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Abstract. An asymptotic version of von Neumann's double commutant
theorem is proved in which C*-algebras play the role of von Neumann
algebras. This theorem is used to investigate asymptotic versions of simi-
larity, reflexivity, and reductivity. It is shown that every nonseparable, norm
closed, commutative, strongly reductive algebra is selfadjoint. Applications
are made to the study of operators that are similar to normal (subnormal)
operators. In particular, if T is similar to a normal (subnormal) operator and
«■ is a representation of the C*-algebra generated by I, then ir(T) is similar
to a normal (subnormal) operator.

1. Introduction. One of the reasons for the success of the theory of von
Neumann algebras is J. von Neumann's double commutant theorem [46],
which gives an alternate description of the weak closure of a selfadjoint
algebra of operators. It is the purpose of this paper to prove an asymptotic
version of the double commutant theorem that gives an alternate description
of the norm closure of a selfadjoint algebra of operators. This asymptotic
double commutant theorem helps to unify asymptotic versions of various
operator-theoretic concepts (e.g., similarity, reflexivity, reductivity).
Applications are made to the study of operators that are similar to normal (or
subnormal) operators. Also a proof is given that a strongly reductive,
nonseparable, commutative, norm closed algebra of operators is selfadjoint.

Throughout, H denotes a separable, infinite-dimensional complex Hubert
space, B(H) denotes the set of operators (bounded linear transformations) on
H, and %(H) denotes the set of compact operators on H. Also § denotes a
separable, nonempty subset of B(H). However, in §8 the separability
assumptions on H and S will be dropped. If § Q B(H), then §* = {S*:
S G S}, #„(§>) is the norm closed algebra generated by 1 and §, &W(S) is
the weakly closed algebra generated by 1 and S, C*(§) is the C*-algebra
generated by 1 and S, and W*(S ) is the von Neumann algebra generated by

Received by the editors March 24, 1977 and, in revised form, August 29, 1977.
AMS (MOS) subject classifications (1970). Primary 46L05, 47-00; Secondary 47B20, 47B35,

47B40, 47C10.
Key words and phrases. Double commutant, reflexive operator, reductive operator, approximate

double commutant, approximately similar, approximately reflexive, strongly reductive,
decomposable function, approximate equivalence, normal operator, subnormal operator, repre-
sentation.

© American Mathematical Society 1978

273

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



274 D. W. HADWTN

1 and S. If T G B(H), then ker T and ran T denote the kernel and range of
T, respectively. If M is a closed subspace of H, then M(n) denotes the direct
sum of n copies of M, and if A G B(M), then A(n) denotes the direct sum of n
copies of A acting on M(n). If M is a subspace of H, then dim M is the
cardinality of an orthonormal basis for M. If AT is a compact Hausdorff
space, then C(X) denotes the set of continuous complex functions on X. The
set of complex numbers is denoted by C.

2. Double commutants. If § Ç B(H), then the commutant of §, denoted by
§ ', is the set { T G B(H): TS = ST for every S in § }. The double commutant
of S is §". The approximate double commutant of § is the set of those
operators T for which \\AnT — TAn\\->0 whenever {An} is a bounded
sequence such that \\A„S — SA„\\ ->0 for every S in S. The approximate
double commutant of § is denoted by appr(S)". The (simple) proof of the
following proposition is left to the reader.

Proposition 2.1. If § ç B(H), then appr(S )" is a (norm) closed subalgebra
ofS".

The double commutant theorem says that if S ç B(H) and § = S *, then
§ " = W*(è> ). If S = S *, then § ' is a von Neumann algebra and is therefore
generated by its projections (or unitary operators). Since the projections
(unitary operators) in S ' are in (S *)', it follows that the double commutant
theorem has the following reformulations:

(1) W*(S ) = { T : UT = TU for every unitary operator U in § '},
(2) W*(S ) = { T : PT = TP for every projection P in S '}.
The following asymptotic double commutant theorem generalizes all three

of these versions of the double commutant theorem. A nonseparable version
of this theorem is proved in §8.

Theorem 2.2. Suppose S is a separable subset of B(H). Then
(l)C*(S) = appr(S UST.
(2) C*(S ) = { T: || U„ T - TUn || -» 0 whenever {U„} is a sequence of unitary

operators such that \\ U„S — SU„\\ -* Ofor every S in S },
(3) C*(S) = {T: ||?J- rP„||->0 whenever {Pn} is a sequence of

projections such that \\P„S — SP„\\ ->0/or every S in S }.

Proof. It is clear that (1) follows from either (2) or (3). The proofs of (2)
and (3) are so similar that only the proof of (3) is presented here.

Write §"~ for the right-hand side of the equation in (3). It is easily shown
that §~ is a C*-algebra and C*(§) ç§~ç W*(c>). Assume via contra-
diction that there is an operator T in S~ but not in C*(S). It follows (see the
proof 4.7.8 in [35], or the proof of Theorem III.7, p. 288 in [1], or the proof of
Theorem 1.8 in [44]) that there is a representation tt of C*(S U {T}) such
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ASYMPTOTIC DOUBLE COMMUTANT THEOREM 275

that v(T) £ W*(n-(S)) and ran«- has a cyclic vector. It follows from a
theorem of Voiculescu [44, Theorem 1.5] (see also [19, Proposition 2.5]) that
we can assume that there is a sequence {{/„} of unitary operators such that
|| UJ¡SUn - ir(S)\\ -> 0 for every S in C*(§ U {T}). (This is because Voicu-
lescu's theorem [44, Theorem 1.5] implies that it must be unitarily equivalent
to a subrepresentation of an infinite direct sum of copies of such a represen-
tation.) Since 7r(T) g W*(ir(S)), there is a projection P in tt(S)' such that
ir(T)P j* Pir(T). Thus {UnPU*) is a sequence of projections such that, for
every S in §,

\\unpu:s- su„pu;\\ = \\pu*sun - u:sunp\\
-+\\Pv(S)-«{S)P\\ = 0.

Since T G S~, it follows that
\\*{T)P - P«(T)\\ = lim|| U„PU:T- TU„PU:\\ = 0.

This is the desired contradiction. Hence C*(§) = S~.

Corollary 2.3. If S isa separable subset ofB(H), then #„(§)£ appr(S)"
C C*(S).

The author wishes to express his gratitude to John Bunce, whose valuable
suggestions enabled the author to greatly simplify his original proof of
Theorem 2.2. .

The remainder of this section determines appr(r)" for Tin various classes
of operators. T. R. Turner [41] studied the class of those operators T for
which {T}" - &W(T). In particular, A. F. Ruston [33] (see also [42], [43])
proved that every algebraic operator is in this class. It was shown by A.
Brown and P. R. Halmos [9] that the unilateral shift operator is in this class,
and it was shown by L. J. Wallen and A. L. Shields [37] that every weighted
unilateral shift is in this class. Moreover, it was shown by A. Lambert [28],
[29] that if an operator T in B(H) is strictly cyclic (i.e., &„(T)f = H for some
/in H), then { T}' = { T}" «= &u(T). A more general result (for certain types
of strictly cyclic algebras) was proved by E. J. Rosenthal [32, Theorem 3.1.2].
The following proposition applies to both algebraic and strictly cyclic opera-
tors.

Proposition 2.4. If {T}" = &U(T), then appr(7y - {T}".
Proof. &U(T) ç appr(7y C {T}" - &U(T).
It seems that appr(T)" = {T}" is a rather severe restriction. However, D.

A. Herrero [27, Corollary 4] has shown that the set of such operators is norm
dense in B(H). In the preceding proposition &U(T) could be replaced by the
norm closed algebra &r(T) generated by the rational functions in T.

Question 2.5. Does appr(r)" = {T}" imply that {T}" - &,(T)7
The author wishes to thank Domingo Herrero and the referee for pointing
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276 D. W. HADWIN

out the relevant properties of strictly cyclic operators.

Proposition 2.6. If T is the unilateral shift operator, then appr(r)" =
(^CO-

PROOF. Suppose S G appr(T)". Thus, by [9], S is an analytic Toeplitz
operator. Also S G C*(T); hence, by [13, Theorem 7.23], S is a compact
perturbation of a Toeplitz operator with continuous symbol. Since a nonzero
Toeplitz operator cannot be compact [9], it follows that S is a Toeplitz
operator whose symbol is in the disk algebra. Thus S G &U(T).

If T is a normal operator, then Fuglede's theorem [13, Theorem 4.76] says
that T* G {T}"; this is equivalent to {T}" - W*(T). R. Moore [30] has
proved an asymptotic version of Fuglede's theorem: if T is normal, then
T* G appr(J)". This theorem is fundamental to the results in §6; an
immediate consequence (using Corollary 2.3) is the following proposition.

Proposition 2.7. // T is normal, then appr(r)" = C*(T).

The previous three propositions gave examples where appr(T)" is as small
(&U(T)) and as large (C*(T)) as possible. However, in all three of these
examples it is true that appr(r)" = {T}" n C*(T). (Note that appr(7)" Ç
{T}" n C*(T) is always true.)

Question 2.8. If § is a separable subset of B(H), then must it be true that
appr(S)" = S"n C*(§)?

3. Similarity. The author initiated a study [18] of an asymptotic version of
unitary equivalence of operators. (Earlier special cases were studied by P. R.
Halmos [24] and by R. Gellar and L. Page [17].) All of the questions raised in
[18] were answered in a very deep and beautiful paper of D. Voiculescu [44]
which contains a complete characterization of "approximately" (asymptoti-
cally) equivalent representations of a separable C*-algebra. Two operators S
and T are approximately equivalent if there is a sequence {£/„} of unitary
operators such that \\U*SU„ — T"|J —>0. (Actually, Voiculescu [44] requires
that U*SU„ — T be compact for n = 1,2,..., but he then proves that the
two notions coincide.) There are several choices for a concept of approximate
similarity, but only one seems to fit into the framework of this paper. Two
operators S and T are approximately similar if there is a sequence {V„} of
invertible operators with sup(||FJ|, ||K„-1||) < oo (such a sequence will be
called invertibly bounded) and \\V~iSV„ - T\\ -» 0. The following
proposition lists some of the elementary properties of approximate similarity.
The proof is omitted.

Proposition 3.1. The following statements are true:
(1) approximate similarity is an equivalence relation,
(2) // S is an open (closed) subset of B(H) that is closed under similarity,
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then it is closed under approximate similarity,
(3) if S and T are approximately similar and S is invertible (algebraic,

Fredholm [13,/?. 127], quasitriangular [23]), then so is T,
(4) approximately equivalent operators have the same spectrum (approximate

point spectrum, essential spectrum, left essential spectrum).

Although the previous proposition does not apply to the set of operators
having closed range, the next proposition shows that this set is closed under
approximate similarity. First we need a technical lemma.

Lemma 3.2. If T, V E. B(H), V is invertible, e > 0, and \\Tf\\ > e\\f\\ for
every f in (ker T)±, then \\V~lTVg\\ > (e/||K|| ||K~»IDll^]| for every g in
(ker V~lTV)L.

Proof. Let P be the projection onto (ker T)L, and let Q = V~XPV. Write
Q = (a o) relative to H = (ker Q) © (ker Q)L, and let g, - (¿ g). Then
ker g, = ker Q = ker V~XPV = ker V~lTV. Thus Qx is the orthogonal
projection onto (ker V~XTV)L. Suppose g = Q¡g. Then \\V~1TVg\\ =
||K-"(7ï>)Kg|| = \\V-lTVQg\\ > (1/||F1)||7Yßg||. Since VQ = PV, we
have VQg G (ker T)±. Hence \\TVQg\\ > e\\VQg\\ > (e/\\V-x\\)\\Qg\\. A
simple matrix computation shows that Qxg = g implies that ||ßg|| > ||g||.

Proposition 3.3. Suppose S,T G B(H), T has closed range, and {Vn) is an
invertibly bounded sequence with V~ lTVn -» S. Then

(1) S has closed range,
(2) the projections onto ker V~xTVn converge in norm to the projection onto

ker S,
(3) dim ker S = dim ker T.

Proof. Let T„ = V~1TV„ for n = 1, 2,_Since T„ -» S, it follows that
T]¡Tn-* S* S. It follows from the preceding lemma that there is a positive
number e such that \\TJ\\ > e\\f\\ for every / in (ker T„)x. Choose a
continuous complex function <p such that <p(0) = 0, <p|[e2, oo) = 1, and 0 <
<p(z)< 1 for all other values of z. Then <p(7? Tn)-* <p(S*S), and since
<p(T*T„) is the projection onto (ker rj-1- for « = 1, 2,..., it follows that
<p(S*S) is the projection onto (ker 5)x and that 5*5|(ker S)x > e2. Hence
(1) and (2) are true; clearly (2) implies (3).

One of the reasons that C*-algebras play a central role in the study of
approximate equivalence of operators (see [19]) is the fact that if S, T G
B(H) and {U„) is a sequence of unitary operators such that U*TU„-^S,
then it(A) = lim U*AUn defines a «-isomorphism from C*(T) onto C*(S)
with tt(1) = 1 and tr(T) = S. In fact, it follows from part (2) of Theorem 2.2
that C*(T) = {A: [U*AU„) is convergent v/henever {U„} is a sequence of
unitary operators such that [U*TU„) is convergent}. The following theorem
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shows that appr(r)" plays the corresponding role for approximate similarity.

Theorem 3.4. Suppose S ç B(H). Then
(1) appr(S)" = [T: {V~XTVR} is convergent whenever {V„) is an invertibly

bounded sequence such that { V~XSV) is convergent for every S in § },
(2) // {V„} is an invertibly bounded sequence such that {V~XSV„} is

convergent for every SinS, then m(A) = lim V~XAV„ defines a homeomorphic
isomorphism from appr(S)" onto appr(7r(§))".

Proof. Let © denote the expression on the right-hand side of the equation
in (1). Suppose T G appr(S)" and {V„} is an invertibly bounded sequence
such that {V~XSV„} is convergent for every S in §. Since every convergent
sequence is Cauchy, it follows that \\V„V~lS - SVmV~x\\ -»0 (as m,n-+
oo) for every S in §. Therefore || VmV~xT- TVmV~l\\ ->0. It follows that
{ V~ xTVn) is convergent.

Conversely, suppose T e.% and { Wn) is a bounded sequence such that
|| WnS — SW„\\ -> 0 for every S in S. Choose a positive number A such that
X > 2 sup|| W,||. Then, for every n, we have ||(\ - Wnyx\\ =
\\\~x 2™-o(W„/\)n\\ <2/X. Hence {(W„- X)) is an invertibly bounded
sequence and since \\(Wn - X)S - S(W„ - \)\\ = \\WnS - SW„\\ ->0 for
every S in S, it follows that (W„ - \yxS(W„ - X)-> S for every S in §.
Define a sequence { Vk) whose even terms are the (W„ — X)'s and whose odd
terms are all 1. Then { Vk) is an invertibly bounded sequence and Vk~xSVk -*■
S for every S in S. Since T G ©, it follows that [Vk~xTVk] is convergent,
and therefore convergent to T (consider the odd terms). Thus

IK**;-A)-,r(*f;-X)-r||-*o,
and it follows that || WnT - TWn\\ ->0. Whence T G appr(r )". Thus (1) is
true.

It is clear that the mapping it in (2) is a homeomorphic isomorphism on
appr(S)". Since {V„AV„~X} is convergent for every A in ir(S), then, by
symmetry, it suffices to show that ran it Q appr(w(S ))". Suppose that { W„) is
an invertibly bounded sequence and { W~ xtr(S) W„}is convergent for every S
in §. Then it follows that { W~xV~xSVnWn) is convergent for every S in S.
Hence, by (1), {W~XV~XTV„W„} is convergent for every T in appr(S)".
Therefore { W~ XA W„) is convergent for every A in ran it. It follows from (1)
that ran it Q appr(7r(§))".

The following theorem characterizes approximate similarity for normal
operators. Note the analogy with the result [25, Problem 152] that similar
normal operators are unitarily equivalent. Also recall that two normal opera-
tors are approximately equivalent if and only if they have the same spectrum
and their isolated eigenvalues have the same multiplicities (see [17]). This
theorem was discovered independently by B. Chan (see §7).
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Theorem 3.5. Two approximately similar normal operators are approximately
equivalent. An operator S is approximately similar to a normal operator T if and
only if S is similar to an operator that is approximately equivalent to T.

Proof. If two normal operators are approximately similar, then they must
have the same spectrum, and by Proposition 3.3, their isolated eigenvalues
have the same multiplicities; hence they are approximately equivalent.

Suppose S, T G B(H), T is normal, and [V„] is an invertibly bounded
sequence such that V~XTV„ -» 5. Since T is normal, it follows (Proposition
2.7) that appr(r)" = C*(T). Since C*(T) is isometrically isomorphic to
C(a(T)), it follows from part (2) of Theorem 3.4 that the mapping <p->
lim V„~x<p(T)V„ is a homeomorphic isomorphism from C(o(T)) onto
appr(5)". It follows from [47] that S is similar to a normal operator, which,
being approximately similar to T, must be approximately equivalent to T. The
converse is trivial.

In [19, Corollary 3.7] it is shown that two operators are approximately
equivalent if and only if there is a rank-preserving »-isomorphism between the
C*-algebras they generate that sends one of the operators onto the other.
Although, in general, there seems to be no analogous result for approximate
similarity, there is one in the case when one of the operators is normal.

Proposition 3.6. Suppose S, T G B(H) and T is normal. Then S, T are
approximately similar if and only if there is an isomorphism it: C*(T) -» B(H)
such that tt(1) = 1, tt(T) = S, and rank A = rank ir(A)for every A in C*(T).

Proof. Since C*(T) is isomorphic to C(a(Tj), it follows from [47] that S is
similar to a normal operator W. Let W = V~XSV for some invertible opera-
tor V. Then a(T) = a(W). If X is an isolated eigenvalue of T, then the
projection P onto ker(r - X) is in C*(T). Hence V~xtt(P)V'v& an idempotent
whose range is ker(*F - X). Since rank P = rank tt(P) = rank V~xir(P)V, it
follows that X has the same multiplicity for both T and W. Thus, by [17], T
and W are approximately equivalent; hence S and T are approximately
similar. The converse follows from Theorem 3.5.

It follows from Theorem 3.5 that the set of operators that are similar to
normal operators is closed under approximate similarity. In §6 it will be
shown (Theorem 6.12) that the set of operators that are similar to subnormal
operators is closed under approximate similarity. Both of these sets of
operators will be studied in more detail in §6.

There is an analogue of Theorem 3.5 for isometries. The proof is based on
the characterization [40] of the set of operators similar to an isometry as the
set of all operators T for which there is a positive number r such that
OAOII/II *» WSW < /"ll/ll for every vector/and for every positive integer «.
It was also shown by Halmos [24] that two nonunitary isometries are
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approximately equivalent if and only if they have the same Fredholm index
[13, p. 127].

Proposition 3.7. Two approximately similar isometries are approximately
equivalent. An operator S is approximately similar to an isometry T if and only
if S is similar to an operator that is approximately equivalent to T.

Proof. Suppose that A, B are approximately similar isometries. Then A, B
must have the same Fredholm index (because the Fredholm index is norm
continuous and invariant under similarity [13, Theorem 5.36]). If the index is
zero, then A, B are both unitary and, by Theorem 3.5, are approximately
equivalent. Otherwise, A and B are approximately equivalent because they
are nonunitary isometries with the same Fredholm index [24].

Next suppose that S is approximately similar to an isometry T. Choose an
invertibly bounded sequence {V„} such that V~xTVn^>S, and let r =
supfllKJ- || *7'||). Since (l/r)||/|| < ||*7'7**^11 < r||/|| for every vector/
and for all positive integers k, n, it follows that (l/r)||/|| < ||5*/|| < r||/|| for
every vector / and every positive integer k. It follows from [40] that S is
similar to an isometry, which, being approximately similar to T, must be
approximately equivalent to T. The converse is obvious.

The preceding proposition and Theorem 3.5 suggest the following
questions.

Question 3.8. If S and T are approximately similar, then must S be similar
to an operator that is approximately equivalent to TÏ

Question 3.9. If S is similar to an operator that is approximately equivalent
to T, then must T be similar to an operator that is approximately equivalent
to 5?

Question 3.10. If a set of operators is closed under similarity and approxi-
mate equivalence, then must it be closed under approximate similarity?

All three of these questions are related to the general question of whether
approximate similarity can be expressed in terms of similarity and approxi-
mate equivalence. Note that an affirmative answer to Question 3.8 would
imply an affirmative answer to the other two questions. Another implication
of an affirmative answer to Question 3.8 is the statement that if the unitary
equivalence class, U(T), of T is closed, then every operator that is* approxi-
mately similar to T must be similar to T. If U(T) is closed, then T is unitarily
equivalent to ^4(oo) © B where A, B act on finite-dimensional Hubert spaces.
It follows from a result of C. Apóstol and J. Stampfli [4] that an operator S is
similar to an operator T with U(T) closed if and only if S is algebraic and,
for every polynomial/», ran/?(S) is closed and rankp(S) = rank/>(r).

Theorem 3.11. If U(T) is closed and S is approximately similar to T, then S
is similar to T.
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Proof. It follows from Proposition 3.3 th.a.tp(S) has closed range for every
polynomial p and that 5 is algebraic (because T has these properties). It is
also clear that approximate similarity preserves rank. Hence S is similar to T.

A belief in an affirmative answer to Question 3.8 leads to the following
conjecture.

Conjecture 3.12. The following are equivalent:
(1) .S is similar to an operator T with U(T) closed,
(2) every operator approximately similar to S is similar to S,
(3) every operator in U(S)~ is similar to S.
Another question that deserves asking is whether approximate similarity

implies similarity in the Calkin algebra B(H)/%(H).

4. Reflexivity. If S ç B(H) and M is a subspace of H, then M is an
invariant subspace of S if S(M) C M for every S in S. The set of all
invariant subspaces of S is Lat §, and Alg(Lat S) = {T : Lat § C Lat T).
In [3] C. Apóstol, C. Foias,, and D. Voiculescu introduced an asymptotic
analogue of Alg(Lat S); i.e., appr(Alg(Lat §)) is the set of all operators Tfor
which ||(1 — P„)TPn\\ -»0 whenever {P„} is a sequence of projections such
that ||(1 - P„)SP„\\->0 for every S in S. An operator T is reflexive if
Alg(Lat T) = &W(T), and T is approximately reflexive if appr(Alg(Lat T)) -
&U(T). Reflexivity has been studied by various authors (see [31]).

It was proved in [3, Corollary 4] that if S is a separable subset of B(H),
then appr(Alg(Lat §)) is a norm closed subalgebra of [(£„(&) + %(H)y.
Combining these facts with part (3) of Theorem 2.2 we easily obtain the
following proposition.

Proposition 4.1. If S is a separable subset of B(H), then appr(Alg(Lat S))
ç C*(S) n [«„(§) + %(H)]-.

Corollary 4.2. // C*(S) n %(H) = 0, then appr(Alg(Lat §)) = #U(S).

Corollary 4.3. If T is approximately equivalent to T © T, then T is
approximately reflexive.

Proof. It follows from [44, Theorem 1.5] that T is approximately equiva-
lent to T © Tif and only if C*(T) n %(H) = 0.

Note that Corollary 4.3 is an asymptotic version of the well known fact [31,
Corollary 9.19] that if T is unitarily equivalent to T © T, then T is reflexive.
Consideration of the "nonasymptotic" version of Corollary 4.2 leads to the
following question.

Question 4.4. If W*(T) n %(H) = 0, then is Treflexive?
If P is an idempotent (not necessarily Hermitian), then ran P is an

invariant subspace of an operator T if and only if (1 — P)TP = 0. Hence it
seems that appr(Alg(Lat S )) could be defined in terms of idempotents that
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are not necessarily projections. Note that Corollary 4.6 is not at all obvious
from the original definition of appr(Alg(Lat S)).

Proposition 4.5. If S ç B(H), then
appr(Alg(Lat S)) = {T: ||(1 - Pn)TP„\\ ̂ 0 whenever {P„)
is a bounded sequence of idempotents such that ||(1 — Pn)SP„\\
-» Ofor every S in S }.

Proof. Suppose that P is an idempotent and Q is the projection onto
ran P. Write P = (¿ o) and Ô = (à o) relative to H = (ran P) © (ran P)x.
Simple matrix calculations show that, for every operator S, we have

||(1 - P)SP\\ > ||(1 - Q)(\ - P)SPQ\\
- 11(1 - Q)SQ\\ > (1/4||P||2)||(1 - P)SP\\.

Therefore if {P„} is a bounded sequence of idempotents, and if Q„ is the
projection onto ran P„ for n = 1, 2,..., then, for every operator S, we have
that ||(1 - Pn)SP„\\ -»0 if and only if ||(1 - Qn)SQ„\\ ->0. This fact clearly
implies the validity of the proposition.

Corollary 4.6. IfSQ B(H) and V is invertible, then

^-'app^AU^Lat S))V = app^AlgíXatíF-'SK))).

An analogue of the preceding corollary with similarity replaced by
approximate equivalence is also true.

Proposition 4.7. If S is a separable subset of B(H), and if it is a
representation of C*(S ) defined by tt(A) = hm U*A U„ for some sequence [Un]
of unitary operators, then 7r(appr(Alg(Lat §))) = appr(Alg(Lat(ir(S)))).

Proof. Suppose {P„} is a sequence of projections. The proposition follows
from the fact that, for each T in C*(S), we have ||(1 - P„)TPn\\ -»0 if and
only if ||(1 - U:PnUn)*(T)U*nPnUn\\-*0.

The reason that there is no analogue of Corollary 4.6 with similarity
replaced by approximate similarity is that the homomorphism analogous to tt
in the preceding proposition may only be defined on appr(S)" (see Theorem
3.4) and it is possible appr(Alg(Lat( S))) is not contained in appr(S)" (see
part (4) of Theorem 4.10). However, the proof of the preceding proposition is
easily adapted to prove the following proposition.

Proposition 4.8. If & Q B(H) and {V„} is an invertibly bounded sequence
such that { V~ XSV„ } is convergent for every SinS, and if tt is the mapping on
appr(S)"   defined   by   -rr(A) = lim V~XAV„,   then   ir(appr(S))" n
appr(Alg(Lat(§))) = appr(îr(S))" n appr(Alg(Lat tt(%))).
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It has been conjectured that Alg(Lat T) n {T}" - &W(T) for every
operator T. The task of phrasing the "asymptotic analogue" is left to the
reader. By now it should be clear to the reader that there is a definite parallel
between various concepts in operator theory and their asymptotic counter-
parts. In the asymptotic version C*(§) plays the role of W*(S) and <£„(§)
plays the role of &W(S). Thus there is a two-way bridge which enables the
asymptotic and nonasymptotic theories to enrich each other.

It follows from Corollary 4.6 and Proposition 4.7 that the set of approxi-
mately reflexive operators is closed under similarity and approximate equiva-
lence. Thus Question 3.10 leads us to the following question.

Question 4.9. Is the set of approximately reflexive operators closed under
approximate similarity?

It was shown by D. Sarason [36] that every normal operator and every
analytic Toeplitz operator is reflexive, and J. Deddens proved that every
isometry is reflexive [10]. Also J. Deddens and P. A. Fillmore gave a simple
characterization [11] of reflexivity among the operators with finite rank. The
following theorem shows that these operators are also approximately reflex-
ive.

Theorem 4.10. The following statements are true.
(1) every normal operator is approximately reflexive,
(2) every analytic Toeplitz operator is approximately reflexive,
(3) every isometry is approximately reflexive,
(4) //rank T < oo, then appr(Alg(Lat T)) = Alg(Lat T),
(5) a finite rank operator is approximately reflexive if and only if it is

reflexive.

Proof. (1) Suppose <p is a continuous complex function and <p(T) G
appr(Alg(Lat T)). Let A be a normal operator whose spectrum is the essential
spectrum of T and such that A is unitarily equivalent to A © A. It follows
from [17] that T is approximately equivalent to T © A. Hence, by
Proposition 4.7, we have <p(T © A) G appr(Alg(Lat T © A)). Since <p(T ©
A) = <p(T) © <p(A), it follows that <p(A) G appr(Alg(Lat A)). It follows from
Corollary 4.3 that A is approximately reflexive. Therefore the restriction of <p
to the essential spectrum of T is a uniform limit of polynomials. Since the rest
of a(T) consists only of isolated points, it is an easy task (using Runge's
theorem) to show that the restriction of <p to a(T) is a uniform limit of
polynomials.

(2) Suppose T is an analytic Toeplitz operator and S G appr(Alg(Lat T)).
Since T is reflexive, it follows that S must also be an analytic Toeplitz
operator. It follows from Proposition 4.1 that there is a sequence {T„} of
Toeplitz operators in &U(T) and a sequence {K„} of compact operators such
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that|| T„ + K„ — 51| -» 0. Since the restriction of the quotient map from B(H)
into B(H)/%(H) is isometric when restricted to the class of analytic Toeplitz
operators [13, 7.15, p. 182], it follows that T„ -> S. Hence S G &U(T).

(3) Suppose T is an isometry. If T is unitary, then T is approximately
reflexive. Otherwise, by [24], T is approximately equivalent to 5(n) where S is
the unilateral shift operator, and 1 < n < oo. Since S is an analytic Toeplitz
operator, S must be approximately reflexive by (2). Thus appr(Alg(Lat S(ny))
Q appr(Alg(Lat S))(n) = &u(Sfn) - £u(5(n)).

(4) Suppose rank T < oo and write T = A © 0 relative to H = M © Mx
where dim M < oo. Suppose S G Alg(Lat 7"). We must prove that S G
appr(Alg(Lat T)). Since ,S|Aix is a scalar, we can assume that 5|MX =0.
Write S = B © 0 relative to H = M © Mx. Suppose that {P„} is a sequence
of projections such that ||(1 — Pn)TP„\\ -» 0. If P„ has the operator matrix

(Cn    D„\
w    En)

relative to H = M © M x, then a matrix calculation shows that

(\-p\tp ./0-c-)c-   0-c»MA,\u  '.w  \ .^^    -^^ ;
and that the matrix of (1 — P„)SP„ is obtained from this one by replacing the
A's by B's. Since {C„} is a bounded sequence on a finite-dimensional space,
there is no harm in assuming that C„-*C for some operator C. The fact that
P2 = P„ implies (using a matrix calculation) that D„D* -» C(l — C). Since
(1 - P„)TP„ -»0, it follows that (1 - C)/1C - 0. Since 0 < C < 1 and
(ran C)"= (ran Cx/2)~ and ker(l - C) = ker(l - C),/2, it Mows that
(1- O'/^C'/^O.Let

2 =
C Cx/2(1 - C),/2

c'/'o-c)172        l-c
relative to H = M © Mx. Matrix calculations show that ß is a projection
and (1 - Q)TQ = 0. Hence (1 - g)Sg = 0. It follows that (1 -
C)X/2BCX/2 = 0, and from this it follows that (1 - P„)SP„ -»0 (e.g.,
(-D„BC„)*(-D„BC„)-* CB*C(l - C)BC = 0). Statement (5) follows
immediately from (4).

An operator T is reductive if T* G Alg(Lat 7^. It was shown by J. Dyer
and P. Porcelli [15] that the reductive operator problem (Is every reductive
operator normal?) is equivalent to the invariant subspace problem (Does
every operator in B(H) have a nontrivial invariant subspace?). An operator T
is strongly reductive [26] if T* G appr(Alg(Lat T)). It was shown by C.
Apóstol, C. Foias,, and D. Voiculescu [2] that every strongly reductive
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operator is normal. It was shown by K. Harrison [26] (and it follows from
part (1) of Theorem 4.10) that a normal operator T is reductive if and only if
a(T) has no interior and does not separate the plane. It is obvious that a
strongly reductive, approximately reflexive operator is normal. Thus a
determination of which operators are approximately reflexive could be
considered an extension of the theorem in [2]. This section is concluded with
a question.

Question 4.11. If a compact perturbation of a strongly reductive operator is
reductive, then must it be strongly reductive?

A theorem about strongly reductive algebras is proved in §8.

5. Decomposable functions. In [18] and [8] the author, A. Brown, and C. K.
Fong introduced functions defined on operators that imitate the properties of
Borel functions of normal operators. Let sub B(H) = U (B(M): M is a
subspace of H). A decomposable function is a function <p: sub B(H)^>
sub B(H) such that

(1) tp(B(M)) Ç B(M) for every subspace M of H.
(2) if T G B(H) and M reduces T, then M reduces <p(T) and <p(T\M) =

<p(T)\M,
(3) if M, N are subspaces of H and U: M ^ N is unitary and T G B(N),

then<p(£/*7T/)= U*<p(T)U.
A decomposable function <p is (norm) continuous if y\B(M) is continuous

for every subspace M of H. Note that (2) says that q>(A © B) = <p(A) ©
<p(fi).

Decomposable functions were used in [8] to establish a general theory of
"parts" of operators (generalizing such concepts as unitary part). For a more
complete account of the properties of decomposable functions the reader
should consult [21].

It is the purpose of this section to give a simple characterization of
continuous decomposable functions. Note that it follows from (2) and the
double commutant theorem that <p(T) G W*(T) for every decomposable
function <p and every operator T.

Theorem 5.1. Suppose <p is a decomposable function. The following statements
are equivalent.

(1) q> is continuous,
(2) cp(T) G C*(T) for every operator T and ir((p(T)) = <p(tt(T)) for every

representation tt ofC*(T),
(3) there is a sequence {p„(x,y)} of noncommutative polynomials such that

p„(T, T*) ->(p(T) uniformly on bounded subsets of B(H).

Proof. (1) => (2). Suppose q> is continuous and T G B(H). Suppose also
that [U„] is a sequence of unitary operators such that \\U„T — rt/„||-»0.
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Then U*TUn^T. It follows that UZ<p(T)U„ = tf,(U*TUn)^^(T). Hence
\\U„(p(T) - <P(T)U„\\ -»0. It follows from Theorem 2.2 that <p(T) G C*(T).
Suppose that -it is a representation of C*(T). In view of [44, Theorem 1.5]
there is no harm in assuming that there is a sequence {V„} of unitary
operators such that tt(A) = lim V*A V„ for every A in C*(T). Whence
tt(<p(T)) = lim Vt<f>(T)Vn = lim<p{V*TVJ = tpMP)).

(2) =» (3). Let S be unitarily equivalent to a direct sum of finite matrices so
that || S || = 1, and, for each positive integer n, the n X n direct summands of
5 are dense in the unit ball in B(Ön)). For each positive integer « we have
<p(nS) G C*(nS); hence there is a noncommutative polynomial p„(x,y) such
that \\p„(nS, nS*) - <p(nS)\\ < \/n. If T G B(H) and n > \\T\\, then there
is a representation w of C*(nS) such that ^(1) = 1 and Ti(nS) = T. Therefore
\\P„(T, T*) - <p(T)\\ = \\TT(pn(nS, nS*) - <p(nS))\\ < l/n.

The implication (3) => (1) is obvious.

6. Operators similar to normal operators. It was proved by J. Wermer [47]
that an operator in B(H) is similar to a normal operator if and only if it is a
scalar type spectral operator in the sense of Dunford [14]. R. G. Douglas [12]
has given sufficient conditions for a bounded homomorphism from a C*-
algebra into B(H) to be similar to a *-homomorphism. In particular, every
bounded homomorphism from a commutative C*-algebra into B(H) is simi-
lar to a *-homomorphism. It follows that an operator T in B(H) is similar to
a normal operator if and only if there is a compact Hausdorff space X and a
bounded homomorphism t: C(X)^> B(H) such that TGranr. More
precisely, T is similar to a normal operator if and only if there is a
homeomorphic isomorphism from C(o-(P)) into B(H) that sends the function
f(z) = z onto T. The following proposition shows how approximate double
commutants fit into this discussion. The corollary that follows is an asymp-
totic analogue of [12, Theorem 2].

Proposition 6.1. Suppose X is a compact subset of the plane, t is a bounded
homomorphism from C(X) into B(H) with t(1) = 1, and letf(z) — zfor every
z in X. Then

(1) ran t = appr(T(/))",
(2) if v: C(X)^>B(H) is a bounded homomorphism with v(\) = 1 and

VU) ■ t(/), then v = t.

Proof. (1) Since t is similar to a *-homomorphism, there is a normal
operator S and an invertible operator V such that r(g) — V~xg(S)V for
every g in C(X). Thus, by Proposition 2.7, we have ran t = V~XC*(S)V =
&Wv(V-xSV)" = 2WT(T(f))".

(2) If S, V are as in the proof of (1), then the mapping g -» Vv(g)V ' is a
homomorphism  from   C(X)  onto   the  commutative   C*-algebra   C*(S)
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(because v and t have the same range); such a homomorphism must be a
*-homomorphism. Therefore Vv(f)V~x = S*. It follows that v(f) = t(/),
and, by the Stone-Weierstrass theorem, v = r.

Corollary 6.2. An operator T in B(H) is similar to a normal operator if
and only if the Gelfand map on appr(P)" is 1-1 and onto.

The following theorem is a basis for the proofs of most of the results in this
section.

Theorem 6.3. If T is similar to a normal operator and tt is a bounded
homomorphism on C*(T), then tt(T) is similar to a normal operator.

Proof. Since T is similar to a normal operator, it follows that C(o(T)) is
isomorphic to appr(P)". However, appr(P)" Q C*(T); thus the restriction of
tt to appr(P)" induces a bounded homomorphism t on C(a(T)) such that
tt(T) G ran t. Hence tt(T) is similar to a normal operator.

Suppose T is similar to a normal operator. Write T — V~XSV where S is
normal and V is invertible. Then the mapping t: C(o(T)) -» appr(P)"
defined by r(g) = V~xg(S) Vis called the spectral homomorphism of T. (Note
that while S, V are not unique, the mapping t is unique.) The mapping t gives
rise to a (unique) functional calculus: if <p is a continuous complex function,
then <p(T) is defined to be r(q>\o(T)). Note that if T = Tx © T2, then
<p(T) = <p(Tx) © <p(T¿) for every continuous complex function <p.

Definition 6.4. We define functions a, ß: B(H) -> [1, oo] by

,_.      Í oo      if Pis not similar to a normal operator,
*   '     [ ||t||    if t is the spectral homomorphism of T,

ß(T) = inf{max(||*l, HK-'H): V~XTVis normal}

for every T in B(H). Note that if T is not similar to a normal operator, then
jß(P) = inf0= oo.

Proposition 6.5. Suppose T G B(H). Then
(l)ß(T) < a(T) < ß(T)\
(2) if T = P, © T2 © • • • , then a(T) = sup a(T„) and ß(T) - sup ß(T„),
(3) if S and Tare approximately equivalent, then a(S) — a(T),
(4) if it is a representation ofC*(T), then a(Tr(T)) < a(T),
(5) a(T) = sup{a(îr(P)): w is an irreducible representation of C*(T)}.

Proof. Statements (2), (3) are easily proved, and (4) follows from the fact
that representations of C*-algebras are contractive. Statement (5) follows
from (2)-(4) and the fact [44, Proposition 2.1] that every operator is
approximately equivalent to a direct sum of irreducible operators. Statement
(1) follows from the proofs of XV.6.1 and XV.6.2 in [14].
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For the notation and terminology used in the next corollary see [20].

Corollary 6.6. If (X, 9H, ju) is a a-finite measure space and r: X -» B(H)
is essentially bounded and weakly Borel measurable, then a(J® T(x)d¡i(x)) =
ess-sup a (t(x)).

Proof. This follows immediately from parts (2), (3) of Proposition 6.5 and
Theorem A in [20].

We can now prove some theorems about limits of operators that are similar
to normal operators. The set of operators that are similar to normal operators
is not closed; its closure was shown by D. Voiculescu to be the set of
biquasitriangular operators [45]. The following eight results describe some
closure properties of certain subsets of this set. The first theorem shows that a
is lower semicontinuous.

Theorem 6.7. If [T„] is a sequence of operators with sup a(Tn) < oo and
\\Tn-T\\-+0,then

(1) a(T)< sup a(T„),
(2) ||<]p(Pn) — <p(P)|| -*0for every continuous complex function <p on C.

Proof. Let S = P, © T2 © • • • . Then \\p(S, S*)\\ > lim||/>(P„, T*)\\ =
\\p(T, T*)\\ for every noncommutative polynomial p(x,y). Hence there is a
representation it of C*(S) such that tt(\) = 1 and tt(S) = P. It follows from
Proposition 6.5 that a(T) < a(S) = sup a(T„). Since © = {A0 © Ax © A2
© • • • : \\A„ - Aq\\ -»0} is a C*-algebra, it follows that appr(P ®TX@T2
©•••)" Ç %. If <p is a continuous complex function, then cp(T) © <p(Pj)
© • • • = <p(T © P, © • • • ) G %. Therefore (2) is true.

The preceding theorem remains true when norm convergence is replaced
by convergence in the *-strong operator topology. A net {P„} converges
*-strongly to an operator P if T„ -> P strongly and T¡¡ -> P* strongly. (For
more information about this topology see [16].) All of the ""-algebraic
operations are (sequentially) "-strongly continuous. It therefore follows from
Theorem 5.1 that a (norm) continuous decomposable function is (sequen-
tially) *-strongly continuous. The following theorem should be compared with
[6, Theorem 2.3]. Its proof can be obtained by replacing convergence by
*-strong convergence in the proof of the preceding theorem.

Theorem 6.8. If {P„} is a sequence with sup a(T„) < oo and if T„-*T
*-strongly, then

(1) a(T)< sup a(Tn),
(2) (p(T„) ->q)(T) *-strongly for every continuous complex function <p on C.

In [16, §2.1] J. Ernest indicated the importance of determining which
important classes of operators are Borel sets in the *-strong operator
topology.
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Corollary 6.9. The set of operators similar to normal operators is an Fa in
the "-strong operator topology.

Corollary 6.10. Suppose r, R are positive numbers and let % = {P:
a(T) < r and \\T\\ < R}. For each continuous complex function f there is a
continuous decomposable function <p such that <p(T) = f(T)for every T in %.

Proof. Choose a sequence {P„} that is *-strongly dense in $ and let
S= TX@T2@ • • ■ . Since f(S) G C*(S), it follows from [21, Theorem 2.2]
that there is a continuous decomposable function <p such that <p(S) = f(S).
Hence <p(T„) = f(T„) for n = 1, 2,_It follows from Theorem 6.8 and the
density of the P„'s that <p(P) = f(T) for every P in ©.

Normality can be described in terms of an equation: T*T — 11* = 0. The
following theorem is an analogue for operators similar to normal operators.
Recall that sub B(H) = U [B(M): M is a subspace of H).

Theorem 6.11. Suppose r, R are positive numbers and let % = [T: a(T) <
r and \\T\\ < R}. Then there is a continuous decomposable function <p such that
® = [T EB(H): <p(P) = 0}.

Proof. Let % = {P G sub B(H): a(T) < r and ||P|| < R). It follows
from Proposition 6.5 that a direct sum of operators is in %x if and only if
each summand is in %x. Moreover, it follows from Theorem 6.8 that $, n
B(H) is *-strongly closed. Clearly "35, is closed under unitary equivalence. It
follows from [21, Theorem 5.1] that there is a continuous decomposable
function <p such that ©, = {P G sub B(H): <p(T) = 0}. Thus 9=9,n
B(H) = {P G B(H): cp(T) = 0}.

It should be noted that if it could be proved that ß(S) = ß(T) whenever
S, T are approximately equivalent operators, then all of the previous results
of this section would remain true with a replaced by ß. It would be
interesting to know the precise relationship between a and ß.

Although it seems that most of the results of this section are aimed at
showing operators to be similar to normal operators, it should be noted that
they can be used to show that an operator is not similar to a normal operator.
To illustrate this idea consider the bilateral weighted shift P whose 2"th
weight is \/n for n = 1, 2,..., and whose other weights are all 1. If U is the
(unweighted) bilateral shift, then (U*)2TU2" converges *-strongly to a
bilateral weighted shift S with one 0 weight and the rest of the weights equal
to 1. Since ker S ¥= ker S2, it follows that S is not similar to a normal
operator. Thus, by Theorem 6.8, P is not similar to a normal operator.
Techniques such as this one are used by the author and T. Hoover in a
forthcoming paper that includes a characterization of those weighted trans-
lation operators that are similar to normal operators.
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We now turn our attention to subnormal operators. If we replace *-strong
convergence in Theorem 6.8 by strong convergence, then the limit operator P
is not necessarily similar to a normal operator. In fact the strong closure of
the set of normal operators is the set of subnormal operators [7, Theorem 3.3],
[38]; the next theorem is an analogue of this fact. All of the remaining results
in this section are related to the work of W. W. Saffern [34].

Theorem 6.11. If {P„} is a sequence with sup a(T„) < oo, and if Tn-*T
strongly, then T is similar to a subnormal operator.

Proof. Let S = P, © P2 © • • • and define isometries W„: #-> .ff(co) for
n = 1, 2, . . . , by Wxf = f © 0 © 0 © • • • , W2f = 0 © / © 0
©•••,••• for every/in H. Since C*(S) is separable and the unit ball of
B(H) is weakly compact, there is a subsequence {V„} of [W„) such that
[V^AV„) is weakly convergent for every A in C*(S). Let ty(A) denote the
weak limit of { V*A V„} for each A in C*(S). Then i// is a completely positive
map on C*(S) such that t(l) = 1, t(S) = P, and t(S*S) = 4>(S*)t(S). It
follows from a theorem of Stinespring [39] that there is a Hubert space %
containing H and a representation tt: C*(S) -> B(%) such that $(A) =
Ptt(A)\H for every A in C*(T) (where P denotes the projection of % onto
H). Since \p(S*S) = \¡/(S*)\f/(S), it follows that H is an invariant subspace
for tt(S); whence P = tt(S)\H. Since sup a(T„) < oo, we have that S, and
hence tt(S), is similar to a normal operator. Thus tt(S)\H is similar to a
subnormal operator.

The following theorem shows that the set of operators similar to subnormal
operators is closed under approximate similarity.

Theorem 6.12. IfTis approximately similar to a subnormal operator, then T
is similar to a subnormal operator.

Proof. Suppose S is subnormal, { V„) is an invertibly bounded sequence,
and V~XSV„ -» P. Since S is subnormal, there is a normal operator B and a
sequence {£/„} of unitary operators such that U%BU„ -> S strongly [7]. Thus
there are subsequences {U„k} and {V^} such that (V^U^B^V^)^ T
strongly. It follows from Theorem 6.11 that P is similar to a subnormal
operator.

Define a function y: P(iP)-»[l, oo] by y(T) = M{max(\\V\\, \\V-X\\):
V~XTV is subnormal}. It is easily shown that y(Tx © P2 © • • • ) =
sup y(T„), and that the same result holds for uncountable direct sums. Also if
M is an invariant subspace for an operator P, then y(T\M) < y(T).

Theorem 6.13. If T is similar to a subnormal operator and m is a repre-
sentation of C*(T), then tt(T) is similar to a subnormal operator. Moreover,
sup{y(ir(T)): m is a representation of C*(T)} < oo.
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Proof. First suppose that <ir(T) acts on a separable Hubert space. It follows
from [44, Theorem 1.5] (s. e [19, Theorem 3.3]) that there is an operator S that
is approximately equivalent to P such that ir(T) is unitarily equivalent to a
direct summand of 5(oo). Clearly y(7r(T)) < y(S(oo)) - y(S). It follows from
the preceding theorem that y(S) < oo. Thus tt(T) is similar to a subnormal
operator. If {tt„} is a sequence of representations of C*(T) on separable
Hubert spaces, then ttx © tt2 © • • • is also such a representation. Hence
sup y(irn(T)) < oo. Since every representation of C*(T) is a direct sum of
representations on separable Hubert spaces, it follows that sup{y(w(P)): tt is
a representation of C*(T)) < oo.

Corollary 6.14. An operator T is similar to a subnormal operator if and
only if sup{y(it(T)): m is an irreducible representation of C*(T)} < oo.

Corollary 6.15. IfTis similar to a subnormal operator, then sup{y(\p(T)):
\p is a completely positive map on C*(T) such that ty(T*T) = \p(T*)\p(T)} <
oo.

Proof. Suppose ip is a completely positive map and ip(T*T) = }p(T*)\p(T).
As in the proof of Theorem 6.11 we can use Stinespring's theorem [39] to find
a Hubert space % and a representation tt: C*(T) -> B(%) such that if is an
invariant subspace of tt(T) and tt(T)\H = i//(P). Hence y(i>(T)) < y(ir(P)).

Theorem 6.16. Suppose { P„} is a sequence with sup y(P„) < oo and Tn-*T
strongly. Then T is similar to a subnormal operator.

Proof. Let 5 = P, © P2 © • • • , and imitate the proof of Theorem 6.11 to
construct a completely positive map $ on C*(S) such that \p(l) = 1, \¡*(S) =
P, and \1>(S*S) = ip(S*)\p(S). It follows from the preceding corollary that
P = $(S) is similar to a subnormal operator.

Corollary 6.17. The set of operators similar to subnormal operators is an Fa
in the strong operator topology.

It is possible to prove an analogue of Theorem 6.10 for subnormal opera-
tors using the strong closure of {P: y(r) < r, ||T\\ < R) for %.

We conclude with an application. Since every compact subnormal operator
is normal, it follows that ß(K) = y(K) for every compact operator K. The
following theorem extends this idea to direct integrals of compact operators;
the set of all such operators includes the n-normal and üf-normal operators
(see [16, p. 181D-

Theorem 6.18. A direct integral of compact operators is similar to a subnor-
mal operator if and only if it is similar to a normal operator.

Proof. It follows from [20] that a direct integral of compact operators is
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approximately equivalent to a direct sum Kx © K2 © • • • where Kx, K2,...
are compact operators. The theorem now follows from the fact that ß(Kx ©
K2 ©..-) = sup ß(K„) = sup y(K„) - y(Kx © K2 ©• • • ).

7. Another viewpoint. There is a simple representation of B(H) in which the
asymptotic concepts previously considered translate back into their non-
asymptotic counterparts. Let lx(B(H)) denote the C*-algebra of all bounded
sequences in B(H), and let cQ(B(H)) denote the ideal of those sequences that
converge (in norm) to 0. Let & denote the quotient /°°(P(iP))/c0(P(/r)), and
let v: B(H) -» & be the representation that sends an operator P onto the
(equivalence class of the) sequence (T, T, T,...).

If S Q B(H), then r(S)' is the set of (equivalence classes of) all bounded
sequences {A„) such that \\A„S - SA„\\ -»0 for every 5 in §. Therefore the
inverse image in B(H) of p(S)" is appr(S)". Similarly, appr(Alg(Lat S)) is
the inverse image of Alg(Lat r(S)). Furthermore, two operators S, T are
approximately equivalent (approximately similar) in B(H) if and only if v(S),
v(T) are unitarily equivalent (similar) in &.

While this representation does not yield immediate solutions to all of the
asymptotic problems in this paper, there are some results that can be
obtained very easily. As an illustrative example, we present a significant
improvement of R. Moore's asymptotic Fuglede theorem [30]. The proof here
was shown to me by W. Zame, and essentially the same proof was discovered
earlier by M. Radjabalipour. Using similar techniques, B. Chan proved
Theorem 3.5. A version of this theorem that is valid in every Banach algebra
is contained in [22].

Theorem 7.1. If { T„), {S„} are bounded sequences of operators such that
(\)\\T*nTn-TnT*n\\-»0,™d
(2)\\SnT„-TnSn\\->0,

then
(3)\\S„T:-T:Sn\\^0.
Proof. Statement (1) says that {P„} is normal in &, and (2) says that {S„}

commutes in ¿E with { P„}. Thus (3) is just what Fuglede's theorem implies.
One of the reasons that the preceding proof worked so easily is that

Fuglede's theorem is a theorem about C*-algebras. Most theorems about
commutants, reflexivity, and similarity are not theorems about C*-algebras,
and it should be expected that proofs as simple as the preceding one do not
exist for such theorems. However, there are many very interesting questions
about commutants, reflexivity, and similarity in the algebra & that deserve
consideration.

The author is indebted to W. Zame for several stimulating conversations
about the algebra &.
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8. Nonseparable cases. It is the purpose of this section to extend some of the
preceding results in the case when the set S of operators or the Hubert space
H is nonseparable. In the case when S is not separable it is necessary to
define objects like appr(S)" in terms of nets rather than sequences; with that
proviso, most of the theorems of the preceding sections remain true for
arbitrary S and H. In this section we prove a general asymptotic double
commutant theorem and a theorem about nonseparable, strongly reductive,
commutative algebras.

Throughout this section S denotes a (possibly nonseparable) nonempty set
of operators acting on a (possibly nonseparable) Hubert space H.

The following lemma is useful in extending results from the case of
separable § and separable H to the case of separable § and nonseparable H.

Lemma 8.1. If S is a separable, closed subset of B(H) and T G B(H), then
T G S precisely when T\M G (S \M)~ for every separable subspace M of H
that reduces both § and P.

Proof. Assume that P G S and let d be the (norm) distance from P to S.
Let Sx, S2,... be dense in S. Since § is separable, it follows that H is an
orthogonal direct sum of separable subspaces that reduce both § and P.
Hence, for each positive integer n, we can choose a separable subspace M„
that reduces both § and P such that ||(P - S„)\M„\\ > d/2. Let M be the
closed linear span of Mx, M2,.... Then M is separable, M reduces both S
and P, and P|M G (§ \M)~. The converse is obvious.

We now extend the definitions of appr(S)" and appr(Alg(Lat(S ))) to the
case when S is nonseparable. More precisely, appr(S)" = (P: ||^4nP - P4„||
->0 for every bounded net {A„} such that \\A„S — SA„\\ ->0 for each S in
§}, appr(Alg(LatS))={P: ||(1 - P„)TPn\\ -+0 for every net {P„} of
projections such that ||(1 - P„)SP„|| -» 0 for each S in § }.

It is an easy exercise to show that in the case when § is separable these
definitions agree with those of previous sections.

The following theorem is the main tool used to extend results from the case
of separable § to the case of nonseparable S. First, we need some "distance"
formulas analogous to those studied by W. Arveson [5] (see also [44, Remark
following Corollary 1.9]).

If § Ç B(H) and P G B(H), then define 5 (P, §) = sup{lim„ sup||^„P -
TA„\\: (An) is a net of contractions such that \\A„S — SA„\\ -»0 for every S
in §}, p(T, S) = sup{lim„ sup||(l - P„)PP„||: {P„} is a net of projections
such that ||(1 - P„)SP„|| -> 0 for every S in S}.

It is easily shown that if S is separable, then "net" can be replaced by
"sequence" in the preceding definitions. It is also clear that P G appr(S)"
precisely when 6(T, S) = 0,  and  P G appr(Alg(Lat §)) precisely when
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p(T, S) = 0. Recall that an operator A is a contraction if \\A\\ < 1.

Theorem 8.2. If S C B(H) and T G B(H), then
(1) appr(S)" = U {appr(ft)": 61 C S, 61 separable},
(2) appr(Alg(Lat S)) = U {appr(Alg(Lat 61)): 61 Q S, 61 separable),
(3)8(T, S) - inf{5(P, 61): 61 ç S, 61 separable},
(4) p(P, S) = inf{p(P, 61): 61 ç §, 61 separable}.
Proof. (3) It is clear that 0^ 61 ç S implies 5(P, §) < 8(T, 61). Hence

Ô(P, S) < d where í/ represents the infimum in (3). For each finite subset <%
of S and each positive number e it follows from d < 5(P, ^) that there is a
contraction /Í = y4(5;e) such that \\AT - TA\\ > d - e and \\AF - FA\\ < e
for each P in *$. If we define a partial ordering on pairs of the form (W, e) by
(SF, e) < (% e,) if ^ Ç 5, and e, < e, then [A„: n = (f, e), e > 0, f is a
finite subset of § } is a net such that \\A„S — SA„\\ -> 0 for every S in § and
lim,, sup|M„ P- P4.ll > d. It follows that 5 (P, %)> d.

(Y) It is clear that appr(S)" D U {appr(6l)": 61 Ç S, 61 separable}. To
show the reverse inclusion suppose P G appr(S)". Then fi(P, S) = 0. It
follows from (3) that, for each positive integer n, there is a separable subset
% of S such that 8(T, %) < \/n. Let 61 = U~_, 6ln. Then a is
separable and S(T, 61) = 0; whence P G appr(6l)".

The proofs of (4) and (2) are very similar to the proofs of (3) and (1),
respectively.

We can now extend the asymptotic double commutant theorem to the
nonseparable case. Note that we could define 8U(T, S) = sup{lim„ sup|| U„T
- TU„\\: {£/„} is a net of unitary operators such that || U„S - SUn\\ ->0 for
every S in § }, and 8p(T, S) = sup{hmn sup||P„P - PP„||: {P„} is a net of
projections such that \\P„S — SP„\\ ->0 for every S in §}, and prove
theorems about these functions analogous to the preceding theorem.

Theorem 8.3. Suppose 0=£ S C B(H). Then
(l)C*(S) = appr(S US*)",
(2) C*(S) = {P: \\U„T- Pi/„||-»0 for every net {(/„} of unitary operators

such that || U„S - SU„\\ -» Ofor every S in § },
(3) C*(S) = {P: ||P„P- PP„||-»0/or every net {P„} of projections such

that \\P„S - SP„\\ -> Ofor every S in S }.

Proof. We only prove (1); the proofs of (2), (3) are similar (using 8U and 8P,
respectively). First suppose S is separable and P G appr(§ u S *)". If M is a
separable subspace of H that reduces both S and P, then, by Theorem 2.2,
P|M G appr(S U S*)"|M C appr((§ u S*)"\M) = C*(S|M) = C*(S)\M.
It therefore follows from Lemma 8.1 that P G C*(§). If S is not separable,
then it follows from Theorem 8.2 that appr(§ u § *)" = U {appr(6l U
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61*)":   &  separable,  61 ç §} - U {C*(<&):   61  separable,  6lç§} =
C*(S).

A subset S of B(H) is strongly reductive if S* Ç appr(Alg(Lat §)). The
following theorem was proved by Apóstol, Foia§, and Voiculescu [3, Theorem
2] in the case when S and H are both separable.

Theorem 8.4. Suppose § is a strongly reductive, commutative algebra of
operators in B(H). Then the norm closure of S is C*(§).

Proof. Suppose § is separable and P G C*(S). If M is a separable
subspace of H that reduces both § and P, then S \M is strongly reductive,
and by [3], (S|M)"= C*(S|M) = C*(S)|M. Thus T\M G (S|M)-. There-
fore, by Lemma 8.1, P G S". Thus §"= C*(S). Next suppose § is not
separable. We can assume that § is norm closed. We need only show that
§ - S*. Suppose S G §, and let 61o = {S}. It follows from Theorem 8.2
that there is a separable subset 6^ of § such that 6l<* Ç appr(Alg(Lat 6li)).
Similarly, there is a separable subset 61^ of § such that 61* Ç
appr(Alg(Lat 6lj)). Proceed inductively to. choose a sequence {6l„} of
separable subsets of  §   such that  61* Q appr(Alg(Lat 6l„+1)) for n =
0, 1.Let 61 be the union of all of the 6l„'s. It follows that 61 is
separable and strongly reductive. Thus S* G éE„(6l) C S ; whence, S = S*
= C*(§).

The following proposition shows why it is necessary to use nets when
defining appr(S)" or appr(Alg(Lat §)) when S is not separable; in particu-
lar, Theorems 8.2 and 8.3 would no longer be true.

Proposition 8.5. Let ty be the C*-algebra of all operators that are diagonal
with respect to a fixed orthonormal basis ex,e2,... for H, and let <p: ty -» C be
a unital representation that annihilates ^ n %(H). Let S be the C*-algebra of
all operators of the form D © <p(D) acting on H © C. Then § ^ {P: \\A„T -
TA„\\ -> 0 for every bounded sequence {A„} such that \\A„S - SA„\\ -> 0 for
each S in S }.

Proof. Let 65 denote the set on the right-hand side of the nonequation in
the theorem. We shall show that 0 © 1 G 65. Assume via contradiction that
P = 0 © 1 G 65. Let e0 be a unit vector in ran P, and let Qk be the projection
onto the span of ex,..., ek for k = 1, 2,-Since P G 65 and S = S *, it
follows that there is a bounded sequence {A„} of Hermitian operators and a
positive number e such that \\A„S - &4„|| ~*0 for everv 5 in § and \\A„T —
TA„\\ > e for n = 1, 2,.... There is no loss of generality in assuming that
(A„e0, e¿) = 0 for n — \,  2,...   (otherwise,  replace each A„  by A„ —
(A„e0, e0)). Therefore, \\A„T - TA„\\ = ||4,e0ll > e far » - 1, 2.Let
nx = 1, and choose kx so that HÔ^/VoH > e- Choose n2 > nx and k2 > kx so
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that \\QkAne0\\ - \\(QkA„2 - Angk)e0\\ < t and \\(Qki - Qk)A„e0\\ >t.
Proceed inductively to choose increasing sequences {«,} and {kj} of positive
integers so that \\QkA„j+e0\\ < e and ||(g^+i - Qk)A„j+e0\\ > e far/- 1,
2,_Let D = 2(<2a:2,+i - Qk2)> and let S = D © <p(Z>). It is clear that
<p(D) is 0 or 1. There is no harm in assuming that <p(D) = 0 (otherwise,
replace D by 1 — D). However,

■(*<*♦, - A,+ ,S)e0|| = 11^,'oU > ll(&w - Ô*„H,+1'oll > e
for y = 1, 2.However, S G S, and 114S - S4ill ->0 yields the desired
contradiction.

Combining the techniques of this section with those of the proof of part (2)
of Theorem 4.10 we can easily prove that every norm closed algebra of
analytic Toeplitz operators is approximately reflexive (generalizing Sarason's
result [36] that every weakly closed algebra of analytic Toeplitz operators is
reflexive).
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