overtuning’ the record. 

Following the increasing influence of high latitude cooling and ice growth during the second 

Coolhouse phase, the obliquity-band response steadily increases after the mMCT before 

dominating climate dynamics by the late Miocene-early Pliocene (11, 22, 36). In the Icehouse 

state, the progressive decrease in atmospheric CO2 and major growth of polar ice sheets, which 10 

enhanced variability in δ18O, steadily amplified the influence of complex high latitude feedbacks 

until they essentially dominate climate dynamics. 

To better understand the complexity of climate dynamics recorded in the CENOGRID, we 

computed the RA measure of determinism (DET, (13)). This parameter quantifies the 

predictability of dynamics in a system's state. Predictability estimates the stochastic 15 

(unpredictable) versus the deterministic (predictable) nature of climate dynamics recorded in 

CENOGRID (13). DET values near zero correspond to unpredictable dynamics, whereas large 

values indicate predictable dynamics, which are especially interesting to examine on the 

approach to tipping points. Changes in DET can thus reveal transitions between fundamentally 

different climate regimes. 20 

Our RA suggests that climate dynamics during the Warmhouse and Hothouse Cenozoic states 

are more predictable or more regular than those of the Coolhouse and Icehouse states (Fig. 3). 

The growth of polar ice sheets at the EOT enhanced the effect of obliquity pacing of high 
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latitude climate that interacted with eccentricity-modulated precession forcing at lower latitudes 

from that point in time. This led to increased non-linear interactions among astronomically paced 

climate processes, and thus more complex, stochastic climate dynamics. The development of 

large Antarctic ice volume at the inception of the Coolhouse is associated with a fundamental 

regime change towards less predictable climate variability (lower DET values calculated from 5 

benthic δ18O, Fig. 3). From 25 to 13.9 Ma DET is elevated again, related to a reduction in ice 

volume in relatively warmer times of the Coolhouse, culminating in the MCO. Despite the 

growing influence of ice sheets in the Coolhouse, until ~6 to 7 Ma carbon cycle dynamics remain 

more deterministic than temperature because δ13C variations are predominantly driven by low-

latitude processes and less strongly influenced by the complex interaction with polar ice-sheet 10 

fluctuations. After ~6 Ma DET drops likely due to stronger cryosphere imprint on the carbon 

cycle. Upon initiation of the Icehouse at 3.3 Ma, δ18O recorded climate dynamics become 

slightly more deterministic (37) and carbon cycle dynamics unpredictable, likely resulting from 

the complex response to the waxing and waning of polar caps (38). 

The CENOGRID spectrogram displays a broader frequency range during several intervals with 15 

low DET values (e.g., Coolhouse), while high DET values (e.g., Warmhouse) occur when single 

frequencies dominate (Fig. 3). This could be signaling a more direct response to astronomical 

forcing in the Warmhouse compared to the Coolhouse. Our RA suggests that the Hothouse is 

more stochastic (less predictable) than the Warmhouse, presumably induced by the occurrence of 

extreme hyperthermal events and their strong non-linear and much amplified climate response to 20 

astronomical forcing (39, 40). The evolving pattern in the DET from the onset of cooling after 

the EECO to the EOT is striking (Fig. 3). The amplitude in fluctuations between stochastic and 

deterministic dynamics intensifies from 49 Ma to 34 Ma, consistent with how Earth’s climate 



Submitted Manuscript: Confidential 

10 

 

system is suggested to behave (41, 42) as it moves towards a major tipping point. Once that 

tipping point is reached at the EOT, a rapid shift toward more permanently stochastic dynamics 

marks the inception of a new climate state (43). Thus polar ice volume is not only critical to 

defining Earth’s fundamental climate state, it also seems to play a critical role in determining the 

predictability of its climatological response to astronomical forcing. 5 
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Fig. 1.  Cenozoic Global Reference benthic carbon and oxygen Isotope Dataset 

(CENOGRID) from ocean drilling core sites spanning the past 66 million years.  Data are 

mostly generated using benthic foraminifera tests of the taxa Cibicidoides and Nuttalides 

extracted from carbonate rich deep-sea sediments drilled during ODP / IODP expeditions.  

Genus-specific corrections were applied and oxygen isotope data adjusted by +0.64‰ and 5 

+0.4‰, respectively (12), with the green dot indicating the average oxygen isotope composition 

of the last 10 kyr.  Average resolution for the last 34 million years is one sample every 2 kyr, for 

the interval from 34 to 67 million years 4.4 kyr.  After binning data were resampled and 

smoothed by a locally weighted function over 20 kyr (blue curve) and 1 Myr (red curve) to 

accentuate the different rhythms and trends in Earth’s carbon cycle and temperature operating on 10 

various time scales.  Oxygen isotope data have been converted to average temperature 

differences with respect to today (13). Future projections for global temperature (44) in the Year 

2300 are shown by plotting three Representative Concentration Pathways (RCP) scenarios are 

plotted (light and dark blue, red dots). Gray horizontal bars mark rough estimates of ice volume 

in each hemisphere. Absolute ages for epochs and stages of the Cenozoic (GTS2012) and 15 

geomagnetic field reversals (this study) are provided for reference.  Note that the oxygen isotope 

data axis is reversed to reflect warmer temperatures at times of lower d18O values.  K/Pg is the 

Cretaceous/Paleogene boundary, Oi-1 is the first major glacial period in the Oligocene, M2 is the 

first major glacial event in the Northern Hemisphere. 

Fig. 2.  Climate states of the Cenozoic.  Deep-sea benthic foraminifer high-resolution carbon 20 

(A) and oxygen (B) isotope records and the respective recurrence plots as well as scatter plots of 

long-term benthic foraminifer carbon versus oxygen values (C) and oxygen values versus 

atmospheric CO2 concentrations (D). Recurrence analysis compares climate change patterns 

occurring in a specific interval to the entire record. If climate dynamics have similar patterns 

they will show up as darker areas in the plot, if they have no common dynamics the plot will 25 

remain white. Four distinct climate states can be identified as Hothouse, Warmhouse, Coolhouse, 

and Icehouse with distinct transitions among them. The relation of oxygen isotopes, 

representative for average global temperature trends, to atmospheric CO2 concentrations suggests 

that the present climate system as of today (415 ppm CO2) is comparable to the Miocene 

Coolhouse close to the Miocene Climate Optimum. If CO2 emissions continue unmitigated until 30 

2100 as assumed for the RCP8.5 scenario, the Earth climate system will be moved abruptly from 

the Icehouse into the Warmhouse or even Hothouse climate state. 

Fig. 3.  Quasi-periodic changes and determinism in the global reference carbon cycle and 

oxygen isotope record. Evolutionary FFT spectrogram, recurrence determinism analysis and 

benthic foraminifer oxygen (A) and carbon (B) isotope data plotted on age with the four climate 35 

states. Frequencies between two and sixty cycles per million years are related to changes in 

Earth’s orbital parameters, known as Milankovitch cycles.  The FFT spectrograms were 

computed with a 5-Myr window on the detrended records of benthic carbon and oxygen isotope 

data. From 67 to 13.9 Ma cyclic variations in global climate are dominated by the 405- and 100-

kyr eccentricity cycles. Thereafter, in particular in the oxygen isotope record, the influence of 40 

obliquity increased, dominating the rhythm of climate in the record younger than ~7.7 million 

years. Recurrence analysis of determinism (DET) shows that climate in the Warmhouse state is 

more deterministic (predictable) than in the Hot-, Cool- and Icehouse. From 47 Ma towards the 

Eocene-Oligocene Transition at 34 Ma climate dynamic changes are rising in amplitude 
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approaching a threshold in the Climate System. If DET tends to low values, the dynamics are 

stochastic, whereas high values represent deterministic dynamics. 








