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Abstract 

An expression is derived for the rate at which the diffuse attenuation coefficient for vector 
irradiance approaches its asymptotic value in a homogeneous medium. The asymptotic approach 
rate is shown to be a function of boundary conditions at the surface and the asymptotic diffuse 
attenuation coefficient which is an inherent optical property. The asymptotic approach rate is then 
used to derive the vertical structure of the vector and scalar irradiances, the vector and scalar 
diffuse attenuation coefficients, the average cosine of the light field, and the remotely sensed 
reflectance at the surface, based only on the surface values of the vector and scalar irradiances and 
the vector and scalar diffuse attenuation coefficients. This theory is inverted and combined with 
previously derived radiative transfer relations to show that in principle the vertical structure of 
the absorption, scattering, attenuation, and backscattering coefficients can be derived from the 
vertical structure of the scalar and vector irradiances and the nadir radiance. An example for the 
western North Atlantic Ocean is provided. 

The vertical structure of the light in the 
sea is important to many disciplines. Sun- 
light is the energy source for the biological 
food chain, and the amount and spectrum 
of solar energy available at a given depth 
must be known if accurate productivity cal- 
culations are to be made. The oceanic biota 
in return are a major factor in determining 
the distribution of light through their ab- 
sorption and scattering characteristics. So- 
lar energy that is absorbed by the ocean plays 
a role in physical oceanography, in partic- 
ular in the structure of the mixed layer. Op- 
tical remote sensing allows us to study the 
large-scale structure of biological and op- 
tical parameters by measuring radiance em- 
anating from the ocean. Remote sensing is 
essential in investigating the global effects 
of stratospheric ozone depletion and the 
greenhouse effect. 

The behavior of the light field in the sea 
is described by the equation of radiative 
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transfer, which relates the light field and its 
derivative to the inherent optical properties 
via the beam attenuation coefficient and the 
volume scattering function. An analytical 
solution to this equation for a homogeneous 
medium was first given by Chandrasekhar 
(1950). Many other solutions have been giv- 
en (see Prieur and Morel 1973; Zaneveld 
1974; Jerlov 1976). Preisendorfer (1976) has 
provided an extensive treatise on the equa- 
tion of radiative transfer and its applica- 
tions to optical oceanography. Tmplemen- 
tation of the analytical solution to the full 
equation of radiative transfer is cumber- 
some because it requires use of the full ra- 
diance distribution as well as the volume 
scattering function. 

Purely numerical solutions based on 
Monte Carlo routines were developed early 
in the last decade (Plass and Kattawar 1972; 
Gordon et al. 1975) and have developed 
into powerful tools for the study of the for- 
ward problem, i.e. the derivation of the 
structure of the underwater light field as a 
function of the inherent optical properties. 
Another genre of numerical model, based 
on the deterministic solution of differential 
equations rather than on a probabilistic 
Monte Carlo solution, is now available 
(Mobley 1989). Either type of model can 
generate the equivalent of an experimental 
data set. 

Approximate solutions based on the two- 
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Absorption coefficient, m-l 
Scattering coefficient, m-l 
Backscattering coefficient, m-l 
Forward scattering coefficient, m-l 
Particulate scattering coefficient, m-l 
Volume scattering function, m-l sr-1 
Beam attenuation coefficient, m-l 
Beam attenuation coefficient of water, m-l 
Vector irradiance, W m-2 
Scalar irradiance, W m-2 
Downwclling scalar irradiance, W m-2 
Shape factor for scattering 
Shape factor for radiance 
Diffuse attenuation coefficient, m-l 
Vertical structure coefficient for absorption, 

m-l 
Attenuation coefficient for vector irradiance, 

m-l 
Vertical structure coefficient for KE, m-l 
Vertical structure coefficient for average co- 

sine, m-* 
Attenuation coefficient for scalar irradiance, 

m-l 
Attenuation coefficient for downwelling scalar 

irradiance, m-l 
Asymptotic diffuse attenuation coefficient, 

m-l 
Radiance, W m-2 sr-’ 
Wavelength, nm 
Average cosine 
Asymptotic average cosine 
Asymptotic approach rate, m-l 
Remotely sensed reflectance, sr-1 
Depth, m 

stream model of Schuster (1905) have been 
described in great detail by Preisendorfer 
(1976). The two-stream models are quite 
restrictive in their assumptions if realistic 
solutions for the oceans are to be obtained 
(Aas 1987; Stavn and Weidemann 1989). 

The problem of inverting the vertical 
structure of the radiance field to obtain the 
inherent optical properties is also of con- 
siderable importance. It is not yet possible 
to measure the spectral inherent optical 
properties in the ocean routinely and ac- 
curately, although significant improvement 
in this regard is expected soon (Zaneveld et 
al. 1988). Even so, the determination of in- 
herent optical properties by direct instru- 
mentation uses only small measurement 
volumes while those with radiance and ir- 
radiance use very large volumes. Compar- 
ison of the two will give considerable insight 
into the contribution to the radiance distri- 
bution by large particles. 

A theoretical solution of the inverse prob- 
lem-the derivation of the inherent optical 
properties from the radiance and its deriv- 
ative with depth- was first given by Zane- 
veld (1974) based on the work of Zaneveld 
an,d Pak (1972). Due to the unavailability 
of suitable radiance and scattering function 
data, the inversion has not yet been tested. 

Much of the interest in two-stream so- 
lutions derives from their potential use to 
invert the vertical structures of the up- and 
downwelling irradiances to obtain the ver- 
tical structure of the inherent optical prop- 
erties, especially the backscattering. coeffi- 
cient (Preisendorfer and Mobley 1984; Aas 
1987; Stavn and Weidemann 1989). As 
mentioned above, these solutions require 
very restrictive assumptions in order to ob- 
tain general solutions. As shown here, a more 
general inverse solution for the vertical 
structure of the backscattering coefficient can 
be obtained from the inversion of an ana- 
lytic solution for the remotely sensed re- 
flectance (upwelling nadir radiance divided 
by the downwelling scalar irradiance) de- 
rived by Zaneveld (1982). 

There continues to be a need to provide 
realistic models of the vertical structure of 
irradiance and upwelling radiance as a func- 
tion of the inherent optical properties. 
Models that allow inversion of irradiance 
and radiance to obtain the inherent optical 
properties are particularly useful. In this pa- 
per I develop such a model based on the 
observation that the attenuation coefficients 
for irradiance eventually become constant. 
This is the so-called asymptotic regime in 
which the shape of the radiance distribution 
is constant and the magnitude of the radi- 
ances and irradiances all decrease at the same 
exponential rate. 

A semiempirical proof of the existence of 
the asymptotic regime was given by Prei- 
sendorfer (1959). The final theoretical proof 
was provided by Hojerslev and Zaneveld 
( 1977). A review of other work regarding 
the asymptotic light field is given by Zane- 
veld (1974). Particularly useful is the anal- 
ysis of Prieur and Morel (197 1) which gives 
the relationship between the asymptotic at- 
tenuation coefficient, Ko3, and the inherent 
optical properties. K, is an inherent optical 
property as it does not depend on the initial 
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light field at the surface. The theory dictates 
that the shape of the light field eventually 
becomes a function of the inherent optical 
properties only. We thus see a gradual trans- 
formation of a surface-dependent light field 
(an apparent optical property) to one that 
is an inherent optical property. This phe- 
nomenon also shows that the diffuse atten- 
uation coefficient K is not constant in a ho- 
mogeneous medium. The rate at which K 
is transformed from its surface value to its 
asymptotic value has not been derived pre- 
viously. This is an important rate because 
the asymptotic K as well as the shape of the 
asymptotic light field are inherent optical 
properties. 

In this paper advantage is taken of the 
knowledge that the transformation to the 
asymptotic state exists. The rate at which 
this transformation occurs is then calculat- 
ed and its dependence on the surface light- 
ing conditions and the inherent optical 
properties is derived. When the rate of ap- 
proach to the asymptotic state is known, the 
vertical structure of the irradiance and up- 
welling nadir radiance can be calculated, as 
well as the remotely sensed reflectance just 
beneath the surface. Once the light field is 
asymptotic its properties are inherent and, 
as will be shown, can be inverted to obtain 
the inherent optical properties, including the 
absorption, scattering, attenuation, and 
backscattering coefficients. 

Relationships between the d@use 
attenuation coeficients and the 
vertical structure coeficients for 
absorption and the average cosine 

The equation of radiative transfer for a 
medium without internal sources, or any 
cross-wavelength effects, and for which the 
horizontal gradients are negligible com- 
pared to the vertical ones is given by: 

= - cL(B,ip,z) 

2* 7r + ss P(e,s’,~,~‘)L(e’,~‘,z)sin(sl) de’ d+’ 
0 0 

(1) 

where z is taken to be positive downward 
(units given in list of symbols). Integration 
over 4n sr gives 

Wz) - - = a(z)Eo(z). 
dz 

This is Gershun’s (1939) equation, which 
allows us to calculate a(z) when we know 
the vertical structure of E(z) and E,(z). The 
vector irradiance is defined as 

E(z) = 
2s 7r 

ss 
L(8, $, z)cos(e)sin(e) de d$, (3) 

0 0 

and the scalar irradiance is defined as 

2n T 

E,(z) = 
ss 

L(e, $, z)sin(e) de d$. 
0 0 

(4) 

The inherent optical properties are de- 
fined as follows: a is the absorption coefh- 
cient; b is the volume scattering coefficient, 
where 

S 
K 

b = 2~ P(r)Wr) dr; @a) 
0 

c is the beam attenuation coefficient, and 

c= b -t a. Ub) 

We define the diffuse attenuation coeffi- 
cients for vector and scalar irradiance by 

K&z) = - $ In E(z) 

1 dJw$ --- 
E(z) dz ’ 

@a) 

so that 

E(z) = E(O)elp[-lz K&J dz] , 0) 

and 

K,(z) = - $ ln E,(z) 

_ - 1 a,(z) 
E,(z) dz ’ 

(W 
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so that The average cosine used by Jerlov (1976) 

E,(z) = E,Oexp[ - lz KoW dz] . VW and o”er~c~~~~o~ _ ;W) . (1 4) 

E 
Substitution of Eq. 6a in 2 gives 

K&)JW = a(z)E,(z). 
We then define the vertical structure coef- 

(8) ficient for the average cosine by 

Differentiation of Eq. 8 then yields 1 &W 
K,(z) = - - - 

p(z) dz ’ 
(15) 

E(z) 
Wz) 

$ &W f KE(z) 7 

*o(z) 
Differentiation of Eq. 14 and a similar ma- 

= 4.4 7 + E,(z) $ . (9) nipulation as that used to obtain Eq. 13 then 
yields 

We now divide the left-hand side by 
KE(z)E(z) and the right-hand side by 
a(z)Eo(z). These factors are equal as shown 
by Eq. 8. We then get 

1 CKdz) + 1 Wz) -- -- 
KE(z) dz E(z) dz 

_ 1 HO + 1 da(z) 

E,(z) dz 
-- (10) 
a(z) dz * 

We now define vertical structure coeffi- 
cients similarly to the diffuse attenuation 
coefficients. Thus the vertical structure coef- 
ficient for the diffuse attenuation coefficient 
of vector irradiance is defined by 

1 ME KK(z) = - - - 
KE(z) dz ’ 

(114 

so that 

K&z) = K,(O)exp [ I= JG&9 dz]. (1 lb) - 

The vertical structure coefficient for the ab- 
sorption coefficient is defined by 

1 da(z) 
K,(z) = - - - 

a(z) dz ’ 
Wd 

so that 

a(z) = a(O)exp [-I= KzC4 dz]- (12b) 

Substitution of Eq. 6, 7, 11, and 12 into 10 
gives 

K&z) + K&) = K,(z) + KM. (13) 

K,(z) = KE(z) - K,(z). (16) 

A combination of Eq. 13 and 16 gives the 
following important result: 

K&z) = K,(z) - Kc(z) 
= KL(z) - K,(z). (17) 

These new relations constitute the differ- 
ential form of Gershun’s equation and are . 
valid at any depth in any horizontally ho- 
mogeneous but vertically inhomogeneous 
medium. The relationship for a homoge- 
neous ocean, -Kdz) = KE(z) - K,(z), was 
reported earlier by Hojerslev and Zaneveld 
(1977). 

An interesting result from Eq. 17 is that, 
in principle, we should be able to obtain the 
vertical structure coefficient of the absorp- 
tion coefficient from the vertical structure 
of KE(z), K,(z) and KJz), i.e. 

K,(z) = W4 - K,(z) + &AZ). (18) 

This is different from Eq. 8 and 2 in that 
no intercalibration of the vector and scalar 
irradiances is necessary. The term E/E0 does 
not occur. Applying Eq. 12b and setting a(0) 
= K,(O)F(O) allows us to calculate the ver- 
tical structure of a(z). Only p(0) needs to be 
estimated. 

The forward solution in a 
homogeneous medium using 
asymptotic closure 

We wish to calculate the vertical structure 
of the apparent optical properties when the 
inherent optical properties are known. Hs- 
jerslev and Zaneveld ( 1977) have proven 



that the diffuse attenuation coefficient KE(z) 
asymptotically reaches a constant value K, 
at great depth. Such asymptotic behavior 
can be modeled by 

K,(z) = [K,(O) - KJexp( -Pz) 
+ K,. (19) 

This structure for K,(z) is supported by ob- 
servations (Preisendorfer 1959). That is, the 
diffuse attenuation coefficient for vector ir- 
radiance changes rapidly at first and then 
asymptotically approaches Km at great depth. 

The rate at which KE(z) approaches the 
asymptotic value is governed by P. In a ho- 
mogeneous medium the asymptotic rate pa- 
rameter, P, is assumed to be constant. This 
allows the solution of the simplified radia- 
tive transfer equations presented here. The 
term “asymptotic closure” has been adopt- 
ed to describe the present theory. We now 
need to derive an expression for the asymp- 
totic approach rate based on the boundary 
conditions at the surface of the ocean. 

Differentiation of Eq. 19 gives 

d&AZ) -- = -P[K,(O) - K,]exp( -Pz). 
dz (20) 

The vertical structure coefficient for the dif- 
fuse attenuation coefficient is then given by 

1 dK,(z) 
Kk(z) = -- - 

Kd-9 dz 

P[ K,(O) - K,]exp( -Pz) 

= [KE(0) - K,]exp(-Pz) + K, 

(2la) 
or 

eexp(--Pz) + K,}E(O)exp X. 

The average cosine is given by &AZ) = 
P[K,(z) - Km1 

&(z) * 
@lb) 

Solving for P yields p(z) = a 
M‘(z) 

(22) 

= [KE(0) - KJe:p(-Pz) + K, ” 
(26a) 

Rewriting Eq. 26a gives 

1 1 1 

- = F(O) iL iw [ 1 --- 

.exp(-Pz) + 1. WW 
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us to relate P to the boundary conditions at 
the surface. The rate at which the vector 
irradiance approaches the asymptotic value 
thus depends on the difference of the diffuse 
attenuation coefficients for scalar and vector 
irradiance at the surface, K,(O) - KE(0), and 
the ratio of the asymptotic diffuse atten- 
uation coefficient and the diffuse attenua- 
tion coefficient for vector irradiance at the 
surface, Km/K,(O). Use of the boundary 
conditions allows us to calculate P, and sub- 
stitution into Eq. 19 gives the vertical struc- 
ture of KkT(z) given K, (the relationship be- 
tween K, and the inherent optical properties 
is discussed later). With the vertical struc- 
ture of the vector irradiance attenuation 
coefficient in hand, we must now derive the 
vertical structure of the irradiances and the 
remotely sensed reflectance. 

Using the definition of Eq. 6b, we can 
integrate the expression for KE(z) in Eq. 19 
and obtain 

where 

E(z) = E(O)exp x (29) 

Mz)E (4 
E,(z) = a 

x = -{K,z - -$exp(-Pz)] 

W&O - LII. (24) 

We then calculate the scalar irradiance from 

for homogeneous water. Alternately, by 
substitution of Eq. 18, we get 

p = K,(z) - Wz) 
Kca - 

(23) 

l-- 
&W 

This equation is correct at any depth in a 
homogeneous ocean. Setting z = 0 allows 



We thus see that the asymptotic approach 
rate describes the rate at which the inverse 
of the average cosine, also known as the 
distribution function, approaches its 
asymptotic value KJa. 

Zaneveld (1982) has derived a theoretical 
relationship of the vertical structure of the 
inherent optical properties and the remotely 
sensed reflectance (RSR) just beneath the 
surface of the ocean. He has shown that 

UT 0) 
- = RSR(0) 
EOd(O) 
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structure of K,(z) derived in Eq. 24. Setting 

EOAZ) = E,(z) entails only a small error as 
the reflectance is very small. An analytical 
solution also exists but is somewhat cum- 
bcrsomc. It is derived next. Substitution of 
Eq. 25 into 28 gives 

L(a, 0) = 

S O3 b E(O) 
0 

b 2?ra {[KE(0) - K&wW’z) 

+ K,}exp y dz (30) 

where 

Y 
= 

-{(K, + a + bb)z - i exp(-Pz) - 1 1 
- L(O) - Kzol>. 

= S “fbVP&? 

0 2n 

2’ 
c(z”) - f,(z”)bAz”) 

where L(n, 0) is the nadir radiance at the 
surface, Eod(z) the downwelling scalar ir- 
radiance and Kod(z) the associated atten- 
uation coefficient,fh andf, are shape factors 
for the scattering function and the radiance 
distribution, bYis the forward scattering co- 
efficient, and bb the backscattering coeffi- 
cient. Equation 27 is exact in any horizon- 
tally homogeneous, vertically stratified 
ocean. It was shown that the shape functions 
are close to unity for all oceanic conditions. 
Setting fL andf, equal to unity, and setting 
c - bf = a + bb, it can then be shown that 
in a homogeneous ocean the upwelling nadir 
radiance at the surface, L(n, 0), is given by 

L(?r, 0) = 

S O3 bb 
o z Eo(z)exp[- (a + bb)z] dz. (28) 

+ KOd(zN) dz” 
I 

Let M = KE(0) - K, and N = K, + a + 
dz’ (27) bb, so that 

L(7r, 0) = 

bb S 
03 y--$ E(O) 

0 

+ P)z + 
M 
p exp(-Pz) Ii + K,exp(-M) 

M 
p exp( -Pz) dz. 

(31) 

Expansion of the terms in braces into power 
series and integration gives the desired re- 
sult: 

UT 0) -= 
E(O) 

The remotely sensed reflectance can be ob- 
tained by substituting Eq. 7b into 28: 

RSR(0) = $$ = S O3 bb 

0 0% 

z 

K,(z’) + a + bb dz’ 
I 

dz. 
(29) 

RSR(0) can then be obtained by numerical 
integration over death. using the vertical L , 

In order to express the remotely sensed re- 
flectance as the ratio of nadir radiance and 
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scalar irradiance, the result must 
plied by the average cosine: 

be multi- 

RSR(0) = - = - 
UT 0) UT 0) n(()) (33) 

E,(O) E(O) - 

We have thus derived analytical expres- 
sions for RSR(O), E(z), E,(z), K(z), KE(z), 
and p(z) based only on boundary conditions 
and the inherent optical properties of the 
medium. These expressions form the the- 
oretical basis for the transformation of the 
apparent optical properties at the surface, 

TWO), E(O), Eo(0), K(O), K&9, and F(O) 
to the inherent optical properties RSR,, Km, 
and j& at asymptotic depths. 

The inverse problem 

Considerable effort has been expended re- 
cently (Preisendorfer and Mobley 1984; Aas 
1987; Stavn and Weidemann 1989) in trying 
to invert two-flow models of irradiance to 
obtain the vertical structure of the back- 
scattering coefficient. A problem with two- 
flow models is that they require severe 
restrictions in order to solve them. Preisen- 
dorfer and Mobley assumed that the back- 
scattering coefficients for the upwelling and 
downwelling streams are the same. Stavn 
and Weidemann showed this to be incorrect 
for many more turbid oceanic cases. They 
in turn assumed that the ratio of the back- 
scattering coefficients for the upwelling and 1 
downwelling streams is known in order to 
provide a solution. This assumption implies 
considerable knowledge of the nature of the 
water being studied. 

A far less restrictive solution to the in- 
verse problem can be based on the work of 
Zaneveld (1982) and the asymptotic closure 
model presented here. In the inversion 
model presented here, it is assumed that the 
vertical structure of the vector irradiance, 
E(z), the scalar irradiance, Eo(z), and the 
upwelling nadir radiance, L(n, z), are known. 
If E,(z) and E(z) are known, the vertical 
structure of K,(z) and K,(z) can then be 
calculated by means of Eq. 6a and 7a. 

The absorption coefficient is obtained 
from Gershun’s equation (Eq. 2): 

E(z) 
a(z) = K,(z) - 

E,(z) ’ 
(34) 

This procedure has been used frequently in 
the past. A review is given by Jerlov (1976). 

Similar to the irradiances, the vertical 
structure of the attenuation coefficient for 
nadir radiance can then be calculated from 

1 
K(r, z) = - - Cu? z) 

L(x, z) dz 
- (35) 

We can then use Zaneveld’s ( 1982) relation 

UT 4 
RSR(z) = - 

E,, (4 

bb(z)/2n 

= K(rr, z) + a(z) + bb(z) (36) 

to calculate bb(z): 

bb(Z) = RSR(;)P%, Z) + a(Z)] . 
(37) 

- - RSR(z) 
27 

If necessary, the remotely sensed reflectance 

w, 4 
RSR(z) = - 

Eodw 
(38) 

can be approximated to within a few per- 
cent by 

J%, 4 
RSR(z) = T 

as the reflectivity for scalar irradiance is 
small. 

It should be noted that Eq. 34 and 37 are 
not dependent on vertical homogeneity of 
the water column and can be applied what- 
ever the vertical structure of the inherent 
optical properties. 

The asymptotic closure theory presented 
here allows us, in principle, to calculate the 
scattering and beam attenuation coefficients 
in addition to the absorption and backscat- 
tering coefficients. In a homogeneous layer 
between z = z. and z = z2, Eq. 19 can be 
applied in the form 

KF:(z) = [ KE(zo) - K,]exp( -Pz) 
+ K,. (40) 

The parameters P and K, apply only to the 
layer (zo, z,). In other homogeneous layers 
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different parameters P and K, apply. We 
now measure KE(zO), &(zz), and K’(zl) 
where z1 is halfway between z. and z2 and 
then solve for K,: 

We can thus, in theory, obtain K, in a ho- 
mogeneous layer even though KE(z) in that 
layer remains far from asymptotic. 

Prieur and Morel (197 1) and Timofeeva 
(197 1) have derived relationships between 
K, and b/c. If we use the observation that 
in the ocean particulate scattering is much 
larger than molecular scattering, the results 
of Prieur and Morel’s theoretical calcula- 
tions as well as Timofeeva’s experimental 
results can be fit by the expression 

Kw 1 
b b2 -= - 0.52 ; - 0.44 F . (42) 

c 

The average cosine for the asymptotic ra- 
diance distribution can be obtained by use 
of Eq. 14 and 42: 

1 - (b/c) = 
l- 0.52(b/c) - 0.44(b2/c2) ’ (43) 

pi, is thus a function of b/c only. 
If a has been calculated from Gershun’s 

(1939) equation, we can then solve for b and 
c if PC0 is known. 

b=a (44) 

In principle we have thus shown that the 
asymptotic closure theory allows us to cal- 
culate b and c in addition to a from Ger- 
shun’s (1939) equation and bb from Zane- 
veld’s (1982) equation. The equations above 
can be used in a homogeneous layer even 
though KE: has not yet reached its asymp- 
totic limit. It should be noted that there are 
practical limitations to this approach. The 
accurate measurement of apparent optical 
properties is a serious problem due to their 
very nature. They are readily influenced by 

0 

m 
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Z 
& 80- 

-8 

loo- -b 

-C 

- 120- bbx10 

Optical Properties (l/m) 

Fig. 1. Inherent and apparent optical properties de- 
rived from the vertical structure of vector and scalar 
irradiance and nadir radiance. 

a myriad of effects such as ship’s shadow, 
varying cloud conditions, waves, orienta- 
tion of the instrument platform, etc. Sepa- 
ration of the medium into homogeneous 
layers may also be difficult, although the 
vertical structure of a(z) and bb(z) could be 
derived first and used as guidance. More 
research is needed to extend the asymptotic 
closure theory to inhomogeneous cases. 

Sample analysis 

There are few data sets which lend them- 
selves readily to the analysis proposed 
above. What is needed is a numerically gen- 
erated set of E,(z), E(z), and L(w, z) along 
with known values of a, b, bb, etc. so that 
the inversion algorithms can really be tested. 
What follows here is an analysis of Biowatt 
85 station 19-56. This data set has problems 
in that E,(z) was measured on a different 
instrument platform than E(z) and L(n, z). 
Furthermore, the depth gauges of the two 
instruments did not correspond. This was 
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(3660) (l/m) 

Fig. 2. A comparison of observed and calculated 
beam attenuation coefficients. 

corrected by comparing beam attenuation 
data as taken with Sea Tech transmissome- 
ters. During occupation of this station clear 
skies prevailed, however ship drift and ori- 
entation may have biased the data. Never- 
thelcss it seems to be the best set available. 
The analysis was carried out for X = 488 
nm as L,(z) penetrated the deepest at that 
wavelength. Figure 1 shows the vertical 
structure of KE(z), a(z) as calculated from 
Eq. 34, and b)>(z) calculated from Eq. 37. 
These calculations are relatively straight- 
forward. 

The absorption coefficient at 488 nm 
shows a nearly constant value to -36 m 
depth, after which it climbs to a maximum 
at 46 m and then decreases to 8 1 m after 
which it is constant. The backscattering coef- 
ficient decreases steadily down to 50 m, af- 
ter which the instrument is not sufficiently 
sensitive to detect any further changes. 

Next, we wish to calculate b and c from 
the vertical structure of K. and KE. The data 
are far too noisy for direct application of 
Eq. 4 1. However a slightly less accurate, but 
less sensitive approach can be used. 

Equations 
we set 

19 and 23 can be combined; 

Ko(z2) - K&2) K&2) - Kw 
r = K,(z,) - KE(z,) = KE(z,) - K, (45) 

where it is assumed that 

K, B [KE(z) - KJexp(--Pz). 

K, is then calculated from 

K = KE(z2) - rK,(z,) 
00 

l-r * 
(46) 

This equation was applied to the depth in- 
terval 16-36 m. K, was found to be 0.061 
m-l. We then calculate j&, = a/K, = 0.68. 
b/c can then be calculated from Eq. 43. In 
this case b/c = 0.77. Use of Eq. 23 allows 
us to calculate P = 0.076. With this value 
for P Eq. 19 can be used to show that K&(z) 
is within 5% of its asymptotic value for z = 
40 m. Therefore below 40 m we will assume 
that KE = K,. KE continues to change with 
depth, however, as a(z) changes. As long as 
the absorption coefficient changes relatively 
slowly K,,(z) will remain asymptotic. There- 
fore as long as changes in a(z) are 
sexp(--Pz), we can set KE(z) = K&z). We 
then calculate b/c from jia = a/K, and Eq. 
43. 

Once a(z) and b(z)lc(z) have been cal- 
culated, b(z) and c(z) can be obtained from 
Eq. 44 and 5b. We can then also calculate 
b,(z)lb(z). Figure 1 shows the calculated a, 
b, c, and bb at 488 nm. It is of interest to 
corn pare the calculated beam attenuation 
coefficient at 488 nm to the one measured 
with the Sea Tech transmissometer at 660 
nm. We do this by assuming the particulate 
scattering coefficient, b,(X), to vary approx- 
imately as X-l. We then obtain ~(660) * 
b,,(488) x 488/660 + c,,(660), where ~~(660) 
is the beam attenuation coefficient for pure 
water. Figure 2 shows the comparison be- 
tween ~(660) calculated from the apparent 
optical properties and the measured ~(660). 

Discussion and conclusions 

The introduction of the vertical structure 
coefFicients for the average cosine, the ab- 
sorption coefbcient, and the diffuse atten- 
uation coefficient allows us to study the dif- 
ference between the scalar and vector diffuse 
attenuation coefficients, which is of interest 
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because this difference is more readily mea- 
sured than the ratio of the vector and scalar 
irradiances since no intercalibration of the 
sensors is needed. The vertical structure 
coefficients play an important role in deri- 
vation of the asymptotic approach rate P. 
P must always be positive as can be seen 
from the following argument. If KE(0) is <K, 
in a homogeneous ocean, the denominator 
in Eq. 23 is negative. K,(z) must then in- 
crease and therefore KK(z) must be negative. 
P thus is positive. Similarly when KE(0) is 
>K,, KK(z) must be positive and P again 
is positive. 

In the theory presented here it is assumed 
that the boundary conditions K,(O) and KE(0) 
are known. For modeling purposes it will 
be necessary to derive the boundary con- 
ditions from first principles, i.e. express them 
in terms of the inherent optical properties 
and incoming radiance field. For inversion 
this is not necessary. The theory presented 
here needs to be extended to the case of a 
vertically inhomogeneous ocean. The em- 
phasis in this paper has been on the inver- 
sion. I have shown that judicious USC of the 
asymptotic closure theory allows us to cal- 
culate the vertical structure of the inherent 
optical properties. This is certainly reason- 
able once KE(z) is nearly asymptotic. The 
mixed layer being nearly homogeneous in 
structure allowed us to calculate the inher- 
ent optical properties there also. The theory 
is at present not well suited to the normally 
extremely noisy apparent optical properties 
data. To obtain a reasonably accurate value 
for the asymptotic approach rate and K, 
requires that the homogeneous layer be quite 
thick, which may not always be the case. 

The measurement of inherent optical 
properties is not subject to the various en- 
vironmental perturbations that naturally af- 
fect the apparent properties, and so they are 
potentially far less noisy. They also can be 
measured at any time of the day or night. 
As the capability of measuring the inherent 
optical properties routinely and accurately 
develops, it is thus useful to develop theo- 
ries that readily allow the subsequent cal- 
culation of the apparent optical properties. 

I have demonstrated that in addition to 
a(z), bb(z) can routinely be determined pro- 
vided that the upwelling nadir radiance is 

measured. It would be useful to increase the 
sensitivity of radiometers so that the back- 
scattering coefficient can be deduced to 
greater depths. Values for b,/b determined 
here varied from 3.4 to 2%. The lower back- 
scattering ratios were found in a region of 
increased a, b, and fluorescence, indicative 
of simultaneous increases in phytoplankton 
and pigment concentrations. This corre- 
sponds well with Morel and Bricaud’s (198 1) 
observation that backscattering in pure phy- 
toplankton cultures is small. 

The comparison between the calculated 
attenuation coefficient at 660 nm and the 
measured one is excellent considering that 
two different instrument platforms were used 
in deriving the former, as well as a X-l scat- 
tering dependence. This type of analysis 
constitutes a form of optical closure in that 
the absorption and scattering coefficients 
were calculated from the vector and scalar 
irradiances and the resultant beam atten- 
uation coefficient was compared with an en- 
tirely independent measurement. The pro- 
ccdure shows that the inversion may be 
useful to compare large-volume inherent 
properties derived from apparent optical 
properties with small-volume inherent op- 
tical properties. In that case measurements 
must bc made at the same wavelengths, and 
the scalar and vector irradiances must be 
measured from the same platform and be 
properly intercalibratcd. 

In conclusion it has been shown that the 
asymptotic closure theory for irradiance is 
useful for understanding the vertical struc- 
ture of irradiance in the sea as well as in- 
version of that structure to obtain the in- 
herent optical properties. 
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