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An Asymptotic Expansion Scheme
for Optimal Investment Problems�
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153, Japan

Abstract. We shall propose a new computational scheme for the evaluation of the optimal portfolio
for investment. Our method is based on an extension of the asymptotic expansion approach which
has been recently developed for pricing problems of the contingent claims’ analysis by Kunitomo
and Takahashi (1992, 1995, 2001, 2003), Yoshida (1992), Takahashi (1995, 1999), Takahashi and
Yoshida (2001). In particular, we will explicitly derive a formula of the optimal portfolio associated
with maximizing utility from terminal wealth in a financial market with Markovian coefficients, and
give a numerical example for a power utility function.
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1. Introduction

We shall propose a new computational scheme for the evaluation of the optimal
portfolios for investment. Our method is based on the asymptotic expansion ap-
proach, a unified method of efficient computation justified by Malliavin-Watanabe
(1987) theory, which has been recently developed for pricing problems of the
contingent claims’ analysis by Kunitomo and Takahashi (1992, 1995, 2001, 2003),
Yoshida (1992), Takahashi (1995, 1999), Kim and Kunitomo (1999) and Takahashi
and Yoshida (2001). They have developed the method through deriving formu-
las for practical examples such as average options, basket options, and options
with stochastic volatility and with stochastic interest rates in a Markovian set-
ting, as well as bond options (swaptions), average options on interest rates, and
average options on foreign exchange rates with stochastic interest rates in the
Heath–Jarrow–Morton (1992) framework. In this paper, we extend the method
to portfolio problems. In particular, we will explicitly derive the formula of the
optimal portfolio associated with maximizing utility from terminal wealth in a
complete market, where the short term risk-free rate and the market price of risk

�The earlier version of this work entitled as An Asymptotic Expansion Scheme for Optimal
Portfolio for Investment was presented at symposium held by Research Institute for Mathemat-
ical Sciences, Kyoto University in December 9, 2000. We really thank the referee for helpful and
constructive comments which lead us to reorganization of this paper.
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are described by some functions of a random vector following a multi-dimensional
Markov process. Moreover, we provide numerical examples for power utility func-
tions. In general, it is quite difficult to compute an optimal portfolio explicitly when
the investment opportunity is stochastic in a multiperiod setting. The stochastic
control approach initiated by Merton (1969, 1971) gives a solution in terms of the
derivatives of the value function: While the solution can be evaluated numerically
based on the Hamilton–Jacobi–Bellman equation, the implementation is not easy
especially for the case of multiple assets. In the martingale approach initiated by
Karatzas et al. (1987) and Cox and Huang (1989), Ocone and Karatzas (1991)
proposed the representation of optimal portfolios by utilizing the Clark formula.
Although their representation formulas were derived in general setting, explicit
evaluation was obtained only for logarithmic utility functions or a financial market
with deterministic coefficients, which were already known without their formulas.
Starting with the Clark formula, we will present an explicit expression for the
optimal portfolio in a concrete and important setting where key variables such
as the short term risk-free rate and the market price of risk are some functions
of a random vector whose evolution is described by a multi-dimensional Markov
process. Moreover, our method can be easily extended to the optimal portfolios
associated with maximizing utility from both consumption and terminal wealth,
and to the hedging portfolios associated with contingent claims. Regarding the re-
lated works, Detemple et al. (2000) utilizes Monte Carlo simulations to investigate
optimal portfolios for a power utility function in several Markovian examples. The
organization of this paper is as follows. In Section 2 we explain the problem of the
optimal portfolio for investment and restate the problem in a Markovian setting.
In Section 3 we briefly explain basic tools for an asymptotic expansion approach.
In Section 4, we illustrate our method using a power utility function, and derive
the second-order scheme explicitly. In Section 5 we also derive the second-order
scheme for general utility functions. In Section 6 we give a numerical example.
Finally, in appendix, we provide proofs of lemmas, show the result of the third-
order scheme for power utility functions, and discuss the validity of our method
for the numerical example considered in Section 6.

2. Representation of Optimal Portfolio

2.1. REPRESENTATION OF OPTIMAL PORTFOLIO FOR INVESTMENT

We will briefly describe the financial market and introduce the representation of
the optimal portfolio for investment derived by Ocone and Karatzas (1991).

We start with basic setup of the financial market. Let (�,F , P ) probability
space and T∈ (0,∞) denotes some fixed time horizon of the economy. w(t)=
(w1(t), . . . , wr(t))∗, 0 � t � T is Rr-valued Brownian motion defined on
(�,F, P ) and {Ft }, 0 � t � T stands for P -augmentation of the natural filtration,
Fw
t = σ (w(s); 0 � s� t). Here, we use the notation of x∗ as the transpose of x.

Si(t), i = 1, . . . , r and S0(t) denote the prices at time t ∈ [0, T ] of the risky
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asset i and of the risless asset, respectively. The prices are assumed to follow the
stochastic processes: For t ∈ [0, T ],

dSi = Si(t)

[
bi(t) dt +

r∑
j=1

σij (t) dwj(t)

]
, Si(0) = si, i = 1, . . . , r,

dS0 = r(t)S0(t) dt, S0(0) = 1, (1)

where we suppose that r(t), bi(t) and σij (t), i, j = 1, . . . , r are bounded and pro-
gressively measurable with respect to {Ft}. We also assume the nondegeneracy
condition; for the r × r matrix σ (t) ≡ {σij (t)}1 � i,j � r there exists a real number
ε > 0 such that

ξ ∗σ (t, ω)σ (t, ω)∗ξ � ε|ξ |2; ∀ξ ∈ Rr , (t, ω) ∈ [0, T ] ×�.

Then, the stochastic process of an investor’s wealth denoted byW(t) are expressed
as

dW(t) = [r(t)W(t) − c(t)] dt + π(t)∗[(b(t)− r(t)1) dt + σ (t) dw(t)], (2)

where W(0)=W > 0 is the initial capital, 1 denotes the vector in Rr with all ele-
ments equal to 1, c(t) denotes the consumption rate, b(t)= (b1(t), . . . , br(t))

∗, and
π(t)= {πi(t)}∗

i=1,...,r denotes the portfolio. c(t) and π(t) satisfy the integrability
condition;∫ T

0
{|π(t)|2 + c(t)} dt < ∞ a.s.

Next, let A(W) denote the set of stochastic processes (π, c)which generateW(t)�
0 for all t ∈ [0, T ] given W(0) = W . We call (π, c) is admissible for W if
(π, c) ∈ A(W).

The problem of maximizing utility from terminal wealth is formulated as
follows:

sup
(π,c)∈A(W)

E[U(W(T ))], (3)

where E[·] denotes the expectation operator under P , and U denotes a utility
function such that

U : (0,∞) → R,

a strictly increasing, strictly concave function of class C2

with U(0+) ≡ lim
c↓0
U(c) ∈ [−∞,∞), U ′(0+) ≡ lim

c↓0
U ′(c) = ∞

and U ′(∞) ≡ lim
c→∞U

′(c) = 0. (4)

Let the market price of risk θ(t) for t ∈ [0, T ] an Rr-valued progressively measur-
able bounded process defined by

θ(t) = σ (t)−1[b(t)− r(t)1].
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Then, the martingale measure denoted by P0 is defined as P0(A) = E[1AZ(T )] for
all A ∈ FT where

Z(t) = exp

(
−

∫ t

0
θ(s)∗ dw(s)− 1

2

∫ t

0
|θ(s)|2 ds

)
, 0 � t � T .

We note that w0(t)≡w(t)+
∫ t

0 θ(u) du for 0 � t � T is a standard Brownian mo-
tion under P0.

Regarding the problem of maximizing utility from terminal wealth, it is well
known that the optimal wealth level of terminal wealth given by W(T )=
I (Y(W)H0(T )) and that the value function V (W) := sup(π,c)∈A(W) E[U(W(T ))]
can be computed as V (W)=G(Y(W)), where G(y) := E[U(I (yH0(T )))]; 0 <
y < ∞ (see for instance Theorem 7.6 in Karatzas and Shreve, 1998, p. 114). Here,
a continuously differentiable function I : (0,∞)→ (0,∞) (which is expressed as
I ∈ C1((0,∞); (0,∞))) denotes the inverse of U ′(·), and Y(·) denotes the inverse
of the continuous decreasing function:

X (y) = E0[β(T )I (yH0(T ))] = E[H0(T )I (yH0(T ))], 0 < y < ∞
which we assume maps (0,∞) into (0,∞), where β(t)≡ 1/S0(t), H0(t)≡
β(t)Z(t) denotes the state price density at t and E0[·] denotes the expectation
operator under P0.

Ocone and Karatzas (1991) provides the following theorem by utilizing the
Clark formula regarding the problem of the optimal portfolio for investment as-
sociated with maximizing utility from terminal wealth.

THEOREM (OCONE AND KARATZAS, 1991). Suppose that a utility function
satisfies the conditions (4) and that

I (y)+ |I ′(y)|�K(yα + y−β), 0 < y < ∞
holds for some real positive constants α, β and K. Then the optimal portfolio
admits the representation;

π∗(t)σ (t) = − 1

β(t)

{
θ∗(t)E0[β(T )Y(W)H0(T )I

′(Y(W)H0(T ))|Ft ] +

+ E0

[
β(T )φ′(Y(W)H0(T ))

(∫ T

t

Dtr(u) du +

+
r∑

α=1

∫ T

t

{Dtθα(u)} dwα0 (u)

)∣∣∣∣Ft
]}
, (5)

where φ(y) ≡ yI (y), 0 < y < ∞, and Dtr(u) and Dtθα(u) for α = 1, 2, . . . , r
denote the Malliavin derivatives of r(u) and θα(u).
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Here we suppose that θ and r satisfy the following conditions:

1. R-valued progressively measurable process r is bounded; for a.e. s ∈ [0, T ]
r(s, ·)∈D1,1, where D1,1 denotes the Sobolev space Dp,s with (p, s)= (1, 1),
(s, ω)→Dr(s, ω)∈ (L2([0, T ]))r admits progressively measurable version,
and

‖r‖a1,1 ≡ E
[(∫ T

0
|r(s)|2 ds

)1/2

+
( ∫ T

0
‖Dr(s)‖2 ds

)1/2]
< ∞,

where ‖ · ‖ denotes the L2([0, T ]) norm, and ‖Dr(s)‖2 ≡∑r
i=1 ‖Dir(s)‖2.

2. Rr-valued progressively measurable process θ is bounded; for a.e. s ∈ [0, T ]
θ(s, ·) ∈ (D1,1)

r , (s, ω) → Dθ(s, ω) ∈ (L2([0, T ]))r
2

admits a progressively
measurable version, and

‖θ‖a1,1 ≡ E
[( ∫ T

0
|θ(s)|2 ds

)1/2

+
( ∫ T

0
‖Dθ(s)‖2 ds

)1/2]
< ∞,

where ‖Dθ(s)‖2 ≡∑r
i,j=1 ‖Diθj (s)‖2.

3. For some p > 1 we have

E
[(∫ T

0
‖Dr(s)‖2 ds

)p/2]
< ∞,

E
[(∫ T

0
‖Dθ(s)‖2 ds

)p/2]
< ∞.

Proof. See Theorem 4.2 of Ocone and Karatzas (1991). �
More intuitive formula can be obtained under original measure P .

THEOREM 1. Under the same conditions as in theorem (Ocone and Karatzas,
1991), the optimal portfolio has the representation under measure P ;

π∗σ (t) =
{
W(t)− E

[
H0(T )

H0(t)
φ′(Y(W)H0(T ))|Ft

]}
θ∗(t)−

− E
[
H0(T )

H0(t)
φ′(Y(W)H0(T ))

( ∫ T

t

Dtr(u) du+

+
r∑

α=1

{∫ T

t

{Dtθα(u)} dwα(u)+
∫ T

t

{Dtθα(u)}θα(u) du

})∣∣∣∣Ft
]
,

(6)

where W(t) denotes the optimal wealth at time t , and is determined by

W(t) = E
[
H0(T )

H0(t)
I (Y(W)H0(T ))|Ft

]
. (7)

Proof. The relation (7) is well known. (See Theorem 7.6 of Karatzas and Shreve,
1998 for instance.) Rewrite Equation (5) under P by using (7), φ′(y)= I (y)+
yI ′(y), and w0(t)=w(t)+

∫ t
0 θ(u) du to obtain the result. �
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In the optimal portfolio of Equation (6), the first term on the right-hand side rep-
resents the optimal portfolio in one-period setting that is sometimes called mean-
variance portfolio, while the second term is specific to multi-period setting, which
Merton (1971) named hedging demand in a sense that the term represents demand
for hedging against randomness in the future; specifically, the terms Dtr(u) and
Dtθα(u) express the changes of the riskless interest rate and the market price of
risk in the future, respectively.

It is well known that the optimal portfolio π(t) is easily derived for two simple
cases: (See for instance Chapter 3 in Karatzas and Shreve, 1998.) For the case of a
log utility function U(x)= log x,

π∗(t) = θ∗(t)σ (t)−1W(t),

where θ(t)= σ (t)−1[b(t) − r(t)1], since φ≡ 1 and hence φ′ ≡ 0. This is exactly
the same as mean-variance portfolio in one-period portfolio problem; that is, the
optimal portfolio per wealth is given by the vector of the excess expected returns of
risky assets over the riskless asset multiplied by the inverse of variance–covariance
matrix. In this sense, an investor with a log utility is sometimes called a myopic
investor. For the case of a power utility function defined by U(x)= xδ/δ, δ < 1,
δ �= 0 for x ∈ (0,∞), if r(·) and θ(·) are deterministic,

π∗(t) = 1

1 − δ
θ∗(t)σ (t)−1W(t) (8)

because Dtr(u)≡ 0 and Dtθα(u)≡ 0. However, if r(·) and θ(·) are not determin-
istic, it is not easy to evaluate π(t) explicitly for a power utility function.

2.2. OPTIMAL PORTFOLIO FOR INVESTMENT IN A MARKOVIAN SETTING

In the spirit of Ocone and Karatzas (1991), we will consider more concrete and
important setting for practical purpose in the sequel.

From now on, we will consider a Wiener space on [t, T ] for some fixed t ∈ [0, T ]
and assume that all random variables will be defined on it. LetXε

u be a d-dimensional
diffusion process defined by the stochastic differential equation:

dXε
u = V0(X

ε
u, ε) du+ V (Xε

u, ε) dwu, Xε
t = x (9)

for u ∈ [t, T ]. Here we suppose that ε ∈ (0, 1] denotes a parameter used as the
asymptotic expansion, V0 ∈C∞

b (Rd × (0, 1]; Rd ) and V = (Vβ)rβ=1 ∈C∞
b (Rd ×

(0, 1]; Rd ⊗ Rr), where C∞
b (Rd × (0, 1];E) denotes a class of smooth mappings

f : Rd × (0, 1] →E whose derivatives ∂n
x ∂

m
ε f (x, ε) are all bounded for n ∈ Zd+

such that |n|� 1 and m∈ Z+. Note that time-dependent-coefficient diffusion pro-
cesses are included in the above equation if we enlarge the process to a higher-
dimensional one. We also assume the bounded processes r(u) and θ(u) to be
r(u)= r(Xε

u) and θ(u)= θ(Xε
u), where r ∈C∞

b (R
d; R+) and θ ∈C∞

b (R
d; Rr ). We

remark that our framework includes a financial market with Markovian coefficients



AN ASYMPTOTIC EXPANSION SCHEME 159

of return processes as a special case, in which not only r(u) but also b(u) and σ (u)
are some functions of Xε

u.
Let Y εt,u be a unique solution of the d × d-matrix valued stochastic differential

equation:

dY εt,u =
r∑

α=0

∂xVα(X
ε
u, ε)Y

ε
t,u dwαu , Y εt,t = I (10)

Then, we have the representation of the optimal portfolio π(t) in our Markovian
setting, which is stated as a corollary of Theorem 1.

COROLLARY 1. The optimal portfolio under the Markovian setting (9) and (10)
is represented as follows:

π∗(t)σ (x) =
{
W − E

[
H0,t,T φ

′(YH0,t,T )

]}
θ∗(x)−

− E
[
H0,t,T φ

′(YH0,t,T )

(∫ T

t

∂r(Xε
u)Y

ε
t,uV (x, ε) du +

+
r∑

α=1

∫ T

t

∂θα(X
ε
u)Y

ε
t,uV (x, ε) dwα(u)+

+
r∑

α=1

∫ T

t

θα(X
ε
u)∂θα(X

ε
u)Y

ε
t,uV (x, ε) du

)]
, (11)

where W is a given wealth at time t , H0,t,T is defined by

H0,t,T ≡ H0(T )

H0(t)

= exp

(
−

∫ T

t

θ(Xε
u)

∗ dw(u)− 1

2

∫ T

t

|θ(Xε
u)|2 du−

∫ T

t

r(Xε
u) du

)
,

and Y is determined by the equation:

W = E[H0,t,T I (YH0,t,T )]. (12)

Proof. It is well known that

DtX
ε
u = Y εt,uV (X

ε
t , ε) = Y εt,uV (xt , ε), u� t,

and that

Dtf (X
ε
u) = ∂f (Xε

u)[DtX
ε
u] = ∂f (Xε

u)Y
ε
t,uV (xt , ε), u� t,

for f ∈ C∞
b (R

d; R). Apply those facts to Equation (6) with f (·)≡ r(·) or
θ(·). �

Our objective is to evaluate π(t) explicitly. It is possible to compute π(t) based
on a Monte Carlo simulation. However, it is path-dependent, besides, the functions
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φ′ is often irregular, and the error bounds are not yet fully investigated in such
a situation, while Kohatsu and Yoshida (2001) recently provided an error bound
to the Euler–Maruyama scheme for path-dependent functionals. Moreover, Monte
Carlo methods are not so useful from a computational viewpoint when a family of
stochastic differential equations is treated; especially, the sensitivity analysis which
controls the underlying stochastic differential equations is the case.

In the present article, we will propose a practical and more efficient scheme
for computing the optimal portfolio by utilizing the asymptotic expansion ap-
proach. On the asymptotic expansion approach, first-order asymptotics was pro-
posed in Kunitomo and Takahashi (1992) for geometric Brownian motion. In order
to obtain more precise approximation, the asymptotic expansion method was in-
troduced with the Malliavin calculus and investigated for the evaluation of path-
dependent contingent claims in Yoshida (1992), Takahashi (1995, 1999), Kunitomo
and Takahashi (1995, 2001, 2003), Kim and Kunitomo (1999), and Takahashi and
Yoshida (2001).

3. An Asymptotic Expansion Scheme

We will introduce basic tools for an asymptotic expansion scheme. First, we will
derive the asymptotic expansions ofXε

u and Y εt,u in (9) and (10), respectively, which
will provide the basis for the subsequent analysis. We start with a basic assumption,
the deterministic limit condition:

[A1] V (·, 0) ≡ 0.

It follows from [A1] that the limit process (X0
u)u∈[t,T ] is a unique deterministic

solution of the ordinary differential equation:

X0
u = x +

∫ u

t

V0(X
0
s , 0) ds. (13)

We further assume σ (X0
u) is nonsingular for all u∈ [t, T ]. Next, put Yt,s := Y 0

t,s

and then clearly, Yt,s is a unique deterministic solution of the ordinary differential
equation:

dYt,s = ∂xV0(X
0
s , 0)Yt,s ds, s ∈ [t, T ], Yt,t = I , (14)

where Yt,s ∈GL(d,R). Next, let D(t;u)= ∂Xε
u/∂ε|ε=0, E(t;u)= ∂2Xε

u/∂ε
2|ε=0

and Y [1]
t,u = ∂Y εt,u/∂ε|ε=0. ThenD(t;u),E(t, u) and Y [1]

t,u (u ∈ [t, T ]) are determined
by the following stochastic differential equations:

dD(t;u) = ∂xV0(X
0
u, 0)D(t;u) du +

r∑
α=0

∂εVα(X
0
u, 0) dwα,

D(t; t) = 0, (15)
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dE(t;u) = ∂xV0(X
0
u, 0)E(t;u) du + ∂2

xV0(X
0
u, 0)[D(t;u),D(t;u)] du +

+ 2
r∑

α=0

∂x∂εVα(X
0
u, 0)D(t;u) dwα +

r∑
α=0

∂2
ε Vα(X

0
u, 0) dwα,

E(t; t) = 0 (16)

and

dY [1]
t,s = ∂xV0(X

0
s , 0)Y [1]

t,s ds + ∂2
xV0(X

0
s , 0)[D(t; s)]Yt,s ds +

+
r∑

α=0

∂ε∂xVα(X
0
s , 0)Yt,s dwαs ,

Y [1]
t,t = 0. (17)

Here we used the fact that ∂xVα(·, 0)= 0 for α = 1, . . . , r. Moreover, we used
conventions dw0 = du, ∂x = gradx , ∂ε = ∂/∂ε, and notations;

∂2
xV0(X

0
u, 0)[D(t;u),D(t;u)] =

d∑
i=1

d∑
j=1

∂xi ∂xj V0(X
0
u, 0)D(i)(t;u)D(j)(t;u),

and

∂2
xV0(X

0
s , 0)[D(t; s)]Yt,s ds =

d∑
i=1

d∑
j=1

∂xi ∂xj V0(X
0
s , 0)D(j)(t; s)(Yt,s)(i,·)ds.

where D(i)(t; s) denotes the ith element of D(t; s) and (Yt,s)(i,·) denotes the ith
row of Yt,s . Further, we will use the following abbreviations:

Xu = X0
u, Yu = Y 0

u , Vαu = V [0]
αu = Vα(Xu, 0), α = 0, 1, . . . , r,

∂ = ∂x, ∂i = ∂xi .

Then, we obtain the asymptotic expansions of Xε
u and Y εt,u upto the order explictly

used in the later sections.

LEMMA 1. The asymptotic expansions of Xε
u and Y εt,u are obtained as follows:

Xε
u = Xu + εD(t;u)+ 1

2ε
2E(t;u) + o(ε2),

Y εt,u = Yt,u + εY [1]
t,u + o(ε),

where

D(t;u) = Yt,u

∫ u

t

Y−1
t,s

r∑
α=0

∂εVαs dwαs ,

E(t;u) = Yt,u

∫ u

t

Y−1
t,s

{
∂2V0s[D(t; s),D(t; s)] ds +

+ 2
r∑

α=0

∂∂εVαsD(t; s) dwα +
r∑

α=0

∂2
ε Vαs dwα

}
,
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Y [1]
t,u = Yt,u

∫ u

t

(Yt,s)
−1

[
∂2V0s[D(t; s)]Yt,s ds +

r∑
α=0

∂ε∂VαsYt,s dwαs

]
.

Proof. See appendix. �
Next, we will consider the asymptotic expansion of the following functional

which will appear frequently in the sequel. Define

ζ εt,u := exp

( ∫ u

t

a0(X
ε
s ) ds +

∫ u

t

a(Xε
s ) dws

)
, (18)

where a0 ∈C∞
↑ (R

d; R) and a ∈C∞
↑ (R

d; Rr ). Here, C∞
↑ (R

d; R)(C∞
↑ (R

d; Rr )) de-
notes a class of smooth functions f : Rd → R (f : Rd → Rr ) whose derivatives
are of polynomial growth orders. In addition, we assume the following integrability
condition for ζ εt,T :

[A2] For any p ∈ (1,∞), supε∈(0,1] ‖ζ εt,T ‖p < ∞.

Then, we easily obtain the next lemma.

LEMMA 2. Under condition [A2], ζ εt,T has an asymptotic expansion:

ζ εt,T ∼ ζ 0
t,T + εζ

[1]
t,T + 1

2ε
2ζ

[2]
t,T + · · · (19)

in Lp for every p > 1 (or in D∞) as ε ↓ 0. The first three coefficients are given by

ζ 0
t,T = exp

( ∫ T

t

a0(Xs) ds +
∫ T

t

a(Xs) dws

)
,

ζ
[1]
t,T = ζ 0

t,T

(∫ T

t

∂xa0(Xs)D(t; s) ds +
∫ T

t

∂xa(Xs)D(t; s) dws

)
,

ζ
[2]
t,T = ζ 0

t,T

{( ∫ T

t

∂xa0(Xs)D(t; s) ds +
∫ T

t

∂xa(Xs)D(t; s) dws

)2

+

+
∫ T

t

∂xa0(Xs)E(t; s) ds +
∫ T

t

∂xa(Xs)E(t; s) dws +

+
∫ T

t

∂2
xa0(Xs)[D(t; s),D(t; s)] ds +

+
∫ T

t

∂2
xa(Xs)[D(t; s),D(t; s)] dws

}
.

Proof. Taylor expansion under the integrability condition [A2] gives the
result. �

Finally in this section, we will derive an expansion of the following functional
which will be frequently used in the subsequent analysis:

gα,ε =
∫ T

t

∂f (Xε
u)Y

ε
t,uV (xt , ε) dwαu , α = 0, 1, . . . , r, (20)

where f ∈C∞
↑ (Rd; R).
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LEMMA 3. The asymptotic expansion of gα,ε is given by

gα,ε ∼ εgα,[1] + 1
2ε

2gα,[2] + · · ·
in Lp for every p > 1 (or in D∞(Rd)) as ε ↓ 0. Here, gα,[j ], j = 1, 2 de-
note the first derivative gα,[1] ≡ ∂gα,ε/∂ε|ε=0 and the second derivative gα,[2] ≡
∂2gα,ε/∂ε2|ε=0 of gα,ε , respectively, and they are expressed as follows:

gα,[1] =
∫ T

t

∂xf (Xu)[Yt,u∂εV (xt , 0)] dwαu ,

gα,[2] = 2
∫ T

t

d∑
i=1

d∑
j=1

∂i∂jf (Xu)D
(j)(t;u)Y (i,·)t,u ∂εV (xt , 0) dwαu +

+ 2
∫ T

t

d∑
i=1

∂if (Xu)Y
[1],(i,·)
t,u ∂εV (xt , 0) dwαu +

+
∫ T

t

d∑
i=1

∂if (Xu)Y
(i,·)
t,u ∂

2
ε V (xt , 0) dwαu . (21)

Proof. See appendix. �
4. The Scheme for Power Utility Functions

4.1. POWER UTILITY FUNCTIONS

In this section, we will illustrate our approach through an asymptotic expansion
of the optimal portfolio for power utility functions. We first assume that a utility
function in (4) is specified as so called a power function; that is

U(x) = xδ

δ
, x ∈ (0,∞), δ < 1, δ �= 0. (22)

Then, I (y) and φ(y) are given by I (y)= y−1/(1−δ), φ(y)= y−δ/(1−δ) and φ′(y)=
[−δ/(1 − δ)]I (y).

Hence, in this case the optimal portfolio given in Equation (11) is expressed as
follows:

π∗(t)σ (x) = 1

1 − δ
Wθ(x)∗ + δ

1 − δ
(Y)−1/(1−δ)E

[
(H0,t,T )

−δ/(1−δ) ×

×
( ∫ T

t

∂r(Xε
u)Y

ε
t,uV (x, ε) du +

+
r∑

α=1

∫ T

t

∂θα(X
ε
u)Y

ε
t,uV (x, ε) dwα(u)+

+
r∑

α=1

∫ T

t

θα(X
ε
u)∂θα(X

ε
u)Y

ε
t,uV (x, ε) du

)]
, (23)
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where

W = (Y)−1/(1−δ)E[(H0,t,T )
−δ/(1−δ)].

Here, we use the abbreviations r(u)= r(Xε
u) and θα(u)= θα(X

ε
u). We also notice

that (Y)−1/(1−δ) is expressed explicitly in terms of the current wealth W at time t .
Then, alternatively, the optimal proportions of risky assets in wealth denoted by
π∗(t)/W are given as follows:

π∗(t)/W = 1

1 − δ
θ(x)∗σ−1(x)+ δ

1 − δ

1

E[(H0,t,T )−δ/(1−δ)]
×

× E
[
(H0,t,T )

−δ/(1−δ)
( ∫ T

t

∂r(Xε
u)Y

ε
t,uV (x, ε) du +

+
r∑

α=1

∫ T

t

∂θα(X
ε
u)Y

ε
t,uV (x, ε) dwα(u)+

+
r∑

α=1

∫ T

t

θα(X
ε
u)∂θα(X

ε
u)Y

ε
t,uV (x, ε) du

)]
σ−1(x). (24)

We remark that Equation (8) which represents the optimal portfolio when r(·)
and θ(·) are not random does not have the second term on the right-hand side
of Equation (24), because in that case,

∂r(u) = ∂θα(u) ≡ 0.

Hereafter, our objective is to derive an asymptotic expansion of Equation (24);
because the first term on the right-hand side of Equation (24) is already obtained
explicitly by the current information at time t , we will derive an asymptotic expan-
sion of the second term applying the technique prepared in the previous section.
More specifically, we will consider the term E defined as follows:

E ≡ 1

E[(H0,t,T )
−δ/(1−δ)]

E
[
(H0,t,T )

−δ/(1−δ)
(∫ T

t

∂r(Xε
u)Y

ε
t,uV (x, ε) du+

+
r∑

α=1

∫ T

t

∂θα(X
ε
u)Y

ε
t,uV (x, ε) dwα(u)+

+
r∑

α=1

∫ T

t

θα(X
ε
u)∂θα(X

ε
u)Y

ε
t,uV (x, ε) du

)]
. (25)

4.2. PREPARATIONS

First, we notice that we can directly apply the expression (19) in Lemma 2 to
(H0,t,T )

−δ/(1−δ) in Equation (24) if we set ζ εt,u ≡ (H0,t,T )
−δ/(1−δ), and specify a0(X

ε
s )
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and a(Xε
s ) as

a0(X
ε
s ) =

(
δ

1 − δ

)
r(Xε

s )+ δ

2(1 − δ)
|θ(Xε

s )|2,

a(Xε
s ) =

(
δ

1 − δ

)
θ∗(Xε

s ).

Here, we note that [A2] is satisfied in this case because of the boundedness as-
sumptions of r(·) and θ(·).

Next, we will show the following expansions:

gεr ≡
∫ T

t

∂r(u)Y εt,uV (x, ε) du, g
α,ε
θ ≡

∫ T

t

∂θα(u)Y
ε
t,uV (x, ε) dwα(u),

g
α,ε

θ2 ≡
∫ T

t

θα(u)∂θα(u)Y
ε
t,uV (x, ε) du, (26)

which appear in the second term of Equation (24).

LEMMA 4. The asymptotic expansion of gεr , g
α,ε
θ , and gα,ε

θ2 defined in (26) upto the
ε2-order are obtained as follows:

gεr = εg[1]
r + 1

2ε
2g[2]
r + o(ε2), g

α,ε
θ = εg

α,[1]
θ + 1

2ε
2g
α,[2]
θ + o(ε2),

g
α,ε

θ2 = εg
α,[1]
θ2 + 1

2ε
2g
α,[2]
θ2 + o(ε2), (27)

where the coefficients of ε-order, that is, g[1]
r , gα,[1]

θ , and gα,[1]
θ2 are given by

g[1]
r =

∫ T

t

∂r [0](u)Yt,u∂εV (x, 0) du,

g
α,[1]
θ =

∫ T

t

∂θ [0]
α (u)Yt,u∂εV (x, 0) dwα(u),

g
α,[1]
θ2 =

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u∂εV (x, 0) du, (28)

and the coefficients of ε2-order, that is, g[2]
r , gα,[2]

θ , and gα,[2]
θ2 are given by

g[2]
r = 2

( ∫ T

t

∂2r [0](u)[D(t;u)]Yt,u du+
∫ T

t

∂r [0](u)Y [1]
t,u du

)
∂εV (x, 0)+

+
( ∫ T

t

∂r [0](u)Yt,u du

)
∂2
ε V (x, 0),

g
α,[2]
θ = 2

( ∫ T

t

∂2θ [0]
α (u)[D(t;u)]Yt,u dwα(u)+

+
∫ T

t

∂θ [0]
α (u)Y

[1]
t,u dwα(u)

)
∂εV (x, 0) +

+
(∫ T

t

∂θ [0]
α (u)Yt,u dwα(u)

)
∂2
ε V (x, 0),
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g
α,[2]
θ2 = 2

( ∫ T

t

{
(∂θ [0]

α (u))
2 + θ [0]

α (u)∂
2θ [0]
α (u)

}
[D(t;u)]Yt,u du+

+
∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Y

[1]
t,u du

)
∂εV (x, 0)+

+
(∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

)
∂2
ε V (x, 0). (29)

We use the following notations in (29):

(∂θ [0]
α (u))

2[D(t;u)]Yt,u ≡
d∑
i=1

d∑
j=1

(∂iθ
[0]
α (u))(∂jθ

[0]
α (u)){D(j)(t;u)}Y (i,·)t,u ,

∂2θ [0]
α (u)[D(t;u)]Yt,u ≡

d∑
i=1

d∑
j=1

∂i∂j θ
[0]
α (u){D(j)(t;u)}Y (i,·)t,u .

Proof. See appendix. �
4.3. THE SECOND-ORDER SCHEME

Finally, we will explicitly derive an asymptotic expansion of the optimal portfolio
upto the ε-order. We will also show the third-order scheme, that is an asymptotic
expansion formula upto the ε2-order in appendix.

We first define E(1) as

E(1) ≡ E
[
(H0,t,T )

−δ/(1−δ) ×
( ∫ T

t

∂r(Xε
u)Y

ε
t,uV (x, ε) du+

+
r∑

α=1

∫ T

t

∂θα(X
ε
u)Y

ε
t,uV (x, ε) dwα(u)+

+
r∑

α=1

∫ T

t

θα(X
ε
u)∂θα(X

ε
u)Y

ε
t,uV (x, ε) du

)]
.

Then, we have the following lemma.

LEMMA 5. E(1)’s expansion upto the ε-order is given by

E(1) = eδ/(1−δ) ∫ Tt r [0](u) du e[δ/2(1−δ)2]
∫ T
t |θ [0](u)|2 duε

(∫ T

t

∂r [0](u)Yt,u du+

+ 1

1 − δ

r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

)
∂εV (x, 0)+ o(ε). (30)

Proof. See appendix. �
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Then, using this result, we have the asymptotic expansion upto the ε-order of E
defined by Equation (25).

LEMMA 6. E’s expansion upto the ε-order is given by

E = ε

( ∫ T

t

∂r [0](u)Yt,u du+ 1

1 − δ

r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

)
×

× ∂εV (x, 0) + o(ε). (31)

Proof. See appendix. �
Finally, we have the following asymptotic expansion scheme of optimal portfo-

lios for power utilities.

THEOREM 2. Under assumptions [A1] and [A2], an asymptotic expansion upto
ε-order of the optimal portfolio for the power utility function (22) is given by

π∗(t)/W = 1

1 − δ
θ∗(x)σ−1(x)+ δ

1 − δ
ε

(∫ T

t

∂r [0](u)Yt,u du+ 1

1 − δ
×

×
r∑

α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

)
∂εV (x, 0)σ−1(x)+ o(ε).

(32)

Proof. Applying Lemma 6 to Equation (24) yields the result. �
Comparing to Equation (24) which represents the optimal portfolio for power util-
ity functions, we easily see the second term on the right-hand side in (32) provides
an approximation of the hedging demand that is specific to multiperiod setting, and
that appears on the second term on the right-hand side in Equation (24).

5. General Case

In this section, we will derive an approximation formula for more general class
of utility functions where the Malliavin calculus will be applied. That is, we will
consider an asymptotic expansion scheme of Equation (11). First, we remark that
the similar argument as in the power utility functions can be applied when T ≡ φ′
is smooth and for n ∈ Z+,

|T(n)(y)|�Kn(y
αn + y−βn), 0 < y < ∞,

where T(n)(y) ≡ ∂nT/∂yn, and Kn, αn and βn are positive constants.
Thus, in this section we will concentrate on an asymptotic expansion scheme

when T ≡ φ′ is nonsmooth. We also notice that in practical computation of optimal
portfolios for the smooth case we may apply the formula (48) in Theorem 3. We
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first consider the functional ζ εt,u defined in (18) which is equivalent to H0,t,u in
Equation (11). That is,

ζ εt,u ≡ H0,t,u, where

a0(X
ε
u) ≡ − 1

2 |θ(Xε
u)|2 − r(Xε

u), a(Xε
u) ≡ −θ(Xε

u)
∗.

We put the following nondegeneracy condition on a:

[A3] For some s ∈ [t, T ], a(X0
s ) �= 0.

Then the Malliavin covariance of ζ εt,T is given by the formula:

σζεt,T = (ζ εt,T )
2
∫ T

t

|ηε(u)|2 ds,

where the r-dimensional process ηε is expressed in:

ηε(u) = a(Xε
u)+

r∑
α=0

∫ T

u

∂xaα(X
ε
s )Y

ε
t,s(Y

ε
t,u)

−1V (Xε
u, ε) dwαs

with a= (aα)rα=1. Take a smooth function ϕ: R → [0, 1] such that ϕ(x)= 1 if
|x|� 1/2 and that ϕ(x)= 0 if |x|� 1. Define ξ ε by

ξ ε = 4|ζ εt,T /ζ 0
t,T − 1|2 + 4

( ∫ T

t

|a(X0
u)|2 du

)−1 ∫ T

t

|ηε(u)− a(X0
u)|2 du

and let ψε =ϕ(ξ ε). Obviously, ψε ∈ D∞. The exponent of ζ 0
t,T is a Gaussian ran-

dom variable, therefore [A3] yields the nondegeneracy of ζ 0
t,T :

σ−1
ζ 0
t,T

∈ ∩p>1L
p.

By using this fact and [A1], it is not difficult to show that

sup
ε∈(0,1]

‖ψεσ
−p
ζεt,T

‖1 < ∞

for any p > 1, and that

lim sup
ε↓0

ε−nP [ψε < 1] < ∞

for any n∈ N. In fact, the first inequality is trivial by the definition of ηε . The
second inequality follows from the Lp-estimate ‖ supu∈[t,T ] |Xε

u − X0
u|‖p = O(ε)

and [A2] with Taylor’s formula.
We will in the sequel assume the boundedness of aα (α = 0, 1, . . . , r). It will

be sufficient for our use. Clearly, Condition [A2] is satisfied, in fact, (ζ εt,T )
s is inte-

grable for any s ∈ R. We will consider the pull-back of ζ εt,T by a function T. Under
nondegeneracy of ζ εt,T the composition T(ζ εt,T ) with a (roughly speaking) locally
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integrable function T is well-defined in D̃−∞ (under truncation, if necessary), and
the stochastic expansion of T(ζ εt,T ) is valid. However, for practical purpose, we
need to extend the class of functions T below. It would be more natural to consider
Schwartz distributions on (0,∞) but we will not pursue it here. It requires global
modification of the theory since it is necessary to replace spaces of T and to prepare
another smoothing operator A−1 and estimates. The modification in our discussion
is like the finite part of x−λ

+ (λ > 1) in the sense that it removes the difficulty of
the lack of the local integrability around zero.

Let T is a measurable function such that

|T (y)|�K(yα + y−β) for some K > 0, α > 0 and β ∈ (0, 1). (33)

We will consider utility functions of which φ′ belong to class of T. The function T
may not be a Schwartz distribution but the composite function T(ζ εt,T ) is of course

well-defined in D̃−∞:

ψεT(ζ εt,T ) in D̃−∞. (34)

It should be noted that (ζ εt,T ) is nondegenerate under truncation by ψε . Let ĝα,ε be
a family of Wiener functionals admitting a stochastic expansion:

ĝα,ε ∼
∞∑
j=0

εj

j !
ĝα,[j ]

in D∞ as ε ↓ 0. Then one obtains the stochastic expansion:

ĝα,εψεT (ζ εt,T ) ∼
∞∑
j=0

εj B̃α
j [ĝ] (35)

in D̃−∞ as ε ↓ 0. Here the coefficients B̃α
j [ĝ] ∈ D̃−∞ are determined by the

formal Taylor expansion of the left-hand side after removing ψε . Expectation of
(35) yields the ordinary asymptotic expansion:

〈ĝα,εψεT (ζ εt,T ), 1〉 ∼
∞∑
j=0

εj 〈B̃α
j [ĝ], 1〉

∼
∞∑
j=0

εj
∫ ∞

−∞
T(z)pj(z; ĝ) dz, (36)

where 〈·, ·〉 denotes the generalized expectation, and pj (z; ĝ) are integrable smooth
functions, which can be described as the transform of the derivatives of the density
of ζ 0

t,T multiplied by the conditional expectation of certain smooth functionals
given ζ 0

t,T . On the other hand, if T ∈ S(R), that is T belongs to the Schwartz
space of rapidly decreasing C∞ functions on R, then with no problem we obtain

ĝα,εψεT(ζ εt,T ) ∼
∞∑
j=0

εjBα
j [ĝ] (37)
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and hence

〈ĝα,εψεT(ζ εt,T ), 1〉 ∼
∞∑
j=0

εj
∫ ∞

−∞
T(z)p̃j (z; ĝ) dz (38)

for some smooth functions p̃j (z; ĝ). Clearly, the expansion (36) coincides with the
expansion (38) for T ∈ S(R), and hence pj(z; ĝ) = p̃j (z; ĝ).

Summarizing,

〈ĝα,εψεT(ζ εt,T ), 1〉 ∼
∞∑
j=0

εj
∫ ∞

−∞
T(z)pj(z; ĝ) dz (39)

as ε ↓ 0, for measurable functions T admitting the representation T(y)= T̃ (yγ ),
where pj(z; ĝ) are determined as follows. By the formal Taylor expansion( ∞∑

j=0

εj

j !
ĝα,[j ]

)
T

(
ζ 0
t,T +

∞∑
j=1

εj

j !
ζ

[j ]
t,T

)
=

∞∑
j=0

εjBα
j [ĝ],

one has an expression of Bα
j [ĝ]:

Bα
j [ĝ] =

j∑
k=0

Jk∂
kT(ζ 0

t,T ),

for some functionals Jk, k = 0, . . . , j . Then pj(z; ĝ) is given by

pj(z; ĝ) =
j∑
k=0

(−∂z)k{E[Jk|ζ 0
t,T = z]pζ

0
t,T (z)},

where pζ
0
t,T (z) denotes the density function of ζ 0

t,T .
Next, we will explicitly derive the asymptotic expansion for the general

case based on the previous validity argument. We first note that we are able to
express Y in terms of W and x through a function Y =Y(W, x) because
W = E[H0,t,T I (YH0,t,T )] and I (·) is strictly decreasing. Hereafter, Y is regarded
as a constant since we will derive a general formula given W , x and a function
Y(·, ·). Once a concrete utility function is determined, Y(W, x) can be also eval-
uated by an asymptotic expansion even if explicit evaluation is difficult. See an
example of a power utility function in the previous section.

We need to evaluate the following terms in Equation (11):

E(2) ≡ E[H0,t,T φ
′(YH0,t,T )], (40)

E(3) ≡ E
[
H0,t,T φ

′(YH0,t,T )

(∫ T

t

∂r(Xε
u)Y

ε
t,uV (x, ε) du+

+
r∑

α=1

∫ T

t

∂θα(X
ε
u)Y

ε
t,uV (x, ε) dwα(u)+

+
r∑

α=1

∫ T

t

θα(X
ε
u)∂θα(X

ε
u)Y

ε
t,uV (x, ε) du

)]
. (41)
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We note that the validity of the expansions for E(2) and E(3) are guaranteed by the
discussions on T(ζ εt,T )ĝ

α,ε if we suppose that φ′ belongs to class of T. Moreover,
we remark that E(2) exhibits the part to be evaluated in the mean-variance com-
ponent, and E(3) represents the hedging demand.

We start with the stochastic expansion of H0,t,T around ε = 0.

LEMMA 7. The asymptotic expansion of H0,t,T upto ε2-order is given by

H0,t,T = H
[0]
0,t,T [1 + εH

[1]
0,t,T + 1

2ε
2H

[2]
0,t,T ] + o(ε2),

where

H
[0]
0,t,T = exp

(
−

∫ T

t

θ [0](u)∗ dw(u)− 1

2

∫ T

t

|θ [0](u)|2 du−

−
∫ T

t

r [0](u) du

)
,

H
[1]
0,t,T = R1 +G21 +G1, H

[2]
0,t,T = (H

[1]
0,t,T )

2 + R2 +G22 +G2.

Here we define R1, G21, G1, R2, G22 and G2 as follows:

R1 ≡ −
∫ T

t

∂r [0](u)D(t;u) du,

G21 ≡ −
r∑

α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)D(t;u) du,

G1 ≡ −
r∑

α=1

∫ T

t

∂θ [0]
α (u)D(t;u) dwα(u),

R2 ≡ −
∫ T

t

{∂2r [0](u)[D(t;u),D(t;u)] + ∂r [0](u)E(t;u)} du,

G22 ≡ −
α∑
r=1

∫ T

t

{∂θα(u)D(t;u)}2 du−
α∑
r=1

∫ T

t

θ [0]
α (u){∂2θ [0]

α (u)×

× [D(t;u),D(t;u)] + ∂θα(u)E(t;u)} du,

G2 ≡ −
∫ T

t

{∂2θ [0](u)[D(t;u),D(t;u)] + ∂θ [0](u)E(t;u)} du.

Proof. Set ζ εt,u ≡ H0,t,T , and apply (19) in Lemma 2. �
Next, we will explicitly derive the expansions of E(2) and E(3) upto the ε-

order. We provide the following lemma for the expansion of E(2).
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LEMMA 8. The asymptotic expansion of E(2) defined by (40) upto the ε-order is
given by

E(2) = e− ∫ T
t r

[0](u) du

(∫ ∞

−∞
φ′(ξ (1)t,T ,Yez)p(z) dz

)
+

+ ε e− ∫ T
t r

[0](u) du

[(∫ ∞

−∞
(c12z

2 + c11z+ c10)φ
′(ξ (1)

t,T ,Yez)p(z) dz

)
−

− Y e− ∫ T
t r

[0](u) du

(∫ ∞

−∞
φ′(ξ (2)

t,T ,Yez)∂z{(c22z
2 + c21z + c20)p(z)} ×

× dz

)]
+ o(ε), (42)

where

ξ
(1)
t,T ,Y ≡ Y e− ∫ T

t r
[0](u) du e(1/2)

∫ T
t |θ [0](u)|2 du,

ξ
(2)
t,T ,Y ≡ Y e− ∫ T

t r
[0](u) du e(3/2)

∫ T
t |θ [0](u)|2 du, (43)

and

p(z) ≡ 1√
2πHz

e−z2/2Hz, Hz ≡
∫ T

t

|θ [0](u)|2 du. (44)

Moreover, ci0, ci1 and ci2 for i = 1, 2 are defined as follows:

ci0 ≡ i

r∑
α=1

∫ T

t

θ [0]
α ∂θ

[0]
α D̃i(t;u) du −

∫ T

t

∂r [0](u)D̃i(t;u) du −

−
r∑

α=1

∫ T

t

θ [0]
α ∂θ

[0]
α D̃i(t;u) du + 1

Hz

{ r∑
α=1

∫ T

t

θα(u)∂θα(u)Yt,u ×

×
(∫ u

t

Y−1
t,u

r∑
α=1

∂εVsθ
[0](s) ds

)
du

}
,

ci1 ≡ 1

Hz

r∑
α=1

∫ T

t

θ [0]
α ∂θ

[0]
α Yt,u

∫ u

t

Y−1
t,s ∂εV0s ds du+ 1

Hz

∫ T

t

∂r [0](u)Yt,u ×

×
∫ u

t

Y−1
t,s ∂εVsθ

[0](s) ds du+ 1

Hz

r∑
α=1

∫ T

t

θ [0]
α ∂θ

[0]
α Yt,u ×

×
∫ u

t

Y−1
t,s ∂εVsθ

[0](s) ds du,

ci2 ≡ − 1

H2
z

{ r∑
α=1

∫ T

t

θα(u)∂θα(u)Yt,u

(∫ u

t

Y−1
t,u

r∑
α=1

∂εVsθ
[0](s) ds

)
du

}
,

(45)



AN ASYMPTOTIC EXPANSION SCHEME 173

where

D̃i(t;u) ≡ Yt,u

∫ u

t

Y−1
t,s ∂εV0s ds − iYt,u

∫ u

t

Y−1
t,s ∂εVsθ

[0](s) ds. (46)

Proof. See appendix. �
In the similar manner, we obtain the expansion of E(3).

LEMMA 9. The asymptotic expansion of E(3) defined by (41) upto the ε-order is
given by

E(3) = ε e− ∫ T
t r [0](u) du

[( ∫ ∞

−∞
φ′(ξ (1)t,T ,Y ez)p(z) dz

)
×

×
(∫ T

t

∂r [0](u)Yt,u du+
r∑

α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

)
+

+
( ∫ ∞

−∞
φ′(ξ (1)

t,T ,Yez)(c31z+ c30)p(z) dz

)]
∂εV (x, 0) + o(ε),

where c30 and c31 are constants which are defined as follows:

c30 ≡ −
r∑

α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du, c31 ≡ 1

Hz
c30. (47)

Proof. See appendix. �
Finally, we obtain the following theorem.

THEOREM 3. Suppose that a utility function satisfies the conditions (4) and that
φ′ belongs to class of (33). Then, under [A1], [A2] and [A3] the asymptotic expan-
sion of the optimal portfolio for investment is given by

π∗(t)σ (x) =
[{
W − e− ∫ T

t r
[0](u) du

( ∫ ∞

−∞
φ′(ξ (1)t,T ,Yez)p(z)dz

)}
−

− ε e− ∫ T
t r

[0](u) du

{( ∫ ∞

−∞
(c12z

2 + c11z + c10)φ
′ ×

× (ξ
(1)
t,T ,Yez)p(z) dz

)
− Y e− ∫ T

t r [0](u) du

(∫ ∞

−∞
φ′(ξ (2)

t,T ,Yez)∂z ×

× {(c22z
2 + c21z + c20)p(z)} dz

)}]
θ∗(x)−

− ε e− ∫ u
t r

[0](u) du

[(∫ ∞

−∞
φ′(ξ (1)

t,T ,Yez)p(z) dz

)
×
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×
( ∫ T

t

∂r [0](u)Yt,u du+
r∑

α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

)
+

+
( ∫ ∞

−∞
φ′(ξ (1)

t,T ,Yez)(c31z + c30)p(z) dz

)]
∂εV (x, 0) + o(ε),

(48)

where ξ (i)
t,T ,Y , i = 1, 2 are defined by (43), p(z) is defined by (44), ci0, ci1 and ci2

for i = 1, 2 are defined by (45) and by (46), and c30 and c31 are defined by (47).
Proof. Applying Lemmas 8 and 9, we obtain the result. �
We notice that the term multiplied by θ∗(x) approximates the mean-variance

component of the optimal portfolio while the term multiplied by ∂εV (x, 0) provides
an approximation of the hedging demand.

In the above theorems, we used the boundedness assumption of θ . On the
other hand, it is possible to relax such a boundedness condition due to the fol-
lowing localizing arguments. Let us consider the computation of the expectation
E[ĝα,εT(ζ εt,T )] discussed before. We start with θ which is smooth but not necessar-
ily bounded. Given a large number M such that supt∈[0,T ] |X0

t | < M, we choose
smooth modifications θ̃ so that θ̃ is bounded, and that θ̃ = θ over the region
{x: |x| < M}. We also define ζ̃ εt,T with those modifications. Condition [A3] for the
modified functions is the same as that for the original functions. So under [A3] for
the original functions, we already have the asymptotic expansion of E[ĝα,εT(ζ̃ εt,T )].
On the other hand,

|E[ĝα,εT(ζ̃ εt,T )] − E[ĝα,εT(ζ εt,T )]|
= E[|ĝα,ε||T(ζ̃ εt,T )− T(ζ εt,T )|1{supt∈[0,T ] |Xεt |>M}]

� sup
ε

‖ĝα,ε‖p1 sup
ε

{‖T(ζ̃ εt,T )‖p2 + ‖T(ζ εt,T )‖p3}P
[

sup
t∈[0,T ]

|Xε
t | > M

]1/p3

,

where p1, p2, p3 ∈ (1,∞) (p−1
1 + p−1

2 + p−1
3 = 1). Thus, under the finiteness of

the second factor on the right-hand side, we will obtain an asymptotic expansion
of E[ĝα,εT(ζ εt,T )].

6. A Numerical Example

In this section, we will illustrate our method through a numerical example. In par-
ticular, following Theorem 2, we will provide analytic approximations of optimal
portfolios for an example investigated by Detemple et al. (2000) which relies on
naive Monte Carlo simulations as numerical technique. First, we divide the optimal
portfolio for a power utility function in Equation (24) into the mean variance, the
interest rate hedge (IR-hedge) and the market price of risk hedge (MPR-hedge)
components defined as follows:

mean variance ≡ 1

1 − δ
θ(x)∗σ−1(x),
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IR-hedge ≡ δ

1 − δ

1

E[(H0,t,T )−δ/(1−δ)]
E

[
(H0,t,T )

−δ/(1−δ) ×

×
∫ T

t

∂r(Xε
u)Y

ε
t,u du

]
V (x, ε)σ−1(x),

MPR-hedge ≡ δ

1 − δ

1

E[(H0,t,T )−δ/(1−δ)]
E

[
(H0,t,T )

−δ/(1−δ) ×

×
( r∑
α=1

∫ T

t

∂θα(X
ε
u)Y

ε
t,u dwα(u)+

+
r∑

α=1

∫ T

t

+θα(Xε
u)∂θα(X

ε
u)Y

ε
t,u du

)]
V (x, ε)σ−1(x).

We remark that hedging demand is further divided into IR-hedge and MPR-hedge
components above. Next, the corresponding components for the asymptotic expan-
sion in Theorem 2 are given as follows:

mean variance ≡ 1

1 − δ
θ∗(x)σ−1(x),

IR-hedge ≡ ε
δ

1 − δ

(∫ T

t

∂r [0](u)Yt,u du

)
∂εV (x, 0)σ−1(x),

MPR-hedge ≡ ε
δ

(1 − δ)2

( r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

)
∂εV (x, 0)σ−1(x).

In this example, we suppose that d = 2, that is, Xε
u = (Xε(1)

u , Xε(2)
u )∗ and that they

satisfy the following stochastic differential equations:

dXε(1)
u = κ1(X̄

ε(1) −Xε(1)
u ) du− ε(Xε(1)

u )1/2 dwu, X
ε(1)
0 = r0,

dXε(2)
u = κ2(X̄

ε(2) −Xε(2)
u ) du+ εσ2 dwu, X

ε(2)
0 = θ0,

where w denotes one-dimensional Brownian motion (r = 1).1 We also suppose that
there exist one risky asset and a locally riskless asset, and that θu =Xε(2)

u and ru is a
smooth modification of min{Xε(1)

u ,M}, where M is a positive large number. Then,
the dynamics of both assets are described by

dSεu = Sεu(X
ε(1)
u + σXε(2)

u ) du+ Sεuσ dwu, Sε(0) = s,

dSε0u = Sε0ur(X
ε(1)
u ) du, Sε0(0) = 1.

In appendix, we will discuss the validity of the asymptotic expansions for this
setting in detail. Further, we set the values of the parameters for Xε

u following

1 The volatility function of Xε(1) is not smooth at the origin and we need to use a smoothed
version of the square root process at the origin. However, we can show that the smoothing does not
make significant differences and the effects are negligible in the small disturbance asymptotic theory.
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Detemple et al. (2000), which were obtained by statistical estimation; κ1 =
0.0824, r0 = X̄ε(1)= 0.06, ε= 0.03637, κ2 = 0.6950, X̄ε(2)= 0.0871, σ2 = 0.21/
0.03637, θ0 = 0.1, σ = 0.2. For comparative purpose, we also compute each com-
ponent of the optimal portfolios by using Monte Carlo simulations based on the
Euler–Maruyama approximation; the discretized time step Kt is 1/365 and the
number of trials is 100 000 in each Monte Carlo simulation.

The percentage-shares in total wealth of mean variance, IR-hedge, MPR-hedge
and the total demand which are sum of those three components are listed in Tables
I–IV; the results for the asymptotic expansion are listed in Tables I and II while the
results for the Monte Carlo simulation are listed in Tables III and IV. In addition,
Tables I and III show the results for investment horizons T = 1, 2, 3, 4, 5 when the
Arrow-Pratt measure of relative risk aversion R(≡ 1 − δ) is fixed at 2, and Tables
II and IV show the results for R= 0.5, 1, 1.5, 4, 5 when T = 1. We remark that
total demand means the demand for the risky asset and hence it may not be 100%
because the remaining shares (100%−total demand) are invested into the riskless
asset. We also note that it may exceed 100% since selling (borrowing) riskless
asset is admitted. We can observe that the results of asymptotic expansion and of

Table I. Asymptotic expansion (%, R = 2.0)

T (investment horizon) 1 2 3 4 5

Total demand 25.31 26.41 27.80 29.26 30.70

Mean variance 25.00 25.00 25.00 25.00 25.00

IR-hedge 2.14 4.11 5.92 7.59 9.13

MPR-hedge −1.83 −2.70 −3.12 −3.33 −3.43

Table II. Asymptotic expansion (%, T = 1.0)

R (≡ 1 − δ) 0.5 1 1.5 4 5

Total demand 110.37 50 33.13 14.34 12.25

Mean variance 100.00 50.00 33.33 12.50 10.00

IR-hedge −4.28 0 1.43 3.21 3.42

MPR-hedge 14.65 0 −1.63 −1.37 −1.17

Table III. Monte Carlo simulation (%, R = 2.0)

T (investment horizon) 1 2 3 4 5

Total demand 25.37 26.49 27.79 29.10 30.41

Mean variance 25.00 25.00 25.00 25.00 25.00

IR-hedge 2.14 4.12 5.95 7.63 9.19

MPR-hedge −1.77 −2.63 −3.16 −3.53 −3.78
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Table IV. Monte Carlo simulation (%, T = 1.0)

R (≡ 1 − δ) 0.5 1 1.5 4 5

Total demand 113.07 50.00 33.18 14.35 12.22

Mean variance 100.00 50.00 33.33 12.50 10.00

IR-hedge −4.26 0.00 1.43 3.22 3.43

MPR-hedge 17.33 0.00 −1.58 −1.37 −1.22

Monte Carlo simulation are so close for IR-hedge while there is some difference
for MPR-hedge, but the difference is small relative to the total demand. We also
notice that the second-order scheme gives substantial improvement comparing with
the first-order scheme which is equivalent to the case that we ignore the hedging
components. (Note that O(1) for MPR-hedge and IR-hedge components are zero.)
Thus, we have confirmed that our method is not only computational efficient, but
also gives sufficient approximations to the evaluation of the optimal portfolios.

Appendix A.

A.1. PROOFS OF LEMMAS

Proof of Lemma 1. Using (13), (14) and solutions of the set of stochastic dif-
ferential equations (15)–(17), we obtain the result. �

Proof of Lemma 3. We first see that

gα,0 = 0 (α = 0, 1, . . . , r) (A.1)

since V (x, 0)≡ 0 from [A1]. Then, we compute explicitly gα,[j ], j = 1, 2, and by
tedious routine work, we obtain the result. �

Proof of Lemma 4. Replacing f (·) in Equation (20) by r(·), θα(·), (1/2)θ2
α(·)

and applying the result in Lemma 3, we obtain the expansions of gεr , g
α,ε
θ , and

g
α,ε

θ2 . �
Proof of Lemma 5. Applying the expansions (27) and (28) in Lemma 4 directly,

we obtain(∫ T

t

∂r(Xε
u)Y

ε
t,uV (x, ε) du +

r∑
α=1

∫ T

t

∂θα(X
ε
u)Y

ε
t,uV (x, ε) dwα(u)+

+
r∑

α=1

∫ T

t

θα(X
ε
u)∂θα(X

ε
u)Y

ε
t,uV (x, ε) du

)

= ε

(
g[1]
r +

r∑
α=1

g
α,[1]
θ +

r∑
α=1

g
α,[1]
θ2

)
+ o(ε)
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= ε

(∫ T

t

∂r [0](u)Yt,u du+
r∑

α=1

∫ T

t

∂θ [0]
α (u)Yt,u ×

× dwα(u)+
r∑

α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

)
∂εV (x, 0) + o(ε).

Moreover, applying the expansion (19) in Lemma 2, we can obtain

ζ εt,u ≡ (H0,t,T )
−δ/(1−δ)

= eδ/(1−δ) ∫ Tt r [0](u) du eδ/[2(1−δ)2]
∫ T
t |θ [0](u)|2 du ×

× e−(1/2)(δ/(1−δ))2 ∫ T
t |θ [0](u)|2 du+[δ/(1−δ)] ∫ T

t θ [0](u) dw(u) ×
×

(
1 + ε

(
δ

1 − δ

)∫ T

t

∂r [0](u)D(t;u) du + ε

(
δ

1 − δ

)
×

×
r∑

α=1

∫ T

t

∂θ [0]
α (u)D(t;u) dwα(u)+

+ ε

(
δ

1 − δ

) r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)D(t;u) du

)
+ o(ε).

Then, by change of the measure technique with

P̂ (A) ≡ E
[

1A exp

(
− 1

2

(
δ

1 − δ

)2 ∫ T

t

|θ [0](u)|2 du+

+
(

δ

1 − δ

)∫ T

t

θ [0](u) dw(u)

)]
, A ∈ FT

simple calculation yields the result. �
Proof of Lemma 6. Using (19) again, we can obtain the expansion:

E[(H0,t,T )
−δ/(1−δ)]

= eδ/(1−δ) ∫ Tt r [0](u) du e[δ/2(1−δ)2]
∫ T
t |θ [0](u)|2 du ×

×
(

1 + ε

(
δ

1 − δ

)∫ T

t

∂r [0](u)D̂1(t;u) du + ε
δ

(1 − δ)2
×

×
r∑

α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)D̂1(t;u) du

)
+ o(ε), (A.2)

where

D̂1(t;u) ≡ Yt,u

∫ u

t

Y−1
t,s

{
∂εV

[0]
0 (s) ds +

(
δ

1 − δ

)
∂εV

[0](s)θ [0](s) ds

}
.

Then, gathering (30) in Lemma 5 and (A.2), we obtain the result. �
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Proof of Lemma 8. Note first that the asymptotic expansion ofE(2) is expressed
as

E(2) = E[H [0]
0,t,T φ

′(YH [0]
0,t,T )] + εE[H [0]

0,t,TH
[1]
0,t,T φ

′(YH [0]
0,t,T )] +

+ εYE[(H [0]
0,t,T )

2H
[1]
0,t,T ∂φ

′(YH [0]
0,t,T )] + o(ε). (A.3)

Then, by using Lemma 7, we can easily obtain the expression for the first term of
(A.3).

E[H [0]
0,t,T φ

′(YH [0]
0,t,T )] = e− ∫ T

t r
[0](u) duE(1)[φ′(ξ (1)

t,T ,Ye− ∫ T
t θ [0](u) dw1(u))]

= e− ∫ T
t r

[0](u) du

( ∫ ∞

−∞
φ′(ξ (1)

t,T ,Yez)p(z) dz

)
,

where

ξ
(1)
t,T ,Y = Y e− ∫ T

t r
[0](u) du e(1/2)

∫ T
t |θ [0](u)|2 du,

z = −
∫ T

t

θ [0](u) dw1(u),

and

p(z) = 1√
2πHz

e−z2/2Hz, Hz ≡
∫ T

t

|θ [0](u)|2 du.

Here, E(1)[·] denotes the expectation operator under

P1(A) ≡ E
[

1A exp

(
−

∫ T

t

θ [0](u)∗ dw(u)− 1

2

∫ T

t

|θ [0](u)|2 du

)]

for all A ∈ FT , and w1(u) = w(u)+ ∫ u
t
θ [0](s) ds denotes the standard Brownian

motion under P1.
We can also obtain expressions for the second and third terms of (A.3) after

tedious calculation with Lemma 7 as follows:

εE[H [0]
0,t,TH

[1]
0,t,T φ

′(YH [0]
0,t,T )]

= ε e− ∫ T
t r [0](u) duE(1)[(R1 +G21 +G1)φ

′(YH [0]
0,t,T )]

= ε e− ∫ T
t r [0](u) duE(1)

[
φ′(YH [0]

0,t,T )E
(1)

[
(R1 +G21 +G1)|z

= −
∫ T

t

θ [0](u) dw1(u)

]]

= ε e− ∫ T
t r [0](u) du

(∫ ∞

−∞
(c12z

2 + c11z + c10)φ
′(ξ (1)

t,T ,Y ez)p(z) dz

)
,
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εYE[(H [0]
0,t,T )

2H
[1]
0,t,T ∂φ

′(YH [0]
0,t,T )]

= εY e−2
∫ T
t r

[0](u) duE(2)[(R1 +G21 +G1)∂φ
′(YH [0]

0,t,T )]

= εY e−2
∫ T
t r

[0](u) duE(2)

[
∂φ′(YH [0]

0,t,T )E
(2)

[
(R1 +G21 +G1)|z

= −
∫ T

t

θ [0](u) dw2(u)

]]

= −εY e−2
∫ T
t r

[0](u) du

( ∫ ∞

−∞
φ′(ξ (2)t,T ,Yez)∂z{(c22z

2 + c21z+ c20)p(z)} dz

)
,

where ci2, ci1, ci0 for i = 1, 2 are some constants which are explicitly given later.
Here, we use the notations:

ξ
(2)
t,T ,Y = Y e− ∫ T

t r
[0](u) du e(3/2)

∫ T
t |θ [0](u)|2 du,

z = −
∫ T

t

θ [0](u) dw2(u)

and

p(z) = 1√
2πHz

e−z2/2Hz, Hz ≡
∫ T

t

|θ [0](u)|2 du.

Moreover, E(2)[·] denotes the expectation operator under

P2(A) ≡ E
[

1A exp

(
− 2

∫ T

t

θ [0](u)∗ dw(u)− 2
∫ T

t

|θ [0](u)|2 du

)]

for all A∈FT , and w2(u)=w(u)+ 2
∫ u
t
θ [0](s) ds denotes the standard Brownian

motion under P2.
Finally, in order to obtain ci,j for i = 1, 2 and j = 0, 1, 2 explicitly, we will

evaluate conditional expectations, E(i)
[
(R1 +G21 +G1)|z = − ∫ T

t
θ [0](u) dwi(u)

]
for i = 1, 2 by utilizing Gaussianity:

E(i)

[
G1|z = −

∫ T

t

θ [0](u) dwi(u)

]

= i

r∑
α=1

∫ T

t

θ [0]
α ∂θ

[0]
α D̃i(t;u) du −

(
1

H2
z

z2 − 1

Hz

)
×

×
{ r∑
α=1

∫ T

t

θα(u)∂θα(u)Yt,u

( ∫ u

t

Y−1
t,u

r∑
α=1

∂εVsθ
[0](s) ds

)
du

}
+

+ 1

Hz
z

r∑
α=1

∫ T

t

θ [0]
α ∂θ

[0]
α Yt,u

∫ u

t

Y−1
t,s ∂εV0s ds du,
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E(i)

[
R1|z = −

∫ T

t

θ [0](u) dwi(u)

]

= −
∫ T

t

∂r [0](u)D̃i(t;u) du + 1

Hz
z

∫ T

t

∂r [0](u)Yt,u ×

×
∫ u

t

Y−1
t,s ∂εVsθ

[0](s) ds du,

and

E(i)

[
G21|z = −

∫ T

t

θ [0](u) dwi(u)

]

= −
r∑

α=1

∫ T

t

θ [0]
α ∂θ

[0]
α D̃i(t;u) du + 1

Hz
z

r∑
α=1

∫ T

t

θ [0]
α ∂θ

[0]
α Yt,u ×

×
∫ u

t

Y−1
t,s ∂εVsθ

[0](s) ds du,

where

D̃i(t;u) ≡ Yt,u

∫ u

t

Y−1
t,s ∂εV0s ds − iYt,u

∫ u

t

Y−1
t,s ∂εVsθ

[0](s) ds.

Hence, we obtain the expressions of ci2, ci1, ci0 for i = 1, 2 by (45) and (46). �
Proof of Lemma 9. Using assumption [A1] V (·, 0)≡ 0, and computing condi-

tional expectation of a Gaussian random variable;

E(1)

[ r∑
α=1

∫ T

t

∂θ [0]
α (u)Yt,u dwα(u)|z = −

∫ T

t

θ [0](u) dw1(u)

]
= c31z + c30,

where c30 and c31 are constants defined by (47), we obtain the result. �
A.2. THE THIRD-ORDER SCHEME FOR A POWER UTILITY FUNCTION

We show the result of the third-order scheme, that is, an asymptotic expansion upto
to the ε2-order of the optimal portfolio for a power utility function:

π∗(t) = W

1 − δ
[θ∗(x)+ δ{εA+ ε2B − ε2AC}]σ−1(x)+ o(ε2),

where

A ≡
(∫ T

t

∂r [0](u)Yt,u du+ 1

1 − δ
×

×
r∑

α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

)
∂εV (x, 0),
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C ≡
(

δ

1 − δ

) ∫ T

t

∂r [0](u)D̂1(t;u) du +

+ δ

(1 − δ)2

r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)D̂1(t;u) du,

and B is the sum of the following terms:

1. (
δ

1 − δ

){ ∫ T

t

∂r [0](u)D̂1(t;u) du

}{∫ T

t

∂r [0](u)Yt,u du

}
∂εV (x, 0);

2. (
δ

1 − δ

)2{∫ T

t

∂r [0](u)D̂1(t;u) du

}
×

×
{ r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

}
∂εV (x, 0)+

+
(

δ

1 − δ

){ r∑
α=1

∫ T

t

∂θ [0]
α (u)Yt,u

(∫ T

u

∂r [0](s)Yt,s ds

)
×

× Y−1
t,u ∂εV

[0],(·,α)
u du

}
∂εV (x, 0);

3. (
δ

1 − δ

){ r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

}
∂εV (x, 0)×

×
{∫ T

t

∂r [0](u)D̂1(t;u) du

}
;

4. (
δ

1 − δ

){ r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)D̂1(t;u) du

}
×

×
{∫ T

t

∂r [0](u)Yt,u du

}
∂εV (x, 0);

5. (
δ

1 − δ

)2{ r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)D̂1(t;u) du

}
×

×
{ r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

}
∂εV (x, 0)+

+
(

δ

1 − δ

) r∑
α=1

{∫ T

t

( r∑
α′=1

∫ T

u

θ
[0]
α′ (s)∂θ

[0]
α′ (s) ds

)
×

× Y−1
t,u ∂εV

[0],(·,α)
u ∂θ [0]

α (u)Yt,u du

}
∂εV (x, 0);
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6. (
δ

1 − δ

){ r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

}
∂εV (x, 0)×

×
{ r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)D̂1(t;u) du

}
;

7. (
δ

1 − δ

)2{ r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)D̂1(t;u) du

}
×

×
{∫ T

t

∂r [0](u)Yt,u du

}
∂εV (x, 0);

8. (
δ

1 − δ

)2{ r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)D̂1(t;u) du

}
×

×
{ r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

}
∂εV (x, 0);

9. (
δ

1 − δ

)3{ r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)D̂1(t;u) du

}
×

×
{ r∑
α=1

∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

}
∂εV (x, 0)+

+
(

δ

1 − δ

){ r∑
α=1

∫ T

t

∂θ [0]
α (u)D̂1(t;u)∂θ [0]

α (u)Yt,u du

}
∂εV (x, 0) +

+
(

δ

1 − δ

)2{ r∑
α=1

∫ T

t

( r∑
α′=1

∫ T

u

θ
[0]
α′ (s)∂θ

[0]
α′ (s) ds

)
×

× Y−1
t,u ∂εV

[0],(·,α)
u du

}
∂εV (x, 0);

10.
r∑

α=1

(∫ T

t

(∂θ [0]
α (u))

2[D̂1(t;u)]Yt,u du

)
∂εV (x, 0)+

+
r∑

α=1

(
1

1 − δ

)(∫ T

t

θ [0]
α (u)∂

2θ [0]
α (u)[D̂1(t;u)]Yt,u du+

+
∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)[Ŷ

[1]
t,u ] du

)
∂εV (x, 0) +

+
r∑

α=1

(
1

1 − δ

)(∫ T

t

θ [0]
α (u)∂θ

[0]
α (u)Yt,u du

)
∂2
ε V (x, 0),
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where

Ŷ [1]
t,u ≡

∫ u

t

Yt,uY
−1
t,s

{
∂2
xV0s[D̂1(t; s)]Yt,s ds + ∂ε∂xV0sYt,s ds +

+
(

δ

1 − δ

) r∑
α=1

θα(s)∂ε∂xVαsYt,s ds

}
;

11. (∫ T

t

∂2r [0](u)[D̂1(t;u)]Yt,u du+
∫ T

t

∂r [0](u)Ŷ [1]
t,u du

)
∂εV (x, 0) +

+
( ∫ T

t

∂r [0](u)Yt,udu

)
∂2
ε V (x, 0).

A.3. THE VALIDITY OF THE ASYMPTOTIC EXPANSIONS IN SECTION 6

We start with the following more or less well-known lemma.

LEMMA 10. Let θ, λ ∈ R − {0}. Suppose that (ξ θt )t∈[0,T ] is a linear diffusion
process satisfying the stochastic differential equation:

dξ θt = θξ θt dt + dwt, ξ θ0 = x.

Let α= (θ2 − λ2)/2.

(1) If x = 0 and if

(θ − λ)

[
e2λT − 1

2λ

]
< 1,

then

E
[

exp

(
α

∫ T

0
(ξ θt )

2 dt

)]

= exp

(
− θ − λ

2
T

)(
1 − (θ − λ)

[
e2λT − 1

2λ

])−1/2

= exp

(
− θ − λ

2
T

)[
2λ

(λ− θ)(e2λT − 1)+ 2λ

]1/2

. (A.4)

(2) Let x be arbitrary.
(i) If θ < 0, then for any λ ∈ (θ,−θ),

E
[

exp

(
α

∫ T

0
(ξ θt )

2 dt

)]
� exp

(
λ− θ

2
(x2 + T )

)
.

(ii) If θ > 0, then for any λ ∈ (−θ, θ), and if

(θ − λ)

[
e2λT − 1

2λ

]
<

1

2
,

E
[

exp

(
α

∫ T

0
(ξ θt )

2 dt

)]
� exp

(
− θ − λ

2
(x2 + T )+

+ (θ − λ)(x eλT )2
)[

λ

(λ− θ)(e2λT − 1)+ λ

]1/2

. (A.5)
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Proof. Let θ, λ ∈ R (any real numbers). Denote by µξθ and µξλ the measures
corresponding to the processes ξ θt and ξλt :

dξ θt = θξ θt dt + dwt, ξ θ0 = x, dξλt = λξλt dt + dwt, ξλ0 = x,

the measures µξθ and µξλ are equivalent and

dµξθ

dµξλ
(ξλt ) = exp

{
(θ − λ)

∫ T

0
ξλt dξλt − θ2 − λ2

2

∫ T

0
(ξλt )

2 dt

}
.

Put C=C([0, T ]). Then

E
[

exp

(
α

∫ T

0
(ξ θt )

2 dt

)]
=

∫
C

exp

(
α

∫ T

0
(xt )

2 dt

)
µξθ (dx)

=
∫
C

exp

(
α

∫ T

0
(xt )

2 dt

)
dµξθ

dµξλ
(x)µξλ(dx)

= E
[

exp

(
α

∫ T

0
(ξλt )

2 dt

)
exp

{
(θ − λ)×

×
∫ T

0
ξλt dξλt − θ2 − λ2

2

∫ T

0
(ξλt )

2 dt

}]
.

Let us take

α = θ2 − λ2

2
. (A.6)

(In particular, if α� 0, then |θ |� |λ|.) Then

E
[

exp

(
α

∫ T

0
(ξ θt )

2 dt

)]
= E

[
exp

{
(θ − λ)

∫ T

0
ξλt dξλt

}]
.

Using Itô’s formula

(ξλT )
2 = (ξλ0 )

2 + 2
∫ T

0
ξλt dξλt + T ,

we after all obtain

E
[

exp

(
α

∫ T

0
(ξ θt )

2 dt

)]
= exp

(
− θ − λ

2
(x2 + T )

)
·

· E
[

exp

{
θ − λ

2
(ξλT )

2

}]
. (A.7)
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Noting that2 ξλT is Gaussian:

ξλT ∼ N
(
x eλT ,

e2λT − 1

2λ

)
.

(1) The case x = 0. We have

(ξλT )
2

[
e2λT − 1

2λ

]−1

∼ χ2
1 ,

where χ2
1 is the chi-square distribution of degree one. It is known that

E[etχ
2
1 ] = (1 − 2t)−1/2

(
t < 1

2

)
.

Thus, if
θ − λ

2

[
e2λT − 1

2λ

]
<

1

2
,

E
[

exp

(
α

∫ T

0
(ξ θt )

2 dt

)]

= exp

(
− θ − λ

2
T

)(
1 − 2

θ − λ

2

[
e2λT − 1

2λ

])−1/2

= exp

(
− θ − λ

2
T

)[
2λ

(λ− θ)(e2λT − 1)+ 2λ

]1/2

, (A.8)

where α, θ and λ must satisfy (A.6) and (A.8). The most simple case may be
the one where λ= 0, α= θ2/2 for given θ < 0. In that case, (A.8) becomes
θT < 1, which is automatically satisfied for θ < 0.

(2) The case arbitrary x ∈ R.3

(i) θ < 0: It follows from (55) that

E
[

exp

(
α

∫ T

0
(ξ θt )

2 dt

)]
� exp

(
λ− θ

2
(x2 + T )

)

for λ ∈ (θ,−θ).
(ii) θ > 0: From (55), we have

E
[

exp

(
α

∫ T

0
(ξ θt )

2 dt

)]

� exp

(
− θ − λ

2
(x2 + T )+ (θ − λ)(x eλT )2

)
·

· E
[

exp

{
(θ − λ)(ξλT − x eλT )2

}]

2 λ may still be positive or negative. If λ = 0, then the variance is T .
3 When x �= 0, ξλ

T
has the noncentral χ2 distribution with degree one. It is possible to express

the moment generating function, but it is not clever for the present purpose.
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for λ ∈ (−θ, θ). Moreover, if (A.5) then

E
[

exp

(
α

∫ T

0
(ξ θt )

2 dt

)]

� exp

(
− θ − λ

2
(x2 + T )+ (θ − λ)(x eλT )2

)
·

·
(

1 − 2(θ − λ)

[
e2λT − 1

2λ

])−1/2

= exp

(
− θ − λ

2
(x2 + T )+ (θ − λ)(x eλT )2

)
·

·
[

λ

(λ− θ)(e2λT − 1)+ λ

]1/2

.

Let us return to the example in Section 6 and verify the uniform Lp integrability
of ζ εt,T . Since rεu is bounded, it suffices for the validity of the asymptotic expansion
to show that the uniform (in ε) Lp-integrability of the functional

Z = exp

(
a

∫ T

0
Xε(2)
u dwu + b

∫ T

0
(Xε(2)

u )2 du

)
,

where a, b are constants. Let p, q ∈ (1,∞) and let q ′ = q/(q − 1). Taking c=
q(ap)2/2 and using Hölder’s inequality, we see that

E[Zp] � E
[

exp

(
qap

∫ T

0
Xε(2)
u dwu − qc

∫ T

0
(Xε(2)

u )2 du

)]1/q

·

· E
[

exp

(
q ′(c + bp)

∫ T

0
(Xε(2)

u )2 du

)]1/q ′

.

Since qc= (qap)2/2, the first factor on the right-hand side is not larger than one,
hence it is sufficient to show that for any L > 0, there exists a constant ε(L) > 0
such that

sup
ε∈(0,ε(L)]

E
[

exp

(
L

∫ T

0
(Xε(2)

u )2 du

)]
< ∞. (A.9)

If we put xt = (εσ2)
−1(X

ε(2)
t −X̄(2)), then (xt ) satisfies the stochastic differential

equation

dxt = −κ2xt dt + dwt,

x0 = ε−1c0,

where c0 = (σ2)
−1(X

ε(2)
0 − X̄(2)). Therefore, in order to obtain (A.9), it suffices to

show that for any L > 0, there exists a constant ε(L) > 0 such that

sup
ε∈(0,ε(L)]

E
[

exp

(
Lε2

∫ T

0
(xu)

2 du

)]
< ∞. (A.10)
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Here xu depends on ε. Applying Lemma 10 (2i) to the case that θ =−κ2, x= c0ε
−1

and λ=−(κ2 − 2Lε2)1/2, we obtain (58). �
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