
Combustión Science and Technology, 1972, Vol. 6, pp. 223-232 © GORDON AND BREACH, SCIENCE PUBLISHERS LTD. 
Printed in The United Kingdom. 

An Asymptotic Analysis of Radiant and Hypergolic Heterogeneous 
Ignition of Solid Propellants 

AMABLE LIÑÁN AND ANTONIO CRESPO 

Instituto Nacional  de  Técnica  Aeroespacial  "Esteban  Terradas"  Madrid,  Spain 

Abstract—An asymptotic analysis, in the limit of large activation energies, is presented for the ignition of a solid 
propellant undergoing an exothermic heterogeneous Arrhenius reaction with a gaseous oxidizer. The analysis is 
carried out for hypergolic or shock tube ignition conditions, and also for ignition under a radiant flux with in-depth 
absorption of the radiation. 

The asymptotic analysis illustrates how, for sufficiently large radiant fluxes, a short reaction stage, ending in 
thermal runaway, follows a much longer inert heating stage. A closed form expression is found to relate the ignition 
time to the radiant flux and physico-chemical propellant characteristics. An analytical expression is also found for 
the ignition time under hypergolic or shock tube ignition conditions. 

The existing numerical calculations of the ignition time, for hypergolic ignition cases and for ignition under a 
radiant flux with surface absorption, are very accurately correlated by the closed form expressions resulting from this 
asymptotic analysis. These expressions take also into account the effects of in-depth absorption. 

I. INTRODUCTION 

Bradley and Williams (1970) formulated a model 
for the radiant ignition of a solid propellant which 
reacts at its surface with a gaseous oxidizer. A 
schematic representation of their model is given in 
Figure 1; it represents an extensión of a model of 
Williams (1966), modified so as to include the effects 
of in-depth absorption of the radiation and to 
account for the possibility of having different initial 
temperatures of the solid propellant and gaseous 
oxidizer. Waldman and Summerfield (1969) had 
already shown that the numerical solutions obtained 
by Williams, for the hypergolic ignition problem 
(no radiant flux), could be used for the analysis of 
heterogeneous ignition of solid propellants under 
shock tube conditions, resulting in different initial 
temperatures for the solid and gas phases. Waldman 
(1970) obtained, more accurate numerical solutions 
and some approximate analytical solutions to the 
hypergolic ignition problem. 

In their formulation Bradley and Williams neg­
lected other homogeneous reactions, as well as the 
surface regression during the ignition transient. 
As a consequence of these and other reasonable 
assumptions, the non-linearity of the mathematical 
problem was limited to the boundary conditions 
where it was introduced by the Arrhenius reaction 
at the interface. As a result, they were able, by 
means of Laplace transform techniques, to reduce 
the problem to a single non-linear integral equa­
tion. They presented numerical solutions of this 

equation for the limiting case of infinite absorption 
coefficient. Their numerical results show that, 
for the large activation energies involved in realistic 
overall reactions, a well defined ignition event 
occurred, with a precipitous rise in temperature 
(thermal runaway) at a certain ignition time. 
For sufficiently large radiant fluxes, thermal run­
away was preceded by an inert heating stage. 

In this paper we present an asymptotic analysis, 
for large activation energies, of the ignition model 
proposed by Bradley and Williams. We retain in 
our analysis the effects of in-depth absorption for a 
constant radiant flux, without cut-off of this radiant 
flux; on the other hand for moderately exothermic 
reactions, with large activation energies, the cut-off 
time can not be appreciably shorter than the time 
of thermal runaway if ignition is to occur. 

The asymptotic analysis results in fairly simple 
analytical expressions for the ignition time. When 
comparison with existing numerical results is 
possible, the asymptotic analysis is found to yield 
very accurate predictions of the ignition time. 

In Section II, after quoting the integral equation 
obtained by Bradley and Williams for their model, 
we shall show that this equation is also obtained 
for a simpler problem. Thus, it is the governing 
equation for the calculation of the surface tempera­
ture of a semi-infinite solid undergoing a surface 
decomposition Arrhenius reaction, when subjected 
to a radiant flux without heat losses to the gas 
phase. The effects of heat losses and of oxidizer 
depletion at the surfa.ee, can be shown to appear 
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FIG. 1. Schematic of the ignition model. 

through a modification of the radiant flux, the 
transport properties of the propellant, and the 
overall reaction rate. Also included in Section II 
is a discussion of the surface temperature history 
under inert heating conditions, which will give the 
background information for the analysis of the 
reacting case, for large radiant fluxes, presented in 
Section III. 

Section IV is devoted to the analysis of hypergolic 
heterogeneous ignition without a radiant flux, as is 
the case in shock tube ignition. In Section V we 
analyze the heterogeneous ignition problem for 
radiant fluxes small enough that they produce 
increments in the surface temperature of the order 
of those produced by the chemical reaction at the 
initial surface temperature. In this case the surface 
reaction plays a role in increasing the surface 
temperature during the whole ignition period, so 
that an inert heating stage preceding a much shorter 
reaction stage does not exist as it did for large 
radiant fluxes. 

In Section VI the results of the previous sections 
are summarized, and we consider possible general­
izations of the asymptotic analysis. 

We refer to the review papers by Price et  al. 
(1966) and Merzhanov and Averson (1971) for the 
background literature. We refer also to the paper 
by Bradley and Williams (1970) for the basic 
assumptions. In this paper we use the method and 
some of the ideas used by Liñán and Williams 
(1971, 1972) in their analysis of ignition of reactive 
solid propellants. 

II. FORMULATION 

We write here the integral equation, 

fT G C{8(X), X}  dX 
6(r) —  djir) = _L f 

yj TV  JO Jr-X (1) 

obtained by Bradley and Williams (1970), as equa­
tion (9) of their paper, for the calculation of the 
surface temperature as a function of time. We shall 
follow essentially their nomenclature, thatwerepeat 
at the end of this paper. Here 6  = Tj  T0 —  1 is 
the non-dimensional surface temperature, based on 
the "jump" temperature, T 0, of the surface at time 
T = 0, Justaftercontactof the solid and gas phases; 
6J(T) is the non-dimensional surface temperature 
under inert heating conditions; T is the non-
dimensional time. The temperature rise due to 
chemical reaction is given by the right hand side of 
equation (1), where G  in the non-dimensional 
chemical heat source at time X  when the surface 
temperature is 6(X).  This heat source, for an 
Arrhenius reaction of zero order with respect to 
the solid reactant and order n  with respect to the 
oxidizer is given by 

Gc(d,X) = 
{l/v 7r(y + 1)}{1 - oc0 + a07}« exp {/?0/(l + 6)} 

(2) 

In this expression/? = EjRT 0 is the non-dimensional 
activation energy, a is a diffusion-heat reléase 
parameter and y  =  q/{QBYSexp  (—EjRT^j)  is 
the non-dimensional radiant heat flux, y  is zero for 
hypergolic or shock-tube ignition and large com­
pared with one in many typical radiant ignition 
experiments. 

The time has been made non-dimensional with 
the characteristic time t c, 

tt1 = 7 r</2(i + i/ y)2^<r2(r1 +  T2)-2, 

where q  is the incident radiant flux, and T 1 and T2 

are the thermal responsivities {(pcX) 1/2} of the gas 
and solid phases. Notice that the jump temperature 
T0 is given in terms of the initial temperatures by 

To = (YjT^ + r 2r2j/(r1 + r2). 
The factor {1 — OL(0 —  Oj)}" in the heat source 

Gc accounts for the reduction in oxidizer concentra­
tion at the surface due to the chemical reaction. 
The diffusion parameter 

a =  y(Yx  +  r2)T,
0//)1Z>1/2Qyo 

involves the gas density, diffusion coefficient D, 
heat reléase Q  per unit mass of oxidizer, and initial 
oxidizer mass fraction Y 0. 

For a constant radiant flux without cut-off, the 
inert surface temperature is given by 

0/(T) = {yl(y  +  Y)d}H(d %TJTr) (3 ) 
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where 

H(v) = 2Vvjir  — 1 + exp (v)  erfc (Vc). (4) 

In the above <5 is a radiant absorption parameter 
such that 

v = (y  •+• i)<5/y (5) 

is the radiant absorption coefficient JJL  made non-
dimensional with the characteristic length 

lc = (1 + ^ll^d^Tjq 
That is v = JJL\ C. The factor A2 in lc is the heat 
conductivity of the solid. 

We could obtain the inert surface temperature 
after cut-off of the radiant flux in terms of the 
function 0 Z given by equation (3) as 

@i(T) ~~ @i(T —  T co)> 

where TC0 is the cut-off time. 
Figure 2 represents the inert surface temperature 

as a function of time, before cut-off (solid line) and 
after cut-off (dashed line), for different valúes of 
the cut-off time. 

We write here, for future reference, the following 
asymptotic and ordinary expansions for H(v) 

For v  » 1 

H(v) = 
2(V]TT)112, — 1 + (TTV)~ 1/2 — (2V7r)_1i>~3/2 - ( - • • • 

(") 
and for v  <<C 1 

H(v) =  v — (iV7r)f;3/2 + u2/2 +  •  • • (7) 

If during most of the ignition period 

V = (52T/7T ^>> 1 , 

then H(v) ~ 2(VITT) X/2, and dz c=t  2yV rjir^y + 1); a 
result that corresponds to surface absorption of 
the radiation. 

If during the ignition period u <5C 1, then 

H{p) ~ v 

and 0/— ydr/wiy  + 1); a result obtained when 
heat conduction effects are neglected in the calcula­
tion of the solid propellant heating by the radiant 
flux. 

If equation (1) is written in term of the new non-
dimensional time v = (52T/7T = fyt2A2//j2c2, or 

v = v 2Ty2/Tr(y + l)2 (8) 

and of the increment in surface temperature due to 

the surface reaction, <f>(v), 

<p = 6{v)  — oj(v) 

we obtain the integral equation 

4>{v) = - L 

C" (i — *$)" exP wi^ + ^/)/(i + <p + $/)} 

(9) 

"Jo 

where 

VY\JV ~ ^ 

djiA) =  V~  H(A) 

UA, 

(10) 

(11) 
It may be noted that the integral equation (10) 

is also satisfied by the surface valué <£(0, v) of the 
solution <f>(u,  v),  for u > 0 and v  > 0, of the heat 
conduction equation 

9v ~ 9uu  ~ 0 (12) 

with the initial and boundary conditions, 

<f>(u, 0) = <£(oo, v) = 0 (13) 
and 

— (j,y)~1(l — «.(f>)n exp {ft(<j> + 0/)/(l + <j>  + 0i)} 
(14) 

where 0̂  is the surface valué (at u = 0) of the solu­
tion, for M > 0 and v  > 0, of the heat conduction 
equation, 

0j„ — Ojuu = v_1 exP ( —u) (15) 
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FIG. 2. Surface temperature history. The solid 
lines correspond to two valúes of y which result in 
thermal runaway at v e = 0.5 and v e = 2. The 
dashed lines correspond to inert heating with cut-off 
of the radiation at v = 10-1, 1, 10 and oo. 
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with the initial and boundary conditions 

6j(«, 0) = dj(oD,  v) = 6 Iu(O, v)  = 0 (16) 

The variable u  appearing in this formulation is a 
non-dimensional distance to the solid surface. 
It can be shown to be equal to the stream function 

ps dx  in the solid made non-dimensional by 
Jo 
dividing by the solid density p s multiplied by the 
characteristic absorption length fjr 1. 

The system of equations (12) to (16) results 
from trying to determine the temperature distribu­
tion within a semi-infinite solid, subject to radiant 
heat flux, without heat losses to the gas phase, and 
undergoing an Arrhenius reaction at the surface 
which results in a surface heat reléase given by 
equation (14). However, it is clear that the solu­
tion may be used with slight modification for a 
more general problem. Thus, it is equivalent to 
finding the solution of the integral equation (10) 
where 8j  is given by equation (11), the problem 
considered by Bradley and Williams (1970). 

In this paper we shall look for the asymptotic 
solution of equations (1) or (10) for large valúes of 
the non-dimensional activation energy ft.  We shall 
consider the parameters n  and a to be of order 
unity (for a >> 1 a well defined ignition event will 
not exist), and we shall cover the whole range of 
valúes of v  and y,  from zero to infinity. 

An approximate classification of the ignition 
regimes, which we shall analyze in this paper, 
results from the initial valué \j\ //7r(y + 1) of the 
reaction heat source G 

If y  » 1, Gc will be initially very small compared 
with 1, and it will remain so, if /S » 1, until the 
surface temperature reaches a valué cióse to the 
valué 0 t for which 

{1/V77(y + 1)} exp {/dt/(l + 0 t)} =  1 (17) 

We may then expect that an inert stage, with surface 
temperatures lower than 0 t, will precede a reaction 
stage. The ignition process in this case will be 
analyzed in Section III. 

If y  « 1 the radiant heat flux may be neglected 
compared with the reaction heat reléase, during the 
whole ignition transient. This case corresponds to 
hypergolic ignition which will be analyzed in 
Section IV. 

If y is of order 1, the reaction heat reléase and the 
radiant heat flux will give comparable contribu­
tions to the surface temperature rise during the 
whole ignition period. The analysis of the ignition 

process for these moderately small valúes of the 
radiant flux will be left for Section V. 

III. IGNITION FOR LARGE RADIANT 
FLUXES 

We shall begin by analyzing the ignition process 
for valúes of y  so large that the effects of the 
chemical reaction may be neglected at the initial 
surface temperature. Only when this temperature 
reaches a valué cióse to the valué 0 t given by 
equation (17), for which G c will be of order 1, will 
the chemical reaction begin to have an influence on 
the temperature field. 

A small increment in temperature 0  — 6t ~ 
(1 + 0 t)2/p, below or above 0 t, will be sufficientto 
make the reaction heat reléase G c very small or 
very large compared with 1. The time involved in 
this small temperature rise, characteristic time for 
reaction stage, will therefore be very short com­
pared with the time required, under inert heating 
conditions, for the surface temperature to increase 
up to the valué 0t. As a consequence, a first approx­
imation r t for the ignition time will result, when 
equation (17) is taken into account, from the equa­
tion 

0t = S/(Tt) 0° ) 

which becomes, for a constant large valué y  of the 
radiant flux, 

6t5 = /f((52Tt/7r) (19) 

This relation simplifies to 0 t =  IVTJTT  if 8 td is 
large compared with 1; for small valúes of 0 tá 
it simplifies to 0 t = drjrr.  These two cases corre­
spond to large and small valúes, respectively, 
of the absorption coefficient 6  when 0 t is of order 
1. 

To obtain, for large valúes of /?, a more accurate 
relation between the ignition time and the radiant 
flux y,  we pose our problem as to find the asymp­
totic solution of equation (1) and the valué of y 
which results in thermal runaway occurring at a 
given valué TC of T. 

Let 6 C be the surface temperature under inert 
heating conditions at time TC, and let 8' c be the ttme 
derivative of 0J{T)  at T = TC. That is 

0c = 0 z(r c) and d' c = 6J(T C) (20) 

If we assume 

Pi =  PIO-  + 0cf  (21) 

to be large compared with 1, we may anticípate that 
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during the reaction stage, ending in thermal run­
away, both <f)  = =  —  dz and 6 Z — 6C ara smalla of 
order \jfi v Thus, when solving equation (1) for 
large values of /?1; we may in first approximation 
(a) Linearize the Arrhenius exponent around 

d = 6 C, following the Frank-Kamanettky pro­
cedure. 

(b) Approximate 07 — 0e by 6' C(T — T C) 
(c) Neglect the oxidizer consumption, if we assume 

that«a//S « 1. 
(With these approximations equation (1) becomes 

1 /* : 

•J T T JO 

exp {/30c/(l + 0 C)} 
^j TT (y + 1) 

exp {^<f>  + ftfl;(i - rc)} 
dX (22) 

We shall write this equation in terms of the vari­
ables 

f =  /?!</>, z  = /S]0c(T - rc) + 1Q P (23) 

where p, which will turn out to be of order unity 
for large valúes of 0 U is given by, 

ft exp {@6J(1 + 6 C)} 
(24) 

V TT6' C (1 + 6 c)(1 +  y) 

Then we obtain the following integral equation for 
V. 

1 f z exp {ip(zi)  + zt} 
V(z) = " P I / _ — d Z i (-25) 

if we replace the lower limit of integration, which 
should be written as (—fii6' cTc + m/>)> by its 
limiting form, — oo, for large valúes of /3X. 

This equation was obtained and integrated 
numerically by Linan and Williams (1970), in 
connection with their analysis of condensed phase 
ignition of a reactive solid. The numerical results 
show that ip(z)  grows very rapidly toward infinityy 
when z  approaches the valué —0.431, what is 
indicative of a thermal runaway. The infinite in 
Y(z) results from the approximations (a) and (c). 

If we take into account the definition, equations 
(23) and (24), of the new time variable z, and the fact 
that T  = r c is the ignition time, we obtain the 
following relation 

/ /S exp { /?$c/( 1 + 6 C)} 
V TT6' C (( + 0C)(1 + yy 

= 1 (26) 

because ln/> = —0.431. This relation, equation 
(26), is to be used, together with equations (20), for 

an analytical prediction of the ignition time, more 
accurate than the one resulting from equation (17). 

It should be noticed that the mode of heating the 
solid propellant enters into equation (26) only 
through the valúes 9 C =  6J(T C) and d' c = ='I(T C). 

For a constant radiant flux, 0Z(T) is given by 
equation (3) in terms of T ; and, therefore, we obtain, 

"c = {yKy  "I- 1)d|//(o TC/7T) (27a) 

6'c = {yj(y  +  1)}(d/  7r)fl(S2Tcl TT) (27b) 

where H(v)  is the derivative of H(v)  with respect 
to v.  When equations (27) are substituted into 
equation (26), a relation (which is explicit if the 
factor y/(y  + 1) is left out of equation (27) when y 
is large) is obtained for the radiant flux y  in terms 
of the ignition time r c, the absorption coefficient d 
and the activation energy /?. 

Figure 3 shows the resulting valúes of T in terms 
of y, for three typical valúes of/? and several valúes 
of S.  For d  =  102, the resulting valúes of y  do not 
differ significantly from those corresponding to 
á—>• oo, or surface absorption of the radiation. 

101 

Tc 

T i  i i i  i  i  i  i  i i  i  r y i  i 

> j . •£>' ,--/ ; ^ ' ^ ' ,*'  //  -A  , - : 

1/ I f 
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I 1  1  I  I 
0 2 U 6 8 10 12 l i 

FIG. 3. Ignition time in terms of y  for several 
valúes of /J and S. The thicker lines were obtained by 
using the predictions of Sect V for low radiant 
fluxes. The thinner lines result from the asymptotic 
analysis of Sect. Ill for large radiant fluxes; the 
lines corresponding to all valúes of <5 > 10a cannot 
be distinguished in the figure. 
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In this case, if y  is large, 

6C = 2-JTJTT  and d c = IJTT.JT 0 (28) 

When the analytical prediction of the ignition 
time, given by equations (26) and (28) for d  -> oo, 
is compared with the numerical results of Bradley 
and Williams (1971) no difference is found in 
Figure 3, for y  > 10 because of thickness of the 
lines. An excellent agreement is also found with the 
numerical predictions by Baer and Ryan (1965), 
for the heterogeneous ignition of solid propellants 
subject to a radiant flux with surface absorption. 

For small valúes of d,  and large valúes of y,  the 
following relations 

6C = OTJTT  and u' c =  0/77 (29) 

can be used, together with equation (26), for the 
prediction of the ignition time. 

For the validity of this asymptotic analysis the 
following inequalities should hold 

0cj3y> 1, /3/8^ ^ l and ¿jix.nd 2
c )>> 1 (30) 

The first inequality is obtained from the require­
ment that P 16'CTC » 1, so that we may be able to 
replace by —00 the lower limit, Inp  —  P16'CTC, of 
integration in equation (25). In Section V we 
shall analyze those cases for which /30c is of order 1. 

The second inequality allows us to linearize the 
Arrhenius exponent, and the third enables us to 
neglect the oxidizer consumption. We may expect 
relative errors of order #;!//? and an0^//J in the 
calculation of the radiant flux y  in terms of the 
ignition time. Thus, it is not difficult to show that 
the factor {1 — a«(l + 0C)2//S} should be introduced 
in the left hand member of equation (26), to 
account for the effects of oxidizer consumption for 
small valúes of an(l + 6 c)2/{3. If the two last 
inequalities in equation (30) do' not hold the 
ignition event is not well defined. 

The perturbation procedure described by Lifian 
and Williams (1971) could be used to obtain higher 
order terms in an asymptotic expansión for large 
valúes of (5  of the problem posed in this Section. 
It is clear that the present analysis fails when, at 
times T very close to TC, <£ becomes large, of ofder 
fjl, so that the approximations (a) and (c) are no 
longer justified. The surface temperature 6  will 
grow very rapidly to the equilibrium valué Or -\-  1/a, 
which has the valué 6 C + 1/a. 

There are advantages in writing equations (26) 
and (27) in terms of the non-dimensional ignition 

time vc, and the absorption coeíficient v.  Thus, the 
following relation is obtained 

y = exp (0.tjijvpivnc {i  -t- u c) 
X exp {/?#c/(l + $„)} (31) 

giving, explicitly, y  in terms of /S\ v and v c. Here 
vdc =  H c = H(v c) and H c =  H(v e), where H(v)  is 
defined by equation (4). 

This relation, equation (31), takes a simpler 
form: 
(a) Fo__#c « 1, when H e = v c and H c =  1. Then 

yy/v is just a function ofvjv  and ft  represented 
in Figure 4 with dashed lines. 

(b) For v c )>> 1, when H c = 2y VJTT  and fl c = 
\jslvcTr. Then y  is just a function ofvjv*  and 
/? represented in Figure 4 with solid lines. 

We have represented in Figure 2 two typical 
surface temperature histories 6(v)  = d z + f/^ 
resulting from our analysis. 

IV. HYPERGOLIC IGNITION 
The integral equation (1) reduces for the hyper-

golic ignition case (y  = 0) to the equation 

fl. . 1- n (.1 ao) exp {p//(l + V)} 
•n Jo  JT  —  X 

(32) 

lo3|0Vy T 

FIG. 4. Ignition time in terms of y,  /?, and v  for 
vc » 1 ((arge absorption coefficients) with solid lines, 
and for J , « l (small absorption coefficients) with 
dashed lines. 
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FIG. 5. Surface temperature hístory as a function 
of time for low radiant fluxes with surface absorp­
tion. 

This equation was integrated numerically, for 
some representative valúes of a, «, and /?, by 
Williams (1966), Bradley and Williams (1970), and 
Waldman (1970). The numerical results show 
again that, for large valúes of fl  and /í/oc, thermal 
runaway occurs at a certain "ignition time" TC. 

To facilítate the asymptotic analysis we write 
equation (32) in terms of the variables 

*F = 06  and a  = T/?2, (33) 

and then take limit /? -> oo, which results in the 
equation 

1 f  exp *¥(&{) 
d<J1 (34) *F 

1 f"  exp ^(0"]} 

77 Jo yja  — a x 

The numerical solution of this equation shown in 
Figure 5, indicates that*F becomes infinite at a  = 
0.864. The relation, 

TC = Q.864/?~2, (35) 

gives the ignition time as a function of /?, with 
relative errors of order 1//? when /? is large. 

The effects of oxidizer depletion at the surface 
can be taken into account, for small valúes of 
O«/|S, by introducing a factor (1 + 2ce.nl (3) in the 
right hand side of equation (35). We thus obtain 

rc = 0.864/?_2(l + 2 an//?). (36) 

For a simple derivation of this result we may, 
anticipating that <xnd  <J( (, write the factor r( — <xd) n 

in equation (32) in the approximate form 
exp (—and). Thus we obtain an apparent change 
in activation energy from ft  to 0  —  an), which 
explains the delay factor (1 + 2«a//?) in the ignition 
time. 

The differences between the analytical prediction, 
equation (36), of the ignition time and the numerical 

predictions of Bradley and Williams (1970) and 
Waldman (1970) are small, and may be explained 
in terms of the relative errors, of order 1//3, which 
may be expected in the first approximation in 
this asymptotic analysis. 

If we were interested in obtaining higher order 
approximations, we should pose our problem as to 
find, for given valúes of a and n  and large valúes 
of /?, the solution a  =  aQ¥,  /?) of equation (32) 
written in terms of a  and W. We may expect that 
oCf, P)  will be an analytic function of 1//3 for 
small valúes of 1//? and valúes of Y small compared 
with pjan.  Then it could be expanded in powers of 
l/,3 as a  =  <TQCF)  + /S_1(,

1(
,F) + . . . , which when 

substituted in equation (32) would yield equation 
(34) for GoCV),  and a linear integral equation for 
0" j^ I ) . 

V. IGNITION FOR LOW RADIANT 
FLUXES 

We shall consider now the cases when the 
radiant flux is so small that its contribution to the 
rise in surface temperature is of the same order as 
that of the chemical reaction at the initial surface 
temperature. Therefore, both will contribute 
during the ignition period to the surface temperature 
rise, which ends in a thermal runaway at a time TC 

comparable to the hypergolíc ignition time. 
Only a small temperature rise, of order 1//?, 

will be necessary, at large valúes of ft,  to increase 
the reaction rate by the large factors which cause 
the runaway of the reaction. This dictates our 
choice of the following variables 

\p c = T/?2(1 + y)  2 (37) 
for the description of the ignition period. The 
factor ft  is introduced so as to make the non-
dimensional temperature Y  of order unity. The 
factor /S in o" is introduced so as to make the 
ignition time o*c of order unity. The factor (1 + y) - 2 

is introduced so as to obtain the normalized asymp­
totic equation, equation (38) below, with a chemical 
source term free from the radiation parameter y. 

If equation (1) is written in terms of the variables 
*F and a,  we obtain, in the limit /S —*• •o, the eollow­
ing equation for\F(<7), 

vf((T) 
fiy 

(y + i)< 5 
• H 

l(y +  l)oY a 

\ P  )  IT. 
1 Cg  exp{^(cri)} 

•j" 
dax (38) 

http://2ce.nl
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where the first term in the right hand member 
represents the contribution to the surface tempera­
ture rise of the radiant flux; the second term is the 
contribution of the chemical heat reléase. For 
y =  0, we recover the equation (32) which describes 
the hypergolic ignition process. We assume that 
the parameters y  and 6  grow with /? so that in the 
limit ft  —»- oo the term Hfiy\(y  +  1)<5 remains of 
order 1. 

Two parameters, y  and (y  + l)<5//3, are involved 
in equation (38), while five parameters were in­
volved in equation (1). 

If(y + 1)^//? » 1, the argument a = a(y  +  1)2<52/ 
/327r of His  large during most of the ignition period. 
Then H  ^  2\jv\ir,  which corresponds to surface 
absorption of the radiation. The absorption layer 
is very thin compared with the heat conduction 
layer during the ignition period. The integral 
equation (38) reduces in this case to 

Y = 2yJa\-n  -\ — da x (39) 
IT «/ U -* / U  ~~~  O i 

If we want the contributions of the radiant flux and 
of the chemical heat reléase to be of the same order, 
y must be of order unity. For y  « 1 we obtain the 
hypergolic ignition problem in first approximation. 
For large valúes of y,  an inert heating stage will 
precede the reaction stage; the analysis of Section 
III may be used to predict the ignition time in this 
case. 

We have represented in Figure 5 the numerical 
solution ^ ( ( T ) of equation (39) for several valúes of 
y. The ignition time crc, for which *F becomes 
infinite, is represented in Figure 6 in terms of y. 
Also shown in Figure 6 is the relation, 

2y\jOJTT =  0.5 ln (y/V ffc) - 0.431 (40) 

between y  and a c, obtained by using the asymptotic 
analysis for large valúes of y,  given in Section III. 

When (y  + l)<3//5 « 1, v  will be very small 
during the ignition period; so that H(v)  ~v, 
which corresponds to neglecting heat conduction, 
when calculating the temperature rise associated 
with the radiant flux. The integral equation (38) 
takes in this case the simpler form, 

w = Aa + Lf ex PY
 dai (41 ) 

77 Jo Jo —  o1 

where the parameter A, 
A = y(y  +  l) o/p7T (42) 

must be of order 1, if we want to consider a regime 
intermedíate between the hypergolic regime (A « 1) 
and the regime of large radiant fluxes (A  » 1). If 
A is to be of order unity when (y  +  1)5//? « 1, 
the parameter y  must necessarily be large compared 
with 1. 

Equation (41) has been integrated numerically 
so as to obtain, in particular, the ignition time ac 
(for which Y becomes infinite) as a function of A. 
This relation has been represented in figure 6, 
together with the relation 

ac =  (Il \jirA  - 0.431)//i (43) 

obtained by means of the asymptotic analysis of 
section III for large valúes of A. 

For intermedíate valúes, of order unity, of the 
parameter (y  +  l)<5//3, and y  also of order unity, 
equation (38,) with the function H(v)  given in 
equation (4), should be solved to obtain the 
ignition time a c as a function y  and (y  + 1<5//?. 
We have not carried out these numerical cal­
culations, which may be expected to yield valúes 
of crc of order unity. 

Figure 3 shows with thick lines the ignition time, 
as predicted by means of the asymptotic analysis 
of this section, for those low valúes of y  for which 
the analysis of Section III could not be used. 
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FIG. 6. Ignition time in terms of 7  or ^ , large 
or small valúes of the absorption coefficient 
respectively, for small radiant fluxes. 
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VI. CONCLUSIONS AND 
GENERALIZATIONS 

We have carríed out in the previous sections an 
asymptotic analysis for large activation energies 
for the model of solid propellant ignition with 
heterogeneous reactions as formulated by Bradley 
and Williams (1970). This model may be used to 
describe the ignition of a solid when heated by a 
radiant flux with in-depth absorption of the 
radiation, and also for the analysis of hypergolic 
ignition, and ignition under shock tube con­
ditions. 

The ignition process for large radiant fluxes was 
analyzed in Section III. A short reaction stage, 
ending in thermal run-away, was shown to follow 
a longer inert heating stage. Equation (26) was 
found to relate the ignition time with the character­
istics of the surface reaction, entering through fl 
and y, and two data of the inert heating history, d e 
and 0j. The analysis may be used in connection 
with other solid propellant geometries and other 
ways of heating the solid propellant. For a semi-
infinite solid heated by a constant radiant flux, an 
analytical expression, equation (31), was found 
for y  in terms of the ignition time, v c, and the 
absorption coefficient, v.  This relation has been 
represented in Figure 3 (y in terms of 3  and T ), in 
Figure 4 for large valúes of v  (limit of surface 
absorption) and also for small valúes of v  (limit 
of small absorption coefficient). 

This analytical relation for the ignition time turns 
out to be a very accurate correlation of the numéri­
ca! results given by Bradley and Williams (1970) 
for the case with surface absorption of the radiation. 
No numerical results, with which to compare our 
asymptotic analysis are known to the authors for 
the case with in-depth absorption; however, we 
have included in this paper an estímate of the 
errors involved. 

It is interesting to note the similarity of the results 
obtained in Section III and those obtained by 
Liñán and Williams (1971, 1972) in their analysis 
of the condensed phase ignition of solid propellants 
by a radiant energy flux with surface absorption. 
They found the chemical reaction was important 
only in a very thin región cióse to the surface. 
Therefore, when looking at the solid with other 
larger characteristic scales, it appears to undergo a 
surface reaction with the same activation energy 
as the condensed phase reaction. 

A closed form expression was found for the 
ignition time in the hypergolic ignition case. This 

expression, equation (36), is an accurate correla­
tion of the existing numerical results of Bradley 
and Williams (1970) and Waldman (1970). 

The regime of low radiant fluxes, intermedíate 
to the large radiant flux regime and the hypergolic 
regime was analyzed in Section V. The results are 
partially summarized in Figure 6. 

We do not present here a systematic discussion 
of the asymptotic results obtained in this paper. 
We refer to the papers by Bradley and Williams 
and Waldman, where, based on their numerical 
calculations they infer many of the characteristics 
of the ignition process, and of the dependence of 
the ignition time on the transport properties, mode 
of heating and overall reaction rate. Many of 
these characteristics are clearly exhibited in this 
asymptotic analysis. 

This work  has  been partially sponsored  by the  Air 
Forcé Office  of  Scientific  Research,  through  its 
European Office  of  Aerospace  Research  under 
Contract No.  F61052-69-C-0036. We  acknowledge 
here the contribution of  Mr. Vicente  Torroglosa  who 
carried out the  computer  calculations  in  this work. 

NOMENCLATURE 

c Specific heat at constant pressure 
lc Characteristic heat conduction length {l c = 

(i + TJT^Tjá} 
n Order of surface reaction with respect to 

oxidizer 
q External heat flux 
t Time 
tc Characteristic time 

{/JT1 =  7n/2(1 + l /y)2To"2(ri +  r2)~2} 

tx Ignition time 
u Dimensionless distance to the solid surface 

(u = ppj 1 p s dx) 
Jo 

v Dimensionless time (v  =  O^TJTT  T  fiu
2A2/p2c2) 

vc Dimensionless ignition time (v c = tjfc^A^/p 2c2) 
x Distance to the solid surface 
z = PiO'dr  - TC) - 0.431 
B Constant pre-exponential rate factor 
D Oxidizer diffusion coefficient (p{D  constant) 
E Activation energy for surface reaction 
Gc Dimensionless heat source due to chemical 

reaction, {equation (2)} 
H Dimensionless inert surface temperature 

H = v6j,  {equation (4)} 
II Derivative of H  with respect to v 
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Q Heat evolved in surface reaction per unit mass 
of oxidizer 

R Universal gas constant 
T Temperature 
T0 Surface temperature just after contact between 

gas and solid phases {T0 = (YiT la0 + r 2Yooo)/ 
(i\ + r2) 

Y Mass fraction of oxidizer 
Y0 Initial mass fraction of oxidizer 

Greek letters 
a. Diffusion-heat reléase parameter 

{a =  (r 1 + r 2)r0/Pl£>i/2eF0} 
/S Dimensionless activation energy (/? = E/RT 0) 
Pi =Pld  +  e c)\ 
y External heating parameter \y  = q  exp (/?)/ 

QBYQ} 
d Radiant absorption parameter 

{«5 = y(rx + Y 2)X2/j,T0fY2q(y -\-  1)} 

6 Dimensionless surface temperature 

0 = (r,  -  T 0)jT0 

Oo =  O/ W 
6'c =  ddjjdr  at T = TC 

df Dimensionless surface temperature under 
inert heating conditions 

X Coefficient of thermal conductivity 
/j, Radiant absorption coefficient (Inverse of the 

absorption length) 
v Dimensionless absorption parameter \y  = 

(y + i)^/y = A*'c} 
p Density 
a = T/32(1 +  y)"2 

T Dimensionless time T = tjt c 
T Dimensionless ignition time (r e =  tjjt c) 

<f> Dimensionless surface temperature rise due 
to the chemical reaction </>  =  6  — 6j 

Y1 Gas phase thermal responsivity (Yi  = AiPiCi) 
r2 Solid phase thermal responsivity ( r | = A2p2

c2) 

Subscripts 
1 Gas phase 
2 Solid phase 
s Surface 
0 Initial 
co Far from the surface. 
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