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Abstract

The periodic solution of a Volterra-Lotka system is considered
as a relaxationoscillation. With perturbation techniques four local
expansions are constructed from the implicitly given solution. Inte-
gration over the four regions leads to an asymptotic formula for the

period.

1., Introduction

The system of differential equations

*
dh *
a* = h* (a—ap ), (Ta)
d * * *
a%z&' =p (-b+Bh ) (1p)

will have a one parameter family of periodic solutions with the
equilibrium (h*,p*) = (b/B,a/a) as center point. Volterra [2] computed
that for small disturbances of the equilibrium the period of such a

solution is

* 2T
T '~ — - (2)



We will construct an asymptotic formula for the period which holds
for large disturbances. For that purpose we consider the periodic

solution as a relaxation oscillation. The substitutions

* b a
h = _B_hs p = ?;pa (38-)
t* = E—, a = €b, (3b)

transform the system (1) into

& = n(1-p), (4a)
dp _
€3t = p(-1+h). (L4y)

Let the initial values of (L) be

where 0 < hl < 1. In the (h,p)-plane (phase plane) we have the

solution in an implicit form

h - logh+ e (p - log p) + log h e=0. (6)

S

A system having a relaxation oscillation as solution contains
a small parameter that multiplies one of the derivatives. In the

following it is assumed that € is such a small, positive parameter.
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2. Local asymptotic approximations

In figure 1 the periodic solution is given by a closed curve
in the phase plane. This curve is divided into four segments sepa-

rated by the points (hi,pi), i=1,2,3,k4

— 1 -
by =h (1 + BT log e + £.€), P, = n,e, (Ta)
h, =h_ (1 + 1. log € + £.€), P, = NAE (7o)
2 r hr-T 272 ¥p 277
_ _ -1
h3 - hr (1 - £3)9 P3 = n3€ b (YC)
-1
hh = hl (1 + gh)’ Ph = nhe . (74)
The constant hr satisfies
hr - log hr = hl - log hl (8)

such that hl <1< hr' Since we have only one degree of freedom in
choosing each of the points, there has to exist some relation be-
tween the positive constants Ei and n. . In the four regions a
convergent series expansion of the solution can be given in an
explicit form. For the complete expansions the reader is referred
to Veling [1] , where the proof of the validity of the following

asymptotic approximations is given.

by 27
I: h=nh, + (p-log p-1)e + 0 {(p-log p-1)€" 1}, (9a)
17 1-hy
IT: p = exp (h—log h - hy + log "7 - s) +
€
2(h- h-ny + - )
+ 0 [exp { (b loge 1+ log hy - ¢ 131, (9b)
hy 2 2
III: h = h, + 35 (p-log p-1)e + 0O{ ,p-log p-i)e"}, (9c)
r
-1
IV: p = (logh-h-logh. +h, +¢€) e - loge + 0(1), (9d)
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For any &, independent of e the expansions (9a) and (9b) are identical
in (h1,p1) which can be verified by substituting one expansion into
the other. This is also true for the other points. The constants 53
and Eh have upperbounds independent of € in order to have converging

expansions.

3. The period

The period is composed of the following integrals

T =TT * Tt Ty (10)
Py By
7. = f dp oL J _dh_
I dp, * II dn, °
P, () h, (£)
P h
T = J ap . J Y an
I1I dp, > "IV dh, °
P2 (Gt b3 )

Using (4) and (9) we obtain

—_

+ log(1-hy) + log g) +

Ty =qoycloge+ i, - h -
1 1
+ £(g))}e + O(ezlogge),
T = (log h, - log h_) + ( ! —'—l*—) eloge +
IT 1 r h. -1 h -1
1 r
+ (52-£1) e + O(e2 logge),
) 1+ log(hr—1) + log 53
Trr1 = h_-1 eloge + {-£, + h_ -1 *

+ 8(€3)}€ + 0(e? logge),
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H
|

= {—

1
v log log — h hr_1 log log hr +

1
+ h; 7log £, oy 108 £y - £(8,) - gley) ¢

+

Il(hl) + Ir(hr)}e + O(e2 logze),

wnere e unctions an g are contrioutions irom igner
h the functi f(gh) da g(&,) tributi £ high

3
order terms of (9) which will cancel out. The terms Il and Ir denote
the integrals
-log hy
I.(h,) { : R } o4
= - X _ X,
1'71 . x hl(1 eX) (1-hp)x
0
I(n) = J f——— -} ax
rr’ T x+h (1-eX) (1-h )x
-log h r r
T = (h_-h ) +( =L, Yeloge + [ L1y
r 1 1=h 1=h 1-h 1-h
1 r r
1
oo le {(1-n Ykg } - h log {(n —T)log hr}+
1 r
+ I (h,) + I (h )Je + O(selog2e). (11)
1'71 rr ’

Notice that the arkitrary constants Ei and ni have canceled out.

In table I we compare the asymptotic formule (11) with the
results obtained by numerical integration. Two different numerical
methods were applied: a Runge-Kutta scheme (Rkkna, see Zonneveld [3])
for integrating system (4) and a method using the implicit formula
(6). These numerical methods yield the same results in the required

accuracy.



Table I

T T T
as num as num as num

.5 3.5359 L.6599 L.Tokt 5.173k 5.8567 6.0920

.1 2.2470 2.3480 3.1303 3.1433 L.3014 4.3061

.05 1.8668 1.8875 2.8015 2.8009 L.oo9ks  4.00939

.01 1.4320 1.4303 2.4612 2.4606 3.71766  3.T17L4T
.005 1.3557 1.3548 2.4058 2.4055 3.67143  3.67136
.001 1.2816 1.2815 2.3536L 2.35362 3.628628 3.628622
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