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Abstract

Heterogeneous computing combines general purpose CPUs with
accelerators to efficiently execute both sequential control-inten-
sive and data-parallel phases of applications. Existing program-
ming models for heterogeneous computing rely on programmers to
explicitly manage data transfers between the CPU system memory
and accelerator memory.

This paper presents a new programming model for heteroge-
neous computing, called Asymmetric Distributed Shared Memory
(ADSM), that maintains a shared logical memory space for CPUs
to access objects in the accelerator physical memory but not vice
versa. The asymmetry allows light-weight implementations that
avoid common pitfalls of symmetrical distributed shared memory
systems. ADSM allows programmers to assign data objects to per-
formance critical methods. When a method is selected for acceler-
ator execution, its associated data objects are allocated within the
shared logical memory space, which is hosted in the accelerator
physical memory and transparently accessible by the methods exe-
cuted on CPUs.

We argue that ADSM reduces programming efforts for hetero-
geneous computing systems and enhances application portability.
We present a software implementation of ADSM, called GMAC,
on top of CUDA in a GNU/Linux environment. We show that ap-
plications written in ADSM and running on top of GMAC achieve
performance comparable to their counterparts using programmer-
managed data transfers. This paper presents the GMAC system and
evaluates different design choices. We further suggest additional ar-
chitectural support that will likely allow GMAC to achieve higher
application performance than the current CUDA model.

Categories and Subject Descriptors D.4.2 [Operating Systems]:
Storage Management—Distributed Memories

General Terms Design, Experimentation, Performance
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1. Introduction

Maximizing multi-thread throughput and minimizing single-thread
latency are two design goals that impose very different and often
conflicting requirements on processor design. For example, the
Intel Xeon E7450 [28] processor consists of six processor cores
each of which is an high-frequency out-of-order, multi-instruction-
issue processor with a sophisticated branch prediction mechanism
to achieve short single-thread execution latency. This is in contrast
to the NVIDIA Tesla GT200 Graphics Processing Unit (GPU) [35]
design that achieves high multi-thread throughput with many cores,
each of which is a moderate-frequency, multi-threaded, in-order
processor that shares its control unit and instruction cache with
seven other cores. For control intensive code, the E7450 design can
easily outperform the NVIDIA Tesla. For massively data parallel
applications, the NVIDIA Tesla design can easily achieve higher
performance than the E7450.

Data parallel code has the property that multiple instances of
the code can be executed concurrently on different data. Data par-
allelism exists in many applications such as physics simulation,
weather prediction, financial analysis, medical imaging, and me-
dia processing. Most of these applications also have control-inten-
sive phases that are often interleaved between data-parallel phases.
Hence, general purpose CPUs and accelerators can be combined to
form heterogeneous parallel computing systems that efficiently ex-
ecute all application phases [39]. There are many examples of suc-
cessful heterogeneous systems. For example, the RoadRunner su-
percomputer couples AMD Opteron processors with IBM PowerX-
Cell accelerators. If the RoadRunner supercomputer were bench-
marked using only its general purpose CPUs, rather than being the
top-ranked system in the Top500 List (June 2008), it would drop to
a 50th-fastest ranking [6].

Current commercial programming models of processor-accel-
erator data transfer are based on Direct Memory Access (DMA)
hardware, which is typically exposed to applications programmers
through memory copy routines. For example, in the CUDA pro-
gramming model [38], an application programmer can transfer data
from the processor to the accelerator device by calling a memory
copy routine whose input parameter includes a source data pointer
to the processor memory space, a destination pointer to the accel-
erator memory space, and the number of bytes to be copied. The
memory copy interface ensures that the accelerator can only access
the part of the application data that is explicitly requested by the
memory copy parameters.

In this paper we argue that heterogeneous systems benefit from
a data-centric programming model where programmers assign data
objects to performance critical methods. This model provides the
run-time system with enough information to automatically trans-
fer data between general purpose CPUs and accelerators. Such a



run-time system improves programmability and compatibility of
heterogeneous systems. This paper introduces the Asymmetric Dis-
tributed Shared Memory (ADSM) model, a data-centric program-
ming model, that maintains a shared logical memory space for
CPUs to access objects in the accelerator physical memory but not
vice versa. This asymmetry allows all coherence and consistency
actions to be executed on the CPU, allowing the use of simple ac-
celerators. This paper also presents GMAC, a user-level ADSM
library, and discusses design and implementation details of such
a system. Experimental results using GMAC show that an ADSM
system makes heterogeneous systems easier to program without in-
troducing performance penalties.

The main contributions of this paper are: (1) the introduction
of ADSM as a data-centric programming model for heterogeneous
systems. The benefits of this model are architecture independence,
legacy support, and efficient I/O support; (2) a detailed discussion
about the design of an ADSM system, which includes the definition
of the necessary API calls and the description of memory coherence
and consistency required by an ADSM system; (3) a description
of the software techniques required to build an ADSM system for
current accelerators on top of existing operating systems; (4) an
analysis of different coherence protocols that can be implemented
in an ADSM system.

This paper is organized as follows. Section 2 presents the neces-
sary background and motivates this work. ADSM is presented as a
data-centric programming model in Section 3, which also discusses
the benefit of ADSM for heterogeneous systems and presents the
API, consistency model, and different coherence protocols for
ADSM systems. The design and implementation of an ADSM
system, GMAC, is presented in Section 4. Section 5 presents ex-
perimental results. ADSM is compared to other work in Section 6.
Finally, Section 7 concludes this paper.

2. Background and Motivation
2.1 Background

General purpose CPUs and accelerators can be coupled in many
different ways. Fine-grained accelerators are usually attached as
functional units inside the processor pipeline [21, 22, 41, 43]. The
Xilinx Virtex 5 FXT FPGAs include a PowerPC 440 connected
to reconfigurable logic by a crossbar [46]. In the Cell BE chip,
the Synergistic Processing Units, L2 cache controller, the memory
interface controller, and the bus interface controller are connected
through an Element Interconnect Bus [30]. The Intel Graphics
Media Accelerator is integrated inside the Graphics and Memory
Controller Hub that manages the flow of information between the
processor, the system memory interface, the graphics interface, and
the I/O controller [27]. AMD Fusion chips will integrate CPU,
memory controller, GPU, and PCIe Controller into a single chip. A
common characteristic among Virtex 5, Cell BE, Graphics Media
Accelerator, and AMD Fusion is that general purpose CPUs and
accelerators share access to system memory. In these systems, the
system memory controller deals with memory requests coming
from both general purpose CPUs and accelerators.

Accelerators and general purpose CPUs impose very differ-
ent requirements on the system memory controller. General pur-
pose CPUs are designed to minimize the instruction latency and
typically implement some form of strong memory consistency
(e.g., sequential consistency in MIPS processors). Accelerators
are designed to maximize data throughput and implement weak
forms of memory consistency (e.g. Rigel implements weak consis-
tency [32]). Memory controllers for general purpose CPUs tend to
implement narrow memory buses (e.g. 192 bits for the Intel Core
i7) compared to data parallel accelerators (e.g. 512 bits for the
NVIDIA GTX280) to minimize the memory access time. Relaxed
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Figure 1. Reference Architecture, similar to desktop GPUs and
RoadRunner blades

consistency models implemented by accelerators allow memory
controllers to serve several requests in a single memory access.
Strong consistency models required by general purpose CPUs do
not offer the same freedom to rearrange accesses to system mem-
ory. Memory access scheduling in the memory controller has differ-
ent requirements for general purpose CPUs and accelerators (i.e.,
latency vs throughput). Virtual memory management also tends
to be quite different on CPUs and accelerators (e.g., GPUs tend
to benefit more from large page sizes than CPUs), which makes
the design of TLBs and MMUs quite different (e.g., incompatible
memory page sizes). Hence, general purpose CPUs and acceler-
ators are connected to separate memories in most heterogeneous
systems, as shown in Figure 1. Many such examples of hetero-
geneous systems currently exist. The NVIDIA GeForce graphics
card [35] includes its own GDDR memory (up to 4GB) and is at-
tached to the CPU through a PCle bus. Future graphics cards based
on the Intel Larrabee [40] chip will have a similar configuration.
The Roadrunner supercomputer is composed of nodes that include
two AMD Opteron CPUs (IBM BladeCenter LS21) and four Pow-
erXCell chips (2x IBM BladeCenter QS22). Each LS21 BladeCen-
ter is connected to two QS22 BladeCenters through a PCle bus,
constraining processors to access only on-board memory [6]. In
this paper we assume a base heterogeneous system in Figure 1.
However, the concepts developed in this paper are equally applica-
ble to systems where general purpose CPUs and accelerators share
the same physical memory.

2.2 Motivation

Heterogeneous parallel computing improves application perfor-
mance by executing computationally intensive data-parallel kernels
on accelerators designed to maximize data throughput, while exe-
cuting the control-intensive code on general purpose CPUs. Hence,
some data structures are likely to be accessed primarily by the code
executed by accelerators. For instance, execution traces show that
about 99% of read and write accesses to the main data structures in
the NASA Parallel Benchmarks (NPB) occur inside computation-
ally intensive kernels that are amenable for parallelization.

Figure 2 shows our estimation for the average memory band-
width requirements for the computationally intensive kernels of
some NPB benchmarks, assuming a 800MHz clock frequency for
different values of IPC and illustrates the need to store the data
structures required by accelerators in their own memories. For in-
stance, if all data accesses are done through a PCle bus!, the max-
imum achievable value of IPC is 50 for bt and 5 for ua, which

'If both accelerator and CPU share the same memory controller, the avail-
able accelerator bandwidth will be similar to HyperTransport in Figure 2,
which also limits the maximum achievable value of IPC.
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Figure 2. Estimated bandwidth requirements for computationally
intensive kernels of bt, ep, 1u, mg, ua benchmarks, assuming a
800MHz clock frequency

is a very small fraction of the peak execution rate of the NVIDIA
GTX295 GPU. In all cases, the level of IPC that can be supported
by the GTX295 memory bandwidth is much higher than the sup-
ported by PCle or similar interconnect schemes. In order to achieve
optimal system performance, it is crucial to host data structures ac-
cessed by computationally intensive kernels in on-board accelerator
memories.

These results discourage the implementation of fully-coherent
heterogeneous system due to the high number of coherence re-
quests produced by accelerators during kernel execution (e.g., in-
validation requests the first time data initialized by the CPU is ac-
cessed by accelerators). Moreover, a fully coherent heterogeneous
system would require both, CPUs and accelerators to implement
the very same coherence protocol. Hence, it would be difficult, if
not infeasible, to use the same accelerator (e.g., a GPU) in sys-
tems based on different CPU architectures, which would impose a
significant economic penalty on accelerator manufactures. Finally,
the logic required to implement the coherence protocol in the ac-
celerator would consume a large silicon area, currently devoted to
processing units, which would decrease the benefit of using accel-
erators.

The capacity of on-board accelerator memories is growing and
currently allows for many data structures to be hosted by accel-
erators memories. Current GPUs use 32-bit physical memory ad-
dresses and include up to 4GB of memory and soon GPU architec-
tures will move to larger physical addresses (e.g., 40-bit in NVIDIA
Fermi) to support larger memory capacities. IBM QS20 and QS21,
the first systems based on Cell BE, included 512MB and 1GB of
main memory per chip respectively. IBM QS22, the latest Cell-
based system, supports up to 16GB of main memory per chip. IBM
QS22 is based on the PowerXCell 8i chip, which is an evolution of
the original Cell BE chip, modified to support a larger main mem-
ory capacity [6]. These two examples illustrate the current trend
that allows increasingly larger data structures to be hosted by ac-
celerators and justifies our ADSM design.

Programming models for current heterogeneous parallel sys-
tems, such as NVIDIA CUDA [11] and OpenCL [1], present dif-
ferent memories in the system as distinct memory spaces to the
programmer. Applications explicitly request memory from a given
memory space (i.e. cudaMalloc()) and perform data transfers be-
tween different memory spaces (i.e. cudaMemcpy ()). The exam-
ple in Figure 3 illustrates this situation. First, system memory is
allocated (malloc()) and initialized (fread()). Then, accelera-
tor memory is allocated (cudaMalloc()) and the data structure is
copied to the accelerator memory (cudaMemcpy () ), before code is
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void compute(FILE *file, int size)

alloc(size);

floa
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Pointers
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I cudaMemcpy (foo, dev_foo, size,:

cudaMemcpyDeviceToHost);

Figure 3. Example code with duplicated pointers and explicit con-
sistency management

executed on the accelerator. OpenCL and Roadrunner codes do not
significantly differ from code in Figure 3.

Such programming models ensure that data structures reside in
the memory of the processor (CPU or accelerator), that performs
subsequent computations. These models also imply that program-
mers must explicitly request memory on different processors and,
thus, a data structure (foo in Figure 3) is referenced by two differ-
ent memory addresses: foo, a virtual address in system memory,
and dev_foo, a physical address in the accelerator memory. Pro-
grammers must explicitly manage memory coherence (e.g., with a
call to cudaMemcpy () ) before executing kernels on the accelerator.
This approach also prevents parameters from being passed by refer-
ence to accelerator kernels [19] and computationally critical meth-
ods to return pointers to the output data structures instead of return-
ing the whole output data structure, which would save bandwidth
whenever the code at CPU only requires accessing a small portion
of the returned data structure. These approaches harm portability
because they expose data transfer details of the underlaying hard-
ware. Offering a programming interface that requires a single allo-
cation call and removes the need for explicit data transfers would
increase programmability and portability of heterogeneous systems
and is the first motivation of this paper.

The cost of data transfers between general purpose CPUs and
accelerators might eliminate the benefit of using accelerators. Dou-
ble buffering can help to alleviate this situation by transferring parts
of the data structure while other parts are still in use. In the ex-
ample of Figure 3, the input data would be read iteratively using
a call to fread () followed by an asynchronous DMA transfer to
the accelerator memory. Synchronization code is necessary to pre-
vent overwriting system memory that is still in use by an ongoing
DMA transfer [19]. The coding effort to reduce the cost of data
transfer harms programmability of heterogeneous systems. Auto-
matically overlapping data transfers and CPU computation without
code modifications is the second motivation of this paper.

3. Asymmetric Distributed Shared Memory

Asymmetric Distributed Shared Memory (ADSM) maintains a
shared logical memory space for CPUs to access objects in the ac-
celerator physical memory but not vice versa. This section presents
ADSM as a data-centric programming model and the benefit of an
asymmetric shared address space.

3.1 ADSM as a Data-Centric Programming Model

In a data-centric programming model, programmers allocate or de-
clare data objects that are processed by methods, and annotate per-
formance critical methods (kernels) that are executed by accelera-
tors. When such methods are assigned to an accelerator, their cor-



void compute(FILE *file, int size)
{ e
*f00; A
float *foo; Pointer

foo = accMalloc(size);

fread(foo, size, 1, FILE);

kernel<<<Dg, Db>>>(foo, size);

Data Object

Binding

Legacy

libraryCall(foo); SuEEE
u

accFree(foo);
}

Figure 4. Usage example of ADSM

responding data objects are migrated to on-board accelerator mem-
ory. Figure 4 shows an example using such a model, based on the
code from Figure 3, and illustrates the main benefits of a data-cen-
tric programming model with ADSM for heterogeneous systems:
architecture-independence, legacy-code support, and peer DMA.

ADSM removes the need to explicitly request memory on dif-
ferent memory spaces. Programmers assign data objects to meth-
ods that might or might not be executed by accelerators. Run-time
systems can be easily built under this programming model to au-
tomatically assign methods and their data objects to accelerators,
if they are present in the system. High performance systems are
likely to continue having separate physical memories and access
paths for CPUs and accelerators. However, CPUs and accelerators
are likely to share the same physical memory and access path in
low-cost systems. An application written following a data-centric
programming model will target both kinds of systems efficiently.
When the application is run on a high performance system, accel-
erator memory is allocated and the run-time system transfers data
between system memory and accelerator memory when necessary.
In the low-cost case, system memory (shared by CPU and accel-
erator) is allocated and no transfer is done. Independence from the
underlying hardware is the first benefit provided by ADSM.

ADSM offers a convenient software migration path for exist-
ing applications. Performance critical libraries and application code
are moved to accelerator engines, leaving less critical code porting
for later stages [6]. CPUs and accelerators do not need to be ISA-
compatible to interoperate, as long as data format and calling con-
ventions are consistent. This programming model provides the run-
time system with the information necessary to make data structures
accessible to the code that remains for execution by the CPU. This
is the second gain offered by a data-centric programming model.

Data objects used by kernels are often read from and written
to I/O devices (e.g., a disk or network interface). ADSM enables
data structures used by accelerators to be passed as parameters
to the corresponding system calls that read or write data for I/O
devices (e.g. read () or write()). If supported by the hardware,
the run-time system performs DMA transfers directly to and from
accelerator memory (peer DMA), otherwise an intermediate buffer
in system memory might be used. Applications benefit from peer
DMA without any source code modifications, which is the third
advantage of this programming model.

3.2 ADSM Run-time Design Rationale

As discussed in Sec. 2.2, distributed memories are necessary to
extract all the computational power from heterogeneous systems.
However, a data-centric programming model hides the complexity
of this distributed memory architecture from programmers.

A DSM run-time system reconciles physically distributed mem-
ory and logical shared memory. Traditional DSM systems are prone
to thrashing, which is a performance limiting factor. Thrashing in
DSM systems typically occurs when two nodes compete for write
access to a single data item, causing data to be transferred back
and forth at such a high rate that no work can be done. Access to

350

API Call Description

adsmAlloc(size) Allocates size bytes of shared memory and returns
the shared memory address where the allocated
memory begins.

adsmFree(addr) Releases a shared memory region that was previ-
ously allocated using adsmAlloc().

adsmCall(kernel) | Launches the execution of method kernel in an ac-
celerator.

adsmSync() Yields the CPU to other processes until a previous
accelerator calls finishes.

Table 1. Compulsory API calls implemented by an ADSM run-
time

synchronization variables, such as locks and semaphores, tends to
be a primary cause of thrashing in DSM. This effect is unlikely
to occur in heterogeneous systems because hardware interrupts are
typically used for synchronization between accelerators and CPUs
and, therefore, there are no shared synchronization variables.

If synchronization variables are used (e.g., polling mode), spe-
cial hardware mechanisms are typically used. These special syn-
chronization variables are outside the scope of our ADSM design.
False sharing, another source of thrashing in DSM, is not likely to
occur either because sharing is done at the data object granularity.

A major issue in DSM is the memory coherence and consistency
model. DSM typically implements a relaxed memory consistency
model to minimize coherence traffic. Relaxed consistency models
(e.g., release consistency) reduce coherence traffic at the cost of
requiring programmers to explicitly use synchronization primitives
(e.g. acquire and release). In a data-centric programming model
memory consistency is only relevant from the CPU perspective
because all consistency actions are driven by the CPU at method
call and return boundaries. Shared data structures are released by
the CPU when methods using them are invoked, and data items are
acquired by the CPU when methods using them return.

DSM pays a performance penalty for detection of memory
accesses to shared locations that are marked as invalid or dirty.
Memory pages that contain invalid and dirty items are marked
as not present in order to get a page fault whenever the program
accesses any of these items. This penalty is especially important
for faults produced by performance critical code whose execution
is distributed among the nodes in the cluster. Data cannot be eagerly
transferred to each node to avoid this performance penalty because
there is no information about which part of the data each node will
access. This limitation is not present in ADSM since the accelerator
executing a method will access only shared data objects explicitly
assigned to the method.

The lack of synchronization variables hosted by shared data
structures, the implicit consistency primitives at call/return bound-
aries, and the knowledge of data structures accessed by perfor-
mance critical methods are the three reasons that lead us to design
an ADSM as an efficient way to support a data-centric program-
ming model on heterogeneous parallel systems.

3.3 Application Programming Interface and Consistency
Model

We identify four fundamental functions an ADSM system must im-
plement: shared-data allocation, shared-data release, method invo-
cation, and return synchronization. Table 1 summarizes these nec-
essary API calls.

Shared-data allocation and release calls are used by program-
mers to declare data objects that will be used by kernels. In its
simplest form, the allocation call only requires the size of the data
structure and the release requires the starting memory address for
the data structure to be released. This minimal implementation as-
sumes that any data structure allocated through calls to the ADSM



API will be used by all accelerator kernels. A more elaborate
scheme would require programmers to pass one or more method
identifiers to effectively assign the allocated/released data object to
one or more accelerator kernels.

Method invocation and return synchronization are already found
in many heterogeneous programming APIs, such as CUDA. The
former triggers the execution of a given kernel in an accelerator,
while the latter yields the CPU until the execution on the accelerator
is complete.

ADSM employs a release consistency model where shared data
objects are released by the CPU on accelerator invocation (adsm-
Call()) and acquired by the CPU on accelerator return (adsm-
Sync()). This semantic ensures that accelerators always have access
to the objects hosted in their physical memory by the time a kernel
operates on them. Implicit acquire/release semantics increase pro-
grammability because they require fewer source code lines to be
written and it is quite natural in programming environments such as
CUDA, where programmers currently implement this consistency
model manually, through calls to cudaMemcpy ().

4. Design and Implementation

This section describes the design and implementation of Global
Memory for ACcelerators (GMAC), a user-level ADSM run-time
system. The design of GMAC is general enough to be applica-
ble to a broad range of heterogeneous systems, such as NVIDIA
GPUs or the IBM PowerXCell 8i. We implement GMAC for GNU/
Linux based systems that include CUDA-capable NVIDIA GPUs.
The implementation techniques presented here are specific to our
target platform but they can be easily ported to different operating
systems (e.g. Microsoft Windows) and accelerator interfaces (e.g.
OpenCL).

ADSM might be implemented using a hybrid approach, where
low-level functionalities are implemented in the operating system
kernel and high-level API calls are implemented in a user-level
library. Implementing low-level layers within the operating sys-
tem kernel code allows I/O operations involving shared data struc-
tures to be fully supported without performance penalties (see Sec-
tion 4.4). We implement all GMAC code in a user-level library be-
cause there is currently no operating system kernel-level API for
interacting with the proprietary NVIDIA driver required by CUDA.

By using a software implementation of ADSM, GMAC allows
multiple cores in a cache-coherent multi-core CPU to all maintain
and access share memories with accelerators.

4.1 Opverall Design

Figure 5 shows the overall design of the GMAC library. The lower-
level layers (OS Abstraction Layer and Accelerator Abstraction
Layer) are operating system and accelerator dependent, and they
offer an interface to upper-level layers for allocation of system
and accelerator memory, setting of memory page permission bits,
transfer of data between system and accelerator memory, invoca-
tion of kernels, and waiting for completion of accelerator execu-
tion, I/O functions, and data type conversion, if necessary. In our
reference implementation the OS Abstraction Layer interacts with
POSIX-compatible operating systems such as GNU/Linux. We im-
plement two different Accelerator Abstraction Layers to interact
with CUDA-capable accelerators: the CUDA Run-Time Layer and
the CUDA Driver Layer. The former interacts with the CUDA run-
time, which offers us limited control over accelerators attached to
the system. The latter interacts with the CUDA driver, which of-
fers a low-level API and, thus, allows having full control over ac-
celerators at the cost of more complex programming of the GMAC
code base. At application load-time, the user can select which of the
two different Accelerator Abstraction Layers to use. In Section 5,
we use the CUDA Run-Time Layer to compare the performance
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Figure 5. Software layers that conforms the GMAC library.

of GMAC with respect to CUDA and the CUDA Driver Layer to
extract a detailed execution time break-down of applications. The
top-level layer implements the GMAC API to be used by applica-
tions and libraries.

The Shared Memory Manager in Figure 5 manages shared
memory areas and creates the shared address space between host
CPUs and accelerators. An independent memory management
module allows testing of different management policies and co-
herence protocols with minor modifications to the GMAC code
base. The kernel scheduler selects the most appropriate accelerator
for execution of a given kernel, and implements different schedul-
ing policies depending on the execution environment. A detailed
analysis of kernel scheduling is out of the scope of the present
paper and we refer the reader to Jimenez et al. [29].

4.2 Shared Address Space

GMAC builds a shared address space between the CPUs and the ac-
celerator. When the application requests shared memory (adsmAl-
loc()), accelerator memory is allocated on the accelerator, returning
a memory address (virtual or physical, depending on the accelera-
tor) that can be only used by the accelerator. Then, we request the
operating system to allocate system memory over the same range
of virtual memory addresses. In a POSIX-compliant operating sys-
tem this is done through the mmap system call, which accepts a
virtual address as a parameter and maps it to an allocated range of
system memory (anonymous memory mapping). At this point, two
identical memory address ranges have been allocated, one in the
accelerator memory and the other one in system memory. Hence, a
single pointer can be returned to the application to be used by both
CPU code and accelerator code.

The operating system memory mapping request might fail if
the requested virtual address range is already in use. In our sin-
gle-GPU target system this is unlikely to happen because the ad-
dress range typically returned by calls to cudaMalloc () is outside
the ELF program sections. However, this implementation technique
might fail when using other accelerators (e.g. ATI/AMD GPUs) or
on multi-GPU systems, where calls to cudaMalloc() for differ-
ent GPUs are likely to return overlapping memory address ranges.
A software-based solution for this situation requires two new API
calls: adsmSafeAlloc(size) and adsmSafe(address). The former al-
locates a shared memory region, but returns a pointer that is only
valid in the CPU code. The latter takes a CPU address and re-
turns the associated address for the target GPU. GMAC maintains
the mapping between these associated addresses so that any CPU
changes to the shared address region will be reflected in the accel-
erator memory. Although this software technique works in all cases
where shared data structures do not contain embedded pointers, it
requires programmers to explicitly call adsmSafe() when passing
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Figure 6. State transition diagram for the memory coherence pro-
tocols implemented in GMAC.

references to the accelerator. Since OpenCL does not allow the use
of pointers in GPU kernel code, such kernels are already written
using relative memory indexing arithmetic.

A good solution to the problem of conflicting address ranges
between multiple accelerators is to have virtual memory mecha-
nisms in accelerators. With virtual memory mechanisms in both
CPUs and accelerators, the adsmAlloc() can be guaranteed to find
an available virtual address in both CPU’s address space and accel-
erator’s address space. Thus, accelerators and CPUs can always use
the same virtual memory address to refer to shared data structures.
Additionally, accelerator virtual memory simplifies the allocation
of shared data structures. In this case, the implementation of ads-
mAlloc() first allocates system and accelerator memory and fills the
necessary memory translation data structures (e.g., a page table) to
map the allocated physical system and accelerator memory into the
same virtual memory range on the CPU and on the accelerator. Vir-
tual memory mechanisms are implemented in latest GPUs, but not
available to programmers [24]

4.3 Memory Coherence Protocols

The layered GMAC architecture allows multiple memory coher-
ence protocols to coexist and enables programmers to select the
most appropriate protocol at application load time. The GMAC co-
herence protocols are defined from the CPU perspective. All book-
keeping and data transfers are managed by the CPU. The accelera-
tors do not perform any memory consistency or coherence actions.
This asymmetry allows the use of simple accelerators.

Figure 6 shows the state transition diagrams for the coherence
protocols provided by GMAC. In the considered protocols, a given
shared memory range can be in one of three different states. Invalid
means that the memory range is only in accelerator memory and
must be transferred back if the CPU reads this memory range after
the accelerator kernel returns. Dirty means that the CPU has an
updated copy of the memory range and this memory range must be
transferred back to the accelerator when the accelerator kernel is
called. Read-only means that the CPU and the accelerator have the
same version of the data so the memory region does not need to be
transferred before the next method invocation on the accelerator.

Batch-update is a pure write-invalidate protocol. System mem-
ory gets invalidated on kernel calls and accelerator memory gets
invalidated on kernel return. On a kernel invocation (adsmCall())
the CPU invalidates all shared objects, whether or not they are
accessed by the accelerator. On method return (adsmSync()), all
shared objects are transferred from accelerator memory to system
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memory and marked as dirty, thus implicitly invalidates the ac-
celerator memory. The invalidation prior to method calls requires
transferring all objects from system memory to accelerator mem-
ory even if they have not been modified by the CPU. The memory
manager keeps a list of the starting address and size of allocated
shared memory objects in order to perform these transfers. This
is a simple protocol that does not require detection of accesses to
shared data by the code executed on the CPU. This naive protocol
mimics what programmers tend to implement in the early stages of
application implementation.

Lazy-update improves upon batch-update by detecting CPU
modifications to objects in read-only state and any CPU read or
write access to objects in invalid state. These accesses are de-
tected using the CPU hardware memory protection mechanisms
(accessible using the mprotect () system call) to trigger a page
fault exception (delivered as a POSIX signal to user-level), which
causes a page fault handler to be executed. The code inside the page
fault handler implements the state transition diagram shown in Fig-
ure 6(b).

Shared data structures are initialized to a read-only state when
they are allocated, so read accesses do not trigger a page fault. If the
CPU writes to any part of a read-only data structure, the structure
is marked as dirty, and the memory protection state is updated to
allow read/write access. Memory protection hardware is configured
to trigger a page fault on any access (read or write) to shared data
structures in invalid state. Whenever a data structure in invalid state
is accessed by the CPU, the object is transferred from accelerator
memory to system memory, and the data structure state is updated
to read-only, on a read access, or to dirty on a write access.

On a kernel invocation all shared data structures are invalidated
and those in the dirty state are transferred from system memory
to accelerator memory. On kernel return no data transfer is done
and all shared data objects remain in invalid state. This approach
presents two benefits: (1) only data objects modified by the CPU
are transferred to the accelerator on method calls, and (2) only data
structures accessed by the CPU are transferred from accelerator
memory to system memory after method return. This approach
produces important performance gains with respect to batch-update
in applications where the code executed on the accelerator is part
of an iterative computation and the code executed on the CPU after
the accelerator invocation only updates some of the data structures
used or produced by the code executed on the accelerator.

Rolling-update is a hybrid write-update/write-invalidate pro-
tocol. Shared data structures are divided into fixed size memory
blocks. The memory manager, as in batch-update and lazy-update,
keeps a list of the starting addresses and sizes of allocated shared
memory objects. Each element in this list is extended with a list of
the starting addresses and sizes of the memory blocks composing
the corresponding shared memory object. If the shared object size
of any of these blocks is smaller than the default memory block
size, the list will include the smaller value. The same memory pro-
tection mechanisms that lazy-update uses to detect read and write
accesses to dirty and read-only data structures are used here to de-
tect read and write accesses to dirty and read-only blocks. This pro-
tocol only allows a fixed number of blocks to be in the dirty state on
the CPU, which we refer to as rolling size. If the maximum number
of dirty blocks is exceeded due to a write access that marks a new
block as dirty, the oldest block is asynchronously transferred from
system memory to accelerator memory and the block is marked as
read-only (dotted line in Figure 6(b)). In our base implementation
we use an adaptive approach to set the rolling size: every time a
new memory structure is allocated (adsmAlloc()), the rolling size is
increased by a fixed factor (with a default value of 2 blocks). This
approach exploits the fact that applications tend to use all allocated
data structures at the same time. Creating a dependence between the



number of allocated regions and the maximum number of blocks in
the dirty state ensures that, at least, each region might have one of
its blocks marked as dirty.

Rolling-update exploits the spatial and temporal locality of ac-
cesses to data structures in much the same way that hardware
caches do. We expect codes that sequentially initialize accelerator
input data structures will benefit from rolling-update. In this case,
data is eagerly transfered from system memory to accelerator mem-
ory while the CPU code continues producing the remaining accel-
erator input data. Hence, we expect that rolling-update will auto-
matically overlap data transfers and computation on the CPU. Each
time the CPU reads an element that is in invalid state, it fetches only
the fixed size block that contains the element accessed. Therefore,
rolling update also reduces the amount of data transferred from ac-
celerators when the CPU reads the output kernel data in a scattered
way.

All coherence protocols presented in this section contain a po-
tential deficiency. If, after an accelerator kernel returns, the CPU
reads a shared object that is not written by the kernel, it must still
transfer the data value back from the accelerator memory. Interpro-
cedural pointer analysis [13] in the compiler or programmers can
annotate each kernel call with the objects that the kernel will write
to, then the objects can remain in read-only or dirty state at ac-
celerator kernel invocation. ADSM enables interprocedural pointer
analysis to detect those data structures being accessed by kernels,
because both CPU and accelerator use the same memory address to
refer to the same memory object.

4.4 1/0O and Bulk Memory Operations

An I/O operation might, for instance, read data from disk and write
it to a shared object, as in the example in Figure 4 (Section 2.2).
First, a page fault occurs because the call to read() requires
writing to a read-only memory block. Then, GMAC marks the
memory block as read/write memory and sets the memory block
to the dirty state, so the call to read() can proceed. However,
when using rolling-update, once the first memory block is read
from disk and written to memory, a new page fault exception is
triggered because read() requires writing to the next memory
block of the shared object. However, the second page fault aborts
the read () function and after handling the second page fault, the
read() function cannot be restarted because the first block of
its data has already been read into the destination. The operating
system prevents an ongoing I/O operation from being restarted once
data has been read or written. GMAC uses library interposition to
overload I/O calls to perform any I/O read and write operations
affecting shared data objects in block sized memory chunks and,
thus, avoids restarting system calls. GMAC offers the illusion of
peer DMA to programmers, but the current implementation still
requires intermediate copies in system memory.

We use library interposition in GMAC to overload bulk memory
operations (i.e. memset () and memcpy ()). The overloaded imple-
mentations check if the memory affected by bulk memory opera-
tions involve shared objects and they use the accelerator-specific
calls (e.g. cudaMemset() and cudaMemcpy()) for shared data
structures, while forwarding calls to the standard C library routines
when only system memory is involved. Overloading bulk memory
operations avoids unnecessary intermediate copies to system mem-
ory and avoids triggering page faults on bulk memory operations.

5. Experimental Results

This Section presents an experimental evaluation of the GMAC li-
brary. We run our experiments on a SMP machine with 2 AMD
Dual-core Opteron 2222 chips running at 3GHz, and 8GB of RAM
memory. A NVIDIA G280 GPU card with 1GB of device memory
is attached through a PCle 2.0 16X bus. The machine runs a Debian
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Benchmark Description
cp Coulombic Computes the coulombic potential at
Potential each grid point over on plane in a 3D
grid in which point charges have been
randomly distributed. Adapted from
‘cionize’ benchmark in VMD.
mrigpg | Magnetic Res- | Computation of an image-specific
onance Imag- | matrix F;I , used in a 3D magnetic
ing FHD resonance image reconstruction algo-
rithm in non-Cartesian space.
mrig Magnetic Res- | Computation of a matrix Q, rep-
onance Imag- | resenting the scanner configuration,
ing Q used in a 3D magnetic resonance im-
age reconstruction algorithm in non-
Cartesian space.
pns Petri Net Sim- | Implements a generic algorithm for
ulation Petri net simulation. Petri nets are
commonly used to model distributed
systems.
rpes Rys  Polyno- | Calculates 2-electron repulsion inte-
mial Equation | grals which represent the Coulomb
Solver interaction between electrons in
molecules.
sad Sum of Ab- | Sum of absolute differences kernel,
solute Differ- | used in MPEG video encoders. Based
ences on the full-pixel motion estimation al-
gorithm found in the JM reference
H.264 video encoder.
tpacf Two Point An- | TPACF is an equation used here as
gular Correla- | a way to measure the probability of
tion Function finding an astronomical body at a
given angular distance from another
astronomical body.

Table 2. Parboil Benchmarks Description

GNU/Linux operating system, with Linux kernel 2.6.26, NVIDIA
driver 185.18.08, and CUDA 2.2. Application and library code is
compiled using the GNU/GCC compiler 4.3 with the -O3 optimiza-
tion level. Execution times are taken using the gettimeofday ()
system call, which offers a granularity of microseconds.

We use the Parboil Benchmark Suite [26], described in Table 2,
to take performance metrics. Micro-benchmarks are also used to
measure the overheads produced by GMAC when Parboil bench-
marks are not sufficient. In all experiments, each benchmark is ex-
ecuted 16 times and average values are used. We use the CUDA
Run-time Abstraction Layer to compare the performance of GMAC
with CUDA. For other experiments we use the CUDA Driver Ab-
straction Layer to discard CUDA initialization time.

The porting time from CUDA to GMAC for the seven bench-
marks included in Parboil took less than eight hours of work. The
porting process only involved removing code that performed ex-
plicit data transfers and handled double allocation of data struc-
tures. The porting process did not involve adding any source code
lines to any of the benchmarks. After being ported to GMAC, the
total number of lines of code decreased in all benchmarks. This is
an indicator that an ADSM-based data-centric programming model
increases programmability of heterogeneous parallel systems.

5.1 Coherence Protocols

Figure 7 shows the slow-down for all benchmarks included in the
Parboil Benchmark Suite with respect to the default CUDA im-
plementation for GMAC using different coherence protocols. The
GMAC implementation using the batch-update coherence protocol
always performs worse than other versions, producing a slow-down
of up to 65.18X in pns and 18.64X in rpes. GMAC implementations
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using lazy-update and rolling-update achieve performance equal to
the original CUDA implementation.

Figure 8 shows data transferred by lazy-update and batch-up-
date normalized to the data transferred by batch-update. The batch-
update coherence protocol produces long execution times because
data is transferred back and forth from system memory to accelera-
tor memory on every accelerator invocation. This illustrates the first
benefit of a data-centric programming model, where data transfers
are automatically handled by the run-time system. Inexperienced
programmers tend to take an over-conservative approach at first,
transferring data even when it is not needed. A data-centric pro-
gramming model automates data transfer management and, thus,
even initial implementations do not pay the overhead of unneces-
sary data transfers.

The original CUDA code, lazy-update, and rolling-update
achieve similar execution times. In some benchmarks, there is a
small speed-up for GMAC with respect to the CUDA version. This
shows the second benefit of GMAC: applications programmed us-
ing GMAC perform as well as a hand-tuned code using existing
programming models, while requiring less programming effort.

Fine-grained handling of shared objects in rolling-update avoids
some unnecessary data transfers (i.e. mri-g in Figure 8). We use a
3D-Stencil computation to illustrate the potential performance ben-
efits of rolling-update. Figure 9 shows the execution time of this
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Figure 9. Execution time for a 3D-Stencil computation for differ-
ent volume sizes

benchmark for different input volume sizes and memory block
sizes. As we increase the volume size, rolling-update offers a
greater benefit than lazy-update. The 3D-Stencil computation re-
quires introducing a source on the target volume on each time-step,
which tends to have zero values for most of the volume because
it represents a small emitter localized at some point in space. In
this version, the CPU executes the code that performs the source
introduction. Lazy-update requires transferring the entire volume
prior to introducing the source, while rolling-update only requires
transferring the few memory blocks that are actually modified by
the CPU. This is the main source of performance improvement of
rolling-update over lazy-update.

The combining effects of eager data transfer versus efficient
bandwidth usage are illustrated in Figure 9 too. This Figure shows
that execution times are longer for a memory block size of 32MB
than for memory block sizes of 256KB and 1MB, but the differ-
ence in performance decreases as the size of the volume increases.
Source introduction typically requires only accessing to one single
memory block and, hence, the amount of data transferred depends
on the memory block size. 3D-Stencil also requires writing to disk
the output volume every certain number of iterations and, thus, the
complete volume must be transferred from accelerator memory.
Writing to disk benefits from large memory block because large
data transfers make a more efficient usage of the interconnection
network bandwidth than smaller ones. As we increase the volume
size, the contribution of the disk write to the total execution time
becomes more important and, therefore, a large memory block size
reduces the writing time.

These results shows the importance of reducing the amount of
transferred data. Figures 7 and 8 show the relationship between
the amount of transferred data and the execution time. The largest
slow-downs in batch-update are produced in those benchmarks that
transfer the most data, (rpes and pns). Programmer annotation and/
or compiler or hardware support to avoid such transfers is a clear
need.

Figure 10 shows the break-down of execution time for all bench-
marks when using rolling-update. Most execution time is spent on
computations on the CPU or at the GPU. I/O operations, on those
benchmarks that require reading from or writing to disk, and data
transfers are the next-most time consuming operations in all bench-
marks. The first remarkable fact is that the overhead due to signal
handling to detect accesses to non-present and read-only memory
blocks is negligible, always below 2% of the total execution time.
Figure 10 also shows that some benchmarks (mri-fhd and mri-q)
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have high levels of I/0O read activities and would benefit from hard-
ware that supports peer DMA.

5.2 Memory Block Size

The memory block size is a key design parameter of the rolling-
update protocol. The larger the memory block size, the less page
fault exceptions are triggered in the processor. However, a small
memory block size is essential to eagerly transfer data from sys-
tem memory to the accelerator memory and to avoid transferring
too much data from accelerator memory to system memory when
reading scattered data from the accelerator memory.

Our first experiment consists of running the Parboil benchmarks
using different memory block sizes and fixing the maximum num-
ber of memory blocks in dirty state. Experimental results show that
there is no appreciable difference in the execution time of Parboil
benchmarks in this experiment, due to the small contribution by the
CPU code accessing accelerator-hosted data to the total execution
time.

We use a micro-benchmark that adds up two 8 million elements
vectors to show how the execution time varies for different memory
block size values. Figure 11 shows the execution time for different
block sizes of this synthetic benchmark using different block sizes.
We also plot the average transfer bandwidth for each block size.
The data transfer bandwidth increases with the block size, reaching
its maximum value for block sizes of 32MB. Data transfer times
for vector addition decrease as the transfer bandwidth increases.
The execution time reduction when moving from memory block
sizes from 4KB to 8KB and from 8KB to 16KB is greater than
the increase in the data transfer bandwidth. Small memory block
sizes produce many page faults to be triggered by the CPU code
producing and consuming the data objects. On a page fault, the
GMAC code searches for the faulting block in order to modify its
permission bits and state. GMAC keeps memory blocks in a bal-
anced binary tree, which requires O(logz(n)) operations to locate
a given block. For a fixed data object size, a small memory block
size requires more elements to be in the balanced binary tree and,
thus, the overhead due to the search time becomes the dominant
overhead. A large memory block size allows an optimal utilization
of the bandwidth provided by the interconnection network and re-
duces the overhead due to page faults.

There is an anomaly in Figure 11 for a block size of 64KB.
The CPU-to-accelerator transfer time for a 64KB memory block is
smaller than for larger block sizes. The reason for this anomaly is
the eager data transfer from the CPU. A small block size triggers
a higher number of block evictions from the CPU to the acceler-
ator which overlaps with other computations in the CPU. In this
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Figure 11. Execution times (lines) and maximum data transfer
bandwidth (boxes) for vector addition for different vector and block
sizes

benchmark, when the block size goes from 64KB to 128KB, the
time required to transfer a block from the CPU to the accelerator
becomes longer than the time required by the CPU to initialize the
next memory block and, therefore, evictions must wait for the pre-
vious transfer to finish before continuing. Hence, a small enough
memory block size is essential to overlap data transfers with com-
putations at the CPU.

5.3 Rolling Size

In this experiment we vary the rolling size (maximum number of
memory blocks on dirty state). The rolling size affects application
performance in two different ways. First, the smaller the rolling
size, the more eagerly data is transferred to accelerator memory
and, thus, the more overlap between data transfers and computa-
tion. Second, memory blocks are marked as read-only once they
are evicted from the memory block cache. Hence, any subsequent
write to any memory location within a evicted block triggers a page
fault and the eviction of a block from the memory block cache. This
experiment shows that for all Parboil benchmarks, except for tpacf,
the rolling size does not affect application performance in an ap-
preciable way due to the way they are coded.

Execution time results for the tpacf benchmark illustrates quite
a pathological case that might be produced by small rolling sizes.
Figure 12 shows the execution time of zpacf for different block
sizes using rolling sizes of 1, 2, and 4. For rolling size values
of 1 and 2, and small memory block values, data is being trans-
ferred from system memory to accelerator memory continuously.
The tpacf code initializes shared data structures in several passes.
Hence, memory blocks of shared objects are written only once by
the CPU before their state is set to read-only and they are trans-
ferred to accelerator memory. As the memory block size increases,
the cost of data transfers becomes higher and, thus, the execu-
tion time increases. When the memory block size reaches a critical
value (2MB for #pacf-2 and 4MB for tpacf-1), memory blocks start
being overwritten by subsequent passes before they are evicted,
which translates to a shorter execution time. Once the complete
input data set fits in the rolling size, the execution time decreases
abruptly because no unnecessary updates are done. For a rolling
size value of 4, the execution time of fpacf is almost constant for
all block sizes. In this case, data is still being transferred, but the
larger number of memory blocks that might be in dirty state allows
memory blocks to be written by all passes before being evicted.

This results reveals an important insight that might be espe-
cially important for a hardware ADSM implementation. In such an
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implementation, given a fixed amount of storage, there is a trade-
off between the memory block size and the number of blocks that
can be stored. Experimental results shows that it is more beneficial
to allow a higher number of blocks in dirty state than providing
a large block granularity. Other considerations, such different costs
for DMA transfers and page faults must be taken into account when
designing a hardware ADSM system.

6. Related Work
6.1 Programming Models

Most programming models proposed for massively parallel sys-
tems deal with data distribution and kernel scheduling on clusters
of computers. Global Arrays [37] provide semantics to divide and
access arrays on a distributed memory system. In a data-centric pro-
gramming model, the accelerator memory hosts all data required by
accelerator kernels and, therefore, no data distribution is required
if only one accelerator is used for each kernel execution. Global
Arrays are compatible with a data-centric programming model and
might be used if the execution of a kernel is distributed among sev-
eral accelerators. ASSIST [42] decomposes programs into compo-
nents that communicate through data streams. ASSIST requires the
programmer to declare modules and connect them using streams.
This data-dependence information is used by the ASSIST run-time
to schedule the execution of modules on different processors. A
data-centric programming model also requires the programmer to
assign data structures to computational intensive kernels.

Darlington et al. [14] proposed using skeleton functions as part
of the programming model. Skeleton functions implement parallel
algorithms commonly used in a given class of applications. This
approach is, for instance, behind STAPL which provides parallel
implementations of STL C++ functions [4]. This approach can be
used on top of a data-centric programming model, where the skele-
ton methods are marked as performance critical and the parallel
version is selected to run in an accelerator. An ADSM system can
be used to simplify data transfers between the rest of the program
and the skeleton functions.

Software development kits for commercially available accel-
erators such as the Cell Runtime Management Library [25] or
NVIDIA CUDA [38], require programmers to explicitly move data
between system memory and accelerator memory prior to perform-
ing any calculation using these data structures on the accelera-
tor. The OpenCL specification [1] also uses explicit data transfers
between the different processors present in the system. The pro-
gramming model presented in this paper removes the need for ex-
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plicit data transfers, thus easing application development, and uses
CUDA to interact with GPU accelerators. An OpenCL Abstraction
Layer is ongoing work and will enable GMAC to be used with a
wide variety of accelerators. The programming model offered by
the CUBA architecture [19] allows programmers to explicitly se-
lect data structures to be hosted in accelerator memory. The model
presented in this paper extends CUBA allowing data structures to
be assigned to the methods using them. This is a key difference
because the programming model used in CUBA requires program-
mers to statically partition data structures, whereas in a data-centric
programming model, data placement is done by the run-time sys-
tem. CellSS [7] is a programming model where programmers iden-
tify tasks and their input and output parameters through source code
annotations. The CellSS run-time exploits task-level parallelism by
executing independent tasks concurrently. CellSS differs from the
data-centric programming model in that CellSS identifies input and
output parameters whose value is only known at the method call
time, instead of data structures. Hence, the CellSS does not allow
data to be eagerly transferred to or from accelerators.

6.2 Distributed Shared Memory

Many hardware and software DSM systems exist, that implement
a shared address space on top of physically distributed memories.
The ADSM system presented in this paper also provides program-
mers with the illusion of a shared address space, however, only few
processors in the system (i.e., general purpose CPUs) have full ac-
cess to the whole address space, while other processors (i.e. GPUs
or other accelerators) can only access memory that is physically at-
tached to them. This key difference allows ADSM systems to min-
imize the coherence traffic.

Hardware DSM systems include the necessary logic to imple-
ment coherence protocols and detect accesses to shared data. Most
hardware DSM systems implement write-invalidate protocols, rely
on directories to locate data, and have a cache-line size sharing
granularity [16, 18, 20, 33, 36, 44]. There are also hardware imple-
mentations that rely on software to implement data replication [10],
to support the coherence protocol [2], to virtualize the coherence
directory [45], or to select the appropriate coherence protocol [23].
In this work we only explore a software-based implementation
of ADSM which implements release consistency [33] and uses a
larger sharing granularity to minimize the overhead for detection
of accesses to shared data structures.

Software DSM systems might be implemented as a compiler
extension or as a run-time system. Compiler based DSM systems
add semantics to programming languages to declare shared data
structures. At compile time, the compiler generates the necessary
synchronization and coherence code for each access to any shared
data structure [3, 5]. The programming model presented in this
paper also requires the programmer to identify those data structures
required by performance-critical functions. However, we use a run-
time mechanism to detect accesses to shared data structures, since
in most cases no coherence or synchronization action is required.
Compiler support can be added to our work for identification of
data objects modified by kernels and, thus, to avoid unnecessary
data transfers.

Run-time DSM implementations provide programmers with
the necessary APIs to register shared data structures. A software
run-time system uses the memory protection hardware to detect
accesses to shared data structures and to perform the necessary
coherency and synchronization operations. The run-time system
might be implemented as part of the operating system [15, 17] or as
an user-level library [8, 12, 31, 34]. The former allows the operating
system to better manage system resources (e.g., blocking a process
while data is being transfered) but requires a greater implementa-
tion effort. User-level DSM libraries require the operating system



to bypass and forward protection faults (e.g., as POSIX signals)
and to provide system calls to interact with the memory protec-
tion hardware. We implement a user-level ADSM library because
currently there is no operating system level support for interacting
with the CUDA driver. ADSM memory consistency and coherence
protocols differ greatly from previous software DSM implemen-
tations due to shorter network latencies and different data sharing
patterns found in heterogeneous parallel systems as compared with
clusters of homogeneous CPU-based computers.

Heterogeneity has been also considered in software DSM sys-
tems [9, 47]. These works mainly deal with different endianisms,
data type representations and machines running different operating
systems. For simplicity, in this paper we assume that processors
in the system use same endianism, data representation, and calling
conventions. The techniques discussed in [9, 47] are applicable to
ADSM whenever processors use different calling conventions or
data-type representations.

7. Conclusion

This paper has introduced ADSM, a data-centric programing
model, for heterogeneous systems. ADSM presents programmers
with a shared address space between general purpose CPUs and
accelerators. CPUs can access data hosted by accelerators, but not
vice versa. This asymmetry allows memory coherence and consis-
tency actions to be executed solely by the CPU. ADSM exploits
this asymmetry (page faults triggered only by CPU code), the char-
acteristics of heterogeneous systems (lack of synchronization using
program-level shared variables), and the properties of data-centric
programming models (release consistency and data object access
information) to avoid performance bottle-necks traditionally found
in symmetric DSM systems.

We have also presented GMAC, a software user-level imple-
mentation of ADSM, and discussed the software techniques re-
quired to build a shared address space and to deal with /O and
bulk memory in an efficient way using mechanisms offered by most
operating systems. We have further presented three different co-
herence protocols to be used in an ADSM system: batch-update,
lazy-update and rolling-update, each one being a refinement of the
previous one. Experimental results show that rolling-update and
lazy-update greatly reduces the amount of data transferred between
system and accelerator memory and performs as well as existent
programming models.

Based on our experience with ADSM and GMAC, we argue that
future application development for heterogeneous parallel comput-
ing systems should use ADSM to reduce the development effort,
improve portability, and achieve high performance. We also iden-
tify the need for memory virtualization to be implemented by ac-
celerators in order to ADSM systems to be robust for heteroge-
neous systems containing several accelerators. We have also shown
that hardware supported peer DMA can increase the performance
of certain applications.
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