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ABSTRACT. - We consider the generalized Riemann problem for nonlin-
ear hyperbolic systems of conservation laws. We show in this paper that
we can find the entropy solution of this problem in the form of an
asymptotic expansion in time and we give an explicit method of construc-
tion of this asymptotic expansion. Finally, we define from this expansion
an approximate solution of the generalized Riemann problem and we give
error bounds.

RESUME. - On considere le probleme de Riemann generalise pour des
systèmes hyperboliques non linéaires de lois de conservation. On trouve
la solution entropique de ce probleme sous la forme d’un développement
asymptotique que l’on construit par une methode explicite. On en deduit

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire - 0294-1449
Vol. 5/88/02/179/29/$4,90/(g) Gauthier-Villars



180 PH. LE FLOCH AND P. A. RAVIART

une solution approchee du problème de Riemann generalise et l’on estime
l’erreur.

I. INTRODUCTION

Let us consider the nonlinear system of conservation laws

In (1.1), is a p-vector and f, g are sufficiently smooth
functions from R x IR+ x RP into RP. We introduce the so-called generalized
Riemann problem (G.R.P.) for the system ( 1.1): given two smooth
functions IR- [R+ ~ find a function u : f~ x which
is an entropy weak solution of ( 1. 1) and satisfies the initial condition

For the sake of simplicity, we set:

and

Then, we assume that the eigenvalues ~,i (u) of the p x p Jacobian matrix
A (u) = Df (u) are all real and distinct:

We denote by a basis of corresponding right (column) eigen-
vectors and by (li(u)T)1~i~p a basis of left (row) eigenvectors, i. e.,

Annales de l’Institut Henri Poincaré - Analyse non linéaire



181THE GENERALIZED RIEMANN PROBLEM

with the normalization

As usual, we suppose that the i-th characteristic field is either genuinely
nonlinear, i. e.

or linearly degenerate, i. e.

Then, as it is well known (cf [10] for instance), f or |u0R-u0L I small

enough the classical Riemann problem

has an entropy weak solution u° which is self-similar, i. e., of the form

and consists of at most (p + 1) constant states separated by rarefaction
waves or shock waves or contact discontinuities. Moreover, a solution of
this type is necessarily unique.
Next concerning the G.R.P. ( 1.1) . ( 1. 2), we recall the following result

due to Li Ta-tsien and Yu Wen-ci [8]. Again for I small enough,
there exists a neighborhood (!) of the origin in R x f~ + such that the G.R.P.
(1.1). (1.2) has a unique entropy weak solution u in (!) which has the
same structure than u°. The fonction u consists of (p+ 1) smoothness open
domains D separated either by smooth curves x = cp (t) passing through
the origin or by rarefaction zones of the form

where the curves and x=(p(t) are smooth characteristic curves
passing through the origin. Moreover, u has a shock or a contact disconti-
nuity across each curve x = cp (t) while is continuous across the characteris-

Vol. 5, n° 2-1988.



182 PH. LE FLOCH AND P. A. RAVIART

tic curves and x = c~ (t). For general results concerning the G.R.P.
in d space dimensions, we refer to Harabetian [6].

In fact, the solution u is smooth in the closure D of each smoothness
domain D. Hence, using a Taylor expansion of u at the origin, we obtain
for (x, t) E D

where, for each integer k >_ o, vk : ~ -~ vk (~) is a polynomial of degree k.
On the other hand, in a rarefaction zone R, the solution u is singular at
the origin. However, setting

one can check (cf [8], chapter 5 and Lemma 7 below) that the function u:
( ~, t) -~ u ( ~, t) = u (~t, t) is smooth in a neighborhood of [a, a~] x [0, ~].
Therefore, we may write f or t > 0 small enough

which yields the asymptotic expansion (1.8) of u in the rarefaction zone R.
The purpose of this paper is to derive an explicit construction of the

asymptotic expansion ( 1. 8) of the entropy solution u of the G. R. P. ( 1. 1).
( 1. 2) in each domain of smoothness of u. We shall also construct the

smooth curves x = cp (t) [resp. x = cp (t), x = cp (t)~ through expansions of the
f orm 

-
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183THE GENERALIZED RIEMANN PROBLEM

Moreover, in many practical problems related to the gas dynamics equa-
tions, one can compute explicitely the coefficients al (resp. al, 0’1) and
the function V1. This point will be developed in a subsequent paper [4];
see also [3]. For a related approach and its application to the construction
of 2nd order difference methods of approximation of the gas dynamics
equations based on Van Leer’s method, [11], we refer to the work of Ben
Artzi and Falcovitz ([1], [2]).
An outline of the paper is as follows. In Section 2, we derive the

equations satisfied formally by the functions vk and the numbers ak, ~k,
In Section 3, we show how to construct the functions vk in order to

satisfy the equations of Section 2. Section 4 is devoted to the proof of an
existence and uniqueness result for the asymptotic expansion ( 1. 8). Finally,
we give in Section 5 a L~ -bound for the error u ( . , t) - uk ( . , t) where the
function uk = uk (x, t) is constructed in a suitable way from the truncated

expansion

For a different approach of a particular generalized Riemann problem,
we refer to Liu [9] and Glimm-Marshall-Plohr [5].

2. PRELIMINARIES

Starting from the asymptotic expansion ( 1. 8), we begin by deriving the
ordinary differential equations satisfied by the functions vk. Let us first
make the change of independent variables (x, t) -~ (~ _ (x/t, t). Setting
u (~, t) = u (ç t, t) and noticing that

the equation ( 1. 1) gives

Vol. 5, n° 2-1988.



184 PH. LE FLOCH AND P. A. RAVIART

Next, we plug the expansion

in the equation (2.1). On the hand, we have

On the other hand, we may write

or

and

where the functions f k and gk depend only on §, v°, ..., Vk - 1. Hence, we
obtain

which gives for k = 0

and for k >_ 1

Concerning the functions f k and gk, we have the following result which
will be useful later on.

LEMMA 1. - Assume that v~ is a polynomial function of degree
_ l (which values in for Then, the function

Annales de 1’lnstitut Henri Poincaré - Analyse non linéaire



185THE GENERALIZED RIEMANN PROBLEM

~ ~ f k ( ~, vo ( ~), ... , uk -1 ( ~), ... , uk -1 ( ~)) is a polynomial of degree
-k- l.

Proof - Let us first consider the function fk. We observe that, in the
arguments of the function f(03BEt, t, v° + tvl +...+ tk -1 I7k - 1 + tk vk + ... ),
the coefficients of tl are polynomial of degree ~ I in ç provided that vl is
a polynomial of degree 0 _ l _ k -1. In this case, by using a Taylor
expansion of the function f at the origin, it is a simple matter to check
that, in the corresponding expansion of f(ç t, t, v° + ... + tk vk + ... ) in

powers of t, the coefficient of tk is of the form

A + polynomial of degree in ç.

This proves the desired property for fk. Using exactly the same method
of proof gives the corresponding result for the function 

In all the sequel, we shall set

so that ( 2 . 6) becomes

Note that the equation (2.8) is valid in each interval of smoothness of

the function v°. Moreover, it follows from Lemma 1 that, in any such

interval, the function hk is a polynomial of degree ~k-1 if each Vi is a

polynomial of degree, 0 ~ l _ k -1.
Let us next determine the jump conditions satisfied by the function vk

at the points of discontinuity of the function v°. Let x = cp (t) be a curve
passing through the origin which separates two smoothness domains of u.
By using a Taylor expansion of the function t - cp (t) at the origin, we
can write

so that by (1.8)

Vol. 5, n° 2-1988.



186 PH. LE FLOCH AND P. A. RAVIART

Hence, we obtain

where Zk E /RP depends only on ~°, , , , , 6k -1 ~ vo~ ... ~ Uk - ~ .
Now, we consider the case where u is continuous across the curve

x = cp (t), i. e.,

If we denote by

the jump of a function w = w (~) across the point cro, (2.10) yields for
k =0

and for k >_ 1

Hence the function v° is continuous at the point a° while vk is generally
discontinuous at ?~ for k >_ 1.

Next, we turn to the case where u is discpntinuous across the curve
x = cp (t). We start from the Rankine-Hugoniot jump relations

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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On the one hand, using (2. 9) and (2.10), we observe that

and therefore

where ak E IRP depends only on a°, . , . , ~k -1, vo, . , , , vk - ~ , On the other
hand, using again ( 2 . 9) and ( 2 .10), we obtain

so that

Vol. 5, n° 2-1988.



188 PH. LE FLOCH AND P. A. RAVIART

Then, combining ( 2 . 13) and ( 2 . 14) yields

where wk~Rp depends only on a°, ... , vo, ..., Therefore the

Rankine-Hugoniot jump conditions give for k = 0

and for k >_ 1

Finally, we remark that for large enough, say u = u (x, t)
is a smooth function, so that we may write

and

where

Taking into account the initial condition ( 1. 2) gives

so that by ( 1. 18)

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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As a consequence of the above derivation, we find that v° satisfies the
classical relations ( 2 . 5), ( 2 . 11 ); ( 2 . 16) and ( 2 . 18) which characterize a
piecewise smooth self-similar weak solution u° (x, t) = v° (x/t) of the Riem-
ann problem ( 1. 6). Thus, we choose u° to be the entropy solution of ( 1. 6)
introduced in Section 1.

3. CONSTRUCTION OF THE ASYMPTOTIC EXPANSION 1 :
CHARACTERIZATION OF THE FUNCTION vk

As we have already recalled it in Section 1, the function u° consists of
at most (p + 1 ) constant states separated by i-waves, 1 _ i _ p. If we denote
by Q? (respectively ~°) the lower bound (resp. the upper bound) of the
speeds of the i-wave and by v?, the (p + 1 ) constant states, we
have by ( 2 .18)

Moreover, if the i-wave is a rarefaction wave, we find for 

On the other hand, if the i-wave is a shock wave or a contact discontinuity,
we get

For these results, see again [10].
Let us determine the structure of the function vk. We know from the

results of Section 2 that the singularities of vk occur at the points ~°, a?
1 _ i  p. Hence, we begin by considering the case of an interval (8i, Q’?+1)
where v0 is constant, with the convention that 03C300=- oo and 03C30p+1 = + 00.
LEMMA 2. - Assume that ~ belongs to the interval (6°, a° 1), 

Then, for all k >_ 1, the general solution of the differential equation (2 . 8) is

Vol. 5, n° 2-1988.



190 PH. LE FLOCH AND P. A. RAVIART

given by

where v~ is an arbitrary vector of (~p and ~ -~ pk (~) is a polynomial function
of degree _ k -1 with values in I~p which depends only on v°, ..., vk -1.

Proof - We proceed by induction. Since v° is constant in the interval
(a°, a° 1), the differential equation (2. 8) becomes

Assume that Vl is a polynomial of degree 0 _ l  k -1, in this interval.
Then, using Lemma 1, we obtain that the function hk defined by (2. 7) is
a polynomial of degree ~k-1 in the above interval. Writing

we look for a particular solution of (3. 6) of the form

We have

Hence, pk is a solution of (3.6) if and only if

The above equations determine ak-1, a~ _ 2, ... , ao and therefore the poly-
- nomial pki of degree ~k-1 in a unique way.

It remains to find the general solution of the homogeneous differential

equation

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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Clearly, this solution is given by

where vk is an arbitrary vector of Thus, the general solution of (3.6)
is given by ( 3 . 5) and is indeed a polynomial of degree  k, which proves
the result..

Next, we consider the case of an interval ( a°, a?) which corresponds to
an i-rarefaction wave for the function u°. Setting

we are looking for the functions § - a~ (~), 1 __ j  p.

LEMMA 3. - Given the function hk and the scalars ~3~ E R, 1 _-j  p, j ~ ~,
there exists a unique function vk of the form (3. 7) solution of the differential
equation (2. 8) in the interval (~°, ~°) which satisfies the initial conditions

Proof - Writting

and using (3. 7), the equation (2. 8) gives

On the one hand, we have by (3.2)

On the other hand, we can write using again ( 3 . 2)

Vol. 5, n° 2-1988.
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Hence, setting

the differential equation (2. 8) becomes

Using ( 3 . 3), this gives for 1 _ j  p

Consider first the equations (3 . 9) We obtain a system of 
linear differential equations in the unknown fonctions a~, j ~ i. Since

the interval [6°, a°] this differential system is

nondegenerate so that the Cauchy problem corresponding to the initial
conditions (3 . 8) is well posed in [~°, ~°]. Hence the functions § - a~ (~),
j ~ i, are uniquely determined in this interval.

Consider next the equation (3.9) f or j = i. Using (1.4) (the i-th charac-
teristic field is genuinely nonlinear) and (3.3) again, we find

which gives the function § - ak (~) in (~°, ao].
In order to obtain the function uB we need to determine the vectors

0 _ i _ p, which appear in Lemma 2. A first step consists in relating
two consecutive vectors and vk for 1 _ i _ p. Consider first the case

Annales de I’Institut Henri Poincaré - Analyse non linéaire
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where the i-wave of u° is a discontinuity wave. We denote by x = cp~ (t)
the smooth curve such that

across which the function u is discontinuous. We write

LEMMA 4. - Assume that u° contains an i-shock wave or an i-contact
discontinuity. Then, for all k >_ 1, there exists a vector qk E f~p which depends
only on v°, ..., ..., such that

Proof - The jump condition (2.17) becomes here

where w~ depends only on cr?, ..., ... , vx -1. Since

this gives

Next, using (3.5), we have

and

so that ( 3 .12) holds with

Vol. 5, n° 2-1988.
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Let us turn to the case where the i-wave of u° is a rarefaction wave.
We denote here by x = cpi (t) and x = cpi (t) the smooth characreristic curves
which bound the corresponding rarefaction zone of u and we set:

LEMMA 5. - Assume that u° contains an i-rarefaction wave. Then, for
all k >__ l, there exist two vectors qx ( ~.o~ ... , 6x - ~ .. _ ~ and

qi = q~ ..., ~ - I, v°, ..., vk -1 ) such that

Proof - Let us derive (3.15). The jump condition (2.12) gives

where z~ depends only on ~°, ..., ~k - ~, v°, ... , v’~ - ~ . Since

and by (3.2)

we obtain

But we have by ( 3 . 5)

so that ( 3 .15) holds with

The relation (3.16) is derived in a completely similar way..

Annales de l’Institut Henri Poincaré - Analyse non lineaire
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Finally, we determine the vectors vo and vp. Assuming that the functions
uL and UR are smooth, we may write in a neighborhood of the origin

LEMMA 6. - We have for all k >_ 1

Proof. - Using Lemma 2, we get for §  ~°

Since po is a polynomial of degree  1~ -1, we find

Hence, it follows from (1.8) that

in a neighborhood of the origin. Comparing with (3. 17), this yields
for all k >_ 1.

The 2nd conclusion (3 .19) is derived analogously by considering
the case § > ~p. .

4. CONSTRUCTION OF THE ASYMPTOTIC EXPANSION II :

THE EXIS TENCE AND UNIQUENESS RESULT

Assume now that, for 0 _ l _ k - l, we have constructed the functions v’
and computed the numbers ~z or the pairs ( ~1, ~i), 1 _ We want to

determine the function vk together with the numbers 03C3ki or the pairs
( 6k, 6k), 1 _ i -_p, in order to satisfy the conditions of the previous section.
We shall show that this is indeed possible when the states uL and uR are
sufficiently close. In this case, we now (cf again [10]) that there exists a

Vol. 5, n° 2-1988.



196 PH. LE FLOCH AND P. A. RAVIART

vector ..., E ( E small enough, such that

Moreover, if the i-wave of u° is a shock wave, we have EI  0 and

On the other hand, if the i-wave is a contact discontinuity, the sign of EI
is arbitrary and

Finally, if the i-wave is a rarefaction wave, we have and

Then, we can state the main result of this paper which gives a practical
procedure of the asymptotic expansion ( 1. 8).

THEOREM 1. - Let k >-1 be an integer and suppose that the functions vl
and the numbers ai or the pairs (a~, 1 _ i - p, have been already determ i- 

.

ned for l =1, ..., k -1. Then, if B is small enough, there exists a

unique function vk and a unique set of numbers ak or pairs ~k), 1 _ i _ p,
solution of the equations (2. 8), (3. 12), (3 . .15), ( 3 . 16) and (3. 19).

Proof. - Using Lemma 2, we have only to determine the vectors vk
and the scalars crk or ( ~k, 1- i _ p. In the sequel, we shall look for the
vectors vk in the form

»

(1) We begin by considering the case where the i-wave of u° is either a

shock wave or a contact discontinuity. Let us then check that the equation
(3.12) is equivalent to a system of (p -1 ) linear equations of the form

where the coefficients aijm, bijm and cij depend on E~ (and k) but remain
bounded as Ei tends to zero.

Annales de l’Institut Henri Poincaré - Analyse non linéaire



197THE GENERALIZED RIEMANN PROBLEM

Setting

and using (4. 5), the equation (3.12) becomes

By multiplying (4. 8) on the left by and taking into account the
normalization (1.3), we obtain forj=I,...,p

Now, it follows from (4. 1) that

and therefore

Similarly, we find

On the other hand, we have in the case of a shock wave

and

which gives

Vol. 5, n° 2-1988.
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and

Note that (4.12) and (4.13) hold trivially in the case of a contact disconti-
nuity.

It follows from (4. 11) that for small enough

Hence (4. 9) gives for j = i

Replacing ~ki by its value (4. 14) in (4 . 9), we obtain for j~i

Now, dividing the above equation by (03BBj (v° 1) - 6o)k+ 1 and using (4. 10)-
(4. 13), we obtain (4.6) with the indicated properties of the coefficients

bijm and cim so that the equations (4.6) and (4.14) are indeed

equivalent to ( 3 . 12) .
(2) Next consider the case where the i-wave of u° is a rarefaction wave.

Let us check that a system of the form (4. 6) still holds. Using (3. 7) and

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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( 4 . 5), the jump relation ( 3 .15) can be written

which gives by ( 1. 3)

and

on the other hand, the jump relation (3. 16) becomes

Therefore, we obtain using again (1.3)

and

Hence, combining (4.16) and (4.18), we obtain for j~i

It remains to relate a J ( ~° + o) and oc~ ( a° - o), j ~ i. This is achieved by
solving the differential equation (2. 8) in the interval (g?, a?). In fact, we
have already seen in the proof of Lemma 3 that the equations ( 3 . 9), j ~ i,
represent a linear differential system of the form

where

Vol. 5, n° 2-1988.
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Observe that, the matrix (A (vi) - ~) is invertible and the

matrices (039B(v0i)-03BE)-1 and A(03BE) together with the (p -1 )-
vector f(03BE) are bounded independently of Ei. Moreover, we have by (4 .1)
and (4. 4)

Hence, we obtain

where the coefficients dijm and eim remain bounded as Ei tends to zero.
Finally, we notice that by (4.1) and (4. 4) again

and

Thus, dividing (4.19) by and using (4 . 20) together with
(4.16) yield (4.6), where again the coefficients and cim remain

bounded as Ei tends to zero. Hence, in the case of an i-rarefaction wave,
solving the equations ( 2 . 8), (3.15) and (3.16) amounts to solve a system
of the form (4.6).

(3) It follows from the first two parts of the proof that the vectors vk,
0  i _ p, may be characterized as the solutions of the equations (4. 6),
1 _ i, j __ p, j ~ l, and (3.19). Therefore, we obtain a linear system of

p (p -1 ) + 2 p = p (p + 1 ) equations in the p (p + 1) unknowns 
1 _ j _ p. For proving that this linear system has a unique solution, it

suffices to check that the corresponding homogeneous system

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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admits only the trivial solution. Now, it is a simple matter to show that
this is indeed the case when Ei = 0, 1 ~ i p. Hence, the matrix associated
with the left-hand side of (4.21) is invertible so that (4.21) admits only
the trivial solution at least for I E small enough. Therefore, the vector vk,
0 _ i _ p, are uniquely determined for I E small enough.

Finally, if the i-wave of u° is a shock wave or a contact discontinuity,
(4. 7) and (4.14) give ak. On the other hand, if the i-wave is a rarefaction
wave, Lemma 3 enables us to determine vk in the interval [~°, ~°]. More-
over, (4. 15) and (4.17) give ak and ak respectively. This ends the proof
of the theorem..

5. AN APPROXIMATION RESULT

Up to now, we have derived an asymptotic expansion (1.8) of the

solution u of the G.R.P. (1.1). (1.2) which is valid in the domains of

smoothness of u. In this section, we want to use the truncated expansion

in order to construct a function which approximates u in a
neighborhood of the origin.

First, we set

in the case of an i-shock wave or an i-contact discontinuity and

in the case of an i-raref action wave. In fact, in all the sequel, it will be

convenient to set

Vol. 5, n° 2-1988.



202 PH. LE FLOCH AND P. A. RAVIART

for an i-shock wave or an i-contact discontinuity. Observe that 
[resp. cpk (t)] is a Taylor expansion of cpi (t) [resp. cp~ (t)] at the origin so
that 

Next, for we introduce the domain

with the convention that

On the one hand, the function u is smooth in the closure D; of Di. On
the other hand, using Lemma 2, we know that the restriction Vi, of the
function Vi to the interval (~°, 6° 1) is a polynomial of degree __ I which
can be trivially extended on a larger interval. Hence the function

is a polynomial of degree in the two variables (x, t) which coincides
with a truncated Taylor expansion at the origin of the restriction of u to
the domain D1. Hence, we have

Then, we define the domain

and we set

Finally, we consider a rarefaction zone

In such a zone Ri, the solution u is singular at the origin but we have

Annales de l’lnstitut Henri Poincaré - Analyse non linéaire
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LEMMA 7. - The function u : (03BE, t) ~ u(03BE, t) E Rp defined by

is smooth in the closed domain Ri.

Proof - Let us introduce the one-parameter family of i-characteristic
curves of Ri, t - X (t; defined for ~° _ ~ _ a° by

We know (cf [8]) that the functions and

(a, t) - v (o, t) = u (X (t; a), t) are smooth in [a°, 6°] x [o, b]. Next, we

observe that the equation

defines a smooth function (~, t) ~ a (~, t) for § in a neighborhood of
[~o~ 8?] and t E [0, ~], ~ small enough. In fact, we have

so that

is positive in a neighborhood of [~°, x { 0 }, which proves our assertion.
Hence the function

is smooth. The desired conclusion follows from

Vol. 5, n° 2-1988.
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Note that the restriction Je’ i of Vk to the interval ( a°, 8?) can be extended
in a smooth function defined in a neighborhood of [a°, 6°] and that

is a truncated Taylor expansion of the function t - u (ç, t) at the origin, ç
being considered as a parameter. Hence, we obtain for all ç in a neighbor-
hood of [6°, 6°]

Then, we introduce the approximate rarefaction zone

and we set

Using ( 5 . 6) and ( 5 . 9), we have thus defined a piecewise smooth approxim-
ation uk of u for t _ ~. Let us now state

THEOREM 2. - We have for x, t > 0 small enough

and

Proof - Assume that

Then setting

Annales de l’Institut Henri Poincaré - Analyse non linéaire
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we can write

First, using ( 5 . 4), ( 5 . 6), we obtain if ek = u - uk

and

Next, we write for 1 _ i _p

On the one hand, we have by (5.3)

On the other hand, it follows from (5. 7) and (5. 9) that

which yields the estimate (5.10).
We turn to the proof of the estimate (5.11). When the numbers

0 for all 1 ~ i _ p, the whole segment Is = {(0, t) ; 0  t __ ~ ~,
b small enough, is contained in one of the sets Din D~ or Ri n R~ so
that (5.11) is an obvious consequence of (5.4) or (5.7). It remains

only to consider the case where there exists a curve such that
~ 

cp (0) = cp’ (0) = 0 which separates two dimains of smoothness of u. Assume
first that there exists an integer m with 2  m _ k + 1 such that (0) ~ 0.
Then, we have for t small enough
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and again Is is contained in some set Di n Dk or Ri n Rk which implies
(5.11).
Assume next that (0) = 0, 0 _ m _ k + 1, and therefore

Assume in addition that the exact solution u is discontinuous across the

curve x = cp (t) and consider, for specificity, the case where cp (t) is positive,
We want to check that

We have by (5.4) and (5.7)

On the one hand, using ( 5 . 13) gives

so that

On the other hand, using again ( 5 . 13), we find

Now, since cp’ (t) = O 1), we have by the Rankine-Hugoniot jump condi-
tions

As

and

the assertion ( 5 . 12) follows.
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In the case where cp ( t) --_ o, we obtain

Finally, we assume that the exact solution u is continuous across the curve
x = cp (t). Argueing as above, we obtain

which implies (5. 11)..
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