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An Asymptotic Approximation

for a Type of Fourier Integral*

By Paul W. Schmidt

Abstract.   A uniform asymptotic approximation which can be used for all qh > 0 is devel-

oped for the Fourier integral

f(-Jy2 - q2)
1(h) =  I-   sin y h dy

q   ,   2        2,1/2
(y  - q ) '

[z Hi
Ja

under the assumptions that hz » I, that the first L + 2 derivatives of f(y) are continuous
2        21/2

for 0 < y < (z   - q  ) '   , and that the first 2L + 2 derivatives of f(y) are continuous at

y = 0.

The approximation is especially convenient when z » q.

1.   Introduction.   Because of the importance of membrane research in many areas

of biology, several x-ray techniques have been developed to study the structure of

membranes.   In some recent calculations [1] of the small angle x-ray scattering from

suspensions of randomly oriented, independently scattering membranes, the expression

for the small angle x-ray scattering from the membrane sample was found to require

evaluation of an integral of the form

m 1(h) = f^W) hd
(1) J<V-V)1/2

for all qh > 0.  In (1), the assumptions are made that hz » 1, that the first L + 2

derivatives of the function f(y) axe continuous for 0 < >> < (z2 - q2)1'2, and that the

first 2L + 2 derivatives of f(y) axe continuous at y = 0.

Integrals similar to (1) often occur in calculations of the intensity of the small

angle x-ray scattering for other particles for which one of the three dimensions charac-

terizing the particles is much smaller than the other two.   For example, in a computa-

tion of the small angle x-ray scattering from randomly oriented platelets, the quantity

hM(h, x) has the form [2] of 1(h) in Eq. (1) above, with the function f(\fp - q2)

replaced by (y2 - q2f/2f(y/y2- q2).

Erdélyi's asymptotic expansion [3] of Fourier integrals, even though applicable

to (1), gives different expressions for q = 0 and q ¥= 0.  When a single equation valid

for all qh is desired, another type of approximation, often called a uniform asymptotic

expansion [4], is necessary.   Bleistein [4] and Erdélyi [5] have obtained uniform

asymptotic expansions of Laplace integrals.
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1172 PAUL W. SCHMIDT

Below, by use of a partial integration technique similar to that employed by

Bleistein [4], a uniform asymptotic expansion of the Fourier integral (1) is developed.

This expansion can be used for all qh > 0 and is especially convenient when z » q.

In Section II, the lowest-order and second-lowest order approximations are cal-

culated to illustrate the partial integration method used for the general expansion.

This expansion is stated at the end of Section II.  The detailed evaluation of the

general expansion is outlined in Section III, with some of the longer calculations

being given in the appendixes.  (Readers not interested in the details of these calcula-

tions can omit Section III and the appendixes.)   The error in the expansion and some

other properties of the uniform asymptotic expansion are discussed in Section IV.

This approximation, which is based on the same method that was used in [2],

is more convenient than the earlier expression.   Also, a detailed analysis of the error

of the new expansion is given which is applicable for all values of qh.

II.   The Uniform Asymptotic Expansion of 1(h).  The first term in the uniform

asymptotic expansion can be found by writing (1) in the form

Kh) = fqg0(Jy2-q2) sixiyhdy + f(0)fq      ""^V    dy,
Jq (y2 ~q2)1/2

where

/00-/(0)
i0iy)=-

By use of partial integration and the integral representation [6]

jo(qX)=2-r Mxt\ dt
0      «Jq (t2-q2y'2

for J0(qx), the Bessel function of the first kind and order zero, 1(h) can be expressed

(2) I(h) = B0(h)-A0(h)+R0(h),

where

Ao(h) = -\f(0)JQ(qh)-f^(0)C^-,

(z2-q2y/2        h

R0(h) = S0(h) + TQ(h),

(y2-q2)3'2     h

T <h\      P   &)(Jy2-^   cosyh A
T^K)   J 0y-;-r~ dy>

q   iy2-q2yi2     h
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AN ASYMPTOTIC APPROXIMATION FOR A TYPE OF FOURIER INTEGRAL 1173

The lowest-order approximation for I(q) is obtained by neglecting the remain-

der R0(h).  According to the properties of asymptotic expansions of Fourier integrals

[3], [7],

R0(h) = o(h-1)     (h^°o).

It is important to note that this approximation can be used for all values of qh.

To obtain the next term in the uniform asymptotic expansion of (1), the integral

T0(h) in (2) can be written

T0(h) = ix(h) + 2-'hY(K)Vy2gx(Jy2 -q2)k0(yh) dy,

where

k0(yh)
ix(h) = 2-yT0%(0'>(0)j>2     ° dy

"'  (y2-q2f/2

çz      sin...
jq-     —dy

/(2)(0)   d_    rz      sixxhy

'  2h      dh   J q (2 -q2)1/2

/(2)(0)   d_

2h       dh [fVfl*)-/i
sin qh

dy

kjx)   =  X-(« + ^J_(a + y2)(X), g, (X)   =

Since the Bessel functions have the property that [8]

£[*"%(*)] =~x-aJa+1(x),

by partial integration, T0(h) can be written

T0(h) = ix(h) + Yx(h) + Tx(h),

where

(y2-q2)1'2

eoX)(x)-^\0)

and

Yx(h) = - 2-*/2r(^) [z3gx(y/z2-q2)kx(zh) - q3gx(0)kx(qh)\

Tx(h) = T*m ¡¡yWHy/y2-*2)- dy.
"■    - ' {y2_q2)H2

To permit evaluation of the derivative in ix(h), the integral can be integrated by parts

to give

i, (A) =
/(2)(0)    d_

2h       dh ÏVfl*)-   ' koihz)+T Jz   — / dy\
0 h   J * fy2 __ ̂ 2)3/2       J2(z2-q2)1'2   " Ä""^»       *
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Therefore,

• t*  h/(2)(0)
2     2
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Jx(qh)      z3kx(zh)

2Q     qh
i*2-*!2)"2

+ L
. y%iyh)

(y2 - q2fl2
dy

By partial integration, the integral S0(h) defined in (2) can be expressed

So(h) = y/-f(0)
z3kx(zh)

-3/

«   y4kx(yh)

Jz2-q2)3/2        JZ(y2-q2fl

With (2) and the above expressions for S0(h) and T0(h),

1(h) = B0(h) - A0(h) + S0(h) + T0(h)

= Bx(h)-Ax(h)+Rx(h),

dy

where

¿.W —fZ
fu\0)qi

hi- 0/2(9*).

Bx(h) = - r*r04)¿ z2l+ief(y/z2 -q2)k,(zh),
i=o

Rx(h) = Sx(h) + Tx(h),

2 Jz
S,(h) =

Tx(h)

3/(0) - Äo,*-^!  Ai°*°

7T    fi

e0W =

2Jq

fix)

y4g\{'Ks/y21<?2)

kx(yh)

(y2 - q2)1/2

(y2-q2)s/2

dy,

dy,

1    d
e/+i(jc) = ;^ M*M

The second asymptotic approximation for /(A) is obtained by letting

I(h)^Bx(h)-Ax(h).

That is, the remainder R x (h) is neglected.

The technique used to find this asymptotic approximation can be extended to ob-

tain the general uniform asymptotic expansion for 1(h).  As is shown in Section III,

(3) lih) = ILih) + RLih).

The ¿th-order approximation ILQi) and the remainder RL(h) are defined in Eqs.

(4)-(9).

In the Lth-order approximation

W) ~ tL(h).
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That is, the remainder RL(h) is neglected.  As is explained below,

RLih) = o[/T(L + 1)] (A-»«).

Eqs. (3)-(9) state but do not prove the general approximation, the detailed

development of which is outlined in Section III.  Some of the longer calculations are

given in the appendixes.

The Z,th-order approximation can be written

IL(h) = BL(h)-AL(h),

where

■K 2L + 1

ALih) = -~    Z   mf/2(q)ku_l)/2(qh),

L

1
i=o

BL(h) = - 2-^VQA) £ z2i+lej(Jz2-q2)ki(zh),

(4)

maix) =-,    kXx) = x ' *JH_n(x),
2ar(a + 1)

eo W = -f- >     ej+1 ix) = - fo [«/(*)].       / > 0.

In (4), for any function Fix),

(5) F™(x) = d'F/dx',

Ja(x) is the Bessel function of the first kind and order a, and r(x) is the gamma func-

tion.

The remainder RL(h) then is given by the expression

(6) RL(h) = SL(h) + TL(h),

where

SLih) = - ;<Í+1)/2 H-j,jih) -       i      [rn,.iz)u2L'-+2^L + xih) + »,-_! ,,(*)],
/=0 /XL + O/2

(7) "*<W - L *l+»i*)k,+M)

viß) = n^iy^+^k^iyh)— ,

ht(x) = i- 1)''2'-Mí + V)x2i+l(x2 - q2)-'-*..

(8) TLih) = /\" + 2#>(v4^)AoG0*L<>A)f .
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t x    fjx)-fj0)
80ix)=-.

(9) #>(*)-#>(o)
gl+iix)=~-j1-,       !>0.

In the definition of 5L(A) in (7), the sum is defined to be equal to zero if (Z, + l)/2

< L-that is, if L < 1.   The integral in the expression for the u« in (7) converges if

i>j-l.

For L = 0, (3) reduces to (2).

III.   Calculation of the General Uniform Asymptotic Expansion.  With the quanti-

ties defined in Eqs. (4)-(9), (3) can be verified by induction.   The first step in this

calculation is to rewrite TL(h), which is defined in (8), to give

(10)     TL(h) = iL + x(A) + 2"*r0*) fqy2L + 2gL + xbJy2 - q2)kL(yh)dy,

iL + iih)=S{¿\0) fqy2L + 2h0(y)kL(yh)d^.

where

y

When gLl ̂  (0) is evaluated with (AI-2), iL + j (h) can be written

»L-i-ií*) = ízQmL+iiy)Kiy)kLÍyh)7r(11) — *q      -t.- y

The integral in (10) can be integrated by parts by use of (AII-8).   Then

TLih) = iL + iih) + YL + X(h) + TL+X(h),

where

YL + iih) = -ïm   [z2L + 3gL + xi>Jz2-q2)kL+xizh)-q2L + 3gL+xiO)kL + x(qh)}.
2Vl

Substitution of (AIM 1), (AI-2), (AI-4), and (AI-7) in the above expressions for

TL(h) and yL+1(A)gives

(12) TL(h) = -AL+x(h)+AL(h)+BL + x(h)-BL(h) + TL+X(h) + XL+X(h),

(13) XL+X(h) = - mL + x(z)u^L+x(h) - vLL + x(h) + wL + x(z)kL+x(zh),

L

wlÍz) = £ miiz)hL-iiz)-
i'=0

From the definition of the ufAh) given in (7),

(14) "^¿+1(A) = «l+£*L+2<» + hL+1Jih)kL + x(h).

In (14), ufj(h) is defined to equal zero unless L > 0.  When (AII-8) is used to perform
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AN ASYMPTOTIC APPROXIMATION FOR A TYPE OF FOURIER INTEGRAL        1177

a partial integration in the equation for the v¡.(h) in (7), the expression

(15) VL-j/h) = VL+l -/,/(*) + mj&hL + l-j&h + 1 (**)

is obtained.

As can be verified by substitution,

/<(L + l)/2 L + l

Z     ^+i-/,/W+    L    «t-ijQO
,,,, /=0 /XL + O/2
(16)

/<(Z, + 2)/2 L+l

= Z        "L+l-j,ji")+ Z "/-1,/W-
7=0 j>(L + 2)/2

From the definition of SL(h) given in (7), and from (14), (15), (16), and the

convention assumed for the ufAh) in (14),

(17) SL(h) = -XL + x(h)+SL + x(h).

Since RL(h) = TL(h) + SL(h), from (12) and (17),

(18) AL(h)+BL(h)+RL(h) = AL+x(h)+BL+l(h)+RL + l(h).

Eq. (18) can be used to prove (3) by induction, since 1(h) = A0(h) + B0(h) + R0(h).

IV.  Discussion.  From the properties of asymptotic expansions of Fourier inte-

grals [3], [7]

RL(h) = o[h-(L + l)]       (A-»■«»).

Eq. (3) is most useful when BL(h) is either relatively small or completely negligi-

ble.  The principal contribution to 1(h) then comes from AL(h).

The approximation developed in [2] contains a sum equivalent to AL(h).  As

was mentioned in the introduction, the approximation (3) given here is a more conven-

ient and explicit expression for the error than was provided by the earlier result in

[2].   In addition, BL(h) is usually more convenient to use than the corresponding sum

given in [2].

The sum AL(h) is the feature that distinguishes the approximation (3) from the

conventional asymptotic expansion for Fourier integrals.   The important property of

(3) is that it can be used for all values of qh.   As qh approaches 0, the limiting ex-

pression for AL(h) is

-^K + é(-'y/"/tl>(0).

2     /-o  (2/ + l)A2''+1

The form of AL(h) for large qh can be found by substituting the asymptotic expan-

sions for the Bessel functions in the expression for AL(h). The behavior of AL(h) is

seen to be different for large and small qh.

According to Eqs. (AIII-5) and (AIII-6) of Appendix III, gL(x) and g\ \x) can

be written
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i=o2'~li\(j-i)\x2'+l-'

and

¿»mJy (-iy+l~i(2'+2-iy-Fijix)

(20) >    X      i=0   2f+l-ii\(j+l-i)\x2'+2-i '

where, for / > 1 and also for i = f = 0,

(2i) F,(x)=f^x)-zfU+k)(;0)xk,

k=o K-

and where Fxo(x) = f(1\x).  When 2/ - i > 0, the F{j(x) axe the difference between

f(i\x) and the Taylor expansion of /(,)(x) of order 2/ - i about the point x = 0.

The magnitude of gLl \x) will usually be smaller than would be immediately

apparent from the magnitudes of the individual terms in the expression for g^\x)

obtained directly from (AI-3) and (AI-6), since, as (20) shows, gLl\x) can be written

as a sum of the F¡Ax), each of which, except Fx0(x), is the difference of f^'\x) and

a Taylor series approximation for f^'\x).  Ordinarily, this difference can be expected

to be smaller in magnitude than p'\x) itself.

This result is useful in setting bounds on the remainder TL(h) defined in (8).

If f(x) is a polynomial of degree m, the FiL(x) will be zero if 2L > m; and con-

sequently, TL(h) will be zero for L > m/2, and from (6), the remainder RL(h) will be

equal to SL(h).

APPENDIX I

The functionsg Ax), eAx), and dAx).   Since the first 2L + 2 derivatives off(x)

are assumed to be continuous at x = 0, f(x) can be approximated by the Taylor

series

f(x) Y2f«xo)x¡
/=0        ft

in the neighborhood of x = 0.

The corresponding series approximation for the g(x) defined in (9) is

A2j+i+i)(0)r(i±S)
2L+1-2J  J V  '   \   2    )    ■

gjix) m    Z        -// + 9i + *\x'-
(AI-1) ,=o       2i+1i\r(        '      )

This expression satisfies (9) with the same accuracy as the series for fix).

From (AI-1)

fn.   r(W(2i+l\o)

2'-r(/ + -)

and
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AN ASYMPTOTIC APPROXIMATION FOR A TYPE OF FOURIER INTEGRAL 1179

(AI-2) 4*>-W¡lH

As can be verified by substitution in (4), the eAx) are given exactly by

,.     X   (-l)H(2j - i)\ f«Xx)
(AI-3) «/(*) = Z ~~-,.J-,   .   •

<=o   2*if !(/-/)! x*'+1H

Let

(AI-4) rf/tf-«/(*)-*/«■

Then, from (4) and (9), d0(jc) = /(0)/x and for /' > 0,

¿y(i)oo gyHo)
(AI-5) d.+ iW = J__4-^__.

From (AI-5), the exact expression for the d¡ix) can be shown to be

,   «             ,/^   ^ (-i)/W2/"2,r(/-¿ + H)/(2')(Q)
(Ai-6) rf/W = Z -:-•

An exact equation for the ¿f.(x) can be obtained from (AI-3), (AI-4) and (AI-6).

With (4) and (7), (AI-6) gives

(AI-7) T*Tto?t"dft/P^f) = i mt(y)hM(y).
1=0

APPENDIX II

Evaluation of i.-Qt).  As in (11), let

(Aii-i) iß) = fq mjiy^oiy^j-iiyh) — ■

For a function fix), let the operator H be defined to have the property that

(AII-2) W)-£f.

Then, as can be shown by induction, if H" denotes n successive applications of H,

(AII-3) Hnkt(xh) = x2nkj+n(xh),

since [8] the Bessel functions have the property that

(A11"4) ¿x«Ja(x) = xaJct_x(x).

Thus,

/(2/)(o) ,„■ r*f( ''(0)       fn 1
(AII-5) '/(A) - —f-' W [~J0(qh) - ,00(A)J ,
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1180 PAUL W. SCHMIDT

where for / > 0 and 0 < / < i,

(Aii-6) ',/(*) = f~y2%iy)ki+hxiyh) dj-.

Equation (AII-5) is obtained by making use of the integral representation [6] which,

in the notation used here, can be written

Ïï-J0(qh)= fqh0(y)k_x(yh)d-^-

The condition / < i ensures the convergence of the integral in (AII-6).

Since [8]

(AII-7) ^ [x~aJa(x)] = - x~aJa + , (x),

the kj(x) have the property that

(AII-8) fy2i+ 2kj(yh) dy = - y2i+ 3kf+, (yh).

Thus, A' + 1 integrations by parts give

Ufi) = zV Z hi+niz)k izh) + ti+N+x  (h)
n = 0

= z2i"?i+jih) + ti+N+XJ(h),

where the u^Qt) are defined in (7).   For N = j - 1,

(AII-9) Hh00(h) = zVufrQi) + t„Qi).

Since k„_1/2(qh) = (qhynJ_n(qh),

(AII-10) H"J0(qh) = q2n(qhTnJ_n(qh) = q2nkn_y2(qh).

Substitution of (AII-9) and (AII-10) in (AII-5) gives

(AIM 1) ijih) = j mji<Ùkj-vMh) - m¡iz)u'-lih) - vhl>i(h).

APPENDIX III

Rearrangement of the Expressions for gj(x) and gil\x).  With (AI-3), the eAx)

can be expressed

,Ami.                                  /    (-l)H(2j - i)\ Fif(x)
(AIII-1) e(x) = £ -'J— + D(x),

<=o 2>-'i!(/-/)' x2,+ 1-'

where for 0 < i < j

2/-Í    Hi+ k)(Q\xk

(AIII-2) Fu(x) = /«>(*) -  £ J     f)X   ,
k=0 K-

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
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n ( ^     ¿     (-1)/W(2/-Q! 2U f(i+k)jO)xk

(AIII-3) W = £02"/! (/-*)! *a'+"    £o~

By interchange of the order of summation, (AIII-3) can be written

(AIII-4)
2/ V(}(°)

D,(x)=Z~-
i% xV+i-i

where

fc-   (- iy-*(2/-A)!

dv= A ^r
k=o2'-kk\ (J-k)\ ii-k)\

km = h      j < i,

km = i,      j > i.

When the value of d¡, given in Eq. (AIV-3) of Appendix IV is substituted in (AIII-4),

the DAx) are seen to be identical to the dAx) given in (AI-6).  Thus, from (AI-4),

,•   (-1)^(21-i)\Ft,(x)
(Aiii-5) gf(x) = x —-r— ■

i=0 2'-,i\ij-i)\x2,+ 1-'

Differentiation of (AIII-2) gives

[Fif(x)]M = Fi+1J(x).

From this result and (AIII-5),

/+i (-iy+1-i(2j + 2-i)\Fij(x)
(Aiii-6) g) Kx) = Z ~-;—.

/=0 2'+1-'/!(/ + l-0!x2/+2~'

where Fxo(x) = f^l\x), and the other F¡(x) axe given by (AIII-2).

APPENDIX IV

Evaluation of the d„.  Let

Q,iy) = i\-y2y.

Then

f9<2/'-'V0i = V   *~ ^ /!    rv2ki<2/-0|

(AIV-1)
(-iy-,/2//!(2/-/)!

(/ - Hi)! <H/)!

for even i, while ô}2/_,)(0) = 0 for odd i.

Also, if v = 2jc - 1,

ö/(y) = 22V(l-xy' = 22'r7/W,
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1182 PAUL W. SCHMIDT

where

qj(x) = x¡(l-xy.

If superscripts in parentheses indicate derivatives of a function with respect to its

argument,

ß/2>'-''>(0) = 22'[<?/(H)](2'wW/W = 2' [qfâ)] <2>-'>

(AIV-2) •   I   i-lY~kp
= 2' v ^—i-—^- rjc2/~fci(2'_')|

lh,k\(j-k)\ [x     J       '-i/2

= 2%.

where the d¡- axe defined below (AIII-4).

Thus, from (AIV-1) and (AIV-2),

(-iy-k2'-2kr(j-k + K)
(AIV-3) d2kJ =-^-p^¡-,     d2k+x j = 0,

where k is a nonnegative integer.
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