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Stelling 10.

Alle stellingen die betrekking hebben op het aantrekkelijker maken van het voetbalspel zijn
onjuist. Het voetbalspel kan niet nog aantrekkelijker gemaakt worden.

Stelling 11.

Het vrijwel niet verbaliseren van fietsendieven door de Nederlandse overheid kan tot gevolg
hebben dat indien over duizend jaar een wetenschappelijk ondeszoek wordt verricht naar de
criminaliteit in de Primitief—Industriéle Eeuwen een conclusie kan luiden: in de tweede helft

van de twintigste eeuw was fietsendiefstal een niet voorkomend verschijnsel in Nederland.
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INTRODUCTION

In 'a number of physical systems oscillations can. be described by one or more weakly non-
linear second order parﬁaldif ferential equations of the hyperbolic type (see for instance
[4,6,11-15,17,18,20,22,23]). In this thesis the following initial-boundary value problem
will be considered for a real-valued- function -ﬁ(x,t;e), which is either scalar-valued:or

vector-valued:

2 ) . , .

u,-c¢ uxx+du+eF(u,e)—0, . 0<x<mt>0, (H
u(x,05) = UO(X;G), “0<x<m, ' : (2)
ut(x,‘O';e) = ul(x;e),‘ : D<x<m, 3)
u(0,te) = u(m,te) =0, t>0, . 4)

where ¢ is small, ¢ independent of ¢, and d = 0 or d = 1. The 'operator F is defined to be
Fue)(x,0) = f(x,tu(x,te), u(x,te), u (x.5e)e).

Furthermore, the real-valued functions u,, u ! and f have to satisfy certain smoothness

0’
conditions, which will be mentioned in the following chapters.

For scalar-valued functions the initial-boundary valﬁe-problem (1)-(4) for the perturbed
wave equation (d = 0) is comsidered in chapter 1 and for the perturbed telegraph equa-
tion (c = d = 1) in chapter 2. Moreover, in chapter 2 the restriction has been made that f

solely depends on x, t and u(x,te). In chapter 3 the initial-boundary value problem (1)-

(4) for a system of perturbed wave equations (d = 0) is considered for vector-valued



functions. In that case c is a diagonal matrix witin positive and e-independent diagonal
elements.
In [4,5,18,20] several initial-boundary value problems and initial value problems for
second order, weakly nonlinear hyperbolic equations involving a small parameter ¢ have
been considered and for these problems several methods have been developed to construct
.formal asymptotic approximations of the solutions. As usual formal asymptotic approxima-
tions are defined to be functions satisfying the differential equation(s) and the initial con-
-ditions up to some order depending on the small parameter e. In a number of papers [4,5,
18,207 it is suggested or assumed that a theory for the asymptotic validity of formal ap-
proximations of the solutions of initial-boundary value problems like (1)-(4) is available.
However, this is incorrect. In this thesis an asymptotic theory for a class of initial-bound-
ary value problems for (systems of) weakly nonlinear hyperbolic equations.of order two
will be presented. In fact, this asymptotic theory can be regarded as an extension of the
asymptbtic theory for ordinary differential equations as for instance described in [2,8,25].
‘The asymptotic theory presented in this thesis implies the well-posedness (in the classical
sense) of the initial-boundary value problem (1)-(4) and the asymptotic validity (as €
tends to zero) of a class of formal approximations on long and ¢-dependent time-scales.
The asymptotic theory is applied to several initial-boundary value problems for (systems
of) weakly nonlinear hyperbolic equations of order two. In chapter 1 an initial-boundary
value problem for the Rayleigh wave equationvutt -u. =€ (ut - —; u?] is studied. In
the early seventies an initial-boundary value problem for the Rayleigh wave equation
has been postulated in [22,23] to describe full span galloping oscillations of overhead
transmission lines. From an aero-elastic analysis it is shown in chapter 1 that this initial-
boundary value problem indeed may be regarded as a simple model describing the gal-
loping oscillations (in the vertical direction) of overhead transmission lines. In chapter 2

an initial-boundary value problem for a weakly nonlinear telegraph equation u ¢ Uk *

t XX




+u+ eu3 = 0 is studied. Finally in chapter 3. an.initial-boundary value problem for the
following system of weakly nonlinear wave equations is studied:

v, - —e(a vV, +a, W +a v2+a vw, +a w2+a w3]

tt 107t "017t " 20 I1°t7t 7027t 03t

w -wxx=e(b w +b vw +Db w2+b w3)

tt 01t I1't¢ 02

where alO’aOI""’b03 are e-independent constants, It is also shown in chapter 3 that this
initial-boundary value problem may be regarded as a model describing the galloping os-
cillations (in the vertical and in the horizontal direction) of overhead transmission lines.

For the aforementioned initial-boundary value problems asymptotic approximations (as €
tends to zero) qf the solutions will be constructed using a two-timescales perturbation
method. In the chapters 1 and 3 the initial-boundary value problems for the (systems of)
weakly nonlinear wave equations are studied by rewriting these problems in the charac-
teristic coordinates 0 = x - t and ¢ = x + t. Although it seems natural to investigate the
initial-boundary value problems for the (systems of) weakly nonlinear wave equations by
means of a Fourier series expansion of the solution, it turns out that this approach leads to
computational difficulties. In fact, in this approach a system of infinitely many, coupled,
nonlinear, ordinary differential equations is obtained, which in general is hard to solve.

To approximate fhe solution of this system of differential equations the truncation method
of Galerkin may be used. However, for the so-obtained approximation asymptotic validi-
ty can often only be proved on a time-scale ;vhich in general is smaller than the time-
scale for which the original initial-boundary value Qrbblem has been proved to be well-
posed. In chapter 2, however, it turns out that the method of Fourier series expansion of
the solution is applicable to the initial-boundary value problem for the weakly semi-
linear telegraph equation. From [4,6,17,18,20] and from this thesis it may be concluded

that the method of characteristic coordinates is applicable to a special class of nonlinear



partial differential equations, which are non-dispersive in the unperturbed case (that is
¢ = 0) and that the method of Fourier series expansion of the solution is applicable -to a
class of nonlinear partial differential equations, which are dispersive in the unperturbed

case.



CHAPTER 1

AN ASYMPTOTIC THEORY FOR A CLASS OF INITIAL-BOUNDARY
VALUE PROBLEMS FOR WEAKLY NONLINEAR WAVE EQUATIONS WITH
AN APPLICATION TO A MODEL OF THE GALLOPING OSCILLATIONS OF

OVERHEAD TRANSMISSION LINES

Abstract

This chapter aims to contribute to the foundation of the asymptotic methods for initial-
boundary value problems and initial value problems for weakly nonlinear hyperbolic
partial differential equations of order two. In this chapter an asymptotic theory for a
class of initial-boundary value problems for weakly nonlinear wave equations is
presented. The theory implies the well-posedness of the problem in the classical sense
and the validity of formal approximations on long time-scales.

As an application of the theory an initial-boﬁndary value problem for a Rayleigh wave
equation is studied in detail using a two-timescales pertu}bation method. From an aero-
elastic analysis it is shown that this initial-boundary v\_'a.lue problem may be regarded as a

model describing the growth of wind-induced oscillations of overhead transmission lines.



1.1. Introduction

In this chapter an asymptotic theory is-presented for the following initial-boundary value

problem for a nonlinearly perturbed wave equation

CUgp - Ugy + €f(X,tu,upuye) = O, ' O<x<mt>0, - (1.1.1)
u(x,0;¢) = ug(x;e) and u(x,0;¢) = up(xse), - 0 <x<m, ’ (1.1.2)
u(0,t;e) = u(m,t;e) = 0, : t>0, ’ (1.1.3)

with 0 < |e| < €y << | and where the nonlinearity f and the initial values ug and u
have to satisfy certain smoothness properties, which are mentioned in section 1.2. The
asymptotic theory implies the well-posedness (in the classical sense) of the initial-bound-
ary value problem (1.1.1)-(1.1.3) and the asymptotic validity of formal approximations.
In this chapter formal approximations are defined to be functions that satisfy the differ-
ential equation and the initial values up to some order depending on the small parameter e.

In [11] a similar asymptotic theory has been developed for an initial-boundary value

problem for the weakly semi-linear telegraph equation

Uge - Ugx + U+ ef(x,tue) = 0, O<x<mt>0,

subject to the inital and boundary conditions (1.1.2) and (1.1.3). The well-posedness of that
problem and the asymptotic validity of formal approximations could be established on a
time-scale of order |e| -1/2, For the initial-boundary value problem (1.1.1)-(1.1.3) it
will be shown that a time-scale of order |e|~! can be obtained.

The asymptotic theory in [11] and the asymptotic theory presented in this chapter can be

regarded as an extension of the asymptotic theory for ordinary differential equations as




for instance described in [1,2,8,25]. In a number of papers for instance in [5,6,18,22,23],
it is suggested or assumed that an asymptotic theory for tﬁe validity of formal approxi-
mations of the solutions of initial-boundary value problems like (1.1.1)-(1.1.3) is available.
In [5,20] it is taken for granted that in [8)] a justification is given of a perturbation
method introduced in [4]. An important part of the justification, namely an estimate of
the difference between the exact solution and the formal apprc;ximation is not given in
[8]. Furthermore, the ;ime-scale on which the results might be valid, is not specified in
(8]. Some authors, as for instance [3,8,20], have noticed that these validity proofs were
absent or far from complete. In the literature only recently some asymptotic validity
proofs have been given. For instance in [3] a rather successful approach has been intro-
duced to justify a number of formal perturbation methods. However, this approach is in-
complete because in [3] the presumption is made that on sufficiently large time-scales the
initial value problems under consideration are well-posed in some (not specified) sense.
Some other asymptotic results have been obtained in [6,19,27] by rewriting (1.1.1)-(1.1.3)
as an initial value problem for a system of infinitely many ordinary differential equa-
tions in a Hilbert or Sobolev space.

This chapter, being an attempt to contribute to the foundations of the asymptotic methods
for weakly nonlinear hyperbolic partial differential equations, is organized as follows. In
section 1.2 the well-posedness of the problem is investigated and established on a time-
scale of order |e | -1 and in section 1.3 the asymptotic validity of formal approximations
is studied. The asymptotic theory is applied in section 1.5 to the initial-boundary value

problem (1.1.1)-(1.1.3) with f(x,t,u,ug,uye) = -ug + u%. In the early seventies this

1
3
initial-boundary value problem for the Rayleigh wave equation has been postulated in
[22] to describe full span galloping oscillations of overhead transmission lines. In section

1.4 it follows from an aero-elastic analysis that this initial-boundary value problem may

indeed be regarded as a model which describes the growth of wind-induced oscillations



of overhead' transmission lines. Using a 'two-timescales perturbation method, as for instance
successfully- used in [4,6,11,17,18], an asymptotic approxirﬁaﬁon“’o‘f ‘the solution of the
aforementioned initial-boundary value problem will ‘be constructed. Finally in section
1.6 some remarks are made on the asymptotic theory applied to initial and initial-bound-
ary- value problems for the weakly nonlinear wave equations. Furthermore, some of the

results obtained in.the literature -are-discussed."




1.2. The well-posedness of the problem -

In this chapter the following weakly nonlinear initial-boundary value problem for a

(with respect to x and t) twice-continuously differentiable function u(x,te) is considered.

Ugp. - Uygx + €F(ue) = 0, . o 20,0 <x <y
-u(x,0:) = ug(xse), . IR O<x<m,.
u(x,0;€) = uy(x;e), ; .. . 0<x<m,
u(0,5e) =u(r,te)=0, . ., . . t20,
where

F(uje)(x,t) = f(x,t,u(x,t;é),ut(x,(;e),ux(x,t;e);e),

0 < |e| <€y << 1, and where £(x,t,u,p,q€), ug(x;¢e) and u(x;e) satisfy

o of oaf of 3
£, 55 3> 9p aq € C({0,7] x [0,00> xIR™ x [-€(,€0), IR)

with F(u;e)(0,t) = F(we)m,t)=0 - .. . . < fort20,"

dug 82u0
uOs a—x9 E—z— € C([val X ['GOaéol’R)

with ug(0;e) = ug(me) = u6(0;e) = u‘b(1r;e) = 0,-and

du|

U gx € CU0,w] x [-epscol ) with  uj(0s) = uy(me) = 0.

Furthermore, f(x,t,u,p,q;¢) and its partial derivatives with respect to

(1.2.1)
(1.2.2)
(1.2.3)
- {1.2.4)

(1.2.5)

(1.2.6)

(1.2.7)

(1.2.8)

x,u,p and q are
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assumed to be uniformly bounded for those values of t under consideration.

fo prove existence and uniqueness in the classical sense of the solution of the initial-
boundary value problem (1.2.1)-(1.2.4) an equivalent integral equation will be used. In
ordér to derive this integral equation the initial-boundary value problem is transformed
into an initial value problem by extgnding the functions f, up and uj in x to odd and
2w-periodic functions (see for instance [7, chapter 5] or [28, chapter 2]). The extensions
of u, f, ug and u; are denoted by o uf) and u} respectively. Then, assuming that the
solution u* of the initial value problem is twice continuously differentiable, an integral
equation for the solution of the initial value ﬁroblem is given by |

t X+t-7
€

vt =-< | £2(6,r.u* (€m0t (6, ut (€, meNe) dedr +
2 '[0 J‘x-t+1' ' T ¢

X+t

+ Lz uh(x4te) + - uhlx-te) + %J‘ u’(&e) de. (129)
x-t

Using reflection principles (1.2.9) can be rewritten as an integral equation on the semi-

infinite strip 0 < x < 7, 0 < t < oo, yielding

t 7
u(x,te) = —62- IO IO G, x, )F(u;e)(€,7)dédr + ugx,te), ‘ (1.2.10)

where G and ugy are given by

G,nx,t) = Y {H(t-1-€+2kr-x)H(t-r+£-2km+X) +
keZ

“H(t-1+€+2km- x)H(t-7-£-2k7+X) ) (1.2.11)

and
T

uhX,£6) =—; I . { ug(&) T‘;TQ €.0:x,0) - u l(f;c)G(E,O;x,t)} de, (1.2.12)
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in which H(a) is a function onIR which is equal to 1 for a > 0, —; for a = 0 and zero

otherwise. In (1.2.12) it is assumed that G is differentiated according to the rule
L (HEHE) = 5o ) 2D Hgr) + HEENo(ar) B, where 5 is the

Dirac delta function. In fact, G as defined by (1.2.11) is the Green’s function for the

2 2
% ik and the boundary conditions (1.2.4). It is worth
ot ax2

noticing that the solution of the linear initial-boundary value problem (1.2.1)-(1.2.4)

differential operator L =

(that is with F = 0) is given by ugx,t;).

Some elementary calculations show that if v(x,t) is a twice continuously dif ferentiable
solution of the initial-boundary value problem (1.2.1)-(1.2.4) then v(x,t;¢) is a solution of
the integral equation (1.2.10). And if w(x,t;) is a twice continuously dif ferentiable solu-
tion of the integral equation (1.2.10) then it can easily be shown that w(x,t;¢) is a solution
of the initia;l—boundary value problem (1.2.1)-(1.2.4). Hence, the integral equation
(1.2.10) and the initial-boundary value problem (1.2.1)-(1.2.4) are equivalent if twice
continuously differentiable solutions exist. Now it will be proved that a unique, twice
continuously differentiable solution of the integral equétion (1.2.10) exists on a region J
of the (x,t)-plane. And so, a unique and' twice continuously differentiable solution exists-
for the initial-boundary value problem (1.2.1)-(1.2.4) on Ji..

In order to prove existence and uniqueness in the classical sense.of the solution of the non-

linear integral equation (1.2.10) a fixed point theorem will be used. Let J be given by
JL={(x,t)|05xsvr,05tsLle|‘1} (1.2.13)

in which L is a sufficiently small, positive constant independent of e. Let C%/[(JL) be the
space of all real-valued and twice continuously differentiable functions w on Jp with

norm ||. || i defined by
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2 i+]
Iwlly = & max  [Z5000 | oy
L jj=0 (x,pejp ! 9x'at
i+j<2 .. :

From the smoothness properties of ug and uj it follows that (for fixed ug and u)) there

exists a positive constant M| independent of ¢ such that,
Nuclly <5M o a2
/4 JL =2 1 . . N

and from the sxﬁoothn&ss properties of F(u;e)(x,t) (as defined by (1.2.5) and (}.2.6_)) it fol-.

lows that there exist e-independent constants M5y and M3 such that,

1 gk

T |5 Foan| <My, _ (1.2.15)
k=0 dx :

1 K ' : A

r = (Fvexx,t) - Fwiexx,0) | <Mz [|v-w]| P (1.2.16)
k=0 dx - L

for all (x,t) € J1, € € [-€g.€g] and v,w € C%\AI(JL)~ Now let the integral operator T:

C2(JL) — C2(JL), which is related to the integral equation (1.2.10), be defined by
t 7
(Tw)(x,t) = —; -[0 IO G(&,7;x,t)F(w;e)(é,7) dédr + ugx,tie), (1.2.17)
where G, F and u, are given by (1.2.11), (1.2.5) and (1.2.12) respectively. According to
Banach’s fixed point theorem the integral operator T has a unique fixed point in

2 . .
CM l(JL) if the operator T satisfies

. 2 2
(i) T CM](JL) — CMI(JL)’ and

i) JTv-Twlly sk flv-wilj with0 <k <1, forall v,w e i, 0L
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t-t+ E-x=0

/

t-T+ §—2TC+X =0

/

Figure 1.2.1: Subregions in V with the corresponding values of the

Green’s function G(§,7;x.t).

Now, it will be proved that the integral operator T satisfies these two conditions. It is not
difficult to show that T maps lC%\ql(JL) into the space of twice continuously differenti-
able functions on Jj . In order to prove that T maps C%,l l(JL) into itself an estimate of the
Green’s function G(¢,7;x,t) should be obtained for 0 < § <7, 0 < 7 < tand fixed x and t.

In figure 1.2.1 the characteristics from the point (x,t) and the reflected characteristics at
the boundaries £ =.0 and & = 7 are drawn in the (¢,7)-plane. These (reflected) character-
istics divide the region V = {(¢,1) | 0 < ¢ <, >0} into a finite number of subregions. In
each subregion G(¢,7;x,t) can be determined by evaluating (1.2.11). These values are
given in figure 1.2.1. The following estimate of G(¢,7;x,t) can now be made for 0 < § < ,

7 > 0 and fixed x and t:
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|Genxn| < 1.
Using (1.2.13)-(1.2.15), (1.2.17)-(1.2.19) the follbwing estimate can be made

" Tv " JLS " TV-ut " JL + " ut " JL <

2 it I
s ¥ omax | o= ((Tv)x,1) - ul(x,t;e)] | + M <
i,j=0 (x,)eJ, 9x'ad
i+j<2
T 1
< (-2' + 5]M2L+60M2 +3M1

for all v € C%,il(JL). Now ¢ has been assumed to be sufficiently small and so, there

exists an e-independent constant L such that (% + 5]M2L + oMy < 1

2
2 2 . . .
vl 5y S Mj for all v € Cy,(J1). So, T maps Cy, into itself. Using (1.2.13),

M. Hence,

(1.2.16)-(1.2.19) it will be shown that T is a contraction on C%vil(JL). Let v and

wE C%v[ l(JL)’ then the following estimate can be obtained
ITv-Tw g < ((5+5IM3L + coMs) lv-wl

It is obvious that there exists an ¢-independent constant L such that (—725 + 5]M3L +
+ egM3 < k < 1. Since there always exists a constant L independent of ¢ such that
(% + 5) MjL + egMy < %Ml and (% + 5) M3L + ¢gM3 < k < 1, it follows that T maps
C%VII(JL) into itself and that T is a contraction on C%vil(JL). Banach’s fixed point theorem
then implies that T has a unique fixed point in C%vll(JL)v that is, a unique and twice
continuously differentiable function on Jj . Hence, the solution of the integral equation
(1.2.10) is unique and twice continuously differentiable on J. And so, on Iy a unique
and twice continuously differentiable solution exists for the initial-boundary value prob-

lem (1.2.1)-(1.2.4).

(1.2.18)
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Next it will be shown that the solution of the initial-boundary value problem (1.2.1)-
(1.2.4) depends continuously on the initial values. Let u(x,t;) satisfy (1.2.1)~(1.2.4) and
let u(x,te) satisfy (1.2.1), (1.2.4), u(x,0;¢) = ug(x;e) and uy(x,0€) = uj(x;e), where ug and

uy satisfy (1.2.7) and (1.2.8). Let u, be given by

s
i) = 3 [ | {06 52 €00 - E1(6IG(E0x.0} de.

After subtracting the integral equations for u and u, using (1.2.10), (1.2.13), (1.2.16) and

(1.2.18), assuming uand u € C%,{l(JL), one obtains the estimate

Nu-ally s ((F+5) MsL+ eoM3) flu-illy + Nueielly, <

<k ||u-ﬁ|]JL+ "“t"-‘t"JL with 0 <k < 1.

.. S . - 1 - .
This inequality implies Jju-u|| ST -k [l ug-ug i L with 0 < k < 1.
So, small differences between the initial values generate small differences between the
solutions u and u on J. In other words the solution of the initial-boundary value
problem depends continuously on the initial values. The following theorem on the well-

posedness of the problem can now be formulated.

Theorem 1.2.1

Suppose that F, ug and uy satisfy the assumptions (1.2.6)-(1.2.8). Then for any e satisfy-
ing 0 < |e| < ¢y << 1, the nonlinear initial-boun(iafy value problem (1.2.1)-(1.2.4) and
the equivalent nonlinear integral equation (1.2.10) haite the same, unique and twice con-
tinuously differentiable solution for 0 < x < rand 0 <t < L |¢] -1, in which L is a suf-
ficiently small, positive constant independent of e. Furthermore, this unique solution

depends continuously on the initial values.
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1.3. On the validity of formal approximations

Since.the initial-boundary value problem (1.1.1)~(1.1.3) contains a small parameter ¢ per-

turbation methods may be applied for the.construction of approximations to the solution..

In most perturbation methods for weakly nonlinear problems a function is constructed

that satisfies the differential equation and the initial conditions, up to some order

depending on the small parameter e¢. Such a function is usually called a formal approxi-

mation. To show that this formal approximation is an asymptotic approximation (as¢ — 0)

requires an additional analysis. Therefore suppose that on Ji: (given by (1.2.13)) a twice

continuously differentiable function v(x,t;) is constructed satisfying

Vit ~ Vxx * €F(vie) = || M ¢cy(x,te), m> 1,

v(x,05) = ug(x;e) + Ie | m-1 co(x;¢) = vp(xe), O<x<m,
vi(x,0;6) = uy(x;e) + |e| M1 ca(xie) = vy(xe), O <x <,
v(0,t;¢) = v(m,te) = 0, ' 0<t<Ll|e|-T,

where ¢, F, ug and uy satisfy (1.2.5)-(1.2.8) and where c}, ¢7 and cj3 satisfy

acy 1
c1, 55 € CUOmI x [O,L [€] ~1] x [-€0.¢0], RR)
with ¢(0,t€) = cj(m,te) = 0, for 0 <t < Lig~1,
acy 32C2

€2 By’ —gx—z € C([0,7] x [—eo,co],IR)

with ¢5(0;¢) = co(m;e) = cE(O;e) = c'é(w;e) =0, and

éc
c3, E% € C([0,7] x [-€0.€0). IR) with ¢3(0;¢) =c3(me) = 0.

(1.3.1)
(13.2)
(13.3)

(1.3.4)

(1.3.5)

(1.3.6)

(1.3.7)
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Furthermore, ¢|(x,t¢) and its derivative with respect to. x are supposed to be uniformly
bounded for those values of t and € under consideration. From theorem 1.2.1 it follows that
the initial-boundary value probleml(l.3.l)—(l.3.4) has a uﬁique, twice continuously dif -
ferentiable solution on a time-scale of 0(|e|‘1). This ipitial-boundary value problem can

then be transformed into the equivalent integral equation
t 7 )
v =5 [ lenxoveen aear + vaxto), (1.38)
where G is given by (1.2.11) and where F and vy are given by

F(vieX(x,t) = F(vieX(x,t) - |e] ™=l ¢ (x,te)  and
T
. 1 . 9G . . .
vénsd = 3 | {06 52 €omo - iEaGE o} de.
Now, it will be shown that the formal approximation v is an asymptotic approximation (as

€ — 0) of the solution of the initial-boundary value problem (1.2.1)-(1.2.4) if m > 1, that

is, it will be proved that
u-v = O(5(¢)), where lim 6(¢) = 0. -
llu-vily, =06 lim 8¢
Moreover §(¢) will be derived explicitly. This result implies that

lim | u(x,te) - v(x,te)] =0 for (x,t) € JL..

e—0

Subtracting the integral equation (1.3.8) from the integral equation (1.2.10), supposing
that v, satisfies (1.2.14) and that l; satisfies (1.2.15) and (1.2.16), using (1.2.13), (1.2.16),

(1.2.18) and the fact that u,v € C%,I](JL), the following estimate is obtained



18

Hu-vlly, € ((G+5) MaL v cqMs) Hu-vlly + Nelly + Nuevelly <

skluvily + lelly + Nurvelly .

with 0 < k < 1 and where ¢ is given by

e delm
o(x,t¢) = jo .[o G(E.m;x,t)c) (§,75¢) dédr,

and where ug - vy is given by

m-1 ,T "
ux,te) - vex,te) = - —l—ely— Io {cz(E;E) %%(f,o;x,t) - C3(€;e)G(E,0;x,t)} dé.

Hence,

1 .
||u-v||JL5T_—k{||c||JL+ “ue-veujL} with 0 < k < 1.

From the smoothness properties of ¢y, ¢y and c3 it follows that there exists a constant K

independent of ¢, such that

"C"JLS [[g+ 5) KL + IeIK] Iflm'l and

lug-velly, < (5+11) Ke|m-1L.
lelm-lK .
So, "u-v]IJLs——l—_r—{(%+5]L+ lel + 5+ 11}

For m > | this inequality implies the asymptotic validity (as ¢ — 0) of the formal

approximation v. The following theorem has nuw been established.
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Theorem 1.3.1

Let the formal approximation v satisfy (1.3.1)-(1.3.4), where ¢, F, ug and u are given
by (1.2.5)-(1.2.8) and where c¢|, ¢y and cj3 satisfy (1.3.5)-(1.3.7). Then for m > 1, the
formal approximation v is an asymptotic approximation (as ¢ — 0) of the solution u of the
nonlinear initial-boundary value problem (1.2.1)-(1.2.4). The asymptotic approximation v
is valid for those values of the independent variables x and t for which problem (1.2.1)-

(1.2.4) has been proved well-posed. That is,
[lu-v ] - O(|e]m-1), implying |u(x,te) - v(x,te) | = O(|e|m-1)

for0 s x < mand 0 st < Ljej -1, in which L is a sufficiently small, positive constant

independent of e.
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1.4. A simple model of the galloping oscillations of overhead transmission lines -

In this section a simple model -describing the. galloping oscillations of overhead trans-
mission lines will be derived. Galloping.can be described as a low frequency, large
amplitude phenomenon involving an almost purely vertical oscillation of single-conductor
lines on which for instance ice has accreted. The frequencies involved are so low -that the
assumption can be made that the aerodynamic forces are-as in steady flow. Another conse-
quence of these low frequencies is that structural damping may be neglected. In severe
cases galloping méy g.ive; rise tbh conducto;r' damége ‘due- to impac.t. of conductor lines and
d};e to f lashgver as.a result of a phase-difference between conductor lines, for which the
mutual distance has become too small. The usual conditions (see [26]) causing galloping
are those of incipient icing in a stable atmospheric environment implying uniform (bx}t
not necessarily high velocity) airflows.

A symmetric circular conductor in a horizontal airflow cannot exhibit galloping because
it cannot generate a force that lifts the conductor against gravity. On the other hand, a
conductor on which ice has accreted may gallop if it adopts a suitable attitude to the
wind. To describe this phenomenon a right-handed coordinate system is set up where one
of the endpoints of the conductor is the origin. Through this point three mutually per-
pendicular axes (the x-, y- and z-axis) are drawn, where the z-axis coincides with the
direction of gravity. The three coordinate axes span the three coordinate planes in space,
the (x,y)-, (x,z)- and (y,z)-planes. On each coordinate axis a unit vector is fixed: on the
x-axis the vector ey, on the y-axis the vector ey and on the ;—axis the vector €, which
has a direction opposite to gravity. The coordinate axes are directed by these vectors, such
that a right-handed coordinate system is obtained. The coordinates of the endpoints of the
conductor are supposed to be (0,0,0) and (£,0,0), where £ is the distance between the end-

points. To model galloping a cross-section (perpendicular to the x-axis) of the conductor
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with .ice ridge is considered. Assume that all cross-sectional shapes are identical and sym-
metric; Along the axis of symmetry of a cross-section a vector eg is defined to be direct-
ing away from the ice ridge and starting in the centre of the cross-section. In figure
1.4.1 the centre of 4t.he cross-section is considered to be at x = X0, ¥ = Yo and z = zj) with

0 < xg < € <&, where £ is the length of the conductor.-

Z

’

Y

i
-«
°‘<

<

Figure 1.4.1. Cross-section of the circular conductor with ice ridge.

Let w(xg,t) denote the z-coordinate of the centre of the cross-section at x = xq and time
t. Assume that every cross-section perpendicular to_the x-axis oscillates in the (y,z)-
plane. Furthermore, assume that torsion of the conductor may be neglected. Let the static
angle of attack og (assumed to’be constant and identicai f;dr all cross-sections) be the angle
between eg and the uniform airflow Voo, that is,ag:= L (e5,ve0) With |ag| < . In this
uniform airflow with flow velocity v, = Vooly (Voo > 0) the conductor may oscillate due

to the lift force Le and the drag force Dep. It should be noted that the drag force Depy
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aw .
5t 8z and that the lift force

Ley, has a direction perpendicular to the virtual windvelocity vg (e, is chosen perpen-

has the direction of the virtual windvelocity vg = Voo -

dicular and anti-clockwise to ep). In figure 1.4.1 the forces Lej, and Dep acting on the
cross-section are given. Since galloping is an almost purely vertical oscillation only
vertical displacements of the conductor will be considered. Furthermore, the conductor is
considered to be an one-dimensional continuum in which the only interaction between
different parts is a tension T, which is assumed to be constant in space and time. The
validity of the assumption will be discussed in chapter 3, section 3.6. The equation de-

scribing the vertical motion of the conductor is given by
2,-3/2 .
pcAWy - TA( + wy) Wyx = -PcAg + Dsin ¢ + L cos ¢, (1.4.1)

where the magnitudes of the drag and lift force acting on the conductor per unit length
of the conductor are D and L respectively, p. the mass-density of the conductor (in-
cluding the small ice ridge), A the constant cross-sectional area of the conductor (includ-
ing the small ice ridge), ¢ the angle between v, and vg (that is, ¢ := L (YoosV¥s) With
|¢] < =) and g the gravitational acceleration. The magnitudes D and L of the aero-

dynamic forces may be given by

padep(a) vg , (1.4.2)

padep (@) v2, (1.4.3)

where p, is the density of the air, d the diameter of the cross-section of the circular part
of the conductor, vg = |‘_’s| , o the angle between eg and vg (that is, a = L (e5,vg) with
Ia | < ), and cp(a) and cy (@) the quasi-steady drag- and lift-coefficients, which may

be obtained from wind-tunnel measurements. For a certain range of values of vq, some
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Figure 1.4.2. Typical variation of the drag and lift-coefficients cp and cy with angle of

attack for a symmetric profile with small icy nose.

characteristic results from wind-tunnel experiments are given in figure 1.4.2 (see also
[1,24,26]).
According to the Den Hartog criterion [10] a-two-dimensional section is aerodynamically

unstable if

dep (o
cpla) + c{:x( ) <0

From figure 1.4.2 it follows that this condition is likely to be satisfied for some interval

dey (a)
in a with @y < @ < ap, where ag and aj are determined by cp(a) + ;; = 0. For

these values of a the drag- and lift-coefficients are approximated by (see also [1])

cpla)=cpg and  cp(a) =cp(a - aj) + cp3(@ - a)3, (1.4.4)

with cpg > 0, c) < 0, c1.3 > 0, ag < @] < ap and cp (aj) = 0. Since galloping is a low
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frequency oscillation it is assumed that | wy| << voo (so || << 1). The right-hand side
of equation (1.4.1) can now be expanded near ¢ = 0. Also it is assumed that | wy | << 1
and so, the léft-hahd side of equation (1.4..1) can be expanded near wy = '0. Using the
fact that ¢ - = arctan (%) and neglecting terms of degree ‘four and higher one

obtains after some elementary calculations

2 ) .
- 3.2 Padvoo aj a3 2 23 3
th'cz(l,‘f wx)wxx=-g+ T a0+§wt+—3 Wi+ —3 Wit (1.4.5)
. ' Voo Voo

where

- ()"

ag = cp (e - ap) + cp3(a -ap)3,

a) = -Cpg - L1 - 301_‘3((1s - al)z, . (1.4.6)
1 1 ’
ag = (5 L] + CL3](OtS -ap)+ b cp3(ag - 01)3, and

1L '
a3 = -5 opg - g cLy - o3 (1 +(eg - ap)?).

. . ~ Pcl
Applying the transformation w(x,t) = w(x,t) + =

5T x(x - £) and using the dimensionless

variables

nc
JA/NN

- ~ - 7w - ®C
W= w, X=X and t—tt

equation (1.4.5) becomes

v;tt [ ) (w- 21rcv (2x - 1r)] ‘;ii +
3 (Vooy2 _ gt -
2 (_c—) 2mcvee Lo x Tt 21rcv Traurs (2% - W)]

pad? 00 - -2 -3
= o 4.7
2mpcA c ){ao«i-alwE +a2wI +a3wi}, , (14.7)
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-where the dimensionless constants a(), aj, 8y and a3 are given by (1.4.6):

Typical values of the physical quantities in a practical application are: £ = 400 m,
d=004m, A = w(%)z - 41074 w2, pe = 4000 kg/m3, p, = 1.25 kg/m3,
g =10 m/s2 and voo, = 10 m/s. The tension T in the conducter is estimated by
%pcg (-%]2 561, where: s (usually 2 or 3 per cent of £) is the sag of the conductor. Let
sg be 10.m, then T = 8.107 kg/n152 and conseéuent]y ¢ = 140 m/s.(c may be identified

with the speed of propagation of transversal waves in the conductor). Then, it follows that

pade
21pcA

_8t 1 Yoo I
Trovg, © 2 M4 T =g

~
8’

- v . . . .
Putting ¢ = _c°3 -and assuming that the static angle of attack o« is such that galloping may
set in according to the instability criterion of Den Hartog [10], that is, assuming that

ag = &) + O(€), equation (1.4.7) becomes up to order €

padt - -3
- W__=¢€ aw_ - bw_ j, 1.4.8
tt XX 2mpcA ( t t) ( )

£

where a = -cpg - ¢,] and b = % cpo + —é— €L ] + cL3- For the cross-sectional shape of
the conductor with small ice ridge under consideration the aerodynamic coefficients cpq,
cL1 and cp 3 may be determined from wind-tunnel measurements (as for instance given
in figure 1.4.2). From figure 1.4.2 it follows that cpg > 0, ¢ < O, leL1l > cpos
c¢L3 >0, a>0and b > 0. If one considers a conductor with fixed endpoints the boundary
conditions w(0,t) = w(m,t) = 0 are obtained. By a simple change of scale
NESRE
a

u(x,t) = w(x,t) the model equation (1.4.8) can be simplified to a Rayleigh

wave equation
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1 3
u_-u__=¢lu-suj, (1.4.9)
it xx ( t 3 t]
~  padt Voo €DQ + CL1 padi ) .
where ¢ = ea TrpeA =- = T PoA Is a small, positive parameter. In the

next section equation (1.4.9) subject to the boundary values u(0,t) = u(r,t) = 0 and the
initial values u(x,0) = wq(x) and uz(i,O) = wi(x) will be studied, where wq(x)
and wl(i) can be regarded as the initial displacement and the initial velocity of the con-
ductor in vertical direction respectively.

It is worth noticing that in the early seventies ([22]) an equation similar to equation
(1.4.9) has been postulated to describe the galloping oscillation§ of overhead transmission
lines. In that paper it has been assumed that euE and - % u';’ represent forces tending to
increase and decrease respectively the magnitude of the oscillation-amplitudes. In this

section it has been shown that this simple model can be derived using aerodynamical

arguments.
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1.5. An asymptotic approximation of the solution of 2 Rayleigh wave equation

In this section the following initial-boundary value problem for a twice continuously dif-

ferentiable function u(x,t) will be considered

“tt'“xx“f('“t*'%u%] =0, O<x<mmt>0, (1.5.1)
u(x,0) = up(x) = ap sin nx, O<x<m, (1.5.2)
u(x,0) = ug(x) = by sin nx, O<x«<m, (1.5.3)
w(0,t) = u(m,t) =0, t> 0, (1.5.4)

where aj and by, are constants, n an integer and 0 < ¢ << 1. From theorem 1.2.1 it follows
that this initial-boundary value problem is well-posed on J (given by (1.2.13)). In [4] a
similar initial-boundary value problem has been considered with n = 1, a; = 2 and
by = 0. However, in that paper the asymptotic validity of the formal approximation has
not been given. In this section for arbitrary n, a, and b, an asymptotic approximation (as
€ — () of the solution'of (1.5.1)-(1.5.4) will be constructed. In view of computational dif--
ficulties (as has been noticed in [18]) whenever one assumes an infinite series representa- ‘
tion for the solution of the nonlinear initial-boundary value problem, one may alter-
natively investigate the problem in the characteristic coordinateso=x -t and {=x + t.
In this approach the initial-boundary value problem (1.5.1)-(1.5.4) is replaced by an
initial value problem. This replacement requires to extend the dependent variable u(x,t)
as well. as the initial values ug(x) and uj(x) in x to odd and 27-periodic functions. For
simplicity the extended functions will be denoted by the same symbols. In constructing an
approximation of the solution u(x,t) = U(c,¢) of this initial value problem a two-timescales
perturbation method will be used, since the straightforward perturbation expansion

ﬁo(a,f) + eﬁl(a,f) + .. causes secular terms. Applying the two-timescales perturbation
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method u(x,t) is supposed to be a function of 0 = x - t, £ = x + t and 7 = et. By putting

u(x,t) = v(o,¢,7) the following initial value problem for v is obtained

-4vge + Ze(vf,. - Vor) + ezv,,r +e€ (v¢7 - Vg-evp+ _:l;("’a +ve+ evT)3) =0,
for oo <o <€ <00, 7> 0, (1.5.5)
. v(0,€,1) = ug(0) = ap sin no, for oo <o0=€ <00, 7=0, . (1.5.6)
-vo(o.£,7) + ve(o,f,r) + evy(0,£,7) = uy(0) = by, sin no, .

for oo <o=€<o00, 7 =0, (1.5.7)

Furthermore, it is assumed that v may be approximated by the formal perturbation ex-
pansion vq(0,£,7)- + €vi(0,é,7) + ezvz(a,f,r) + .. . By substituting this approximation into
(1.5.5)-(1.5.7), and after equating the coefficients of like powers in ¢, it follows from the

powers 0 and 1 of ¢ that v should satisfy

-4voa$=0’ ~0<o<€<o00, 7>0, - (1.5.8)
vo(e.£,7) = ug(0) = a, sin no, . ~o0<0o=¢<00, T=0, (1.5.9)
-voa(o,e,r) + vof(a,ﬁ,r) =uy(0)=b,sinno, -c0<o=§<o00,7=0, (1.5.10)

and that v} should satisfy

1
-4vla£ = 2V0m_ - 2V0£T - (VO(7 - voe + 3 (-Vo(7 + V0€)3]

for o0 <o <& <00, 7> 0, (1.5.11)
vi(o4,7) =0, -0 <0o=§ <00, 7=0, (1.5:12)
-vla(a,f,r) + vlf(o,f,r) = ~V0T(0,€,T), —oo<og=§¢<o00, 7=0. (1.5.13)

1In the further analysis vg and vy will be determined, and it will be shown that on Jp,
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u(x,t) = vo(x-t,x+t,et) + ev)(x-t,x+t,et) is an order € asymptotic approximation (as € — 0)
of the solution u(x,t) of the initial-bptmdary value problem (l..S.Alj)-(l.5.4).

The general'solution of the partial differential equation (1.5.85 1s given by vq(oé,7) =
= folo,r) + gg(€,7). The initial values (1.5.9) and (1.5.10) imply that f and gq have to
satisfy fq(0,0) + gg(0,0) = ug(o) and —f‘d(a,O) + g(')(a,O) = uj(0), where the prime denotes
differentiation with respect to the first argument. From the odd and 27-periodic exten-
sion of the dependent -variable of .problem (1.5.1)=(1.5.4) it follows that f and gg also
have. to satisfy go(o,7) = -fo(-0,7) and fo(o,7) = fo(o+27,7) for -00. < 0 < 00 and 7 > 0.
The undetermined behaviour of f(y with respect to . will be used to avoid secular terms
in vy. From the well-posedness theorem it followed that u, uy and uy are O(1) on Jy . So,
v and its first derivatives have to remain O(l,) ‘on -00 < x.< ooand 0 < t-< Llel".
Furthermore, it should be noticed that the equations for v and v| have been derived
under the assumption that v(, v| and their derivatives up to order two are O(1). These
boundedness conditions on vq and v) determine the behaviour of f(y with respect to 7.

From (1.5.11)-(1.5.13) vy _and v, may be obtained easily. For instance,
: lg le

-4vla(a,£,1) = -4v10(a,a,'r) +(£-0) (Zfom_(a,r) - foa(a,r) + %f%o(a,r)) +

£

¢ : , .
+fo,0n) | 83,000 + | {-2805,(0.0 + 80,0:) - 13 fonB0 01 +

o

-%g%o(o,r)},do\»h(o,f), _ L (saa)

where h will be determined later .on. Since the first integral ,i" (1.5.14) contains a non-
negative and 2x-periodic integrand it follows that this integral will grow with the
length ¢ - o of the integration interval. It turns out that this integral can be written in a

part which is O(1) for all values of o and ¢ and in a part which is linear in ¢ - o
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e 52 sbenan

Noticing that € - o = 2t it follows that £ - o is of O(]e]'l) on a time-scale of O(ld-1). So,
Vl, will be of O(lel‘l) unless fg and gg are such that in (1.5.14) the terms of o@d-1)
(that is, terms linear in ¢ - o) disappear. It turns out that both Vig and v ¢ are O(l)on a

timescale of O(le~1) if f, 0 and gq satisfy the following two conditions

27
1.3 1 2
2f0m_ - f00+'§foa+f00—27r .[0 g09(0,1) dé = 0, and

1

m
3 1 2 )
-ngET + SOG - 3 g()e - gof ﬁ ‘[ foo(o,f) dé =0.

0
From gg(8,7) = -fo(-6,7) it follows that these two conditions are equivalent. So, vlaand
Vlf are both O(1) on a time-scale of O(l¢~!) if f( satisfies

27
1.3 1 2
2f0m_- f00+§f00+ f00—27 .[0 fog(ﬂ,‘r) dé = 0. (1.5.15)

In [4] an equation similar to equation (1.5.15) has been solved. If the method introduced
in [4] is applied to equation (1.5.15) one obtains after some calculations f(c,r), and so
vo(o,é.1) = folo,1) - fog(-€,7). It turns out that fo and v are given by

Cné() 7172

folo,7) = ﬁ%—(r—) arcsin [W’)— sinfe + no) | + k(r), (1.5.16)
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vo(o,é,7) = A arcsin [—IC—KM——] 172 sinfa + no) | +

ngl/2(r) + Cpé(r)
- arcsin [—;—%] 1/2 sinf@ - n¢) | L, S (15a7)

where k(r) is an arbitrary function in 7 with k(0) = 0, 0 = x ~t, £ =x + t, 7 = et,

2.2 2 . -1/2

chp=n"ay + by, @ given by cosa = napcy, ahd sing = bnc;ll/2 , and A7) and ¢(7) are

implicitly given by A(r) = 4e7/2m‘3(r) and ¢(7) = —L—)- (m(7) - 2) with m(r) determined

6°n 3.2% 28

by m8(r) - —m7(r) = (€7 - 1) + 32—
Now the linear initial value problem (1.5.11)-(1.5.13) can be solved, and it turns out that
vy is given by

13 27
viegn) =5 (o) - fo-6m) | 5,00 - 5 [ gy aufas+
4 . 6 2r ], ¥

13 2%
-4 L 340 - 5= jo Foyr) av b (£0(0.0) - £0(-6,0)) 4 +

+f1(o,7) + 81(£,7), (1.5.18)

where f( is given by (1.5.16) and where (for o = ¢ and 7 = 0) | + g is determined by
the initial values (1.5.12) and (1.5.13). The ﬁndetermined behaviour of f] and g} with
respect to 7 can be used to avoid secular terms in 'viz'. However, in this analysis vy will
not_be determined. For that.reason it may be assumed that f{ = f{(0) and g = g(£), and

then
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3 _ .
O +81©=-5 [ (0,00 +go G0N0=

by | Gep - 24) . _ (3n%a2, -
=2 PY; sin(né) - sin(no)) + 33..25

2 _
®n) (sin(3n¢) - sin(3n0))

It can be shown from (l.5.:l7) and (1.5.18) that vg,v| and tﬁeir derivatives up to order
two are of O(1) on Jy. So, the assumptions under which the equations for v and vy have
been derived, are justified. So far a function vg(o,£,1) + evy(0,6,7) = V(0,£,7). =
= v(x-t,x+t,et) = u(x,t) has been constructed. It can easily be.seen that u(x,t) satisfies
(1.5.2) and (1.5.4) exactly, and (1.5.3) up to order €2 in the sense of theorem 1.3.1. After
rather lengthy, but elementary calculations it can also be shown'that u(xt) satisfies (1.5.1)
up to e2cl(x,t;e), where ¢, 3;:_): e C([0,m] x [O,L[el“l] % [-€g,¢0], R) with ¢(0,t¢) =
=cy(mte) =0 for 0 <t < LIeI‘l. Furthermore, ¢{ and ?—; are uniformly bounded in .
Then it follows from theorem 1.3.1 that u(x,t) is an order ¢ asymptotic approximation (as
e — 0) of the solution of the initial-boundary _value problem (1.5.1)-(1.5.4) for
(x,t) € J, that is ||u—ﬁ||JL = O(e). From this estimate the following estimate can be

obtained

lu-volly = llw-iei-volly < llu-illy + Nevilly = OG.

Hence, vg(x-t,x+t,et) given by (1.5.17) is also an order ¢ asymptotic approximation (as
€ — 0) of the solution u(x,t) of problem (1.5.1)-(1.54)for0 < x <mand 0 <t< Le-1, in

which L is an e-independent, positive constant.
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1.6. Some general remarks

The asymptotic theory presented in this chapter may directly be applied to initial value
problems, for weakiy nonlinear wave equations. The well-posedness of these problems on
the infinite domain -oo < x < oo and the asymptotic validity of formal approximations
may be established on a time-scale of order |e|-1/2. This time-scale follows from the
integration over the characteristic triangle (with an area of O(t2)) in the integral
equation, which is equivalent to the initial value problem. In some special cases (for
instance, if (1.5.1)-(1.5.3) is considered.as an initial value problem on -oo < x < o0) a
time-scale of O(l¢~!) can be obtained. However, the question remains open if for general
initial value problems (that is, problems like (1.2.1)-(1.2.3) on -00 < X < oo) the well-
posedness in the classical sense can be established on a time-spale of O(|e|'1). To obtain
such a time-scale one has most likely to use a different function space, perhaps a suitable
Sobolev space.

In [4,18] formal approximations of the solutions of a number of initial value and initial-
boundary value problems for weakly nonlinear wave equations have been constructed.:In
those references the asymptotic validity of the formal approximations has not been
investigated. However, the asymptotic theory presented in this paper can be used success-
fully to justify those results, that is, estimates of the differences between the exact solu-
tions and the formal approximations can be given on ¢-dependent time-scales. It is also
interesting to mention that only smoothness conditions are required (see (1.2.6)-(1.2.8))
and that no other assumptions are made about the Vnohlinear perturbation term F. Thus,
the asymptotic theory preseénted in this chapter :s ah‘plicable to those initial-boundary
value problems whose solutions, while being bounded at times of O(ld-1), could even-
tually become unbounded. Such, for example, is the case for the initial-boundary value

problem (1.2.1)-(1.2.4) with F = -u% and 0 < € << 1.
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In section 1.3 the condition m > 1 is introduced. It should be noted that this condition for
the asymptotic validity of formal approximations on a time-scale of O(lel'l) is a suffi-
cient, but not a necessary one as can be seen from section 1.5. The asymptotic approxima-
tion vy (which is valid on a time-scale of O(jel~ 1)) satisfies the partial differential equa--

tion and the initial values up to order ¢, that is m = 1. It may be remarked that ugx,t) =
= [ah cos nt + —b% sin nt) sin nx, which is the solution of the linear initial-boundary
value problem (1.5.1)-(1.5.4) (that is, (1.5.1) with ¢ = 0), also satisfies the weakly non-
linear partial differential equation and the initial values up to order e. In general u, will
not approximate the exact solution of the nonlinear initial-boundary value problem on a
time-scale of O(Iel‘l). However, on a smaller time-scale the asymptotic validity of uy can
easily be established, that is, it can be shown using the methods discussed in sections 1.2
and 1.3 that |u(x,t) - ugx,t)| < |e|Mt, where M is a constant independent of ¢. This
inequality implies u(x,t) = ugx,t) + O(|e|1-®) for 0 < x < mand 0 <t<L|e| -2 with
0 <a< 1. From the asymptotic validity of uy on a time-scale of order |e|-% with
0 <a < 1 it follows that whenever one wants to study the effect of the small (¢-depen-
dent) and nonlinear terms in the partial differential equation, one has to construct
approximations with a validity on a time-scale of order |e|-1.

In a number of papers [4,20,22,23] initial value and initial-boundary value problems for
the Rayleigh wave equation have been studied by constructing formal approximations of
the solutions or by deriving some properties of the approximations for large times. An
interesting result (without an asymptotic justification) has been found in [20]. For a
rather general class of initial values it has been shown in [20] that the first order
approximation tends to a superposition of standing triangular waves as et —+ oo. How the
solution tends to these standing triangular waves can be determined by solving a non-

linear integro-differential equation. It is not made clear in [20] how to solve the integro-

differential equation, but it is the author’s opinion based upon the results in this chapter
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and in [4] that only for a restricted class of initial values, such as (1.5.2) and (1.5.3), this
equation may be solved analytically.

As can be seen from (1.5.17) vq also tends to a standing triangular wave (with amplitude
—2111— v3 and period -ZT”) as et — oo, However, it should be emphasized that nothing can
be said about the asymptotic validity of vq as et — oo, since only for finite et (that is,
0 <let] < L < oo) the asymptotic validity of vq could be established.

In [9] it was concluded from the behaviour of the first order approximation as et — oo
that the Rayleigh wave equation (postulated iﬁ [22]) is not a good model for galloping
oscillations, since the approximation allows at least one and possibly infinitely many sharp
bends. From a mathematical point of view the validity of this conclusion is rather doubt-
ful since only for finite et, that is for |et| < L < oo, the asymptotic validity of the
results has been obtained so far. And on this finite time-scale the solution and the
asymptotic approximations are at least two times continuously differentiable with respect
to the independent variables if the initial values are sufficiently smooth.

In section 1.5 monochromatic initial values have been considered which applies to the de-
scription of galloping oscillations, because these oscillations often affect only a single
mode of vibration. To obtain some information about the maximum oscillation-amplitudes,

the following formula may be used

v
12 B (25,22 y),

pc8
w(x,t) = 2c_'1: x(x - &) + (% s

where w(x,t), pc, 8, T, a, b, £, Voo, c and u (-;[ x,w_tc t] are defined as in section 1.4.
The first term in this formula may be considered as the position of the conductor in rest,
whereas the second term represents the change of the position of the conductor due to
galloping. From (1.5.39) it follows that the maximum amplitude of u [-% X, 1r_ec t] for

x

€t — 00 IS 2n V3. So, the maximum oscillation-amplitude of w(x,t) may be approximated
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by

v 172

-¢DO - CL1 ] oo £
1 + 1 +e 2c. nm
7 €DO0 + g L1 L3

*

where n—e”— is the frequency of the-monochromatic initial value;s and wﬁere ¢po, ¢ and
cp3 are the aérodynamic coefficients, which may be obtained }'rom wind-tunnel
measuremeﬁts. | |

Finally, it should be noted that the two-timescales pérturbatioh method is applicable to
perturbations not solely depending on derivat'ives of the dependent vgriable, buf also
applicable to perturb;ations depending in a special way’on the dependgnt variable and its
derivatives. Conside; for instance the initiai—boundary valué problem (1.2.1)-(1.2.4) with
f(x,t,u,ug,uyz6) = (-1 + u2)ut. The partial d.ifferential equation (1.2.1) can then be con-
sidered as a genefali;ed Van der Pol equation. As is well—known this equation is related
to the Rayleigh wave eqﬁatior;, which has been introduced in section 1.4 and treated in
section 1.5. Again a two—tim%.cales perturbétion method can be used to construct an
asymptotic approximation of the.solution. The equati.on _for fo(o,7) now becomés

2w
1.2 1 2
2005, = f0, 3 00, * 10,27 [ 166 90 =0,

which can be integrated with respect to o. As in section 1.5 an order ¢ asymptotic

approximation can be constructed on a time-scale of order |e|-1.
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CHAPTER 2 o

ON INITIAL-BOUNDARY VALUE PROBLEMS FOR WEAKLY SEMI-LINEAR

. *
TELEGRAPH EQUATIONS. ASYMPTOTIC THEORY AND APPLICATION )

Abstract

In this chapter an asymptotic theory for a class of initial-boundary value problems for
weakly semi-linear telegraph equations is presented.

The theory implies the well-posedness of the problem and the validity of formal approx-
imations on long time-scales. As an application of the theory an initial-boundary value

problem for the equation u, , - U et eu3 = 0 is considered. To construct an O(¢) ap-

tt

proximation of the solution of this problem a two-timescales perturbation method is ap-

plied.

*) This chapter is a revised version of a paper [11] by the author of this thesis and
A.H.P. van der Burgh. '
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2.1. Introduction

In this chapter an asymptotic theory is presented for the following initial-boundary value

problem for a nonlinearly perturbed telegraph equation:

Uy -u  tus eF(x,t,ue) = 0, O<x<mt>0, (2.1.1)
u(x,0) = uo(x;e) and ut(x,O) = ul(x;e), O<x<m, (2.1.2)
u(0,t) = u(m,t) = 0, t>0, (2.1.3)

where 0 < |¢] < € << 1 and where the functions F, u, and u, have to satisfy certain
smoothness properties, which are mentioned in section 2.2.

The main problems which are studied in this asymptotic theory are the well-posedness of
the problem and the asymptotic validity of formal approximations. The classical question
of the well-posedness of a problem involving a small parameter has from asymptotical
point of view an interesting aspect, which has been studied only in recent years.

In ordér to make clear what is meant by an interesting aspect, consider problem (2.1.1)-
(2.1.3) with ¢ = 0 and € = 1. For € = 0 it is easy to prove existence and uniqueness of the
classical solution, that is a solution which is two times continuously differentiable with
respect to x and t, on the semi-infinite strip 0 < x < 7 and t > 0. However, when € = |
only a local theory may be givén which states that a unique solution exists for 0 < x <«
and 0 <t < T = O(1). It can be shown that when ¢ € [-eo,eo] T = T(¢) where T(e) — o
for ¢ — 0. Now the conjecture in the literature [6,20,27] is that T = O(|e|_l). The con-
jecture is based on the assumption that u(x,t) may be expanded in eigenfunctions:

u(x,t) = ;l un(t) sin nx where un(t) (n = 1,2,...) are the solutions of an initial value
problem fg; a system of an infinite number of ordinary differential equations. As is

well-known an initial-value -problem for an analogous, finite-dimensional system of or-
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dinary differential equations has a unique solution on a time-scale of O(|¢|~ l). However,
it is by no means clear that from this fact the existence of a unique classical solution for
problem (2.1.1)-(2.1.3) follows on the time-scale of O(|¢| ‘1). Another crucial step in this
approach, which is not mentioned in the literature, is to show that the infinite series,
which is supposed to represent the solution of problem (2.1.1)-(2.1.3), converges uni-
formly on a time-scale of O(|¢| "l). From this it may be concluded that the proof of the

-1/2)

will be broved. Extending the initial-boundary value problem to an initial value prob-

conjecture still has to be given. In this chapter a weaker result namely that T = O(]¢|

lem, this proof may be given by applying Banach’s fixed point theorem to the (with the
initial value problem) equivalent integral equation, which inv.olves as kernel a uniformly
bounded Bessel function of the first kind and order zero. The O(|¢| -1/ 2) time-scale is a
consequence of the integration over a triangle-shaped region with an area of O(tz). In
this chapter reflection principles are applied such that the integration over the aforemen-
tioned triangle can be reduced to an integration over a strip with an area of O(t). How-
ever, the inte_gral equation obtained in this way involves an O(t) kernel, which may be
identified as a Green’s function. It may be concluded that if one wishes to obtain an.
O(Iel'l) estimate for the time-scale one has probably to use a different technique and
one has most likely to introduce supplementary conditions on the nonlinear term F. It
looks like that this has been done recently in [19]. In this preprint some results are given
on the existence and uniqueness of solutions for initial-boundary value problems, related
to the type of problems discussed in this chapter. If the nonlinear term F satisfies some
supplementary conditions the author of the preprint claims that in a suitable Sobolev
space e*istence and uniqueness can be established on an O(|¢| _l) time-scale.

The remarks made above on the problem of the estimate of the time-scale also apply to
the domain where continuous dependence of the solution on the initial values has to be

established. One may roughly say that in proving continuous dependence of the solution
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on the initial values one has to show that small u perturbations of the initial values
correspond to small § perturbations in the solution on the O(lcl -1/ 2) time-scale where
§ — 0 when g — 0. This problem is closely related to the problem of showing that formal
approximations u(x,t), which are functions which satisfy the partial differential equation
and the initial-boundary conditions up to some order depending on the small parameter e,
are indeed asymptotic approximations of the solution of problem (2.1.1)-(2.1.3), that is,

on the O(|¢| -1/2) time-scale
Ju(x,t) - u(x,t)] = O(), where § — 0 for ¢ — 0.

An interesting problem to study in asymptotics is the determination of the so-called order
function § = 68(¢). In the theory of ordinary differential equations these problems have
been studied extensively (for instance in [2], one of the first papers dealing with these
problems, and in [25] where a fairly complete review including references is given).
However, in the theory of partial differential equation of the evolution type only little is
known. In [3,8] some results are given for initial value problems and in [4,17,18,20] the
problems outlined above are mentioned but not solved.

This chapter being an attempt to contribute to the questions outlined above, is organized
as follows. In section 2.2 the well-posedness of the problem is investigated and established
on the O(|¢f -1/ 2) time-scale. In section 2.3 the asymptotic validity of formal approxima-
tions is studied. It is remarkable that an estimate is obtained by a technique based on the
use of an auxiliary function and an integral inequality. This technique was introduced in
[2] for ordinary differential equations and applied to initial value problems for evolution
equations in [3].

In section 2.4 the asymptotic theory is applied to the special example F(x,t,u;e) = u3; Asa

method to construct a formal approximation, which is also an asymptotic approximation, a
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two-timescales perturbation method is used. Application of this method yields an initial
value problem for a system of infinitely many nonlinear first order ordinary differential
equations. In {17] for the case that F = u - -%— ui a similar infinite system has been
solved exactly, which is judged to be rare in [18]. In this chapter the obtained infinite
system for the case F = u3 is solved exactly, which also requires rather tedious calcula-
tions. On the basis of this result and the results obtained in [6] and [17] one may conclude
that the applicability of the method is not restricted to some special cases, but applies to a
general class of perturbations F with a polynomial structure in the dependent variable.
Finally in section 2.5 some concluding remarks are made on the results obtained in this
chapter,

" Preliminary studies show that the asymptotic theory so far established can be extended to
perturbations F which depend on derivatives of the dependent variable. This extension
includes initial value and initial-boundary value' problems for the weakly nonlinear

telegraph and wave equations.
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2.2. The well-posedness of the problem

In this chapter the following weakly semi-linear initial-boundary value problem for a

twice continuously differentiable function u(x,t) is considered.

U, -u  tus eF(x,t,u;e) = 0, O<x<mt>0, (2.2.1)
u(x,0) = uo(x;e), 0<x<m, (2.2.2)
ut(x,O) = ul(x;e), O<x<m, (2.2.3)
u(0,t) = u(m,t) =0, t>0, - (2.2.49)
with 0 < |¢] < € << 1, and (2.2.5)

where F, U, and u, satisfy:

dF O4F
F, %’ 3u S C([O,vr]x[O,oo)lex[-eo,eo],JR)

with F(0,t,0;¢) = F(m,t,0;¢) =0 fort> 0, (2.2.6)

auo 32110
Yo ax 0,2 € 0T h R)

with uO(O;e) = uo(w;e) = u'(')(O;e) = u'(‘)(r;c) = 0, and

aul

U, 3x € CUOmIx[-€p.¢0), R) with u (03¢) = v, (me) = 0. (2.2.8)

0,60],

Furthermore, F is assumed to be uniformly bounded for those values of t

under consideration. (2.2.9)

In order to prove existence and uniqueness in the classical sense of the solution of the
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initial-boundary value problem (2.2.1)-(2.2.4) an equivalent integral equation will be
used, which has been derived in appendix 2A.

This integral equation is given by
t o7
u(x,t) = ¢ .[0 IO G(&,m:x OF(¢,r,u(¢,r)e)dedr +
g
+ f 0 {uo(f;e)GT(f,O;x,t) - u](f;e)G(f,O;x,t)} d¢ = (Tu)(x,t), (2.2.10)

where the Green’s function G is given by:

GEnx =1 ¥ H(t-1—$+2k1r—x)H(t-,T+E-2k1r+x)J0([(t-1)2-(€-2k1r+x)2]1/2

keZ

)+

(Y

- H(t-r+£+2k1r-x)H(t-r—£—2k1r+x)J0([(t-1)2 - (e+2kn-x)2 1/ 2)}, 2.2.11)

in which JO is the Bessel function of the first kind of order zero and in which H(a) is a

step function which is equal to 1 for a > 0, —é for a = 0 and zero otherwise. From the in-

tegral equation (2.2.10) it follows that the solution u ¢ of the linear initial-boundary value-

problem (2.2.1)-(2.2.4) (that is with F = 0) is given by
n
ufx0 = [ {80606 (€0x.0 - u (E0GE0x.0} . (22.12)
In the further analysis the abbreviation u e(x,t) will be used.
In proving existence and uniqueness of the solution of the nonlinear integral equation

(2.2.10) a fixed point theorem due to Banach-Caccioppoli will be used. Let

DL={(x,t)iOSxsvr?OstsLlel'l/z}, (22.13)
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in which L is a sufficiently small, positive constant independent of e.
Let CM(DL) be the space of all real-valued continuous functions w on DL with norm

-1 p. defined by
L

Il DT e Iw(x,0| <M.
’ L

It is not difficult to show that T maps CM(DL) into the space of continuous functions on
DL‘ In order t6 prove that T maps CM(DL) into itself an estimate of the Green’s function
G(¢,r;x,t) should be ob;ained for 0 < ¢ <m 0 < r<tand fixed x and t. In figure 2.2.1
some properties of the Green’s function G(£,7;x,t) are given in the (£,7r)-plane. In this
figure the characteristics from the point (x,t) and the reflected characteristics at the
boundaries ¢ = 0 and ¢ = « are.drawn. These (reflected) characteristics divide the region
V= {(e,rno <é<m 2 0} into a finite number of subregions. In each subregion oﬁly a
finite number of Bessel functions is defined by definition (2.2.11) of G(¢,r;x,t). From
this definition it follows that G(¢,7;x,t) = 0 in V if t-74£-X < 0 or t-7-£+x < 0. In figure
2.2.1 also the number of Bessel functions in each subregion of V is given.

From the fact that the Bessel function of the first kind of order zero is not periodic and
is equal to one if its argument is equal to zero, and from (2.2.11) it follows that an esti-
mate of G(¢,7;x,t) can be made which is linear in t. This estimate is based upon the num-

ber of Bessel functions in each subregion. For 0 < £ < 7 and 0 < r < t it then follows that

(1

=

| G(€,m;x,1)| < umber of Bessel functions in each subregion’) <

<

N — ISIE
)

(t-147) = —7lr (t-74m). (2.2.14)

It should be noted that no sharper estimate of G(¢,7;x,t) could be made so far. Neverthe-

less, the question remains open if one can establish an estimate sharper than an estimate
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T
4 0
t
t-t+E-x=0
t—'t+g—2TE+X=O

/

Figure 2.2.1.

linear in t. -
Since u, and u ] are sufficiently smooth and uniformly bounded for those values of x and

€ under consideration, there exists a constant M 1 independent of ¢ such that
ol <3 M (2.2.15)
elp =2 : _

From the smoothness properties of F it follows that there are constants M2 and M3 both
independent of ¢ such that

| F(x,t,w;e)] < M2 and (2.2.16)

IF(x,t,wl;e) - F(x,t,wz;e)l < M3 I W W, Il DL (2.2.17)
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forall (x,t) e D _,¢€ [-eo,eo] and w, w, and w, € C (D

L’ 1 2 L)
Using (2.2.10), (2.2.13), (2.2.14), (2.2.15) and (2.2.16) it can be shown that T maps
CMI(DL) into itself.
t 7
(Tl <le [ [ otemxopernweroder] + lugxl <

<|lef M jt 7r-l—(t—r+1r)d$d1'+—lM <
= 2Jolo 7 2771

<|€|M (—t +1rt] + = M <M (—L +7rL|e|l/2] L1 M

1 I

Taking the constant L such that M2 (—é L2 + nL|¢| 1/2] < —é Ml it follows that

HTw | DLSM for all WECMI(D

1 L)’

Hence, T maps CM (DL) into itself. Using (2.2.10), (2.2.13), (2.2.14) and (2.2.17) it will
1
be shown that T is a contraction on CMl(DL)', Let W, and Wy € CM](DL)’ then

| Tw,-Tw, || D

< (xI,I:?éDL Ie J:) I: G(f,r;x,t){F(f,r,wl(f,r);e) - F(E,r,wz((;‘,r);e)} dfdrl <

1.2 1/2
<M, (5 L2+ aLia ') flw,-w, ||DL.

Taking the constant L such that M (— L + 7L el 1/2] <= M and

M, (4 L2+ xLie 1/2) < k with 0 < k < 1, it follows that
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| Tw, -Tw

Il with 0 <k < 1.
1 2 DL

<k ffw-w, |
1 2 DL

Then, Banach-Caccioppoli’s fixed point theorem implies that T has a unique fixed point
wE CM (DL), that is, a continuous function w on D

L
1
From appendix 2A formula (2A.1) it easily follows that T: C — Cl and T: C1 — C2.

satisfying the integral equation.

Hence, the solution u(x,t) of the integral equation (2.2.10) and so the solution of the
initial-boundary value problem (2.2.1)-(2.2.9), is two times continuously differentiable
on DL' Now, it will be shown that the solutioﬁ of the initial-boundary value problem
depends continuously on the initial values. Let u(x,t) satisfy (2.2.1)-(2.2.4) and let u(x,t)

satisfy (2.2.1), (2.2.4), u(x,0) = ao(x;e), ﬁt(x,O) = ﬁl(x;e), where u,, and u | satisfy (2.2.7)

0

and (2.2.8). Using (2.2.10), (2.2.13), (2.2.14), (2.2.17) and assuming u and 4 € C,, (D, ),
1

one obtains
jutx,0-50) <fe [ [ Gemmo{Feruenno - Ferimo} dear| +

t
+ Jlu,~u, || <lel M (t+w)I max |u(é,n)-u,nidr + [|u,-u, |l »
Uellp, 3 0 oseen cUellp,

T
where G (x,t) = IO {G,€.omvig60 - Gle.om0i, (€0} de.
Since the right-hand side of the inequality is independent of x, the maximum for x on

the left-hand side can be taken, then using Gronwall’s lemma, and one obtains after

taking the maximum for t that

lu-ully <M, llu-u,lly s
p, *Ma 1% % lp,

where M, is a positive, bounded constant independent of ¢ Since the solution u, of t

4
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linear initial-boundary value problem (2.2.1)-(2.2.4) with F = 0 depends continuously on
the initial values, it follows from this estimate that also the solution of the weakly non-
linear initial-boundary value problem (2.2.1)-(2.2.4) depends continuously on the initial

values. So, the following theorem on the well-posedness of the problem can be formulated.

Theorem 2.2.1

Suppose that F, u, and u, satisfy the assumptions (2.2.6)-(2.2.9). Then for any e satisfy-
ing (2.2.5), the nonlinear initial-boundary value problem (2.2.1)-(2.2.4) and the equi-
valent nonlinear integral equation (2.2.10) have the same, unique and twice continuously
differentiable solution for 0 < x < 7and 0 <t< L|e|'1/2, in which L is a sufficiently
small, positive constant independent of ¢. Furthermore, this unique solution depends con-

tinuously on the initial values.
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Since the initial-boundary value problem (2.1.1)-(2.1.3) contains a small parameter ¢ per-

turbation methods can be applied in order to construct approximations. In most perturba-

tion methods for weakly nonlinear problems a function is constructed that satisfies the

differential equation and the initial conditions up to some order depending on the small

parameter €. Such a function is called a formal approximation. To show that this formal

approximation is an asymptotic approximation (as ¢ — 0) requires an additional analysis.

Suppose that a twice continuously differentiable function v(x,t) is constructed on DL (DL

is given by (2.2.13)) satisfying:

. - m .
Ve " Vxx tVH eF(x,t,vie) = |¢| cl(x,t,e), O<x<mt>0,m>1,
v(x,0) = uo(x;e) + |e[mcz(x;e) = vo(x;e), O<x<m,
vt(x,O) = ul(x;e) + lelmc3(x;e) = vl(x;e), O<x<m,
v(0,t) = v(m,t) = 0, t>0,

where ¢, F, Uy and u, satisfy (2.2.5)-(2.2.9) and where » €y and ¢

3

acl

1> 3% € CU0,mIX[0,00)x[-€0.€ ], TR)

with cl(O,t;e) = cl(1r,t;e) =0fort>0,

2
802 a (:2

c ’~9
T2 9x sz

€ C([0,m]x[-€ R)

Oveo]i

with c2(0;e) = cz(1r;e) = c"2(0;e) = c"2(7r;e) =0, and

satisfy:

(2.3.1)
(2.3.2)
(2.3.3)

(2.3.4)

(2.3.5)

(2.3.6)
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ac

€3 79?3 € C({0,7]x[~¢4.¢, ], TR) with c5(0¢) = c4(me) = 0. (2.3.7)

Furthermore, ¢, is assumed to be uniformly bounded for those values of t

1
under consideration. (2.3.8)
Let F(x,t,vie) = F(x,t,vie) - [¢]| ™ lcl(x,t;e) 2.3.9)

and let ) be given by
T
v = [ {vole9G (om0 - v (€00 00} de. (2.3.10)

Supposing that v, satisfies (2.2.15) and F satisfies (2.2.16) and (2.2.17), it follows from

L
theorem 2.2.1 that the initial-boundary value problem (2.3.1)-(2.3.4) has a unique, twice

continuously differentiable solution v(x,t) on D, . Using the result of appendix 2A the

L
initial-boundary value problem (2.3.1)-(2.3.8) can be transformed into the equivalent in-

tegral equation

t » 7 ~
v(x,t) =€ IO J.O G(¢,m;x,)F(¢,7,v(¢,1)e)dédr + vl(x,t), (2.3.11)

where G, F and v, are given by (2.2.11), (2.3.9) and (2.3.10) respectively. Now, it will
be shown that the formal approximation v is an asymptotic approximation (as ¢ — 0) for
the solution of the initial-boundary value problem (2.2.1)-(2.2.9) if m > 1, that is, it will

be proved that

lim |u(x,t)-v(x,t)l =0 form > 1and (x,t) e D

e—0 L

Since the functions ¢, ¢, and ¢ satisfy (2.3.5)-(2.3.8) there are bounded constants k>

\ I
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k2 and k3 such that: 1cl(x,t;e)| < kl’ |c2(x;€)| < k2 and |03(x;€)| < k., forall x, tand ¢

3

under consideration. Subtracting the integral equation (2.3.11) from the integral equation

(2.2.10), using (2.2.11), (2.2.13), (2.2.14), (2.2.17) and the fact that u and v € CM (DL),
. 1

it follows that

fa(x,t)-v(x,t)| < |e J; I: G(f,r;x,t){F(f,r,u(f,f);e) - F(f,r,v(&,r);e)} dfd1'| +
t o7m .
+ llelm JO IO G(f,r;x,t)cl(f,'r;e)dfdr +
+ 1™ f: {e5€96 6.0 - e3EaG(E.0xD } de| <

t
< lel(t+mM, j 0 [u(€,n)-v(€, Nl dr + ) Mt(t+mic, +
i<

+ lelm(4k2w + 2k, H(t4m) + 2k, (t47)) <

ot

< ]el(t+7r)M3 J max | u(x,7)-v(x,7)|dr + |e|m_lk,
0 o<x<r

. . 2 1/2 .

in which k = L (k]+2k2) + e} L(1rkl+2k27r+2k3) + 21r[e|(2k2+k3) < oo, Since the

right-hand side of the inequality does not depend on x, the maximum for x on the left-

hand side can be taken, and after using Gronwall’s lemma it follows that

max ju(x,t-v(x,t)| < |e|m-1k exp(ie] t(t+mM;) < klelm_1 onD,,
O<x<m C

where k = k exp(L(L + '1r|e|l/2)M3) < 00, Hehcé,‘ [u(x,t)-v(x,t)| = O(lflm_l) for

Osxswand()stsLlfl-l/2

. So, for m > 1 the function v is an asymptotic approxima-
tion (as ¢ — 0) of the solution u of problem (2.2.1)-(2.2.9). The following theorem has

now been proved.
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Theorem 2.3.1°

Let v satisfy (2.3.1)-(2.3.4) where ¢, F, Uy and u, are given by (2.2.5)-(2.2.9) and where
0 c2 and <3 satisfy (2.3.5)-(2.3.8). Then for m > 1, the formal approximation v is an
asymptotic approximation (as ¢ — 0) of the solution u of the nonlinear initial-boundary.
value problem (2.2.1)-(2.2.9). The asymptotic approximation v is valid for those values of

the independent variables x and t for which problem (2.2.1)-(2.2.9) has been proved

well-posed. That is,

1/2

3

lu(x,)-v(x,t) = 0(le/™!) for0<x<mand0<t<Liel

in which L is a sufficiently small, positive constant independent of ¢.
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2.4. An asymptotic approximation for a special case

In this section an asymptotic approximation of the solution of the initial-boundary value
problem (2.1.1)-(2.1.3) with F(x,t,ue) = u3 will be constructed using a two-timescales

perturbation method. The following initial-boundary value problem will be considered:

3
U, -u  tuteu =0, | O<x<mt>0,0<lel <<1, (24.1)
u(x,0) = uo(x), 0<x<m, (2.4.2)
ut(x,O) = ul(x), i O<x<m, (2.4.3)
u(0,t) = u(wr,t) =0, t>0, (2.4.4)

with u(0) = ug(r) = w(0) = u() = ugv)(O) - u((;v)(‘n') -0,
ul(O) = u1(1r) = u"l(O) = u'i(1r) =0, and

u. € C([0,7],R) and u, € c*o,m,R). (2.4.5)

0
Since an approximation in the form of an infinite series will be constructed, (2.4.5) is re-
quired in order to get a convergent series representation for which summation and dif-
ferentiation may be interchanged. In the sense of theorem 2.3.1 a function u will be con-
structed that satisfies (2.4.2) and (2.4.4) exactly and (2.4.1) and (2.4.3) up to order 52.
From the theorems 2.2.1 and 2.3.1 it then follows
- s -1/2
[u(x,t)-u(x,t)] = O(je]) for0<x <mand 0 <t < Lj¢f s
in which L is a sufficiently small, positive constant independent of e. In constructing ua

perturbation method will be used. The straightforward expansion u(x,t) = uo(x,t) +

+ eul(x,t) + ... will cause secular terms. However, from the energy equation (with tO > 0)
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i ,
E(t,) = Jo {uf(x,to) + ui (x.t) + u2(x,t0) .- u4(x,t0)} dx = E(0),

which can be obtained by multiplying (2.4.1) by u, and integrating over the region

O<x<mand 0 <tgt,, it follows that if the initial values are bounded and if ¢ > 0 that.

_07

T
b2
IO u (x,to) dx <oo  forall t0 > 0.
So, in that case secular terms should be avoided. For that reason a two-timescales pertur-
bation method will be used. In using a two-timescales perturbation method u(x,t) is sup-

posed to be a function of x, t and et. Now let

T = et, and (2.4.6)

u(x,t) = v(x,t,7e). (2.4.7)

By introducing (2.4.6) and (2.4.7) the initial-boundary value problem (2.4.1)-(2.4.4) be-

comes
2 3
V, +2V, +€V_-v_ _+v+ev =0, O<x<mt>0, (2.4.8)
tt tr TT XX
v(x,0,0) = uo(x), O<x<m, (2.4.9)
vt(x,0,0;e) + evr(x,0,0;e) = ul(x), O<x«<m, (2.4.10)
v(0,t,1¢) = v(m,t,re) = 0, t> 0. (24.11)

Furthermore, it is assumed that v may be approximated by the formal expansion

vo(x,t,r) + evl(x,t,r) + ezvz(x,t,r) + o (2.4.12)
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By substituting the expansion (2.4.12) into (2.4.8)-(2.4.11), and after equating the coef-
ficients of like powers in ¢, it follows from the powers 0 and | of € respectively, that o

should satisfy

Vo Vo +v0=0, O<x<mt>0, (2.4.13)
it XX

vo(x,0,0) = uo(x), O<x<m, (2.4.14)

Yo (x,0,0) = ul(x), 0<x«<m, (2.4.15)
t

vO(O,t,T) = v0(1r,t,'r) =0, t20, (2.4.16)

and that v should satisfy

Vi v +vl=—2v0 -vg, O<x<mt>0, (2.4.17)
tt XX tr )

vl(x,0,0) =0, O<x«<m, (2.4.18)

vy (x,O,.O) =-v, (x,0,0), O<x<m, (2.4.19)
t T

Vl(O,t,T) = Vl(1r,t,1') =0, t> 0. (2.4.20)

In the further analysis A and \f will be determined, and it will be proved that u(x,t) =

= vo(x,t,r) + evl(x,t,r) is an asymptotic approximation (as € — 0) of the solution u(x,t) of
the initial-boundary value problem (2.4.1)-(2.4.5).
The solution Yo of the initial-boundary value problem (2.4.13)-(2.4.16) is given by

21/2t

2)1/2 t] + Bn(r) sin [(1 + n™)

o0
voxtn = T {An(r) cos [(1 +n 1} sin nx. (2.4.21)
: n=1 ‘

From (2.4.14) and (2.4.15) it follows that

T
2 .
An(O) =3 IO uO(x) sin nxdx, (2.4.22)
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2 4 : '
B (0) = ——— u, (x) sin nxdx. (2.4.23)
n (1 + n2)1/2 Io 1 )

The functions An(r) and Bn(r) will be determined by the requirement that v ] should not
contain secular terms. From appendix 2B it follows that this condition can be satisfied if

An(r) and Bn(r) satisfy

dA 3B

n n 1 2. 52 x 2 .2 4 .
dr ~ | -7 () + T (ap+B) | =0, (2.4.24)
8(] +Nn ) k=1 ]
dB 3A [ o '|
1 n 1,2, 52 2 .2
ar * 2172 |7 4 (An * Bn) + X (Ak + Bk) =0. (2.4.25)
8(1 + n™) k=1

This system of infinitely many nonlinear first order ordinary differential equations for
An(r) and Bn(r) (n = 1,2,3,..) subject to the initial conditions (2.4.22) and (2.4.23) can be
solved exactly. Multiplying (2.4.24) by An and (2.4.25) by Bn, adding the obtained

equations and integrating with respect to 7, it follows that
2 2 2 2 '
An(r) + Bn(r) = An(O) + Bn(O), n=1,2,3,.. (2.4.26)

Substituting (2.4.26) into (2.4.24) and (2.4.25) one obtains

dA -3Crl dBn 3Cn

n
= B and
dr 8(1 + n2)1/2 n dr

= A N
g1 +0n9)l/2 1

where =L (a2(0) + B20)) - 5 (a20)+ B2(0)) (2.4.27)
n 4 n n kel k k ’ o



. The solution of these differential equations for An and Bn

3Cnr
A(N=A(0)cos | —5—+
n n 8(1 +n )1/2

= (aZ0) + B2®) /% cos

) 3C T
B (r)=A (0)sin | ——————
n n 8(1 +n )l/2

= (a20) + B <0>) 172 in

in which «
n

J

-

s

e A2 nliay
=0 if An(O) ¥ Bn(O) = 0 and else @y

cose_= A (0)(a20)+ B 0) !

Now the solution A0

- Bn(O) sin

3C1'

8(1 + n )1/2

+ Bn(O) cos

3C'r

8(1 + n2)!

/2 and sin a =B (0) (Ai(O) + Bi(o)]

8(1 + n2)!/2

/2
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is given by

3C1'

8(1 + n3)1/%

s (2.4.28)

3Cr

s (2.4.29)

is given by

-1/2

(2.4.30)

of the initial-boundary value problem (2.4.13)-(2.4.16) has been

determined completely. Using (2.4.21), (2.4.28), (2.4.29) and some trigonometric relations,

VO. is giyen by
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b 2.1/2 3Cr
vix,t,r)= Y 4 A (0)cos | (1 +n°) te ——————
0 =1 | ® 8(1 + n2)!/2

+

3C.r
n

8(1 + n2)}/2

+ Bn(O) sin | (1 + n2)l/2 t - sin nx =

3C 7
n

o0
= 3 (Arzl(O) + Blz‘(O)] 172 cos | (1 + nz)l/2 t- 21/2 " % sin nx,
n=1 )

8(1 +n
(2.4.31)

where An(O), Bn(o), Cn and a are given by (2.4.22), (2.4.23), (2.4.27) and (2.4.30)
respectively. From (2.4.5), (2.4.22) and (2.4.23) it follows that the infinite series repre-
sentation for o is twice continuously differentiable with respect to x and t, and
infinitely many times with respect to r.

In appendix 2B the solution v, of the initial-boundary value problem (2.4.17)-(2.4.20)

1
has been determined and it has been proved there that v | has the same convergence and
differentiability properties as mentioned before for Vo' So far a function u(x,t) =
= vo(x,t,r) + evl(x,t,r) has been constructed. It can easily be shown that u(x,t) satisfies
(2.4.2) and (2.4.4) exactly, and (2.4.3) up to order ez in the sense of theorem 2.3.1. Now it
will be proved that u(x,t) satisfies (2.4.1) up to order 62 in the sense of theorem 2.3.1.

+vg) +

- 3 .
u -ux+u+eu =(v0 -vox+vo)+e[v]“-vl +vl+2v0

tt X XX tr
2 2 2 2.3
+€ (VO + 2vl + 3v0vl +ev, o+ Sevov] +€ vl] =
T tr T
2 2 2 2.3y _
=0+0+e¢ (vo +2v1 +3v0vl+evl +3evov]+e Vl] =
77 tr T

= ezcl(x,t;c).
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From the convergence and differentiability properties of the infinite series representa-
tions for o and vy it follows that cl(x,t;e) is continuously dif ferentiable and uniformly
bounded on DL and c](O,t;e) = cl(1r,t;e) = 0. Then it follows from theorem 2.3.1 that
u(x,t) is an order ¢ asymptotic approximation (as ¢ — 0) of the solution u(x,t) of the

initial-boundary value problem (2.4.1)-(2.4.5) for (x,t) € D_, that is,

LQ

lux,t)-a(x,t)] = O(Je]) for0<x<mand 0 <t<Lie /2 (2.4.32)

in which L is a sufficiently small, positive constant independent of e.

Using (2.4.32) the following estimate can be obtained

u—vol =lu-u+u- vol <|u-ul +|evl| = O(le]) onDL.
Hence, v 0(x,t,1) given by (2.4.31) is also an order e asymptotic approximation (as ¢ — 0)
of the solution u(x,t) of problem (2.4.1)-(2.4.5) for those values of x and t for which the

problem has been proved well-posed.
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2.5: Concluding remarks

The asymptotic theory as presented in this chapter provides a rigorous basis for a number
of formal perturbation methods. An interesting aspect of the theory is that asymptotic
validity has been established for a class of formal approximations.

The intriguing question whether the proof of the time-scale of asymptotic validity may
be extended to an O(|¢j -l) time-scale remains open. It should be noticed that the exten-
sion to longer 'time-scales may depend on the estimate of the kernel G of the equivalent
integral equation (2.2.10). More explicitly when the uniform boundedness in the sup-
norm of G on [0,1r]><]R+ could be established then an extension of the asymptotic theory to
an O(|¢|~ l) time-scale may easily be given.

For the explicit example studied in section 2.4, which may serve as a model for the
vibrations of a taut string embedded in a nonlinear elastic medium, an O(e) asymﬁtotic
approximation is given by (2.4.31). It is not difficult to show that when one excites this
string initially with a finite number of modes, say N, the O(¢) approximation involves

-1/2

only these N modes on a time-scale of O(]¢| ). This implies that in the O(¢) approxi-

mation no new modes will be excited up to O(e). Moreover, only an energy transfer of

1/2).

An interesting phenomenon due to the nonlinearity may be noticed: the phase-shifts of

O(¢) between the N modes may take place on a time-scale of O(fe]

the modes are determined by the coefficients Cn (as defined by (2.4.27)) which depend
on the initial amplitudes of all modes initially present. In fact, the distorsion of the
signals is determined by linear dispersion and dispersion due to the nonlinear term.

The approximation v, + ev, where v, is given in appendix 2B may be a good candidate

0 1 1
for a second order, ie. an O(ez) asymptotic approximation. However, in order to establish

1/2)

this, one has to show that \0) satisfies certain smoothness conditions on the O(|e|

time-scale, which requires additional tedious calculations.
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Appendix 2A -

In this section the equivalent integral equation for the initial-boundary value problem
(2.2.1)-(2.2.9) will be derived. The initial-boundary value problem can be transformed
into an initial value problem by extending the functions u, F, U, and ul in x to odd and

2x-periodic functions u*, F*, ug and u . Then, an integral equation for the solution of
the initial value problem can easily be obtained (see for instance [7, chapter 5] and [28,

chapter 2]):

€

- t X+t-T - '
w5 [ [ 10?0l Penut e +

/2y

(uo(x+t €) + uo(x te)) +3 UB(E;C)df +

J.m a1, - -0t
X+t '

ey [ a0 - €01 u o = Tue, (2A.1)
X-t .

where JO is the Bessel function of the first kind of order zero.
Obviously, the solution of (2.2.1)-(2.2.9) is a fixed point of the integral opeator T
(T:C— Cl and T: CI — C2). After some manipulations the integral equation (2A.1) can

be rewritten as
t o7
u(x,t) = ¢ -[0 IO G, x,)F(€,1,u(é,r)e)dédr +

s
+ [ {2696 (6.0 - v, €GE 0.0 } dé = (Tox,D, (24.2)

where G is given by
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G(,rx,t) = —; Y. H(t-r-£+2k1r-x)H(t-r+E-2k1r+x)Jo([(t—r)2 - (5-2k1r+x)2]1/2) +
kEZ :
- H(t—f+$+2k1r-x)H(t-f-f-2k1r+x)J0([(t-f)2 - e+ 2kr-x)%7Y 2)}, (2A.3)

in which H(a) is a step function which is equal to 1 for a > 0, —; for a = 0 and zero
otherwise. In (2A.2) it is assumed that —ad; H(a) = é6(a) in the sense of the theory of distri-

butions.

In fact G as defined by (2A.3) is the Green’s function for the differential operator

62 32
L= R 1 and the boundary conditions (2.2.4).

Afte? tsome("ci.‘lementary calculations it can be shown that if v(x,t) is a twice continuously
differentiable solution of (2.2.1)-(2.2.9) then v(x,t) is a solution of the integral equations
(2A.1) and (2A.2). From section 2.2 it follows that under the assumptions (2.2.5)-(2.2.9)
the solution of the integral equation (2A.2) is twice continuously differentiable on some
subdomain DL of the (x,t)-plane. It can easily be proved that if w(x,t) is a solution of

(2A.1) or (2A.2) then w(x,t) is a solution of (2.2.1)-(2.2.9). Hence, the integral equation

(2A.2) and the initial-boundary value problem (2.2.1)-(2.2.9) are equivalent on DL‘
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Appendix 2B

In this appendix the solution \ of the initial-boundary value problem (2.4.17)-(2.4.20)
will be determined such that this solution satisfies the requirement that it does not contain
secular terms. It should be noted that the equations for vo and A have been derived under

the assumption that Vo' 1 and their derivatives up to order two are O(1) on DL' For that

reason v, should not contain secular terms, that is, terms like t sin [(1 + nz)l/2 t] sin nx.
To determine \f it is assumed that v, may be written as
oo
vl(x,t,'r) =y Dn(t,r) sin nx. (2B.1)
n=1

By substituting (2B.1) and (2.4.21) into (2.4.17) one obtains

o] 2 0 .
) (Dn +(n" + 1) Dn] sinnx=-2 3 H_ sinnx+
n=1 tt n=1

00 o 0
+ -‘l? >y % HkHtH [sin(k+£+m)x - sin(k+£-m)x - sin(k-£+m)x + sin(k-l-m)x] s
m
k=1 ¢=1 m=1
in which
~ dA dB
_ 2,1/2 n . 2.1/2 2.1/2 n 2,1/2
Hn_-(l+n) ar sin [(1 + n*) t] + (1 +n%) ar cos [(1 + n7) t]
(2B.2)
and
H =A cos[(l+ n2)1/2 t]+B_sin[(l + n2)1/2 t]. (2B.3)

Equating the coefficients of like functions in sin nx yields
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oo .
z HkH[Hm(‘Sn,k+am+ 6n,~k-£+m o

D +(n2+l)D =—2I-'I +—l ;
n n n 4 mel

tt k=1

T

):

B 6n,k+£—m * 5n,-k+t-m - 6n,k-t+m + 5n,k-t—m - 6n,-k+£+m

~ ] [o o] (o] o0 .
=-2H + - Y -3 ¥ +3 3 H H =R _(t,r), (2B.4)
DA g dmel 0 kemel k,e,m=1 KT =
k+f+m=n k+£-m=n m-k-£=n

where 6i j is the Kronecker delta symbol that is defined to be zero for i # j and unity for

9

i = j. So, assuming (2B.1) problem (2.4.17)-(2.4.20) becomes

Drltt + (n2 +1) Dn =» Rn(t,r), (2B.5)

Dn(0,0) =0, (2B.6)
dAn(O)

D 0,0)=—3—, (2B.7)

t

where Rn(t,r) is defined in (2B.4). The solution of problem (2B.5)-(2B.7) is given by

D_(t)=P () eos [(1 +0)"/2 4+ Q (Msin (1 + 02 11+ T (t,1) (2B.3)
dA_(0)
with P_(0) = -T_(0,0) and Q_(0)=-(1+ n?)l/2 {Tnt(0,0) +—2 } (2B.9)

In (2B.8) Tn(t,r) can be regarded as the particular solution of (2B.5). First Tn(t,r) will be
determined. After evaluating the product HkHsz in Rn(t,r) it can easily be seen that

secular terms in Tn(t,r) can occur (for k, £, mand n € Z+) if



65

s ) 220 )2 a2 i m? e 2

s+ )20 e 2 e m? s V2 0 a2 Y2,

t(n2 + l)l/2=(m2 + 1)1/2+(k2+ l)l/2 -(£2+ 1)1/2

1/2+(12+1)l/2 1/2

(n2+l)l/2=(k2+l) +(m +1)
Only two of these cases are essentially different. These two cases are

s )20l e )20 )2 m e pl2 (2B.10)

So the problem is to determine the values of k, ¢, mand n € z* for thich (2B.10) can

be satisfied. To solve this problem the following inequality is used

i<GP+e 25 14v2 forallje 7. (2B.11)
Case I (plus sign in (2B.10)):

w2+ D20 s D20 @ eyl @ )12, (2B.12)
Using (2B.11) and (2B.12) one obtains

n<(n2+l)l/2<k-l+\/3 +t-l+s/3 —m=k+£—m-2+2\/3,and

n-14+v2 z(n2+ l)l/2>k+£-m+ 1 —\/EV.AHence,

k+l-m+2-2V2 <np<k+f-m-24+2V2.".

Since k, £, mand n € 27 it then follows that n = k + £ - m. Then (2B.12) becomes
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(k+2-m2+ D202+ D24 @+ )2 - (m? 4 /2 (2B.13)
By squaring equation (2B.13) two times and rearranging terms one obtains

ke- 1 -k + D32 + )% m? - km - ém + ko) = 0, hence

ke-1-&2+ D22+ 1)"220 or m2-km-ém+ke=0. (2B.14)

By squaring the first equation in (2B.14) one obtains after rearranging terms that
(k + 2)2 = 0. However, this contradicts the assumption k and £ € Z*. The solution of the
second equation in (2B.14) is given by m = (k +8) 15 ((k + e) - 4k£)1/2

Hence, m = k or m = £ Combining this result with n = k + £ - m yields

m=k and n=1 or (2B.15)

m=£ and n=k. (2B.16)

By substituting (2B.15) and (2B.16) into (2B.12) it can be verified that both (2B.15) and

(2_B.16) satisfy (2B.12).
Case II (minus sign in (2B.10)):

e )20l 252 )2 D m? s )2 (2B.17)
Using (2B.11) and (2B.17) one obtains

n<(n2+ l)l/2<-k-£+m- 1 +\/3,and

n-1+v2 z(n2+l)l/2>-k+l-\/3 ~2+1-vV2 +m=m-k-£+2-2v2, hence

m-k-£+3-3vV2 <n<m-k-£2-1+v2.
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From k, ¢, m and n € Z* it then follows thatn=m - k - £ - lorn=m -k - £ Since
no summation in (2B.4) involves n =m - k -~ £ - 1 one only has to considern=m - k - &

Then (2B.17) becomes

G R A (I L D

=2+ )2 @ s DV2 D2 s )2 (2B.18)

By squaring (2B.18) two times and after 'rear.ranging terms one obtains the equations
(2B.14). These equations have the solutions (2B.15) and (2B.16). However, the solutions
(2B.15) and (2B.16) do not satisfy (2B.17). So, in case II there do not exist integers k, £, m
andne z* giving rise to secular terms.

Hence, the integers k, £, m and n € z* given by (2B.15) and (2B.16) will cause secular
terms in Tn(t,r). Taking apart those terms in (2B.4) one obtains:

D +(n2+ 1D
n, n

[ dA oo i
. 2,172 2172 % 3 10,2 22 2.2
=sin [(1+n7)""7t] | 2(1+n") 3 "4 Bn(- ) (An+Bn) + kgl (Ak+Bk]) +
[ dB ) ]
2 2.1/2 3 1 2 .2 2 .2
-cos [(1 +n2)l/ t}12(1+n )1/ d—rn+7 An[- a (A-n+Bn) + k}:l (Ak+Bk]] +
l [ ] oo* o0
+ -3 Y. +3 ¥ HHH . (2B.19)
ol k,Lm=1 kem=t | K £lm
k+f+m=n k+é-m=n m-k-£=n

where the * in (2B.19) indicates that terms in HkHle giving rise to secular terms in
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Tn(t,r) are excluded.

‘ In order to avoid secular terms An(r) and Bn(f) have to satisfy

dA

dr

o0
2040) 2 =2 35 (-1 (a2482) 4 kzl (aZ+B2)) =0, (@B20)

| dB

o0
2(1+n)1/2 n A ( (A +B]+ 3 [Alz(+B12(])=0.
k=1

(2B.21)

After lengthy but rather elementary calculations it follows that the particular solution

Tn(t,r) of (2B.19) is given by

l o0 e o] o0
T (t,7) == . -3 % +3 ¥ R, , (t,7)
n |k em=1 Kk,Lm=1 Kk,Lm=1 kém
k+£+m=n k+é-m=n m-k-£=n

with Rk[m(t,r) = ( (Ai + Bi) (Af + Bf] (Arzn + Bfn) ) 12

4, cos [d(l:)&nt - e(&m f(') ]
x X 2 (i) Y2
{a= 1
i=1 n”+1- (dktm]
where
1 . 2 1/2
dfdzn—sqk+sqt -sq_ with sqn=(n +1) / )
(2) (1) (3) (1) 4 _ () (2) (3)
dyem = dL‘mk’ dem = 9mke 2™ dipm = Yem * Yiom * ke
(]) == (C 5q, lic q, s sq']] with C_ given by (2.4.27)
kem k *%f% " "m’m n Seths
(2) LD (3) (1 @ _ (2) , 3
Cxem = Cemk’ ®kem = ®mke 2™ Cigm = Ckém * Ckem * Ckem’
ff:&)n =ota,-a with a given by (2.4.30),

(2) (1 (3) (1) (4) (1) (2) (3)
frem = femic Tieem = Tmke. 29 Tkom = fiem * fiem * ficem

. (2B.22)

(2B.23)



69

The * in (2B.23) indicates that the summation over i for i = 1, 2 or 3 is excluded if
%+ /22 d(]:)&m.

It should be noted that all the denominators in (2B.22) are nonzero because of the non-
secularity requiremént. In orderto obtain some properties of Tn(t,r) the following results

will be needed

(a)if k + £+ m = n then

2
et (d)?

ktm-k-2-mek(@e D)@ 1) 2 e maPe ) 2 A1) 2 e ) PPy /2
a -2(k + m)}(k + &)(£ + m)

(b)if k + £+ m = n then

(d“) )2

_kém-k-¢-m- k(£ +l)l/2(m +l)/ +m(k2+l)l/2(l2+l) -4k +1)1/2(m l)l/2
-2(k + m)(k + &)} + m) ’

and similar formulas for d(egk and d(l;d

(c)if k + £ - m=n then

2
w21 (42

ktmekegom- k(@ 1) Pt ) 2ema e VA A ) 2 0 1) P2
N 2(k + &)(k - m)(€ - m) :
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(d)if k + £- m = n then

2 -
n2+ 1 - [d(l) )2

k&n+k+e m+k(§2+l) /2(m +1) 1/2 +m(k +1) /2(£2+l) + 4k +1)l/2(m +1) 172
2(k + £)(k - m)(£ - m)

o (1) (n
and similar formulas for d&nk and dmkl

(e) if m - k - £ = n then formulas analogous to (¢) and (d) can be obtained because

n?=(m-k-0%=(k+£-m>

From (2.4.5), (2.4.22), (2.4.23), (2.4.28) and (2.4.29) it follows that there exists a uni-

formly bounded constant K such that for all n € Z* and for all 7 € R:

K K
A (D < s and |B (r)] < 5 (2B.24)

Using (2B.24) and the properties (a)-(e) of the denominators of Rklm(t,r) in Tn(t,r), the

following estimates can be made:

0o 00 3

Rym(t| <4 2\/535 K5 (k+£)‘(‘ll<(frnn)(£+m) <

k,¢,m=1 kLm=1 k’Cm

k+f+m=n k+é+m=n

3 % 1 9 3 32vV3 K327 (2203
<322 K> % 533 5 7 < 2 (_6] and

k.,m=1 k l2m (k+£+m) 2n 2n
k+£+m=n
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00 oo 3
Lo Rpgptn) =4 % 2?5 Ks (O <
k,.,m=1 kem=1 k’m> (k+)
k+£-m=n . k+£-m=n
oo 4
<32v2 K3 —*—24——? <
k,t.=1 (k+£-n) "(k+9)
k+£&2n+1
) 4 3,4 4
<32v3 K3 5 2 (ke-1) 32ﬁ4x 2 _1;_0'
k+f=n+1 (k+t-n)4(k+l)5 ‘ n

Since (k + £ - m)2 =(m - k - £)2 the estimate of the third sum with summation index
m - k - £=n in (2B.22) is similar to the estimate .of the second sum.

Hence, there is a uniformly bounded constant ¢ such that for all n € Z* and t,r€ R
-4
|Tn(t,r)l <cn . (2B.25)

Estimating and arguing by analogy it can easily be obtained that for all n € Z* and for

all t,r € IR there exists a uniformly bounded constant ¢ such that

|T“t(t’r)l < :03_ lT"tr(t’T)I < _n% IT“tt(m)l < ':2— e ITn"(t,r)| < n%'

(2B.26)

Considgring the solution vl(x,t,r) it should be noted that the functions Pn(r) and Qn(r) in
(2B.8) have to be used in order to avoid secular terms in the solution v2(x,t,r). However,
it is our purpose to construct a function u(x,t) that satisfies the differential equation up to
order 52. Therefore Pn(r) and Qn(r) are taken to be equal to their initial values (2B.9),

that is,
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P (1)=P (0) and Q, (M = Q,(0). . (2B.27)

Now it easily follows from (2B.8), (2B.9), (2B.22), (2B.25), (2B.26) and (2B.27) that the

series representation (2B.1) for v, is twice continuously differentiable with respect to x

1

and t and infinitely many times with respect to 7.
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CHAPTER 3

ASYMPTOTICS FOR A SYSTEM OF NONLINEARLY COUPLED WAVE
EQUATIONS WITH AN APPLICATION TO THE GALLOPING OSCILLATIONS

OF OVERHEAD TRANSMISSION LINES

Abstract

In this chapter an asymptotic theory for a class of initial-boundary value problems for sys-
tems of weakly and nonlinearly coupled wave equations is presented. The theory implies
the well-posedness of the problem in the classical sense and the asymptotic validity of
formal approximations on long time-scales. -

As an application of the theory an initial-boundary value problem for a system of weakly
and nonlinearly coupled wave equations is studied in detail using a two-timescales per-
turbation method: From an aero-elastic analysis it is shown that this initial-boundary
value problem may be regarded as a model describing the galloping oscillations of over-

head transmission lines in the vertical and in the horizontal direction.
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3.1. Introduction

In this chapter an asymptotic theory is presented for the following initial-boundary value

problem for a system of nonlinearly perturbed wave equations

U ™ Cl_lxx + ef(x,t,t_:i,l_lt,l_lx;e) =0, O<x<mt>0, (3.1.1)
u(x,0;¢) = 1_10(x;e) and gt(x,O;e) = gl(x;e), O<x<m, (3.1.2)
u(0,t;€) = u(w,te) = 0, t> 0, : 3.1.3)

with u = (ul,uz,...,un)T, f = (fl,fz,...,fn)T and 0 < |¢ < € << 1. The (nxn) diagonal-
matrix C has e-ihdependent diagonal elements cizi (i = 1,2,..,n) with i > 0, and the
functions f, Y, and v, have to satisfy certain smoothness properties, which are mentioned
in section 3.2. As usual the derivative of a matrix-valued function is obtained by taking
the derivative of each element of the matrix-valued function. The asymptotic theory
presented here implies the well-posedness in the classical sense of the initial-boundary
value problem (3.1.1)-(3.1.3) as well as the asymptotic validity of formal approximations.
In this chapter formal approximations are defined to be vector-valued functions satis-
fying the differential equations and the initial conditions up to some order depending on
the small parameter e.

For scalar-valued functions similar asymptotic theories have been developed in [11] for
an initial-boundary value problem for the weakly semi-linear telegraph equation
U - U +u + ef(x,t,u;¢) = 0, and in [12] for an initial-boundary value problem for the

tt

weakly nonlinear wave equation U, -u o+ ef(x,t,u,ut,ux;e) = 0. Both type of equations
were considered subject to the initial values u(x,0;e) = uo(x;e) and ut(x,O;e) = ul(x;e) and
the boundary values u(0,t;¢) = u(m,te) = 0. The well-posedness in the classical sense and

the asymptotic validity of a class of formal approximations could be obtained on a
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time-scale of order [¢~ 172 for the problem for the weakly semi-linear telegraph equation
and could be established on a time-scale of order |e|_l for the problem for the weakly
nonlinear wave equation. For the initial-boundary value problem (3.1.1)-(3.1.3) it will
be shown that a time-scale of order |e|-l can be obtained.

The asymptotic theory in [11,12] and the asymptotic theory presented in this chapter can
be regarded as an extension of the asymptotic theory for ordinary differential equations
as for instance described in [1,2,8,25]. Moreover, the asymptotic results presented in this
chapter can be seen as a generalization of the asymptotic results obtained in [12].

This chapter, being an attempt to contribute to the foundations of the asymptotic methods
for (systems of) weakly nonlinear hyperbolic partial differential equations, is organized
as follows. In section 3.2 the well-posedness of the problem is investigated and established
on a time-scale of order lel_l and in section 3.3 the asymptotic validity of formal
approximations is studied, that is, estimates of the differences between the solution and
the formal approximations are given on a time-scale for which the problem has'been
shown to be well-posed. The asymptotic theory is applied in section 3.5 to the

initial-boundary value problem (3.1.1)-(3.1.3) with u = (v,w)T and

2 2 3
30Ye * 201 ™t 220% T 211 Ve Ve T 202%™ T f03™e

U ie) = ,

2 3
Bo1™e * PriVe¥e * Poa¥e * Bo3 Wy

f(x,tu,u

where alO’aOI""’b03 are constants independent of e. In section 3.4 it follows from an
aero-elastic analysis that this initial-boundary value problem may be regarded as a model
which describes the growth of wind-induced oscillations of overhead transmission lines in

the vertical and in the horizontal direction. In fact this initial-boundary value problem is

an extension of a model (describing only the vertical displacements of the transmission
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lines) which has been postulated in the early seventies in [22,23] and which recently has
been derived in [12]. From a practical point of view it is interesting to investigate the
vertical as well as the horizontal displacements o‘f the transmission line, since one or both
of the displacements may give rise to coﬁductor damage due to impact of conductor lines
or due to flashover as a result of a phase-difference betweeh conductor lines, for which
the mutual distance has become too small.

Using a two-timescales perturbation method, as for instance successfully used in [4,11,
12,17,18], an ésymptotic approximation of  the solution of the aforementioned initial-
boundary value problem will be constructed. In some sense it is remarkable that the two-
timescales perturbation method as developed in [4,18] and applied in [4,11,12,17,18] to
an initial-boundary value problem for a single perturbed wave equation may also be used
for an initial-boundary value problem for the aforementioned system of perturbed wave
equations. Finally, in section 3.6 some of the results obtained in this chapter will be dis-

cussed.
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3.2. The well-posedness of the problem

In this section a weakly nonlinear initial-boundary value problem for a vector-valued
function u(x,t€) will be considered. As usual a derivative of a vector-valued function is
obtained by taking the derivative of each element of the vector-valued function.
Furthermore, a vector-valued function is said to be continuous (or different.iable) if and
only if all the elements of the vector-valued function are continuous (or differentiable).
Let }_J(x,t;e) = (u1(x,t;e),uz(x,t;e),...,un(x,t;e))T with I <€ n < oo and let u,u,u .U,

XUt otx

=u__ and L be continuous on 0 < x < w and t > 0. The following weakly nonlinear

xt

initial-boundary value problem for the vector-valued function u(x,t;) will now be con-

sidered:
U - Cl_lxx + €F(ue) = 0, O<x<mt>0, (3.2.1)
u(x,0z¢) = go(x;e), . O<x<m, ) (3.2.2)
1_1t(x,0;e) = l_l](x;e), ) O<x<m, . - . B 2 (3.2.3)
u(0,t¢) = u(m,te) = 0, . t20, . - (3.24).

where C is a (nxn) diagonal—_matrjx with ¢-independent diagonal elements cizi (i=1,2,.,n)

and c.. > 0,
11
Fuse)(x,t) = f(x,t,u(x,te),u (x,te),u, (x,Le)e), (3.2.5)

0 < g < € << 1, and where 1_10(x;e) = (uol(x;e),...,uon(x;e))T, 1_xl(x;e) = (u“(x;e),...,

uln(x;e))T and f(x,t,u,p,q) = (fl(x,t,x_:,;_),g;e),...,fn(x,t,\_l,;_),g;e))T with u = (u],---,un)T,

T T ..
p=(p,,-P,) and g = @.a,) satisfy:
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2
. duy; 9 up;
0" Tox ' 2

€ C([O,w]x[-eo,eo],]R) fori=1,2,.,n,
ax :

321_10(0;6) -~ azl_xo(w;e)

with 1_10(0;6) = go(w;e) = > = 7 = 0, (3.2.6)
ax ax
duy;
Ui TIx € C([O,w]x[-eo,eo],]R) for i = 1,2,..,n, with l_ll(O;e) = 1_11(1r;e) =0, and

(3.2.7)

af. of., of. of.
i i i i

R DS U S | 3n .
fi’ 3% ° auj , 3pj , aqj € C([0,7]x[0,00>x R x[-eo,eo],]R) for i,j = 1,2,...,n,

with F(ue)(0,t) = F(ue)(n,t) = 0 fort> 0. (3.2.8)

Furthermore, f(x,t,u,p,q;¢) and its partial derivatives with respect to x,u,p and q are
assumed to be uniformly bounded for those values of t under consideration. |

To prove in the classical sense existence and uniqueness of the solution of the initial-
boundary value problem (3.2.1)-(3.2.4) an equivalent system of coupled integral equa-
tions will be used. In order to derive this system of integral equations the initial-bound-
ary value problem is transformed into an initial value problem by extending the vector-

valued functions u, f, Uy and u, in x to odd and 2#x-periodic functions (see for instance
[28, chapter 2]). The extensions of u, f, uy and u, are denoted by 13', f_", l_lB and 1_1: re-

* % * *

t'%x Yt Yix

. . * * .
spectively. Then, assuming that u,u and u . are continuous on

Ust

-0 <x<oo and t > 0, an integral equation for the solution 1_1’ of the initial value

problem is given by
* € t *
g(&m):-ij I (rx,tdr + u3(x,69), ' (3.2.9)
0

where f(r;x,t) is a vector with elements Ifi‘(r;x,t) defined by
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| x+cii(t-1)
If} (rx,) = — FE70" (€,me)up (€,me),ug (€,mekedde

ii x-cii(t-‘r)

fori=1,2,..,n, and‘ where g:(x,t;e) is a vector with elements u‘;i(x,t;e) defined by

t
* .
™ (xte)—2 0(x+c te)+2 o(x C. te)+—J. uli(f,e)df
1m v x- c t
for i = 1,2,..,n. As usual the integral of a matrix-valued function is obtained by taking
the integral of each element of the matrix-valued function. Using reflection principles
(3.2.9) can be rewritten as a system of coupled integral equations on the semi-infinite

strip0 < x <7, 0 <t < oo, yielding
t
u(x,te) = £ J‘ I G(¢,;x,)F(ue)(€,7)dédr + u (x,te), (3.2.10)
u 5 101, F(ue)(§,r)dgdr + u(x,te)

where G(¢,7;x,t) is the (nxn) diagonal-matrix with diagonal elements

g..(E,'r;x,t)--l— {H(c (t-7)-€42km- x)H(c (t 7)+£-2kT+X) +
1 cu kE Z
~H(c, (t-r)+E+2kn-X)H(c, (t-1)-€-2km+x) } (3.2.11)
fori=1,2,..,n, and where u, is given by
U Xt = 5 I 9G (¢ ,0:x Dug(&e) - G, 0:x t)u1(£ e)} de. (3.2.12)

The function H(a) onIR isequal to 1 fora> 0, —é for a = 0 and zero otherwise. In (3.2.12)
it is assumed that 85 is differentiated according to the rule j‘d;_-( H(f(")H(g(1)) } =

= 5,6 2 H(g(n) + HEs(e(r) B, where 5 is the Dirac delta function. In

0
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fact, 8 * defined by (3.2.11) is the Green’s function for the differential operator

2 2 ,
~§—2 - c?’i % and the Dirichlet boundary conditions. And so, G can be identified with
at - ax 2 2
the matrix-valued function of Green for the differential operator 3—2 -C — and the
at ax

boundary conditions (3.2..4). It is also worth noticing that the solution of the (linear)
initial-boundary value problem (3.2.1)-(3.2.4) with F =0 is given by l_ll(x,t;t).

Elementary calculations show that if v(X,t;¢) is a twice continuously differentiable solu-
tion of the initial-boundary value problem (3.2.1)-(3.2.4) then v(x,t¢) is a solution of the
system of integral equations (3.2.10). And.if w(x,t;¢) is a twice continuously differenti-
able solution of the system of integral equations (3.2.10) then it can easily be shown that
w(x,t€) is a solution of the initial-boundary value problem (3.2.1)-(3.2.4). Hence, the
system of integral equations (3.2.10) and the initial_-boundary value problem (3.2.1)-
(3.2.4) are equivalent if twice continuously differentiable solutions exist, that is, if
vector-valued functions exist of which all elements are twice continuously differentiable.
Now it will be proved that a unique, twice continuously differentiable solution of the
system of integral equations (3.2.10) exists in a strip nL of the (x,t)-plane. And so, a
unique and twice continuously differentiable solution exists for the initial-boundary
value problem (3.2.1)-(3.2.4) on QL.
In order to prove existence and uniqueness in the classical sense of the solution of the
L

system of nonlinear integral equations (3.2.10) a fixed point theorem will be used. Let 12

be given by
0 = [0,7]0,LI4™"] | (3.2.13)

in which L is a sufficiently small, positive constant independent of €. Let Cid(nL’IRn) be

the space of all real-valued and twice continucusly dif ferentiable functions

w(x,t) = (wl(x,t),wz(x,t),...,wn(x.,t))T on QL

with norm {|-]| , defined by:
CM
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n 2 ' . ak+twi(x,t)
vl , = % % max |—g [sm
C i=l k,£=0 (x,t)EﬂL_ ax ot

M k+e<2

From the smoothness properties of Uy and v, it follows that (for fixed x_xoland u l) there

exists a positive constant M 1 independent of ¢ such that,

1
llw,dl 2 S2Mi - (3.2.14)
M)

and from the smoothness properties of F (as given by (3.2.5) and (3.2.8)) it follows that

there exist e-independent constants M2 and M3 such that,
1 dk :
k2=:0 I K £, 0,7 (x,0,v (x,t06) | <M,, (3.2.15)
1 dk .
T = (FGv0,v (x,0,v (x,050 - £xLwx,0.w (X0 (x,00) | <
k=0 dx 1 - -t -X 1 - -t -X
<My [ly-wl| Q2 (3.2.16)

. 2 n
for all (x,t) € Q. and i =1,2,.,n, € € [-eo,eo] and vV, W € CM](nL,]R ). Now let the

L
integral operator T: CZ(QL,]Rn) — Cz(ﬂL,]Rn), which is related to the system of integral

equations (3.2.10), be defined by
t ‘
=% [, [ GlemmoRmender + utxte, (3.2.17)

where G, F and u, are given by (3.2.1 1), (3.2.5) and (3.2.12), respectively. According to

Banach’s fixed point theorem the integral operator T has a unique fixed point in
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Ci'il(nL’]Rn) if the operator T maps Cidl(nL,]Rh) into itself and if T is a contraction
on Cidl(nL,an). Now, it will be proved that the intggral operator T satisfies these two
conditions. It is not difficult to show that T rﬁaps Ci'll(nL’ ]Rn) into the space of (real-
and vector-valued) twice continuously differentiable functions on QL. In order to prove
that T maps Cidl(ﬂL, ]Rn) into itself estimates of the elements gii(f,r;x,t) of the diagonal
matrix G should be obtained for 0 < ¢ < 1r; 0 <7< t‘, fixed x and t,and i = 1,2,..,n. It
can be shown (see also [11]) that ]gii(f,r;x,t)l < ?l— for 0 <€ <m 720, fixed x and t,
and i = 1,2,..,n. Now let (Ty—l_x’t)i be the i-th ele:lllent (i=1,2,..,n)of the.(nxl)-‘matrix

Ty-g[ Using (3.2.13)-(3.2.15) and (3.2.17) and putting b = max(c ) and

11°°22>nn

c =min(l,c ) the following estimate can be made

11°°22“nn

ITell < ITv-ull o+l

CM] M, M
n 2 k+
=y Y max | ((Tv)(x B - u/fx, te)) . | + || u, Il <
i=1 k=0 (x, t)EQ ax 8 C
k+£<2 My

Sf ((%+4+b]M2L+eOM2) +—:le

forall v € C (ﬂ ]Rn). Now € has been assumed to be sufficiently small and so, there
exists an e—mdependent constant L such that % ( (% + 4 +.b] MZL + EOMZ) < % M

2 n 2 . . .

Hence, || Tv || o2 <M, forallye CMl(ﬂL,lR ). So, T maps CM] into itself. Using
M,

(3.2.13), (3.2.16) and (3.2.17) it will be shown that T is a contraction on Cidl(ﬂL,an).

Letv,w € Ci,’l(QL,]Rn), then the following estimate can be obtained

Itv-twll < 2 ((Fraro)MpLeemy) lv-wl

CMl CMl
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It is clear that there exists an e-ihdependent constant L such that % ( (—72[ +4+ b) M3L +
+ 50M3] < k < 1. Since there always exists a constant L independent of ¢ such.that
%[[%+4+b)M2L+e M,) < Mand—((—+4+b]ML+e M,) ck<1,it
follows that T mapé Cidl(ﬂL, Rr" ) into itself and is a contraction. Banach’s fixed point
theorem then implies that T has a unique fixed point in Ci,ll(ﬂL,]Rn), that is, a unique
and twice continuously differentiable function on QL. Hence, the solution of the system
of the integral equatibns (3.2.10) is unique and twice continuously differentiable on QL.
And so, on ﬂL a unique and twice continuouSly differentiable solution exists for the
initial-boundary value problem (3.2.1)-(3.2.4).

Next it will be shown that the solution of the initial-boundary value problem (3.2.1)-
(3.2.4) depends continuously on the initial values. Let u(x,te) satisfy (3.2.1)-(3.2.4) and
let u(x,t) satisfy (3.2.1), (3.2.4), u(x,05) = i_io(x;e) and l._'it(x,O;e) = i_il(x;c), where u, and

-0
1:11 satisfy (3.2.6) and (3.2.7). Let {_il be given by

i, (x,te) = 2[ (£0xt)u0(£e) - G(£,0x, (ee)} de.

After subtracting the integral equation for u from the integral equation for 1:1, using

(3.2.10), (3.2.13) and (3.2.16), assuming u and u € C (n ]Rn), one obtains the

estimate
o-all 5-3((—+4+b)ML+e ]||uu|| s gl <
M C
i M] Mj
<k Jlu-d]| 2 + lu,-g,ll 2 . with0<k<l.
M; M,

This inequality implies [|u-ill < = NG, , WithO<k<l.
My CM[
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Since the solution u, of the linear initial—bounda}y ‘value problem (3.2.1)-(3.2.4) with
F = 0 depends continuously on the initial values it follows from this inequality that small
differences between the initial values generate small differences between the solutions u

and 1'_'1 on {1, .'In other words the solution of the initial-boundary value problem depends

L
continuously on the initial values. The following theorem on the well-posedness of the

problem can now be formulated.

Theorem 3.2.1

Suppose that Y and v, and F satisfy the assumptions (3.2.6)-(3.2.8). Then for any e satis-
fying 0 < |e| < € < L. the nonlinear initial-boundary value problem (3.2.1)-(3.2.4)
and the equivalent system of nonlinear integral equations (3.2.10) have the same, unique
and twice continuously differentiable solution for 0 < x < 7 and 0 < t < L |¢] T

which L is a sufficiently small, positive constant independent of e. Furthermore, this

unique solution depends continuously on the initial values.
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3.3. On the validity of formal approximations

Since the initial-boundary value problem (3.2.1)-(3.2.4) contains a small parameter ¢ per-
turbation methods inay be applied to construct approximations of the solution. In most
perturbation methods for weakly nonlinear problems a function is constructed that satis-
fies the differential equation(s) and. the initial conditions up to some order depending on
the small parameter ¢ Such a function is usually called a formal approximation. It re-
quires an additional analysis to show that thi§ formal approximation is an asymptotic
approximation as ¢ tends to zero. Therefore suppose that on nL (given by (3.2.13)) a twice

continuously differentiable function v(x,t;) is constructed satisfying

Ve " C!xx + €F(vie) = |¢] m gl(x,t;e), m>1, (3.3.1)
v(x,05) = ‘_Jo(x;e) + |e I_m-l c_:2(x;e) = Yo(x;e), O<x<m, (3.3.2)
v(x,0:) = u (x;e) + fel m-1 exe=v (9, O<x<m, (3.3.3)
v(0,t6) = v(m,te) =0, ~ ostsL]el™h (3.3.4)

where ¢, uy Yy and F satisfy (3.2.5)-(3.2.8) and where gl(x,t;e) = (cl l(x,t;e),clz(x,t;e),...,
T Y = ) . Y ) < . )
Cln(xst’c)) £l Ez(xye) = (czl(xae)vcz2(xs€)1'",c2n(x!6)) and 93(x,€) - (c31(x16)7c32(x,6)v"',

T ..
c3n(x;e)) satisfy

oy

1 Tax € C(ﬂLx[-eo,eo],IR) for i= 1,2,.-..‘,11 (3.3.5)

with ¢ (0,t) = c)(mte)=0 - for0<ts Llel'l,

2
bcy; 9 Cy;

Sy Tax axz € C([O,W]X[-eo,eo],]R) fori=1,2,..,n (3.3.6)
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8292(0;6) 8292(1r;e)
with ¢, (0;¢) =c,(me) = =
=2 =2 2 2
ax ax

=0, and fori=1,2,..,n

dcs;

31’ 9x

(2]

€ C([O,w]x[-eo,eo],]R) with §3(0;e) = <_:3(1r;e) =0. (3.3.7).

Furthermore, (for i = 1,2,...,n) cli(x,t;e) and its derivative with respect to x are supposed
to be uniformly bounded for those values of t and ¢ under consideration. From theorem
3.2.1 it follows that the initial-boundary value problem (3.3.1)-(3.3.4) has a unique,
twice continuously differentiable solution v on a time-scale of 0(|e|_l). This initial-
boundary value problem can then be transformed into the equivalent system of integral

equations
t 7 -
vt =5 [ [ GlenxoF (e dedr + yix.e0, (338)

where G is given by (3.2.11) and where 1:’ and v, are respectively given by

L

Flyan) = vt - Je]™ ' ¢ (xt)  and
.o
v x,te) = + {a—G (60,08 - G(E0x .0y, (€9} de
_é b Bs) 2 0 aT Ve ™y _0 9’ Rt Rl ] _1 R .
Now, it will be shown that the formal approximation visan asymptotic approximation (as

¢ — 0) of the solution of the initial-boundary value problem (3.2.1)-(3.2.4) if m > 1, that

is, it will be proved that

-1 \
lu-vll , =o0ad™") as e — 0.
Cu,
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This result implies that
::_rflo |ui(x,t;e) - vi(x,t;e)l =0 fori=12,.nand(xt)€N.

Subtracting the system of integral equations (3.3.8) from the system of integral equations
(3.2.10), supposing that ) satisfies (3.2.14) and that lz' satisfies (3.2.15) and (3.2.16),
using (3.2.13), (3.2.16), and the fact that u,v € C‘;'vll(nL,IRn), the following estimate is

obtained

laell ) <2 ((Gramm)mpoe) u-vll |+ el |+ gyl | s
CM] CMl CM] CM]

U R A

C C
M M M,
with 0 < k<l1l,b= max(c1 l’c22""’cnn)’ c= mm(l,c] 1,c22,...,cnn) and where ¢ is given
by
l m t Kt
€) = . G(€,1;x,t)c (§me) dédr,
c(x,te pd
e(x,te) = — Io J 0 1
and where u,-v, is given by
le]™ ! " e :
ufxs) - yfe) = - g [ {57 €0x0e,(60 - Gle.0x0e560 } d
Hence,

1 , '
Bevll s o {lell , + eyl , } wimosk<n.
CMI CMl CMl

From the smoothness properties of €10 S and S it follows that there exists a constant K
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independent of ¢, such that

el , <2 ((Graso)Ris1efx) []™" and

CM,
2 -1
upvell so(5+7+3b40°) Ke|™
Cy,
So | nle] ™'k (Z+4+0)L T+ 7 +3b + b2
ol o el K x x
. flu |C2 TR {2+ + +|e|+2+ +3b+ }
M

For m > 1 this inequality implies the asymptotic validity (as ¢ — 0) of the formal

approximation v. The following theorem has now been established.

Theorem 3.3.1

Let the formal approximation v satisfy (3.3.1)-(3.3.4), where ¢, up Uy and F are given

satisfy (3.3.5)-(3.3.7). Then for m > 1, the

by (3.2.5)-(3.2.8) and where 3% and ¢

) 3
formal approximation v is an asymptotic approximation (as € — 0) of the solution u of the
nonlinear initial-boundary value problem (3.2.1)-(3.2.4). The asymptotic épproximation v -

is valid for those values of the independent variables x and t for which problem (3.2.1)-

(3.2.4) has been proved well-posed. That is,
ffu-v]| , = O( | ¢ m-l)’ implying |ui(x,t;e) - vi(x,t;e)| =0(]¢] m-l)
CM]
fori=1,2,.,nand 0<x<# 0<t<L]|e] 'l, in which L is a sufficiently small, posi-

tive constant independent of e.
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3.4. A model of the galloping oscillations of overhead transmission lines

In this section a model describing the galloping oscillations of overhead transmission lines
will be derived. Galloping is a low frequency, large amplitude phenomenon involving an
almost purely vertical oscillation of single-conductor lines on which for instance ice has
accreted. The frequencies involved are so low that the assumption can be made that the
aerodynamic forces are as in steady flow. Another consequence of these low frequencies is
that structural damping may be neglected. In severe cases galloping may give rise to
conductor damage due to impact of conductor lines and due to flashover as a result of a
phase-difference between conductor lines, for which the mutual distance has become too
small. The usual conditions (see [26]) causing galloping are those of incipient icing in a
stable atmospheric environment implying uniform (but not necessarily high velocity)
airflows.

In [1] an oscillator with two degrees of freedom has been considered to describe the
oscillations of a rigid circular cylinder with a small ice ridge. In that approach a system
of two coupled, ordinary differential equations is obtained, describing the displacements .
of the cylinder‘in two directions. In [12] a cylinder-shaped transmission .line has been
considered to describe the vertical displacement of the conductor due to galloping. In this
section the vertical as well as the horizontal displacements 6( the transmission line will be
taken into account. To describe the galloping oscillations a circular cylinder-shaped con-
ductor will be considered to be situated in a horizontal airflow. Such a symmetric circular
conductor cannot exhibit galloping because there cannot be generated a force that lifts
the coﬁductor against gravity. On the other hand, a conductor on which ice has accreted
may gallop if it adopts a suitable attitude to the wind. To describe this phenomenon a
right-handed coordinate system is set up where one of the endpoints of the conductor is

the origin. Through this point three mutually perpendicular axes (the x-, y- and z-axis)
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are drawn, where the z-axis coincides with the direction of grayity and the y-axis with the
direction of the airflow. The three coordinate axes span the three coordinate planes in space,
the (x,y)-, (x,z)- and (y,z)-planes. On each coordinate axis a unit vector is fixed: on the
x-axis the vector e on the y-axis the vector e yand on the z-axis the vector e 2 which has
a direction opposite to gravity. The coordinate axes are directed by these vectors, such that
a right-handed coordinate system is obtained. The coordinates of the endpoints of the con-
ductor are supposed to be (0,0,0) and (£,0,0), where ¢ is the distance between the endpoints.
To model gallo;;ing a cross-section (perpendicular to the x-axis) of the conductor with ice
ridge is considered. Assume that all cross-sectional shapes are congruent and have only one
axis of symmetry. Along the axis of symmetry of a cross-section a unit vector e is defined
to be directing away from the ice ridge and starting in the centre of the uniced cross-sec-
tion. In figure 3.4.1 the centre of the cross-section is considered to be at x = Xpr ¥ =Yg

and z = z, with 0 < Xg < £< tc’ where tc is the length of the conductor.

r,____--_--
7

Y

Y

ey Yo

Figure 3.4.1. Cross-section of the circular cylinder-shaped conductor with

A S . v =y '
ice ridge in’a uniform airflow v__ ooy
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At x = X and time t the y-coordinate and the z-coordinate of the centre of the cross-
section are denoted by v(xo,t) and w(xo,t) respectively. Assume that every cross-section
perpendicular to the x-axis oscillates in the (y,z)-plane. Furthermore, the torsion of the
conductor is not taken into account. Let the static angle of attack o (assumed to be
constant and identical for all cross-sections) be the angle between e and the uniform
airflow v_ = v__ (Ey(voo > 0), that is, a_ := L (e,¥,,) With |a5| < «. In this uniform
airflow with flow velocity Voo = voogy the conductor may oscillate due to the lift force
Le_zL and the drag force DgD. It should be noted that the drag force DgD has the

direction of the virtual windvelocity Vo=V

-00 t L

has a direction perpendicular to the virtual windvelocity v (gL is chosen perpendicular

- Vtgy -we, and that the lift force Le

and anti-clockwise to gD). In figure 3.4.1 the forces Le. and DgD acting on the cross-

L
section are given. Now the conductor is considered to be an one-dimensional continuum in
which the only interaction between different parts is due to a tension T, which is assumed
to be constant in space and time. The validity of this assumption will be discussed in sec-

tion 3.6. The equations describing the horizontal and the vertical motion of the conductor

are then given by

\%
a X .

pcAvtt - TA £ 7 2.1/2 = D cos¢ - L sing, (34.1)

(1+v 4w

X X

p Aw _ -TA 9 —L— = -p Ag + D siné + L cos¢ (3.4.2)
c o tt ax 2 2,172 c ?

(1+vx+w x) )

where D and L are the magnitudes of the drag and lift force acting on the conductor per
unit length of the conductor respectively, Pe the mass-density of the conductor (including
" the small ice ridge), A the constant cross-sectional area of the conductor (including the

small ice ridge), ¢ the angle between Voo ~ Y gy and v (that is, ¢ = L (Yoo"’tfy’l's)

t
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with |¢ | < =) and g the gravitational acceleration. The magnitudes D and L of the aero-

dynamic forces may be given by

, ' : (3.4.3)

, (3.4.4)

where Py is the air-density, d the diameter of the cross-section of the uniced conductor,
v2=(v -v )2'+ w2
S oo t t’

a the angle between e and Y (that is, o := L (gs,ys) with |a| < m),
and cD(a) and cL(a) the quasi-steady drag- and lift-coefficients, which may be obtained
from wind-tunne! measurements. For a certain range of values of Vo some- characteristic
results from wind-tunnel experiments are given in figure 3.4.2 (see also [1,12,24]).

According to the Den Hartog criterion [10] a two-dimensional section is aerodynamically

unstable if

ch(a)

CD(a) + “da < 0.

From figure 3.4.2 it follows that this condition is likely to be satisfied for some interval
de, (@)

. . . L

in a with ay <a<a,, where ay and a, are determined by cD(a) * Tda = 0. For

certain range of values of a (including those values which satisfy the Den Hartog

criterion) the drag- and lift-coefficients cD(a) and cL(a) can be approximated by

2 3
¢po * ch(a-al) + ch(a-al) + cD3(a-al) , (3.4.5)
3
o ((a-ap) + cLz(a-al)z +cp la-a))”, (3.4.6)
with °po > 0, cLp < 0, 13> 0, ay < @) <a, where CL(al) = 0. Since galloping is a

low frequency phenomenon it may. be assumed that |vt| << v, and |wt| <<v_.The
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0.8 | | |16
0.6 CD -1_[,

0.4 172
fc, 02 /EL\ 1.0 ¢}
0.04——\ : 08

ao 0.2 T 3
~0.21 2
0.4 a
—

 Figure 3.4.2. Typical variation of the drag and lift-coefficients h and cr with angle of
attack for a symmetric profile with small icy nose.

v
right-hand sides of the equations (3.4.1) and (3.4.2) can be considered as functions of -+
w . Lo . v o0
and Tt , and so these right-hand sides are be expanded in Taylor series near —‘-,—t— =0 and
o0 o0
w

—\—,t— = 0. To obtain these Taylor series the approximations (3.4.5) and (3.4.6) for °D and L
re::ectively are used. Since the amplitudes ‘of the oscillations are small compared to the
length of the conductor and since galloping is an oscillation déscribed by the lower modes
of vibration, it may be assumed that |v_| << 1and |w_ | << 1. Andso, the left-hand

sides of the equations (3.4.1) and (3.4.2) are expanded in Taylor series near Ve = 0 and

W= 0. Neglecting terms of degree four and higher equations (3.4.1) and (3.4.2) become

2 3 .2 1 2 . -
Vit - C- {(l -3 vX - 2wx)vxx—vxwxwxx}- )

padvzo v v% AP w% w::
=72p A 1%0*%0+v_ 21 Yo T2t 2 Y32 Y33
[o4 [o o] v v \'2
oo 00 o0 [ o]
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substituted. Applying the transformation v(x,t) = v(x,t) -

2 1 2 2
Wit = © { VxWxVxx * (l "2 Vx -iwx] xx} =
padvz° \A v, ‘ V% AL w‘:' w::
=2pa 1200+ Prov_*tPor v *Py T3t T3 tbgy 3 v b33t
c 0o oo v v v v
[e <] [o o] [o o] (o )
where ¢ = (Tpc_l)l/z,
300 = °p@» 319 = ~2¢p(ay.
a —c(a)-ch(as) a,,=C
01 ~"LY ™ da 20 ~ “Dley,
dec(a) dc. (a) d2c ()
a,, =-c (a)+ D_s ., =4 (a) - L s 1_Ds
11 L*s da 02 2 "D‘s da 2 da2 ’
den(@) | d%c. (a) ., dc ()
a.=4tc@-+=2s,1_Ls 1_D (3.4.9)
03 2°L's 6 da 2 2 6 3 t
do da
2pcAg
boo =Ll - — 3> bjo = -2¢ (e,
p dv
a oo
b, = -Co( )-ch(aS) b, =c: (a)
01~ D% ~ "da 20 = “L'%”
de, () de (o) d2c ()
by =c (@) + —=23 by, =dc (a)+ 2% ,L1_Ls
11 D's da ’ 02 27L‘s da 2 da2 i
de, (@) , dc (@) . d% (o)
b=__l‘;(m)__l_ L's 1 DYs 1 L's
03 2 'D's 6 da 2 2 6 3
da da
In (3.4.9) the approximations (3.4.5) and (3.4.6) for °p and < respectively should be
2
P29V 56200

A x(x-£) and

(3.4.8)
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' ~ P dvoobOO . - ®C o~ -
w(x,t) = w(x,t) - aTA x(x-£) and using the dimensionless variables v=-—" v, w=
tvoo

% W, X = % xand f = T t the equations (3.4.7) and (3.4.8) become

o0

pdv _fa
- _99 a oo 00 .- 2
vEE v’_”_( + ( ) {( _ - _—_41rpcAc (2x-1r)] +
pdv_fb dv

1 (- P00 - 2y (- Paes®00

+5 (W’_( - —‘E‘r—b—c‘zc—- (2x-7r)] ] (V,_”_( 21rp Ac ] +
padvoola00 Py dv lbo X dv

- - - 0 .- - 00
+ (v)_( - TJ“C (2x-1)) (W)-‘ - ‘_4;r,,c—Ac' (2x-m)) [w;‘;‘ - 21rc;oAc )}

Voo _ _ 5 5
= Inp A —c—] {alovi +amwi+a20vE +a“viw 02w +a03w } (3.4.10)

padvoolb 00

v 2 p.dv_fa
= = ] - a_ oo 00 .- = -
wEE W)Z)-( + ( . ) {(v’_(- 41rpcAc (2x 1r)) (w)_( 41rpcAc (2x—7r)) x
pdv fa pdv fa

- Pa%Voo Ta” 00700 00 .- 2

X (v)_”_( 21rp Ac ) + ( (v -—————-—-——4WpcAc (2x-1r)] +
dv_ &

3 (= %00 2 Pa%00®00
*2 (W;(' 4mp Ac (2%-m) ][w--_' 2mp Ac ]}

p. de
__a Yoo -2 - - -2 3
_27rpcA[ ]{blov_+b wt+b°vt +b“va +b02w +b w} (3.4.11)
where the dimensionless constants aOO’aIO""’bOB are given by (3.4.9).
Typical values of the physical quantities in a practical application are: £ = 400 m,
d=004m, A = 7($)? = an10™* m® 5, = 4000 kg/m>, p = 125 kg/m’,
g=10 m/s2 and Vo = 10 m/s. The tension T in the conductor is estimated by
%pcg (é) 2 sz)l, where So (usually 2 or 3 per cent of &) is the sag of the conductor. Let’

So be 10 m, then T = 8.107 kg/m52 and consequently ¢ = 140 m/s (c may be identified
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. v
with the speed of propagation of transversal waves in the conductor). By putting € = —:—o-

and by assuming that the static angle of -attack o is such that galloping may set in
according to the instability criterion of Den Hartog [10], that is, by assuming that

3 5 : 12
a = + O(e), it then follows that: (a00 ~ 10)

. Voo P dt P9850 | P9V P00 s
€= '_c_ ~ & = and —

41rpcAc 37 41rpcAc 11

e N
14° 27rpcA 8

The equations (3.4.10) and (3.4.11) now become up to order E

2 - - -2 -3
- = e{ lov +tag w_ + azovE + a“vzwE + aozwE + 2103wf , (3.4.12)

—vl
L d)

- 2 - - -2 -3
wn- "-e{blov_+b0w +b b“viwf+b02w_t.+b03‘wE , (3.4.13)

p.de

a ~. ..
where ¢ = 27l’PcA € is a small, positive parameter and where the constants alO’aOI""’b03

are given by (3.4.9) with Aas = al, that is, alo =.-2CD

““p1’ 220 T ‘D¢

- C +C b = 0,

1
D2 " L1 %3 7 " 6 °p1 T °Dp3 * ‘L2’ P10

. - : 1
DO ~ L1 P29 = 02 By =Cpp €y Doy =Cpy t e and by == Fop, +

1 . . . .
D26 CL1 cL3. For the cross-sectional shape of the conductor with small ice rlgge

0’ 201

a C

1
11= %1’ %2 = 2 te

by = ¢

- C

DO

under consideration the aerodynamic coefficients ¢po°° and c

D1°°D2°D3CL1°°L2 L3

may be determined from wind-tunnel measurements (as for instance given in figure

3.4.2). Figure 3.4.2 suggests that °po > 0, oy > 0, cLy < 0, cL3 >0, cDo +C <0

and Lc > 0.

1
2°p0 " D2t 6 L1t L3

If a conductor with fixed endpoints is considered the boundary conditions v(0,t) =

+C

= v(m,1) = w(0,t) = w(m,t) = 0 are obtained. In the next section the partial differential
equations (3.4.12) and (3.4.13) subject to these Dirichlet boundary conditions and the ini-

tial values ¥(x,0) = V%), ‘7?(;,0) =V, (%), W(x,0) = W(X) and v-v?(;c,O) = W (%) will be




studied, where v, and v'vo can be‘regarded as the initial displacement of the conductor in

0

y- and z-direction respectively, and where v 1 and G/l represent the initial velocity of

the conductor in y- and z-direction respectively.



98

3.5. An asymptotic approximation of the solution of a system of nonlinear wave equations

In this section the following initial-boundary value problem for a twice continuously

differentiable and vector-valued function u(x,te) = (Q(x,t;es),\_v(x,t;e))T will be considered .

V., -v _=€a, v, +a. W +a v2+a VW +a w2+a w3)
tt XX 10°t " 01t 20 11°t7¢t 02 03 ’
O<x<mt>0, (3.5.1)
- - - - - -2
Wee ™ Wax -e(bmwt + b“vtwt + b0 w + b03w ), O<x<mt>0, (3.5.2)
v(x,0;) = \-ro(x;e) = (Vg + €V sin(mx), O<x<m, (3.5.3)
w(x,0;¢) = Gvo(x;e) = (WO() + eWOl)sin(nx), O<x<m, (3.5.4)
\-/t(x,O;e) = w-/l(x;e) =(V, g * €V, bin(mx), 0<x<m, (3.5.5)
\'avt(x,O;e) = v'vl(x;e) = (WIO +eW, l)sin(nx), O<x<m, (3.5.6)
u(0,t;€) = u(m,te) = 0, t20, (3.5.7)
where-a

10° 201 b03, VOO’ VOl""’ WlO’ Wll are constants independent of ¢, m and n
integers, and 0 < € << 1. From theorem 3.2.1 it follows that this initial-boundary value
problem is well-posed on ﬂ.L (given by (3.2.13)).

For arbitrary m, n, alO’ 01> b03, VOO""’ W]0 and Wll an asymptotic approximation
(as € tends to zero) of the solution of (3.5.1)-(3.5.7) will be constructed in this section. In
view of computational difficulties (as also has been noticed in {18]) whenever one assumes
an infinite series representation for the solution of the nonlinear initial-boundary value
problem, one may alternatively investigate the problem in the characteristic coordinates
o= x~t and ¢ = x+t. In this approach the initial-boundary value problem (3.5.1)-(3.5.7)
has to be replaced by an initial value problem. This replacement requires to extend the
dependent variable u(x,t), the right-hand sides of the equations (3.5.1) and (3.5.2) as well

as the functions 30, \71, Gro and »-v] in x to odd and 27-periodic functions. For simplicity
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the extended functions u, ('0, ;l; v-v0 and &l will be denoted by the same symbols. In
constructing an approximation of the solution u(x,t) = 1_1‘(0,5) of this initial value problem
a two-timescales perturbation method will be used, because the straightforward pertur-
bation expansion 1_13(0,5) + a_nr(a,e) + ... causes secular terms. Applying the two-timescales
perturbation method u(x,t) is supposed to be a function of o = x-t, { = x+t anq T = et. By
putting u(x,t) = u(,¢,7) = (\'r(a,f,r),v"v(a,f,r))T the following initial value problem is ob-

tained

- - - 2. -~ o~ - . - -
-4v0€ + 2‘("51“'01-) teEV =¢ (am(—va+v£+ev1) + aOl(_wa+ w6+ew1) +

+ D, (0+£,-V 4V +€V_,-W +W_ +eW ) + 3,.(-W _+W _ +eW )3]

1 o €T o €T 03" "o ¢ T ’
for oo <0 <€ <00, 7>0 (3.5.8)

- ~ ~ 2. -~ - - ~ o~ -

'4wa£ + Ze(wﬁr-wm) tew =e [bOI(-WU+w€+ewr) + p2(0+£,va+v£+evr,
~ o~ ~ ~ o~ ~ 3

-wa+w£+ew1_) + b03(-wa+w€+ew1_) ) , for ~co <o <é <00, >0 (3.5.9)
V0,6,1) = (V00+6V6l)sin(ma), for -co<o=¢<o00,7=0, (3.5.10)
w(0,¢,7) = Woo+Wo, ¥sin(no), for ~co<o=¢<o00,7=0, (3.5.11)

-{'/U(U,f,r) + \"'f(a,f,r) + eGT(a,f,r) = vl(o) = (V10+45V1 l)sin(mcr),
for ~co<o=¢ <00, 7=0, (3.5.12)
—\'\'/a(o,f,r) + ﬁ'f(a,f,'r) + ev'\'rr(o,f,r) = wl(a) = (Wm+ewl l)sin(na),

for ~c0o<o=¢<00,7=0, (3.5.13)

where P, (a,b,c) = E(i){ 20 2 + 11bc + 302 } and pz(abc) = E( ) x
{b“bc+ b02 } with E(x) = 1 for 0 < x < m, E(x) -1 for -t < x < 0, E(0) =
= E(x) = 0 and E(x) is 27~periodic in x. Furthermore, V=W =0 if 0 = kr - 8, £ = kr + 6
and 7 = ¢f with k € Z and 8 > 0. Now it is assumed that v and w may be approximated
by the formal perturbation expansions vO(o,f,r) + evl(o,f,r) + + ezvz(o,f,r) + .. and

WO(G,f,f) + GW[(O,E,T) + 62w2(a,€,r) + ... respectively. By substituting these expansions
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into (3.5.8)-(3.5.13), and after equating the coeffi;:ients of like powers in e, it follows

and w,, should satisfy

from the powers 0 and 1 of ¢ that Yo 0

-4v0 =0, : ~co<o<€<oo, 7>0, (3.5.14)
o
—4w0' =0, ~00<o<f<oo, 7>0, (3.5.15)
oé ,
vo(a,f,r) = Voosin(ma), —;o<o=¢<o00, 7=0, (3.5.16)
wo(a,(;',r) = Woosin(na), ~co<o=¢ <00, 7=0, (3.5.17)
Vo (0,6,7) + A (0,6,7) = Vlosin(mo), oo <o=§<00,7=0, (3.5.18)
o €
“Wo (0,6,7) + Yo (0,¢,7) = Wlosin(na), ~oo<o=¢ <00, 7=0, (3.5.19)
4 €

and that v and T respectively, should satisfy

-4vl = 2v0 - 2v0 + am(—vo Vo )+ am(-wo W )+ pl(a+$,-v0 +Vo
oé or ér o ¢ o 3 o ¢
“Wo W )+ a03(-w0 Wy )3, —o<o<é<00, 7>0, . (3.5.20)
o ¢ o ¢
—4w1 = 2w0 - 2w0 + bOl(-wo +w0 ) + p2(o+€,—vo +v0 ,-wo W )+
ot or ér o ¢ o€ o 3
+ b, (-w, +W )3, —co<o<é<oo, 7>0, (3.5.21)
03 0 0
o ¢
vl(a,f,r) = Vmsin(ma), ) ~oo<o=§¢<oo0, 7=0, (3.5.22)
wl(o,f,r) = WOlsin(‘na), ~o<o=§¢<o00, 7=0, (3.5.23)

-V, (0,6,7) + \ (0,6,1) = Vo (0,6,7) + V1 lsi.n(mo),
o 13 T
—co<o=§¢<o00, 7=0, (3.5.24)

'wl (U,f,T) + wl (U7€s7) = 'wo (0’6,7) + W] ]sin(na),
(4 3 T
oo <o=§<00, 7=0. (3.5.25)

Furthermore, Vo= =V =W =0if oskr -6, {=kr+0andr=¢f withk € Z

and 6 > 0. In the furthér analysis v and w, will be determined, and it will be

0 Vo Vi 1
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shown that the formal approximation 1_1A(x,t;e) = (vo(x-t,x+t,et)- + evl(x—t,x+'t,et),
wo(x—t,x+t,et) + ewl(x-t,x+t,et))T is an order ¢ asymptotic approximation (as ¢ — 0) of
the solution u(x,t) of the initial-boundary value problem (3.5.1)-(3.5.7) for 0 < x < 7 and
0 <t< L|e|"l ’

The general solutions of the partial differential équations (3.5.14) and (3.5.15) are given
by vo(a,f,r) = ho(a,r) + ko(f,r) and wo(a,f,r) = fo(o,f) + go(f,r) respectively. The initial

values (3.5.16)-(3.5.19) imply that h f and g, have to satisfy h (a 0)+k (o 0) =

o 0’
. n _ -

= Voosm(ma), h (o 0) + ko(o 0) V sm(ma), fo(a,()),+ go(a,O) Oosm(na) and

-f (')(0,0) + g(')(a,O) = Wmsin(no), where the prime denotes differentiation with respect to

the first argument. From the odd and 2w-periodic extension in x it follows indirectly

that ho, ko, fo and &g have to satisfy ko(o,r) = -ho(-a,r), ho(a,r) = h0(0+21r,r), go(a,r) =

= —fo(—a,r) and fo(a,r) = f0(¢7+27r,r) for -00 < 0 < oo and 7 > 0. The undetermined

behaviour of ho and fo with respect to r will be used to avoid secular terms in 2 and

W, From the well-posedness theorem it followed that u, u, and u are O(1) on QL. So,
u and its first derivatives have to remain O(1) on -co <x <oo and 0 < t < L[el_I

Furthermore, it should be noticed that the equations for v \ and w. have been

o Vo i
o Yo Vi Vi and their derivatives up to order two
are O(1). These boundedness conditions on v

derived under the assumption that v
vy and W determine the behaviour of

o Yo
hO and fo with respect to 7. From (3.5.20)-(3.5.25) ViV Wy and w, may be ob-

o ¢ o ¢

tained easily.'For instance,

-4w10(a,5,'r) = -4wla(a,o,r) + (6-0) [Zfom(a,r) bm o, (o,)- b03f0 (, r)) +

. 2 -
- 3b03f00(0,r) L goa(ﬂ,r)da + Ia {—2goor(0,r) + bmgoo(o,f) + 3by,f 0, 2 (o, T)go (.1) +

3
3 *
+ b03g09(0,‘r)} dé + fa p2(o+0,—hoo(o,r)+k00(9,r),-foa(o,r)+g00(0,1))d0 +h (0,7), (3.5.26)
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where h* will be determined later. In (3.5.26) the integral with integrand Py is of O(1)
for all values of o and &, because the function P, of O(1) is 4w-periodic in # and the in-
tegral over such a period is equal to zero. Since the first integral in (3.5.26) contains a
non-negative and 27-periodic integrand it follows that this integral will grow with the
length £-0 of the integration interval. It turns out that this integral can be written in a

part which is of O(1) for all values of o and &, and in a part which is linear in £-0:

3 ¢ 27
2 ) 2 1 2
Lgoo(a,r)do—fa 8,01 - 37 | o B0, avp 00 s

2n
e gf)‘p(w,r) dy.

Noticing that ¢£-0 = 2t it follows that ¢-o is of 0(|e|'l) on a time-scale of O(Iel-l). So,

w, will be of O(|e|-]) unless f

la 0

(that is, terms linear in ¢-0) disappear. It turns out that w

and g are such that in (3.5.26) the terms of O(lel_l)
d v, are all
1 oYY e
-1 o € o 3
O(1) on a time-scale of O(l¢ ) if fo(a,r), go(f,r), ho(a,r) and kO(E,r) satisfy the follow-

ing four conditions

3 303 o,
2f0 - bOlfO - b03f0 - 3n fo .[0 80 ,rdd =0,
or 4 o g [
3b 2
03 2
2g -b,.8n -b..8, -—F— 8 J f. (8,r)dd =0,
1°0
061' 0 ¢ 03 0‘f 2T Of 0 09
3a 27|'
- 3 03 2
2h, -a, h, -a  f. -a..f - £ J' g2 (8,r)d6 = 0,
Oar 10 00 01 00 03 Oa 2% 00 0 00
. 3a 2
3 03 2
2k -a, k., -a.. g -a.g -——¢g J- f. (6,7)d8 = 0.
1 . 0
Ofr 0 Of 01 OE 03 06 27 OE 0 p

From g.(4,7r) = -f,(-6,7) and from k,(6,7) = -h(-8,7) it follows that the first and second
0 0 0 0
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condition as well as the third and fourth condition are equivalent. So, w 1YY and
c € o
v, are all O(1) on a time-scale of O(Iel-l) if f, and h) satisfy
¢
3b
3 03 2
2f0 - bOlfO - b03f0 = fo J‘() f0 (8,7)d6 = 0, and (3.5.27)
or g ] (4 [/
3 3a
2h0 - athO - aOlfO - 303f0 - 21r 0 j f (0 7)dé = (3.5.28)
or o o o

In [4,12] an equation similar to equation (3.5.27) has been solved. If the method introduced
in [4] is applied to equation (3.5.27) one obtains after some calculations fo(a,r), and so

wo(aéf,‘r) = fo(a,f) - fo(-f,r). It turns out that fO and W are given by

A1) W_é(r) | 1/2
folo.7) = 261720 arcsin [}—:’wm 1 sin(a+no) | + k*(n), (3.5.29)
' W_g(r) 1/2 ]
0(0 faT) 71(‘/%; arcsin [—l—d-n_w—;zﬁ(—f) :l sin(q+no) +
W_é(r) 12 )
- arcsin [m] sin(a-n¢) |}, (3.5.30)

where k*(f) is an arbitrary function in 7 with k‘(O) =0, 0 = x-t, £ = x+t, T = ¢t,

W, = nzwio 210, a is given by cosa = nWOOW;ll/2 and sina = Wlow;ll/2 , where
A7) and ¢(r) are implicitly given by X(r) = 4m_3(r)exp [_Q_l 1'] énd (1) = r_n“_l(z)_x
x (m(1)-2) with m(r) determined by m (r) - & m (r) = 26W b03 Ol(l exp(bm:'l)) +
+ 3'?78 . Now the (with respect to ho) linear partial differential equation (3.5.28) can be
solved and one obtams after some calculations hO’ and so vo(a,f,r) = ho(a,r) - ho(-f,r). It

turns out that v, is given by

0
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a
1 10 . 1 . 1
vo(a,f,r) = €xp (T r] {Voosm(ma) *n Vlocos(ma) + Voosm(ms) “m Vlocos(mf)} +

a a :
03 1 10 . 1 .
+ __bo3 {wo(a,f,r) -3 exp (———2 1] (Woosm(no) + Wlocos(na) + Woosm(nf) +
a a, T a
41 d 03 03 A0, Ndr !
nWlocos(nf)] } +5 (aol _b03 bOl + bo3 alO) JO exp ( ) (r-1 )] wo(a,f,'r )dr !,
(3.5.31)

where Y is given by (3.5.30). Now the linear initial value problems (3.5.20)-(3.5.25)

for v, and W, can be solved, yielding

109 ¢
v.(0,1)=-— p (¢+¢,-h Wk, (6,7),-f, ($,7)+8 (¢,T)] dedy +
1 2 ‘[f J.,l, 1 0, 0, 0, 0

2T :
f§¢(¢,1)d¢] do - 3a,, x

£
+ %303 (f0(057)+g0(€’r)) J.U ( ff)o(o’r) - _21_‘"' Io

§ 27
« [[ff,a(o,r) 52 |, ff,'pw,r)dw) (£(0.00+84(6.0) 1d8 + b (@) + K (6,7),
(3.5.32)

and

19 €
W (0,6,7) = - & p, ($+6,-hy (B.1+k (8,7),-F, ($,1)1+8, ($,7)) dédy +
1 4 -[E Lb 2 0, 0 0, 0,

2

(3 T
+ 3055 (fgemmggen) [ f%o(o,r) - .[o f(z)d)(w,r)dw] as - 3b,

13 27
« [ [(ff,o(a,r)-% . f§¢<w,r)dw) (£56.00+2,(6,0) 1d6 + £(0.1) + £ (€:7), -
' ' (3.5.33)

where (for 0 = ¢ and 7 = 0) hl'+kl and fl+gI are determined by the inijtial values
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-(3.5.22)-(3.5.25). The undetermined behaviour of fl’ gy hl and kl with respect to 7 can

be used to avoid secular terms in v, and Wy However, in this analysis v, and Wy will not

be determined. For' that reason it may be assumed that f =f (a), g, =8 (f) h =h (a)'
and k =k (f) and then f (a)+g &=-= 2 j. Wy (0 6,0)dd + = 2 01 [sm(no)+sm(nf)] +
3

- W, (cos(no) cos(nf)) and h (o)+k,(6) = - & I Vo, (0.0.000+ (sin(mo)+

201

+sm(m£)) + ; (cos(mo)- cos(me)]. It can be shown .from (3.5.30)-(3.5.33) that v

75 0’

W W) and their derivatives up to order- two are of O(1) for -00 < x < oo and

0<tx< L[el'l. So, the assumptions under which the equations for v v and w ] ‘have

o Vr
been derived, are justified. So far a vector-valued function 1_1A(x,t;e) = (vo(x—t,x+t,et) +

+ evl(x—t,x+t,et), wo(x-t,x+t,et) + ewl(x-t,x+t,et))T has been constructed. It can easily-be
_seen that LN satisfies (3.5.3), (3.5.4) and (3.5.7) exactly, and (3.5.5) and (3.5.6) up to order

62 in the sense of theorem 3.3.1. After lengthy calculations it can also be shown that u

ey
1 Tox

= C(ﬂLx[-eO,eO], ) fori=1,2 with¢ 1(0,t;e) = c_:l(1r,1';e) =0for0<tx< LIeI-l. Further-

satisfies (3.5.1) and (3.5.2) up to ezc_:l(x,t;e) = ez(c1 l(x,t;e),clz(x,t;e))T, where ¢ €
more, it can be shown that ¢ l(x,t;e) and its derivative with respect to x are uniformly bound-
ed in tand e. Then it follows from theorem 3.3.1 that u A(x,t;e) is.an order ¢ asymptotic ap-.
proximation (as ¢ —.0) of the solution of the initial-boundary value problem (3.5.1)-(3.5.7)

for0<x<mand 0 <txg L|e|_l, that is, ||1_1—1_1A|| 5y = O(¢). From this estimate the fol-

M,
lowing estimate can be obtained with t_lo(x,t;e) = (vo(x-t,x+t,et),wo(x-t,xﬂ,et))T:

IIl_l-l_lOIIC2 = llu-u, +u, -ul| ) < llu-u,dl , * IIl_lA—l_lollc_2 = O(e).
M, M) CMI M,
Hence, (vo(x—t,x+t,et),w0(x-t,x+t,et))T, where Yo and W, are given by (3.5.31) and
(3.5.30) respectively, is also an order € asymptotic approximation (as ¢ — 0) of the solution

u(x,te) of problem (3.5.1)-(3.5.7) for 0 < x <7and 0 <t < Llel_l, in which L is an

e-independent, positive constant.
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3.6. Some general remarks

The asymptotic theory presented in the sections 5.2 and 3.3 can readily be extended to
other types of initial-boundary value ﬁroblems. For instance, if the initial-boundary
value problem (3.2.1)-(3.2.4) is considered where the boundary conditions (3.2.4) are
replaced by u(0,t) = 0 and 1_1x(1r,t) = 0 (a fixed end condition at x = 0 and a free end
condition at x = «) then an integral equation equivalent with this problem is needed to
prove the well;posedness of the problem and the asymptotic validity of a class of formal
approximations. To obtain this equivalent integral equation the initial-boundary value
problem should be extended to an initial value problem. This can be accomplished by
extending the dependent variable u, the nonlinearity and the initial values in x, such
that these functions are odd about x = 0, even about x = 7 and 4n-periodic with respect
to x. In this way the equivalent integral equation is obtained and the techniques appiied
in sections 3.2 and 3.3 can again be used to prove the well-posedness of the problem and
the asymptotic validity of formal approximations on ¢-dependent time-scales.

In section 3.4 the assumption is made that the cross-section of the circular conductor with
small ice ridge is symmetric. However, this assumption is not necessary. In fact, for an
arbitrary profile galloping may occur if the lift- and drag-coefficients cL(a) and cD(a)
are such that there exists an interval in a with o, <a < a

ch(a) 0 2
criterion cD(a) *da < 0 is satisfied. Then, the static angle of attack a can be chosen

for which the Den Hartog-

such that galloping may set in. It should be noted that the analysis in sections 3.4 and 3.5

is correct if there exists an angle a with cL(al) =0and a, < a, < a,.

0 1 2
In section 3.5 the model is studied, which has been derived in section 3.4. It is assumed:' in
section 3.5 that u(x,t) is a twice continuously differentiable function. This assumption can

be justified as follows. The velocities ve and W, of the conductor in horizontal and in

vertical direction are continuous in x and t, and the aerodynamic coefficients cD(a) and
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. . . -1 .
cL(a) are continuous in a. Since a = o +¢= o + arctan (-wt(voo-vt) ) with |wt[ <V
and |vt| < Voo it follows that the right-hand sides of the equations (3.4.1) and (3.4.2) are

continuous in x and t. In the left-hand sides of the equations (3.4.1) and (3.4.2) the terms

-3

a2 1Y (l+v2+w ) 1/2} and —— a {w (l+v2+w ) 1/2} represent in fact the curva-

ture of the transmission line. Since it is natural to assume that the curvature is continuous
in x and t, it follows that Vit and Wit should be continuous in x and t. And so, it is more
or less natural to assume that u(x,t) = (v(x,t);w(x,t))'r should be twice continuously
differentiable with respect to x and t.

In section 3.5 monochromatic initial values have been considered, because the galloping
oscillations often affect only a single mode of vibration [25]. To obtain some information

about the oscillation amplitudes the following formulas can be used

-p, dv a tv
v(x,t) = 4TA oo 00 x(x- £)+— v[—x -—t]
2
A dv v
_ 00 00 0 - (T _ _WC
w(x,t) ————4TA x(x-8) + e w(e X, = t] ,

00 and bOO are defined as in section

3.4. The first terms in these formulas may be considered as the position of the conductor

where V(X,t), W(X,t), Pa, d’ VOO’ <, Ty A, t; ;', “-/) a

in rest, whereas the second terms represent the change of the position of the conductor
due to galloping. For large values of t (that is, et = 7 — o0) it can be shown from (3.5.30)
that Yo (the first order approximation of w) tends to a standing triangular wave with
amphtude ( Ol) 172 and period -2T LIt sh0uld be noted that for these values of t
little can be said about the asymptotic validity of the results, since only for finite values

of et, that is, for 0 < 7 = et <« L < oo the asymptotic validity of the results could be

established. It is also interesting to mention that it can be shown from (3.5.31) that
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a,.b. -a. b .
lim vo(a,f,'r) = L3a_01b_01_03_) lim wo(a,ﬁ,r). (3.6.1)
7—00 10703 T—00

These results imply that the maximum oscillation amplitudes due to galloping may be

approximated by

JAY f -C A - C 12
.2::; 1 ]DO Ll in the vertical direction, and by
| 2°p0* 6 L1 * D2 * CL3]
. 172
oo ~°po " L1 l y
2n¢ —l—c + —l-c + +
[ 2°p0* 6°L1 * °p2 T CL3|
r 1 . . . .
. | 013 Do * °p2 * °L3) * ©p3 ~ Lo * oLy
1 ]
\ 2003 °po * 6 °L1 * °p2 * °Ly)

in the horizontal direction, where ¢ are the aerodynamic coefficients,

Do’ ‘D1 °L3
which may be obtained from wind-tunnel measurements. In a practical application the
quantity (a03b01_a01b03)(a10b03)-l is small compared to one. This implies that the
amplitude of the horizontal oscillation is small compared to the ampilitude of the vertical
oscillation, This phenomenon, that galloping is an almost purely vertical oscillation, has
also been noticed in nature [26].

In section 3.4 it has been assumed that the tension T in the conductor is constant. In [16] it
has been shown for the free vibrations of a suspended cable for which the sag to span
ratio is small that the assumption is valid if the cable oscillates in a so-called anti-
symmetric in-plane mode. For the monochromatic initial values considered in section 3.5

this implies that n should be even. If the cable oscillates in a symmetric in-plane mode

(that is, n is odd) the assumption that T is constant is only valid for the higher modes of
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vibration. For the lower modes of vibrations with n odd the validity of the assumption
that T is constant, heavily depends on the elastic properties of the conductor and the sag-
span ratios (see [16]). However, in [26] it has been remarked that the most troublesome
galloping- mode is the S-shaped vertical mode of the conductor catenary, that is, n is
equal to 2.-So, it may be concluded that for this S-shaped mode the model (describing the
galloping oscillations of overhead transmission lines) can be justified. However, if n = 1
the assumption that T is constant, is incorrect or at least doubtful.

In section 3.5 monochromatic initial values ha\;e been considered in the vertical and in
the horizontal direction. It can be shown that the analysis given in section 3.5 also can be
applied if the initial values in the horizontal direction consist of an arbitrary number of
modes, that is, if \_/O(x;e) = k%: ak(c)sin(kx) and \-/l(x;e) = :Z:l bk(c)sin(kx), where ak(e)
and bk(e) are such that diff;rentiation and summation, and integration and summation
may be interchanged as often as is required. It then turns out that vo(a,f,r) is given by

a 00 b, (0)
vo(o,f,'r) = —;- exp (ITO T] { kzl (ak(O)sin(ka) + kk cos(ko) +

b, (0) a a
+ 3, (O)in(k§) - —<— cos(k)} + 5‘(’)—3 {wo@en -+ exp (221
3

W10 %10
cos(no) + Woosin(nf) -

x [Woosin(no)+ - a0 COS(H€)}+

a a T a
1 (K} 03 10 ., -
*2 (301 bo3 Doy * bo3 alo] Io exp ( 3 (r-7 )) wo@dr ydr?,

where wo(a,f,r) is given by (3.5.30). Sincea, , < 0 it follows from this formula that (for

10
T — 00) the modes initially present in the horizontal direction disappear, and that Yo tends
to a standing triangular wave (see (3.6.1)), which is in fact determined by the vibration

mode initially present in the vertical direction. After having obtained the approximation

for the oscillation-amplitudes (and the velocities of the conductor) it should always be
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checked if the values of a = o+ arctan (-wt(vw-vt)'l) are such that the approxi-

mations (3.4.5) and (3.4.6) for cD(a) and cL(a) are still valid. It turns out that for the
- and ¢y -curve given in figure 3.4.2 and for the typical values of the physical quan-
tities ¢, d, Voor C» Etc. (given in section 3.4) the values of « are such that the approxima-

tions (3.4.5) and (3.4.6) for cD(a) and cL(a) are valid, and so these approximations are

justified. -
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SUMMARY

In this thesis a class-of initial-boundary value problems for (systems of) weakly nonlinear
hyperbolic equations of order two is studied. These problems contain a small parameter e,
which precedes the nonlinear terms in the partial differential equation(s). To obtain a
classical solution the initial values and the nonlinear terms in the partial differential
equation(s) have to satisfy certain smoothness conditions. In order to prove existence and
uniqueness of the solution of an initial-boundary value problem for a (system of) hyper-
bolic equation(s) an equivalent (system of) integral equation(s) is used. By applying
Banach’s fixed point theorem to this (system of) integral equation(s) existence of a unique
classical solution is shown on an ¢-dependent time-scale.

Since the initial-boundary value problems contain a small parameter ¢ perturbation meth-
ods can be applied to construct formal asymptotic approximations of the solutions. In this
thesis the asymptotic validity (as € tends to zero) of a class of formal approximations is .
shown on time-scales for which the initial-boundary value problems have been shown to
be well-posed.

As application of the theory several initi}al—boundary value problems have been formu-
lated and studied. From an aero-elastic analysis it is shown that an initial-boundary value
problem for the Rayleigh wave equation can be regarded as a simple model describing
the galloping oscillations of overhead transmission lines in the vertical direction. Fur-
thermofe, an initial-boundary value problem for a system of weakly nonlinear and
weakly coupled wave equations has been derived to describe these oscillations in the ver-
tical and horizontal direction. These initial-boundary value problems have been investi-

gated in detail using characteristic coordinates and a two-timescales perturbation method.
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The well-posedness of these problems and the asymptotic validity of the constructed ap-
proximation of the solutions of these problems have been shown using the developed
asymptotic theory. Also an initial-boundary value problem for a telegraph equation per-
turbed with a cubic nonlinearity has been investigated by means of a Fourier series ex-
pansion of the solution and a two-timescales perturbation method. For this problem the

asymptotic validity of the approximation has also been demonstrated.
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SAMENVATTING

In dit proefschrift wordt een klasse van begin-raﬁdwaarde problemen voor (stelsels) zwak
niet-lineaire, hyperbolische vergelijkingen van de tweede orde bestudeerd. De problemen
bevatten een kleine parameter e, die de niet-lineaire termen in de partiéle differentiaal-
vergelijking(en) voorafgaat. Om een klassieke 6plossing te verkrijgen, moeten de begin-
waarden en de niet-lineaire termen in de partiéle differentiaalvergelijking(en) aan be-
paalde gladheidseisen voldoen. Door het begin-randwaarde probleem voor een (stelsel)
hyperbolische vergelijking(en) te herschrijven in een (stelsel) integraalvergelijking(en)
worden existentie en eenduidigheid van de oplossing van het begin-randwaarde probleem
aangetoond met behulp van de dekpuntstelling van Banach.

Aangezien de begin-randwaarde problemen een kleine parameter ¢ bevatten, kunnen
perturbatiemethoden worden toegepast om formele benaderingen van de oplossingen te
construeren. In dit proefschrift wordt de asymptotische geldigheid (voor ¢ — 0) van een
klasse van formele benaderingen aangetoond op tijdschalen voor welke de begin-rand-
waarde problemen goed-gesteld zijn.

Als toepassing van de theorie worden verscheidene begin-randwaarde problemen gefor-
muleerd en bestudeerd. Uit een aero-elastische analyse volgt dat een begin-randwaarde
probleem voor de Rayleigh golfvergelijking' beschouwd kan worden als een eenvoudig
model beschrijvende de wind-geinduceerde, vertica‘xl.eA trillingen (’galloping’) van hoog-
spanningsleidingen. Om zowel de verticale als de horizontale trillingen van deze hoog-
spanningsleidingen te beschrijven is bovendien een begin-randwaarde probleem voor een
stelsel zwak niet-lineaire en zwak gekoppelde golfvergelijkingen afgeleid. Deze begin-

randwaarde problemen zijn in detail onderzocht met behulp van karakteristieke codrdi-
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naten en een twee-tijdschalen perturbatiemethode. Gebruik makende van de ontwikkelde
theorie zijn de goed-gesteldheid van deze problemen en de asymptotische geldigheid van
de geconstrueerde benaderingen aangetoond. Verder is een begin-randwaarde probleem
voor een telegraafvergelijking met een kubische niet-lineariteit onderzocht met behulp‘
van een twee-tijdschalen perturbatiemethode en een Fourier.reeksontwikkeling van de
oplossing. Voor dit probleem is eveneens de asymptotische-geldigheid van de geconstru-

eerde benadering aangetoond.
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Stelling 1.

Laat f: R -+ R een continu differenticerbare, oneven en 2r—periodieke functie zijn. Dan geldt

voorallex e Rent ¢ R dat

t
7w/ = e 10 ot

x—~4

¢2x max |[f(§)] ,
0<

waarin Jo de Bessel functie is van de orde nul.

Stelling 2.
Gegeven zijn k, |, m, n en p die voldoen aan:

(i) k,l,m,ne¢ en p e R\{0},

I R e N L

(i) n=k+l-m.

Door (ii) op een handige manier tweemaal te kwadrateren kan worden aangetoond dat de

voorwaarden (i), (ii) en (iii) equivalent zijn met:
{k,l,m,neﬂ+,pcm\{0} k=mAl=nV k=nAl=m}.
Indien voorwaarde (iii) vervangen wordt door n = k + 1 + m of door n = m — k — | kan

bewezen worden dat er geen k, |, m, & ¢ 2% begtaan, die aan de voorwaarden (i), (ii) en (jii)

voldoen.



Stelling 5.

Ten onrechte wordt bij de behandeling van gewone differentiaal vergelijkingen weinig en
soms zelfs geen aandacht besteed aan de methode van de integrerende factor ter bepaling van
oplossingen van eerste orde vergelijkingen. Niet alleen is deze methode ook twp&bur als de
overige methoden voor eerste orde vergelijkingen (zoals methoden voor lineaire:
vergelijkingen, methode voor vergelijkingen met te scheiden veranderlijken, etc.) toepasbaar-
zijn, maar deze methode is bovendien uitbreidbaar naar hogere orde gewone differentiaal

vergelijkingen.

Stelling 6.

Voor de opleiding tot wiskundig ingenieur behoort het een vanzelfsprekendheid te zijn dat
een college partiéle differentiaal vergelijkingen in het ondérwijsprogramma is opgenomen.
Het is betreurenswaardig dat dit niet het geval is aan de faculteit der Technische Wiskunde

en Informatica van de Technische Universiteit Delft.



Stelling 7.

i
Als toetsingsvormen in het wiskunde—onderwijs zijn meerkeuzetoetsen en toetsen waarbij de
kandidaten alleen’ het antwoord moeten vermelden ongeschikt om wiskundige kennis en

vaardigheid van de kandidaten te testen.

Stelling 8.

Het is verwer,]/>eli jk om op de middelbare school naast Nederlands en een moderne taal alleen
bet vak wiskiinde verplicht te stellen. Voor zowel de scholier als voor de maatschappij heeft
een breed geﬁriénteerde schoolopleiding niet te onderschatten voordelen. Het verplicht stellen
en examinefen (eventueel op verschillende niveaus) van alle op de middelbare school

gedoceerde|vakken is een overweging waard.

Stelling 9.

Bij de aanstelling van voetbalverslaggevers (m/v) dienen de Nederlandse omroep
verenigingen en/of stichtingen slechts die personen aan te nemen die met goed gevolg een

" test hebben afgelgd waaruit blijkt dat die personen tenminste de voetbalspelregels kennen en
de Nederlandse taal beheersen.



