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Abstract14

In the present work, we apply the asymptotic homogenization technique to
the equations describing the dynamics of a heterogeneous material with evolv-
ing micro-structure, thereby obtaining a set of upscaled, effective equations.
We consider the case in which the heterogeneous body comprises two hyper-
elastic materials and we assume that the evolution of their micro-structure
occurs through the development of plastic-like distortions, the latter ones be-
ing accounted for by means of the Bilby-Kröner-Lee (BKL) decomposition.
The asymptotic homogenization approach is applied simultaneously to the
linear momentum balance law of the body and to the evolution law for the
plastic-like distortions. Such evolution law models a stress-driven production
of inelastic distortions, and stems from phenomenological observations done
on cellular aggregates. The whole study is also framed within the limit of
small elastic distortions, and provide a robust framework that can be readily
generalized to growth and remodeling of nonlinear composites. Finally, we
complete our theoretical model by performing numerical simulations.
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1. Introduction17

The study of material growth, remodeling and aging is of great impor-18

tance in Biomechanics, specially when the tissue, in which these processes19

occur, features a very complex structure, with different scales of observation20

and various constituents.21

In the literature, the study of heterogeneous materials follows several22

approaches. In this work we focus on the multi-scale asymptotic homoge-23

nization technique [4, 5, 8, 14, 77], which exploits the information available24

at the smallest scale characterizing the considered medium or phenomenon to25

obtain an effective description of the medium or phenomenon itself valid at26

its largest scale. This is achieved by expanding in asymptotic series the equa-27

tions constituting the mathematical model formulated at the lowest scale. As28

a result, the coefficients of the effective governing equations encode the infor-29

mation on the other hierarchical levels, as they are to be computed solving30

microstructural problems at the smaller scales. The multi-scales asymptotic31

homogenization approach has been successfully applied to investigate var-32

ious physical systems due to its potentiality in decreasing the complexity33

of the problem at hand. Biomechanical applications of asymptotic homoge-34

nization may be found mainly in nanomedicine [81], biomaterials modeling,35

such as the bone [58], tissue engineering [24], poroelasticity [63], and active36

elastomers [64]. Most of the literature concerning applications of the asymp-37

totic homogenization technique focuses on linearized governing equations, as38

in this case it is possible to obtain, under a number of simplifying assump-39

tions, a full decoupling between scales, which leads to a dramatic reduction40

in the computational complexity, as also noted for example in [64]. In fact,41

homogenization in nonlinear mechanics is usually tackled via average field42

approaches based on representative volume elements or Eshelby-based tech-43

niques (see, e.g. [41] for a comparison between the latter and asymptotic44

homogenization), as done for example in [11]. These homogenization ap-45

proaches are typically well-suited when seeking for suitable bounds for the46

coefficients of the model, such as the elastic moduli, while asymptotic ho-47

mogenization can provide a precise characterization of the coefficients under48

appropriate regularity assumptions (namely, local periodicity).49

However, to the best of our knowledge and understanding, there exists50

only a few examples, e.g. [15, 68, 74, 75], dealing with the asymptotic ho-51

mogenization in the case of media undergoing large deformations. In [68],52

the static microstructural effects of periodic hyperelastic composites at finite53
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strain are investigated. In [74], the interactions between large deforming solid54

and fluid media at the microscopic level are described by using the two-scale55

homogenization technique and the updated Lagrangian formulation. In [15],56

the effective equations describing the flow, elastic deformation and transport57

in an active poroelastic medium were obtained. Therein, the authors consid-58

ered the spatial homogenization of a coupled transport and fluid-structure59

interaction model, incorporating details of the microscopic system and ad-60

mitting finite growth and deformation at the pore scale. Some works can be61

also found dealing with homogenization in the case of elastic perfectly plastic62

constituents [79, 83].63

Here we embrace the asymptotic homogenization approach and consider64

a heterogeneous body composed of two hyperelastic solid constituents sub-65

jected to the evolution of their internal structure. We refer to this phe-66

nomenon as to material remodeling and we interpret it with the production67

of plastic-like distortions. The wording “material remodeling” is used as a68

synonym of “evolution of the internal structure” of a tissue, and is intended in69

the sense of [16], who states that “biological systems can adapt their structure70

[...] to accommodate a changed mechanical load environment”. In this case,71

always in the terminology of [16] and [80], one speaks of epigenetic adap-72

tation (or material remodeling). In the framework of the manuscript, such73

adaptation is assumed to occur through plastic-like distortions that represent74

processes like the redistribution of the adhesion bonds among the tissue cells.75

It is worth to recall in which sense the concept of “plastic distortions”,76

conceived in the context of the Theory of Plasticity (cf. e.g. [50, 55]),77

and originally referred to non-living materials such as metals or soils, can78

be imported to describe the structural evolution of biological tissues. To79

this end, it is important to emphasize that the wording “plastic distortions”80

is understood as the result of a complex of transformations that conducts81

to the reorganization of the internal structure of a material, and that —82

as anticipated in the Introduction— such reorganization is referred to as83

“remodeling” in the biomechanical context.84

The ways in which the structural tranformations may take place in a85

given material depend on the structural properties of the material itself. For86

this reason, the plasticity in metals is markedly different from that occurring87

in amorphic materials. In the case of metals, indeed, for which the internal88

structure is granular and characterized by the arrangement of the atomic lat-89

tice within each grain, plastic distortions are the macroscopic manifestation90

of the formation and evolution of lattice defects. As reported in [55], such91
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defects can be due, for example, to edge dislocations, wedge disclinations,92

missing atoms at some lattice sites, or to the presence of atoms in the lat-93

tice interstices. To describe how the defects evolve, thereby giving rise to the94

plastic distortions, one should compare the real lattice at the current instant95

of time with an ideal lattice, and decompose the overall deformation (i.e.,96

shape change and structural transformation) into an elastic and an inelastic97

contribution [55]. The elastic contribution describes the part of deformation98

that is recoverable by completely relaxing mechanical stress, whereas the in-99

elastic contribution represents the structural variation, which, in general, is100

of irreversible nature.101

Clearly, metals have structural features markedly different from those of102

living matter. Still, some of the fundamental mechanisms that trigger the103

reorganization of their internal structure can be adapted to describe the104

remodeling of biological tissues.105

For instance, in the case of bones, plastic-like phenomena are due to the106

formation of microcracks that, in turn, favors the gliding of the material107

along the direction of the opening of the cracks [17]. Lastly, as anticipated108

above, in the case of biological tissues such as cellular aggregates, the phe-109

nomenon analogous to the generation of dislocations is the rearrangement of110

the adhesion bonds among the cells or the reorganization of the extracellular111

matrix due to the reorientation of the collagen fibers or their deposition and112

resorption, as is the case for blood vessels [48]. Also in all these situations,113

the comparison of the real configuration of the tissue with an “ideal” one,114

taken as reference, permits the separation of the overall deformation into an115

elastic part and a structure-related, “plastic-like” part.116

Here, taking inspiration from the theory of finite Elastoplasticity [55, 78,117

34], we describe the plastic-like distortions by invoking the Bilby-Kröner-Lee118

(BKL) decomposition of the deformation gradient tensor, and rephrasing it in119

a scale-dependent fashion. We remark that, at each of the medium’s charac-120

teristic scales, a tensor of plastic distortions is introduced, which accounts for121

the fact that the structural variations of the medium cannot be expressed, in122

general, in terms of compatible deformations. Our study is conducted within123

a purely mechanical framework and under the assumption of negligible iner-124

tial forces. These hypotheses imply that the model equations reduce to a set125

comprising a scale-dependent, quasi-static law of balance of linear momen-126

tum and an evolution law for the tensor of plastic-like distortions. The latter127

one is assumed to obey a phenomenological flow rule driven by stress.128

The manuscript is organized as follows. In Section 2, we introduce the129
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fundamental notions related to the separation of scales, kinematics, and the130

Bilby-Kröner-Lee decomposition for the heterogeneous material. Therein,131

the kinematics of the considered medium is discussed, which has to account132

for the different length-scales characterizing the heterogeneities and results133

into the definition of a scale-dependent deformation gradient tensor. In Sec-134

tion 3, the problem to be solved is formulated, and in Section 4, the two-135

scales asymptotic homogenization technique is applied to obtain the local136

and the homogenized sub-problems. In Section 5, we prescribe a constitutive137

equation for the response of the material, and independently, an evolution138

equation for the tensor of plastic-like distortions. In that respect, the local139

and homogenized problems derived in Section 4 are formulated by consid-140

ering the De Saint-Venant strain energy density and we demonstrate the141

relationship between our new model and the classical ones. In Section 6 we142

outline a computational scheme to solve the resulting up-scaled model and143

in Section 7, we address the numerical results of our simulations. Finally,144

some concluding remarks on the ongoing work, along with suggestions for145

future research, are summarized in Section 8. We highlight the novelty of146

our approach, and we explain how it may contribute to the understanding of147

the mechanics of heterogeneous media with evolving micro-structure.148

2. Theoretical background149

2.1. Separation of scales150

The homogenization of a highly heterogeneous medium is only possible151

when the characteristic length of the the local structure (`0) and the char-152

acteristic length of the material, or of the phenomenon, of interest (L0) are153

well separated. This condition of separation of scales can be expressed as154

ε0 :=
`0
L0

� 1. (1)

There may exist more than two coexisting scales and, if they are well sepa-155

rated from each other, a homogenization approach is possible. In this case,156

we then move from the smallest scale to the largest one by homogenization157

[1, 8, 51, 82, 69].158

Condition (1) is taken as a base assumption for all homogenization pro-159

cesses. The two characteristic length scales `0 and L0 introduce two dimen-160

sionless spatial variables in reference configuration, Ỹ = X/`0 and X̃ =161

X/L0, where X is said to be the physical spatial variable, whereas Ỹ and162
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X̃ represent the microscopic and the macroscopic non-dimensional spatial163

variables, respectively. By using (1), Ỹ and X̃ can be related through the164

expression165

Ỹ = ε−10 X̃. (2)

Given a field Φ defined over the region of interest of the heterogeneous166

medium, the separation of scales allows to rephrase the space dependence of167

Φ as Φ(X) = Φ̌(X̃(X), Ỹ (X)), and the spatial derivative of Φ takes thus the168

form169

GradXΦ = L−10

(
GradX̃Φ̌ + ε−10 GradỸ Φ̌

)
. (3)

By following this approach, all equations should be written in non-dimensional170

form. In the literature, the switch to the auxiliary variables X̃ and Ỹ is often171

omitted. However, as shown for example in [4], both paths are equivalent pro-172

vided that the dimensional formulation of the problem consistently accounts173

for any asymptotic behavior of the involved fields and parameters (see, e.g.,174

[62] and the discussion therein concerning problems where such a behavior is175

actually deduced via a non-dimensional analysis). By exploiting this result,176

in what follows our analysis is carried out directly in a system of physical177

variables X and Y . Moreover, by adopting the approach usually followed in178

asymptotic multiscale analysis, we assume that each field and each material179

property characterizing the considered medium are functions of both X and180

Y , with Y = ε−10 X. Roughly speaking, the dependence on X captures the181

behavior of a given physical quantity over the largest length-scale, while the182

dependence on Y captures the behavior over the smallest one. We express183

this property by introducing the notation Φε(X) = Φ(X, ε−10 X) = Φ(X, Y )184

[66]. Moreover, for a fixed X, we assume that Φ(X, Y ) is periodic with185

respect to Y .186

In the classical theory of two-scale asymptotic homogenization [5, 8, 14],187

the small scaling dimensionless parameter ε0 is constant. However, in the188

case of a composite material subjected to deformation and change of internal189

structure (as is the case, for instance, when plastic-like distortions occur),190

the characteristic macroscopic and microscopic lengths, which refer to the191

body and to its heterogeneities, respectively, depend on X and t, and should192

thus be denoted by `(X, t) and L(X, t). Therefore, the corresponding scaling193

parameter, obtained as the ratio ε(X, t) = `(X, t)/L(X, t), is also a func-194

tion of X and t, which need not be equal to ε0 in general. This variability195
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notwithstanding, if ε(X, t) is bounded from above for all X and for all t, and196

if the upper bound is much smaller than unity, we can indicate such upper197

bound with ε, and use this constant scaling parameter for our asymptotic198

analysis.199

2.2. Kinematics200

Let us denote by Bε a continuum body with periodic microstructure, and201

by S the three-dimensional Euclidean space. Furthermore, we denote by202

Bε0 the reference, unloaded configuration of Bε, in which the body’s periodic203

micro-structure is reproduced. Now, let us assume that χε : Bε0 × T → S204

describes the motion of the heterogeneous body, where T = [t0, tf [ is an205

interval of time. Then, the region occupied by the body at time t ∈ T206

is Bεt := χε(Bε0, t) ⊂ S and is said to be its current configuration. Each207

point x ∈ Bεt is such that x = χε(X, t), with X ∈ Bε0 being the point’s208

reference placement. The deformation from Bε0 to Bεt is characterized by the209

deformation gradient, F ε(X, t), which is defined as F ε(X, t) = Tχε(X, t)210

[53], with Tχε being the map from the tangent space TXBε0 into TxS. In211

the sequel, however, since our focus is on Homogenization Theory, we find it212

convenient to use the less formal definition213

F ε = I + Graduε, (4)

where I is the second-order identity tensor and Graduε denotes the gradient214

operator of the displacement uε. The condition Jε = detF ε > 0 must be215

satisfied in order for χε to be admissible. The symmetric, positive definite,216

second-order tensor Cε = (F ε)TF ε is the right Cauchy-Green deformation217

tensor induced by F ε. For our purposes, we partition Bε0 into two sub-218

domains B1
0 and B2

0, such that B̄1
0 ∪ B̄2

0 = B̄ε0 and B1
0 ∩ B2

0 = ∅. We let219

Γε0 stand for the interface between B1
0 and B2

0. Particularly, B1
0 denotes the220

matrix of Bε (also referred to as host phase) and B2
0 a collection of N disjoint221

inclusions. The periodic cell in the reference configuration is denoted by Y0.222

The portion of matrix contained in Y0 is indicated by Y1
0 , while Y2

0 is the223

inclusion in Y0. In each cell, Y1
0 and Y2

0 are such that Ȳ1
0 ∪ Ȳ2

0 = Y0 and224

Y1
0 ∩ Y2

0 = ∅. The symbol Γ0 indicates the interface between Y1
0 and Y2

0 .225

In the present work, we assume that the periodicity of the body’s micro-226

structure is preserved even though the body evolves by both changing its227

shape and varying its internal structure. In general, however, this is not the228

case. Clearly, our hypothesis is unrealistic in several circumstances, but it229
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might be helpful to describe those situations in which the breaking of the230

material symmetries occurs at a scale different from those of interest, as is231

the case, for instance, when the plastic distortions occur in a tissue with232

evolving material properties [49], and are not directly related to the change233

of the tissue’s micro-geometry. On the other hand, for nonperiodic media,234

the macro model is still valid when one assumed local boundedness. In that235

case, the coefficients are simply to be retrieved experimentally, as the “cell”236

problem are no longer to be computed on the cell but, on the whole micro237

domain, which would be more complex than the original problem.238

Moreover, we define χε1 := χε|B10 : B1
0 × T → S such that B1

t := χε1(B1
0, t)239

denotes the host phase at the current configuration and χε2 := χε|B20 : B2
0 ×240

T → S, with B2
t := χε2(B2

0, t) denoting the inclusions. Specifically, we enforce241

the condition B̄1
t ∪B̄2

t = B̄εt , with B1
t ∩B2

t = ∅, and denote by Γεt the interface242

between B1
t and B2

t . In addition, we let Yt indicate the periodic cell in the243

current configuration, with Ȳ1
t ∪ Ȳ2

t = Yt, Y1
t ∩ Y2

t = ∅, and with Γt being244

the interface between Y1
t and Y2

t (see Fig. 1). We emphasize that Y1
t is the245

portion of matrix and Y2
t is the inclusion in Yt. We note that inside a single246

cell it can be present also a collection of inclusions and, in such a case, we247

should consider multiple interface conditions [60].248

2.3. Multiplicative decomposition249

When the body Bε is subjected to a system of external loads, the change250

of its shape could be accompanied by a rearrangement of its intrinsic struc-251

ture. This process is generally inelastic and may not be associated to a de-252

formation. Moreover, when mechanical agencies are removed, the body is253

generally unable to recover the unloaded configuration Bε0, and may occupy254

a configuration characterized by the presence of residual stresses and strains.255

To bring the body into a fully relaxed state, an ideal tearing process has to256

be introduced [55]. More specifically, for each material point X ∈ Bε, we257

individuate a small neighborhood of X, referred to as body element, we ide-258

ally cut it out from the body, and we let it relax until it reaches a stress-free259

state. Such state is the ground state of the relaxed body element and is called260

natural state. This concept, originally used in the theory of elasto-plasticity261

(see [50, 55]), has been used in the biomechanical context by various authors262

like, for instance, [23, 76, 30, 26, 27, 42, 44, 18, 55, 34, 19]. Before going263

further with the use of the BKL decomposition, we mention that, in the264

literature, there exist other approaches to the issue of residual stresses in265

biological tissues, which call neither for the multiplicative decomposition of266
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the deformation gradient tensor, nor for the introduction of an “intermediate,267

relaxed configuration”. One recent publication adhering to this philosophy268

is for example [13], in which the authors warn that the intermediate config-269

uration may “not exist in physical reality and must be postulated a priori”.270

Although we are aware of the fact that a framework based on the BKL-271

decomposition may lead in some cases to assume unrealistic results —as any272

other framework would do—, we prefer here to adhere to the BKL approach273

for consistency of previous works of ours.274

By performing the ideal process described above for all the body points, a275

collection of relaxed body pieces is obtained, in which each piece finds itself276

in its natural state. We denote such collection by Bεν . In the language of277

continuum mechanics, these physical considerations lead to the BKL decom-278

position [55, 34]. Although summarizing these theoretical results is useful for279

sake of completeness, the BKL decomposition is one the pillars of Elastoplas-280

ticity, and so, its consequences are well-known. For this reason, we do not281

fuss over its theoretical justification, and we highlight, rather, the fact that282

one of the purposes of this work is to investigate the use of a scale-dependent283

BKL decomposition. In detail, by referring to Figure 1, we invoke a multi-284

plicative decomposition of the deformation gradient F ε that is parameterized285

by the scaling ratio ε, i.e.,286

F ε = F ε
eF

ε
p , (5)

where the tensor F ε
e and F ε

p describe, respectively, the elastic and the in-287

elastic distortions contributing to F ε. Consistently with the notation intro-288

duced above, it holds true that F ε
e (X) = Fe(X, Y ), F ε

p(X) = Fp(X, Y ), and289

F ε(X) = F (X, Y ).290

In this work, we focus on remodeling, i.e., plastic-like distortions that291

occur to modify the internal structure of Bε. Although this phenomenon is292

not visible, it could lead to the alteration of the mechanical properties of Bε.293

3. Formulation of the problem294

We consider a composite material comprising two solid constituents, whose295

point-wise constitutive response is hyperelastic. Therefore, to model its me-296

chanical behavior, we introduce the scale-dependent strain energy function,297

defined per unit volume of the natural state,298

ψ̌ν(X, t) = ψεν(F
ε
e (X, t), iε(X, t)) = ψν(Fe(X, Y, t), i(X, Y, t)), (6)
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Figure 1: Schematic of a composite material with periodic internal micro-structure and
subjected to inelastic remodeling distortions. From left to right: Magnification of an
excerpt of material and description of its nested, periodic micro-structure. Change of
shape of the body from the reference to the current configuration, and definition of the
conglomerate of relaxed body pieces, each in its natural state. Magnification of an excerpt
of material, taken from the body’s current configuration, and description of its deformed,
and remodeled, micro-structure.

where i is defined by the expression i(X, Y, t) = (X, Y ), i.e., i extracts the299

spatial pair (X, Y ) from the triplet (X, Y, t). From (6) we can derive the first300

Piola-Kirchoff stress tensor,301

T ε = Jεp
∂ψεν
∂F ε

e

(
F ε

p

)−T
, (7)

where Jεp = detF ε
p . In particular, if we neglect body forces and inertial terms,302

the balance of linear momentum reads,303 
DivT ε = 0, in Bε0 \ Γε0 × T ,
T ε ·N = T̄ , on ∂TBε0 × T ,
uε = ū, on ∂uBε0 × T ,

(8)

where T̄ and ū are, respectively, the prescribed traction and displacement304

on the boundary ∂Bε0 = ∂TBε0 ∪ ∂uBε0 with ∂TBε0 ∩ ∂uBε0 = ∅ and N is the305

outward unit vector normal to the surface ∂Bε0. Continuity conditions for306

displacement and traction are imposed,307

JuεK = 0 and JT ε ·NYK = 0 on Γ0 × T , (9)
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where J•K denotes the jump across the interface between the two constituents308

and NY defines the unit outward normal to Γ0. Moreover, problem (8) must309

be supplemented with an appropriate evolution law for F ε
p . It is worth men-310

tioning that the homogenization process can be performed regardless on the311

particular choice of external (Dirichlet-Neumann in this case) boundary con-312

ditions. This means that the formulation presented in this work is potentially313

applicable also to other external boundary conditions, such as e.g. those of314

Robin-type. This is due to the fact that, as pointed out in [69], also in the315

present study the homogenization is applied in regions sufficiently far away316

from the outer boundary of the considered medium. For problems in which it317

is necessary to homogenize also close to the outer heterogeneous boundaries,318

we refer to [8, 57, 46].319

Remark 1. In the present work, we impose conditions (9) for displacements320

and tractions just to exemplify the homogenization technique applied to het-321

erogeneous media with evolving microstructure. In other words, we assume322

that the contact interface between the constituents is ideal. This means that323

the displacements are congruent, and thus continuous, and that linear mo-324

mentum is conserved across the interface, which in our context, implies the325

continuity of the tractions. However, the hypothesis of the ideal interface can326

be relaxed in some biological situations. For instance, in cancerous tissues,327

there exist cross-links between normal and malignant cells, whose density and328

strength determine a spring constant that relates the normal stresses on each329

cell surface, thereby making it non-ideal [47, 37]. Another example of non-330

ideal interface is the periodontal ligament, which represents the thin layer331

between the cementum of the tooth to the adjacent alveolar bone [28]. In the332

context of composite materials, when non-ideal interfaces are accounted for,333

the interface conditions are suitably reformulated [38, 39, 7, 6]. In particular,334

the asymptotic homogenization technique has been applied for linear elastic335

periodic fiber reinforced composites with imperfect contact between matrix and336

fibers (see e.g. [36]).337

4. Asymptotic homogenization of the balance of linear momentum338

A formal two-scale asymptotic expansion is performed for the displace-339

ment uε, which thus reads340

uε(X, t) = u(0)(X, t) +
+∞∑
k=1

u(k)(X, Y, t)εk, (10)
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where, for all k ≥ 1, u(k) is periodic with respect to Y . Following [68] we341

consider the leading order term of the expansion (10) to be independent of342

the fast variable Y . From formula (4), the expansion (10), and taking into343

account the property of scales separation, it follows that the deformation344

gradient tensor can be written as345

F ε(X, t) =
+∞∑
k=0

F (k)(X, Y, t)εk, (11)

with the notation346

F (0) := I + GradXu
(0) + GradYu

(1), (12a)

F (k) := GradXu
(k) + GradYu

(k+1), ∀ k ≥ 1. (12b)

where GradX and GradY are the gradient operators with respect to X and Y ,347

respectively. Now, the following two-scale asymptotic expansion is proposed348

for the first Piola-Kirchhoff stress tensor T ε,349

T ε(X, t) =
+∞∑
k=0

T (k)(X, Y, t)εk, (13)

where the fields T (k) are periodic with respect to Y . By substituting the350

power series representation (13) into (8), using the scales separation con-351

dition, and multiplying the result by ε, the following multi-scale system is352

obtained353

DivT ε =
+∞∑
k=0

D(k)εk = 0, (14)

with354

D(0) := DivY T
(0), (15a)

D(k) := DivXT
(k−1) + DivY T

(k), ∀ k ≥ 1. (15b)

We require that the equilibrium equation (14) is satisfied at every ε, which355

amounts to impose the conditions356

DivY T
(0) = 0 (16a)
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DivXT
(k−1) + DivY T

(k) = 0, ∀ k ≥ 1. (16b)

At this point we introduce the average operator over the microscopic cell, i.e.357

〈•〉 =
1

|Yt|

∫
Yt
• dY, (17)

where |Yt| represents the volume of the periodic cell Yt at time t. Indeed,358

because of the deformations and distortions to which the microscopic, refer-359

ence periodic cell is subjected, Yt is different at every time instant. Averaging360

(16b) over the microscopic cell yields, for k = 1,361

〈DivXT
(0)〉+

1

|Yt|

∫
∂Yt
T (1) ·NdY = 0, (18)

where, on the left-hand side, we have applied the divergence theorem. Since362

the contributions on the periodic cell boundary ∂Y cancel due to the Y -363

periodicity, the integral over Yt is equal to zero, and (18) becomes364

〈DivXT
(0)〉 = 0. (19)

Here, we restrict our analysis to the particular case in which the periodic365

cell can be uniquely chosen independently of X, which implies that the in-366

tegration over Yt and the computation of the divergence commute. This367

assumption is also referred to as macroscopic uniformity, see also [9, 40, 59]368

for example dealing with non-macroscopically uniform media in the context369

of poroelasticity and diffusion. Therefore, Equation (19) can be recast as370

DivX〈T (0)〉 = 0. (20)

Equations (16a) and (20) represent, respectively, the local and the homoge-371

nized equation associated with the original one, stated in (8). Both equations372

still need to be supplemented with the corresponding interface, boundary, and373

initial conditions. Note that, although both problems feature no time deriva-374

tive, initial conditions are required because T (0) depends on the variable F (0)
p ,375

which satisfies an evolution equation in time.376

We remark that the leading term T (0) = T (0)(X, Y, t) of the multi-scale377

expansion (13) is the unknown, both in (16a) and in (20). To identify T (0),378

we propose here to expand F ε
p and ψεν as379

F ε
p(X, t)=

+∞∑
k=0

F (k)
p (X, Y, t)εk, (21a)
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ψεν(X, t) =
+∞∑
k=0

ψ(k)
ν (Fe(X, Y, t), X, Y )εk, (21b)

where F (k)
p and ψ

(k)
ν are periodic in Y for all k ≥ 1. By using (5), (11) and380

(21a), we can deduce a series expansion for F ε
e in powers of ε, where the381

leading order term F (0)
e is given by382

F (0)
e = F (0)(F (0)

p )−1. (22)

Following [15] and [68], T (0) is therefore supplied constitutively as383

T (0) = J (0)
p

∂ψ
(0)
ν

∂F (0)
e

(F (0)
p )−T , (23)

with ψ
(0)
ν = ψ

(0)
ν (F (0)

e (X, Y, t), X, Y ) and J
(0)
p = detF (0)

p . To obtain the384

cell problem, equation (14) must be supplemented with the corresponding385

interface conditions. This is done by substituting the asymptotic expansions386

of uε and of T ε into the interface conditions JuεK = 0 and JT ε ·NYK = 0.387

Both conditions are satisfied at any order of ε. At the order ε0, we simply388

obtain JT (0) ·NYK = 0 for the stresses, and that the condition Ju(0)K = 0 is389

trivially satisfied, because u(0) depends solely on X and t. Thus, the interface390

condition on the displacements is written only for u(1) and reads, Ju(1)K = 0.391

By summarizing these results, the cell problem at zero order of the epsilon392

parameter can be stated as393 
DivY T

(0) = 0, in Y0 \ Γ0 × T ,
Ju(1)K = 0, on Γ0 × T ,
JT (0) ·NYK = 0, on Γ0 × T .

(24)

Together with the cell problem, we also need to formulate the macro-scopic394

homogenized problem. To this end, we take equation (20) and complete it395

with a set of boundary conditions. This is done by substituting the asymp-396

totic expansions of T ε and uε into the boundary conditions T ε · N = T̄397

and uε = ū, respectively. Thus, equating the coefficients at order ε0, and398

averaging the results over the unit cell, we find the homogenized problem,399 
DivX〈T (0)〉 = 0, in Bh × T ,
〈T (0)〉 ·N = T̄ , on ∂TBh × T ,
u(0) = ū, on ∂uBh × T ,

(25)
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where Bh denotes the homogeneous macro-scale domain in which the homog-400

enized equations are defined.401

The problem (25) has to be solved along with a homogenized evolution402

equation for F (0)
p and the initial condition associated with it. In addition, we403

remark that, according to (25), the boundary tractions acting on ∂TBh are404

balanced only by the normal component of the average of the leading order405

stress, T (0), and only the leading order displacement, u(0), has to be equal406

to the displacement ū, imposed on ∂uBh.407

Remark 2. In the medical scientific literature, there exist studies that iden-408

tify the existence of anatomical boundary layers interposed between the brain409

surface and tumors (see e.g. [72]). Here we do not address boundary layer410

phenomena, which is usually neglected in the asymptotic homogenization lit-411

erature. The homogenization process described in this work is fine for regions412

far enough away from the boundary so that its effect is not felt because near413

boundaries the material will not behave as an effective material with homog-414

enized coefficients. To properly account for boundary effects, the so-called415

boundary-layer technique could be used [8, 57].416

5. Constitutive framework and evolution law417

In this section, we prescribe a constitutive equation for the response of the418

material and, independently, an evolution equation for the tensor of plastic-419

like distortions.420

5.1. Constitutive law421

In the following, we formulate the local and homogenized problems for a422

specific constitutive law. In general, this process can be rather cumbersome423

for complicated strain energy densities, and it becomes even more involved424

when plastic-like distortions are accounted for. To reduce complexity, we425

choose a very simple constitutive law for ψεν , such as the De Saint-Venant426

strain energy density,427

ψεν =
1

2
Eε

e : C ε : Eε
e, (26)

where Eε
e = 1

2
(Cε

e − I) is the elastic Green-Lagrange strain tensor and428

C ε(X) = C (X, Y ) is the positive definite fourth-order elasticity tensor, which429

15



satisfies both major and minor symmetries, i.e. Cijkl = Cjikl = Cijlk = Cklij.430

Particularly, we consider that the constituents of the heterogeneous material431

are isotropic, and thus432

C ε = 3κεK + 2µεM , (27)

where κε(X) = κ(X, Y ) is the bulk modulus, µε(X) = µ(X, Y ) is the shear433

modulus, and the fourth-order tensors K = 1
3
(I ⊗ I) and M = I − K434

extract the spherical and the deviatoric part, respectively, of a symmetric435

second-order tensorA, i.e., K : A = 1
3
tr(A)I and M : A = A− 1

3
tr(A)I :=436

dev(A) [84, 85]. We remark that the fourth-order identity tensor I is the437

identity operator over the linear subspace of symmetric second-order tensors.438

Indeed, for every A such that A = AT , it holds that I : A = A. In439

terms of I, an explicit expression of I is given by I = 1
2

[I⊗I + I⊗I] (in440

components: Iijkl = 1
2

[IikIjl + IilIjk] [17]).441

We can identify the leading order term in the expansion of the constitutive442

law (26), which reads443

ψ(0)
ν =

1

2
E(0)

e : C : E(0)
e , (28)

with E(0)
e = 1

2
(C(0)

e − I). We recall that, although the expression of ψ
(0)
ν444

in (28) depends only on E(0)
e , the material coefficient C is still a two-scale445

function and should be thus interpreted as C (X, Y ). As a consequence, ψ
(0)
ν446

is not homogenized yet.447

By taking into account the major and minor symmetries of C , we obtain448

S(0)
ν =

∂ψ
(0)
ν

∂E(0)
e

= C : E(0)
e = λtr(E(0)

e )I + 2µE(0)
e , (29)

where S(0)
ν is the leading order term of the second Piola-Kirchhoff stress449

tensor written with respect to the natural state, λ = κ − 2
3
µ is Lamé’s450

constant, and E(0)
e is given by451

E(0)
e = (F (0)

p )−T
(
E(0) −E(0)

p

)
(F (0)

p )−1, (30)

with E(0) = 1
2

(
(F (0))TF (0) − I

)
and E(0)

p = 1
2

(
(F (0)

p )TF (0)
p − I

)
.452
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By pulling S(0)
ν back to the reference configuration, and recalling that the453

plastic-like distortions are assumed to be isochoric in our framework, (i.e.454

Jεp = 1), we obtain the second Piola-Kirchhoff stress tensor455

S(0) = CR : (E(0) −E(0)
p ), (31)

where456

CR = (F (0)
p )−1⊗ (F (0)

p )−1 : C : (F (0)
p )−T ⊗ (F (0)

p )−T

= 3λK (0)
p + 2µI (0)

p , (32)

is the elasticity tensor pulled-back to the reference configuration through457

F (0)
p , and, upon setting B(0)

p = (F (0)
p )−1(F (0)

p )−T , we employed the notation458

K (0)
p = 1

3
B(0)

p ⊗B(0)
p , (33a)

I (0)
p = 1

2

[
B(0)

p ⊗B(0)
p +B(0)

p ⊗B(0)
p

]
. (33b)

We remark that K (0)
p extracts the “volumetric part” of a generic second-order459

tensor, taken with respect to the inverse plastic metric tensorB(0)
p = (C(0)

p )−1460

i.e. for all A = AT , it holds that K (0)
p : A = 1

3
tr(B(0)

p A)B(0)
p . Furthermore,461

I (0)
p transforms A into I (0)

p : A = B(0)
p AB

(0)
p and M (0)

p = I (0)
p − K (0)

p462

extracts the “deviatoric part” of A with respect to the metric tensor B(0)
p ,463

i.e. M (0)
p : A = B(0)

p AB
(0)
p − 1

3
tr(B(0)

p A)B(0)
p . We note that similar results464

have been obtained in the case of non-linear elasticity in [25].465

Next, we notice that F (0) can be written as466

F (0) = I +H , (34)

with H = GradXu
(0) + GradYu

(1). Thus, by substituting (34) in E(0)
e ,467

the result into (31), and retaining only the terms linear in H , S(0) can be468

linearized as469

S
(0)
lin = CR : (symH −E(0)

p ). (35)

We recall now that, at the leading order, the first Piola-Kirchhoff stress tensor470

reads T (0) = F (0)S(0). Hence, its linearized form is given by471

T
(0)
lin = CR : symH − (I +H)(CR : E(0)

p ). (36)
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Looking at the definition of CR in (31), it can be noticed that our model re-472

solves at the macro-scale the structural evolution of the considered medium473

through the dependence of CR on F (0)
p , which indeed describes the produc-474

tion of material inhomogeneities [21, 22, 23]. Additionally, our model is also475

capable of simultaneously resolving the material heterogeneities at both the476

micro- and macro-scale through the dependence of CR on X and Y . The lat-477

ter dependence in fact, keeps track of the variability of the elastic coefficient478

at both scales.479

Because of Equations (33a) and (33b), CR possesses the same symmetry480

properties of C , i.e.481

(CR)ijkl = (CR)jikl = (CR)ijlk = (CR)klij, (37)

and therefore, T
(0)
lin rewrites as482

T
(0)
lin = CR : H − (I +H)(CR : E(0)

p ). (38)

Local problem. Substituting (38) in the equation of the local problem (24),483

the linear momentum balance law is rephrased as484

DivY
[
CR : H − (I +H)(CR : E(0)

p )
]

= 0, (39)

or, equivalently,485

DivY
[
CR : GradYu

(1) −GradYu
(1)(CR : E(0)

p )
]

=

−DivY
[
CR : GradXu

(0) − (I + GradXu
(0))(CR : E(0)

p )
]

(40)

In the absence of plastic distortions, i.e., when F ε
p = I, Equation (40) coin-486

cides with the equation of the classical cell problem encountered in the ho-487

mogeneization of linear elasticity, which is known to admit a unique solution,488

up to a Y -constant function, if the average over the cell of the right-hand-side489

vanishes identically (in the jargon of Homogenization Theory, this condition490

is referred to as solvability condition or compatibility condition) [5]. In our491

case, since the pulled-back elasticity tensor CR is periodic in Y , while u(0) is492

independent of Y , the solvability condition is satisfied, i.e.,493 〈
DivY

[
CR : GradXu

(0) − (I + GradXu
(0))(CR : E(0)

p )
]〉

= 0. (41)

Exploiting the linearity of equation (40) in u(1), we make the ansatz494

u(1)(X, Y, t) = ξ(X, Y, t) : GradXu
(0)(X, t) + ω(X, Y, t), (42)

18



where ξ and ω are a third-order tensor function and a vector field, both495

periodic in Y .496

We now require that ξ and ω satisfy two independent cell problems. The497

cell problem for ξ reads498 

DivY
[
CR : TGradY ξ − TGradY ξ(CR : E(0)

p )
]

= DivY
[
− CR + I⊗(CR : E(0)

p )
]
, in Y0 \ Γ0 × T ,

JξK = 0, on Γ0 × T ,

J
[
CR : TGradY ξ − TGradY ξ(CR : E(0)

p )

+CR − I⊗(CR : E(0)
p )
]
·NYK = 0, on Γ0 × T .

(43)

Before going further, some words of explanation on the notation are nec-499

essary. First, we notice that GradY ξ is a fourth-order tensor function, which500

admits the representation GradY ξ = (∂ξABC)/(∂YD)eA⊗eB⊗eC⊗eD. Then,501

TGradY ξ is a fourth-order tensor function obtained by ordering the indices502

of GradY ξ in the following fashion503

TGradY ξ = (TGradY ξ)ABCDeA ⊗ eB ⊗ eC ⊗ eD
= (GradY ξ)ACDBeA ⊗ eB ⊗ eC ⊗ eD

=
∂ξACD
∂YB

eA ⊗ eB ⊗ eC ⊗ eD. (44)

The cell problem for ω is given by504 

DivY
[
CR : GradYω −GradYω(CR : E(0)

p )
]

= DivY
[
CR : E(0)

p

]
, in Y0 \ Γ0 × T ,

JωK = 0, on Γ0 × T ,

J
(
CR : GradYω −GradYω(CR : E(0)

p )

−CR : E(0)
p

)
·NYK = 0, on Γ0 × T .

(45)

By virtue of the linearization process, we obtain two auxiliary cell problems505

where the macroscopic term GradXu
(0) is not explicitly present. Indeed, this506

is in general possible only when accounting for the linearized deformations’507

regime, see also [15]. Then, the dependence of the macro-scale variable is508

given through the tensor F (0)
p , which describes the plastic-like distortions.509

Moreover, if F (0)
p only depends on time, as is the case in [2], the cell problems510
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are also decoupled in the spatial micro- and macro-variables provided that the511

elasticity tensor solely depends on the microscale variable. The cell problems512

are in any case time-dependent, as they encode the evolution of the material513

response and its link with the plastic-like distortions.514

Homogenized problem. From (36) and the (42), the homogenized problem515

rewrites516 
DivX

[
ĈR : GradXu

(0)
]

= −DivX
[
D̂R

]
, in Bh × T ,

(ĈR : GradXu
(0)) ·N + D̂R ·N = T̄ , on ∂TBh × T ,

u(0) = ū, on ∂uBh × T ,

(46)

where517

ĈR =
〈
CR + CR : TGradY ξ − TGradY ξ(CR : E(0)

p )− I⊗(CR : E(0)
p )
〉
, (47a)

D̂R =
〈
CR : GradYω −GradYω(CR : E(0)

p )− CR : E(0)
p

〉
. (47b)

Remark 3. In the absence of distortions, that is for F ε
p = I, the cell prob-518

lems (43)-(45) reduce to one single cell problem,519 
DivY [C + C : TGradY ξ] = 0, in Y0 \ Γ0 × T ,
JξK = 0, on Γ0 × T ,
J(C + C : TGradY ξ) ·NYK = 0, on Γ0 × T .

(48)

This is due to the fact that the symmetric tensor E(0)
p appearing in (40) is520

equal to zero. On the other hand, the homogenized problem is rewritten as521

follows,522 
DivX [Ĉ : GradXu

(0)] = 0, in Bh × T ,
(Ĉ : GradXu

(0)) ·N = T̄ , on ∂TBh × T ,
u(0) = ū, on ∂uBh × T ,

(49)

where Ĉ = 〈C + C : TGradY ξ〉 is the effective elasticity tensor. Formula-523

tions (48) and (49) are the counterparts of (24) and (25), respectively, when524

plastic-like distortions are neglected and a linearized approach for the defor-525

mations is considered. Particularly, (48) and (49) identify identically with526

classical results in the asymptotic homogenization literature [5, 77].527
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5.2. Evolution law528

Several procedures can be adopted to establish a proper evolution law529

for the inelastic distortions. One choice is to follow a phenomenological530

approach, which should be based on experimental evidences and comply with531

suitable constitutive requirements [29]. On the other hand, one could invoke532

some general principles, such as the invariance of the evolution law with533

respect to a class of transformations and thermodynamic constraints [21, 22,534

23]. Within the latter approach, and adapting the theoretical framework535

explored in [21, 22, 23, 29], an evolution equation for the inelastic distortions536

has been studied in [19]. Therein, the plastic-like distortions describe a537

remodeling process with the following assumptions: (i) Fp is restricted by the538

constraint Jp = 1, (ii) the solid phase exhibits hyperelastic behavior, and (iii)539

the considered system remodels when the stress induced by external loading540

exceeds a characteristic threshold. An evolution law for Fp satisfying with541

these conditions, and compatible with the Dissipation inequality [12, 32, 33,542

34], is given by543

sym
(
CF−1p Ḟp

)
= γ

[
‖devσ‖ −

√
2
3
σy

]
+

dev(Σ)C

‖devσ‖
, (50)

where σ is the Cauchy stress tensor, dev(Σ) = Σ− 1
3
tr(Σ)I, with Σ = CS544

being the Mandel stress tensor, and S = F−1T the second Piola-Kirchhoff545

stress tensor. Moreover, γ is a strictly positive model parameter, σy > 0 is546

the yield, or threshold stress, and the operator [A]+ is such that, for any real547

number A, [A]+ = A, if A > 0, and [A]+ = 0 otherwise. As anticipated in548

the Introduction, in the present context the physical meaning of the plastic-549

like distortions, represented by Fp, is that of structural reorganization, i.e.550

remodeling, as is the case in biological tissues when the adhesion bonds551

among cells or the structure of the ECM reorganize themselves.552

Although Equation (50) has been successfully used to describe some bi-553

ological situations in which the onset of remodeling is subordinated to the554

excess of the yield stress σy, the homogenization of the evolution law (50) is555

too complicated. For this reason, in this work, we replace (50) with a much556

easier law of the type557

sym
(
C(Fp)−1Ḟp

)
= γ dev(Σ)C, (51)

according to which no stress-activation criterion is supplied. Clearly, this558

choice may turn out to be unrealistic in many circumstances, but it can559
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still be useful to understand the essence of some stress-driven remodeling560

processes.561

We need to clarify that, although in some sentences of this work we562

mentioned growth, our model focuses on pure remodeling. This is reflected563

by the condition detF p = 1, and, more importantly, by the fact that the564

evolution laws (50)–(52) are triggered and controlled exclusively by mechan-565

ical factors. On the one hand, the requirement detF p = 1 means that the566

plastic-like distortions are isochoric and, thus, unable to describe volumetric567

growth. On the other hand, the evolution laws for F p, i.e., Equations (50)–568

(52), imply that remodeling is viewed as a consequence of the mechanical569

environment only: When mechanical stress exceeds a given threshold (see570

also [29, 34]), the internal structure of the tissue starts to vary. In other571

words, in the present framework, no biochemical phenomena are accounted572

for as possible activators of remodeling. This is a remarkable difference with573

growth, which, in contrast, occurs only when the concentration of nutrients574

is above a certain threshold value [2, 10, 3, 26, 52]. Our results do not apply575

to growth as they stand, nonetheless, the theory can be adapted to model576

growth by doing some necessary modifications. This is the reason why in577

the abstract we stated that our study offers “a robust framework that can be578

readily generalized to growth and remodeling of nonlinear composites”.579

To homogenize (51), the first step is to rewrite it as580

sym
(
Cε(F ε

p)−1Ḟ ε
p

)
= γεdev(Σε)Cε, (52)

by admitting that γε(X) = γ(X, Y ) is a rapidly oscillating strictly positive581

function. Moreover, by performing the power expansion for Σε,582

Σε(X, t) =
+∞∑
k=0

Σ(k)(X, Y, t)εk , (53)

and using (31), the leading order term of Σε is583

Σ(0) = C(0)
[
CR : (E(0) −E(0)

p )
]
. (54)

In the limit of small elastic deformations, in (54) we must neglect non-linear584

terms in H . Therefore, Σ(0) is approximated with585

Σ
(0)
lin = CR : symH −

(
I + 2symH

)(
CR : E(0)

p

)
.
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By virtue of (12a), symH splits additively as the sum of586

symH = E
(0)
X +E

(1)
Y , (55)

where, for k = 0, 1, and jk = X, Y ,587

E
(k)
j = 1

2

[
Gradju

(k) + (Gradju
(k))T

]
. (56)

By using (55) and (42), we can now rewrite Σ
(0)
lin as588

Σ
(0)
lin = AR : GradXu

(0) + BR : GradYω − CR : E(0)
p , (57)

with589

AR = CR + CR : TGradY ξ − I⊗(CR : E(0)
p )

+
[
I⊗(CR : E(0)

p )
]

:
[
TGradY ξ + t(TGradY ξ)

]
, (58a)

BR = CR + I⊗(CR : E(0)
p ). (58b)

In Equation (58a), the symbol t(•) transposes the fourth-order tensor to590

which it is applied by exchanging the order of its first pair of indices only,591

i.e., given an arbitrary fourth-order tensor T = TABCDeA ⊗ eB ⊗ eC ⊗ eD,592

tT reads593

tT = TBACDeA ⊗ eB ⊗ eC ⊗ eD. (59)

Note that in the calculations performed to obtain AR and BR in (57), we594

employed the following properties: given two second-order tensors A and U ,595

with A being symmetric, it holds that596

UA = (I⊗A) : U , (60a)

UTA = (I⊗A) : U . (60b)

Finally, by substituting the expansions of Σε and F ε
p in (52), equating597

the leading order terms, excluding non-linear terms of H and averaging, the598

homogenized evolution law for the plastic-like distortions is599

sym
[
〈C(0)

lin (F (0)
p )−1

˙
F (0)

p 〉
]

= −
〈
γdev(Σ

(0)
lin )
〉
−
〈
γ(CR : E(0)

p )(C
(0)
lin − I)

〉
, (61)

where Σ
(0)
lin is given in (57) and600

C
(0)
lin = I + 2symH
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= I + 2(I + I : TGradY ξ) : GradXu
(0) + 2I : GradYω. (62)

We note that, to compute C
(0)
lin , we must first determine ξ and ω, which is601

done by solving the local problems (43) and (45). Furthermore, Equation602

(61) needs to be supplemented with an initial condition for F (0)
p .603

Remark 4. In the linearized theory of elasticity, even when the individual604

constituents of a given composite material are isotropic, the effective elas-605

tic coefficients may turn out to be anisotropic, depending on the geometric606

properties of the micro-structure. In fact, when the Homogenization Theory607

is applied, the anisotropy arises quite naturally due to the solution of the608

local cell problems [5, 8]. In fact, the homogenized material is anisotropic609

also in the case of rather simple cells, see for instance [61], where an ex-610

plicit deviation-from- isotropy function is introduced in the context of cubic611

symmetric elasticity tensors arising from asympototic homogenization. This612

has noticeable repercussions also on the evolution law that should be chosen613

for a correct description of remodeling. To see this, we first notice that, for614

an isotropic medium, the evolution law of the plastic-like distortions can be615

formulated in terms of tensor Bp, since the constitutive framework is such616

that F p does not feature explicitly in any constitutive function (see e.g. [78]).617

In such cases, a possible evolution law for Bp may be given in the form618

Ḃp = γBpdev(Σ). (63)

Equation (63) is, in fact, in harmony with the symmetry properties of the619

material Mandel stress tensor, Σ, i.e., BpΣ = (BpΣ)T [54]. However, if620

one writes an equation of the same type as (63) at the scale of a cell problem621

(which seems to be a justified choice, because the material is isotropic at622

that scale), and then homogenizes, one ends up with a material for which623

the Mandel stress tensor Σ no longer obeys the symmetry condition BpΣ =624

(BpΣ)T . This is because the material is not isotropic at the macroscale625

and, thus, the description of remodeling based on Bp becomes inadequate.626

Therefore, if one wants to homogenize, one should start with evolution laws627

at the microscale, which have to be suitable to account for anisotropy, even628

though the single constituents are isotropic at that scale. These considerations629

lead us to Equation (52), as suggested in [22, 23], and subsequently employed630

in [19].631
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Remark 5. Equations (50)–(52) can be obtained by adhering to the philos-632

ophy presented in [12, 18], and subsequently adopted, for example, in [3] for633

growth, in [44] for growth and remodeling, and in [31, 32] for remodeling634

only. Accordingly, F p is regarded as the kinematic descriptor of the struc-635

tural degrees of freedom of the medium, and Ḟ p as the generalized velocity636

with which the structural changes occur. Within this setting, it can be proven637

that for growth and remodeling problems, the dissipation inequality reads638

D = Y ν : Lp +Dnc ≥ 0, (64)

where Dmech := Y ν : Lp is the mechanical contribution to dissipation, with639

Y ν being the dissipative part of a generalized internal force, dual to Lp. In640

our work, however, Y ν can be identified with the tensor Y ν ≡ J−1p F−Tp ΣF T
p ,641

so that Dmech coincides with the mechanical dissipation encountered in the642

standard formulation of Elastoplasticity, i.e., Dmech = J−1p F−Tp ΣF T
p : Lp =643

J−1p Σ : F−1p Ḟ p.644

In the terminology of [45, 30], Dnc is referred to as “ non-compliant”645

contribution to the overall dissipation. Physically, it summarizes a class of646

phenomena that are not —or cannot be— resolved in terms of mechanical647

power at the scale of which the dissipation inequality is written. For instance,648

in the case of growth, Dnc may represent biochemical effects contributing to649

the overall dissipation.650

The inequality (64) can be studied in several ways, depending on the prob-651

lem at hand. First, we consider a growth problem. To this end, we assume652

that Dnc can be written as Dnc = rA, where r is the rate at which mass653

is added or depleted from the system (its units are given by the reciprocal654

of time), and A is the energy density (per unit volume) associated with the655

introduction or uptake of mass. In this setting, it is possible to conceive a656

particular state of the system in which the mechanical stress is null, i.e.,657

Σ = 0, while r and A are generally nonzero. When this occurs, the system658

grows without mechanical dissipation, i.e., Dmech = 0, whereas the overall659

dissipation of the system reduces to the non-compliant one:660

D ≡ Dnc = rA ≥ 0. (65)

The second case addresses the situation of pure remodeling, for which we661

set Dnc = 0, so that the dissipation inequality (64) becomes662

D = Dmech = Y ν : Lp = J−1p Σ : F−1p Ḟ p ≥ 0. (66)
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It is possible to show that the evolution laws (50)–(52) are in harmony with663

(66).664

6. A computational scheme for small deformations665

The macro-scale model given by the problems (46) and (61), together666

with the auxiliary cell problems (43) and (45), requires dedicated numerical667

schemes which are subject of our current investigations. The main compu-668

tational challenge is due to the fact that the local problems depend on the669

macro-scale in a time-dependent way. Therefore, at each time, there is a dif-670

ferent cell problem at each macroscopic point X ∈ Bh. Moreover, one has to671

transfer the information (represented by the geometry, material coefficients,672

and unknowns of the problem) from the cell problems to the homogenized673

problem in the domain Bh, and vice versa.674

Here, as a first step towards the numerical study of this kind of problems,675

we propose an algorithm adapted from [31] that could be useful in our case. In676

[31] it is introduced a computational algorithm, named Generalised Plasticity677

Algorithm (GPA), to study the mechanical response of a biological tissue678

that undergoes large deformations and remodeling of its internal structure.679

Following [31], the discrete and linearized version of the problem constituted680

by Equations (43), (45), (46) and (61) is formulated in three steps.681

First step. The weak form of the cell problems (43) and (45), and of the682

homogenized problem (46) can be formally rewritten as683

Lw1 (ξ,F (0)
p , ξ̃) = 0, (67a)

Lw2 (ω,F (0)
p , ω̃) = 0, (67b)

Hw
1 (u(0),F (0)

p , ũ(0)) = 0, (67c)

where ξ̃, ω̃ and ũ(0) are test functions defined in certain Sobolev spaces, and684

Lw1 , Lw2 and Hw
1 are suitable integral operators. Together with (67a)-(67b),685

we rewrite in operatorial form also the homogenized problem (61) as686

H2(ξ,ω,u
(0),F (0)

p ) = 0. (68)

Note that (68) is not a weak form because the corresponding equation does687

not involved spatial derivatives of F (0)
p .688
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Second step. We perform a backward Euler method for discretizing the evo-689

lution law for F (0)
p given by (68), thereby ending up with the following system690

of time-discrete equations,691

Lw1[n](ξ[n],F
(0)
p[n], ξ̃) = 0, (69a)

Lw2[n](ω[n],F
(0)
p[n], ω̃) = 0, (69b)

Hw
1[n](u

(0)
[n] ,F

(0)
p[n], ũ

(0)) = 0, (69c)

H2[n](ξ[n],ω[n],u
(0)
[n] ,F

(0)
p[n]) = 0, (69d)

where n = 1, . . . , N enumerates the nodes of a suitable time grid. We notice692

that an explicit time discrete method could be also used. However, when693

dealing with problems in Elastoplasticity, this election could lead to instabil-694

ities in the solution [78].695

Third step. The operators Lw1[n], Lw2[n], Hw
1[n] and H2[n], are linear in ξ[n], ω[n]696

and u
(0)
[n] , respectively, but, they are nonlinear in F

(0)
p[n]. Thus, to search the697

solution to (69a)-(69d), we linearize at each time step according to Newton’s698

method (with a linesearch). Therefore, at the kth iteration, k ∈ N, k ≥ 1,699

F
(0)
p[n,k] is written as700

F
(0)
p[n,k] = F

(0)
p[n,k−1] + Ψ[n,k], (70)

where F
(0)
p[n,k−1] is known and Ψ[n,k] represents the unknown increment. We701

introduce the notation702

Lw1[n,k−1](ξ[n], ξ̃) = Lw1[n](ξ[n],F
(0)
p[n,k−1], ξ̃), (71a)

Lw2[n,k−1](ω[n], ω̃) = Lw2[n](ω[n],F
(0)
p[n,k−1], ω̃), (71b)

Hw
1[n,k−1](u

(0)
[n] , ũ

(0)
[n] ) = Hw

1[n](u
(0)
[n] ,F

(0)
p[n,k−1], ũ

(0)
[n] ). (71c)

Now, for each time step, and at the kth iteration, we solve703

Lw1[n,k−1](ξ[n], ξ̃) = 0, (72a)

Lw2[n,k−1](ω[n], ω̃) = 0, (72b)

Hw
1[n,k−1](u

(0)
[n] , ũ

(0)) = 0, (72c)
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and obtain the “temporary” solutions ξ[n,k−1], ω[n,k−1], and u
(0)
[n,k−1], respec-704

tively. Then, upon setting705

H2[n,k−1] = H2[n](ξ[n,k−1],ω[n,k−1],u
(0)
[n,k−1],F

(0)
p[n,k−1]), (73a)

H[n,k−1] = H[n](ξ[n,k−1],ω[n,k−1],u
(0)
[n,k−1],F

(0)
p[n,k−1]), (73b)

we linearize (69d), i.e.,706

H2[n,k−1] + H[n,k−1] : Ψ[n,k] = 0, (74)

where H[n,k−1] is a fourth-order tensor given by the Gâteaux derivative707

of H2[n], computed with respect to its fourth argument, and evaluated in708

F
(0)
p[n,k−1].709

If the residuum F
(0)
p[n,k] for k greater than, or equal to, a certain k∗ is less710

than a tolerance δ > 0, then we set F
(0)
p[n] ≡ F

(0)
p[n,k∗]

= F
(0)
p[n,k∗−1] + Ψ[n,k∗] and711

we regard it as the solution of Newton’s method. Thus, we compute ξ[n], ω[n]712

and u
(0)
[n] .713

These three steps are summarized in the algorithm 1.714

Algorithm 1
1: procedure
2: for n = 1, . . . , N do
3: State k = 1
4: while e > δ do (Known F

(0)
p[n,k−1]

)

5: Solve Lw
1[n,k−1]

and Lw
2[n,k−1]

(To find ξ[n,k−1] and ω[n,k−1])

6: Solve Hw
1[n,k−1]

(To find u
(0)
[n,k−1]

)

7: Solve Hw
1[n,k−1]

(To find Ψ[n,k])

8: F
(0)
p[n,k−1]

← F
(0)
p[n,k−1]

+ Ψ[n,k]

9: Compute e
10: k = k + 1
11: end while
12: F

(0)
p[n]

= F
(0)
p[n,k−1]

+ Ψ[n,k]

13: Solve Lw
1[n]

and Lw
2[n]

(To find ξ[n] and ω[n])

14: Solve Hw
1[n]

(To find u
(0)
[n]

)

15: Update micro and macro geometries
16: end for
17: end procedure

7. Numerical results715

In this section, the potentiality of our model, which is given by Equations716

(43), (45), (46) and (61), is shown by performing numerical simulations. In717
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particular, we make the following considerations.718

(i) Geometry. We consider the composite body Bε to have a layered three-719

dimensional structure, and we assume that the layers are orthogonal to the720

direction E3, where {EA}3A=1 is an orthonormal basis of a system of Cartesian721

coordinates {XA}3A=1. In this particular case, the material properties of the722

heterogeneous body only change along the E3 direction and thus, they depend723

solely on the coordinate X3. Consequently, the benchmark test at hand, can724

be recast into a one dimensional problem, that is, the reference configuration725

of the periodic cell and the body are considered to be the unidimensional726

domains Y0 = [0, `] and Bh = [0, L], respectively. We denote with ` and727

L, respectively, the dimension of the periodic cell and the body along the728

direction E3. Moreover, we suppose that the interface Γ0 is the middle point729

`/2, so that, each material under consideration has the same volume in the730

microscopic cell Y0.731

(ii) Material properties. We prescribe the elasticity tensor C ε to be in-732

dependent on the macroscale variable X3, i.e. C ε(X3) = C (X3, Y3) ≡ C (Y3),733

being {YA}3A=1 a system of microscale Cartesian coordinates. In addition, as734

stated above, we consider that the constituents of the heterogeneous mate-735

rial are isotropic, which implies that the non zero components of the 6 × 6736

symmetric matrix representation of C are given by737

[C ]11 = [C ]22 = [C ]33 = λ+ 2µ, (75a)

[C ]12 = [C ]13 = [C ]23 = λ, (75b)

[C ]44 = [C ]55 = [C ]66 = 1
2
([C ]11 − [C ]12) = µ, (75c)

where λ and µ are Lamé’s parameters. We suppose that C is piece-wise738

constant, which means that λ and µ are defined as739

λ(Y3) =

{
λ1, in Y1

0

λ2, in Y2
0

and µ(Y3) =

{
µ1, in Y1

0

µ2, in Y2
0

. (76)

Furthermore, we consider that γ has the same value in both constituents,740

this means that, it is set already averaged.741

(iii) Plastic-like distortions. We assume that the matrix representa-742

tion of the tensor F (0)
p is diagonal with non-zero components [F (0)

p ]11 = 1√
p
,743
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[F (0)
p ]22 = 1√

p
and [F (0)

p ]33 = p, where p is defined as the remodeling pa-744

rameter. Furthermore, we restrict our investigation to the simpler case of745

F (0)
p depending solely on X3. This means that, the plastic-like distortions of746

order ε0 are, in a sense, already averaged, and thus variable from one cell747

to the other, not inside them. In other words, we are interested in the pro-748

duction of distortions in the tissue starting from the cell scale, rather than749

from the cell’s microstructure. This, of course, does not mean that the cell’s750

microstructure does not change.751

Together with assumption (ii), we find that the 6× 6 matrix representa-752

tion of the elasticity tensor, pulled-backed to the reference configuration, is753

symmetric, and its non-zero components are given by754

[CR]11 = [CR]22 = (λ+ 2µ)p2, [CR]33 = (λ+ 2µ)p−4, (77a)

[CR]12 = λp2, [CR]44 = [CR]55 = µp−1, (77b)

[CR]13 = [CR]23 = λp−1, [CR]66 = µp2. (77c)

We remark that CR depends on X3 and time through p, whereas it inherits755

the dependence of C on the micro-scale variable, Y3.756

(iv) Initial and boundary conditions. In the present context, we im-757

pose Dirichlet conditions for u(0) on the whole boundary ∂Bh, i.e. we do not758

consider a Neumann condition and therefore, ∂uBh ≡ ∂Bh. We note that,759

although the homogenization process was developed for mixed boundary con-760

ditions, the whole procedure stands, since the type of boundary conditions761

does not play a role in the derivation of the homogenized model. In par-762

ticular, we set [u(0)]3 = 0 at X3 = 0, and [u(0)]3 = uLt
tf

at X3 = L, where763

uL is a target value for the displacement in the direction E3. Moreover,764

we enforce an initial spatial distribution for the remodeling parameter p as765

p in(X3) = α + β cos( π
L
X3), where α and β are constants.766

7.1. Discussion of the numerical results767

Given the above considerations, we solve the following homogenized equa-768

tions for u(0) and p,769

− ∂

∂X3

([ĈR]i3n3
∂[u(0)]n
∂X3

) =
∂[D̂R]i3
∂X3

, for i = 1, 2, 3 (78a)

〈[C(0)
lin ]33〉

∂p

∂t
=
γ

3
〈dev(Σ

(0)
lin )〉p− γ〈[CR]33nn[Ep]nn([C

(0)
lin ]33 − 1)〉p, (78b)
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The coefficients [ĈR]ijkl, [D̂R]ij and [C
(0)
lin ]ij are given by Equations (47a),770

(47b) and (57), respectively, and are to be found by solving the auxiliary cell771

problems for ξ and ω, given by772

− ∂

∂Y3
([Q]i3i3

∂[ξ]ik3
∂Y3

) =
∂[Q]i3i3
∂Y3

δik, for i, k = 1, 2, 3 (79a)

− ∂

∂Y3
([Q]i3i3

∂[ω]i
∂Y3

) = −∂[Q]33
∂Y3

δi3, for i = 1, 2, 3 (79b)

with773

[Q]i3i3 = [CR]i3i3 − [Q]33, with [Q]33 = [CR]33nn[Ep]nn. (80a)

In this work, we are not interested to address a real world situation. Our774

aim is, instead, to show how the present theoretical framework can be numer-775

ically simulated. For this reason, the parameters used in our computations776

are arbitrarily chosen (see Table 1).777

Parameter Unit Value Parameter Unit Value

L [cm] 28.000 λ1 [Pa] 1.00
uL [cm] 1.0000 λ2 [Pa] 2.00
γ [1/s] 1.0000 µ1 [Pa] 0.10
α [−] 1.0035 µ2 [Pa] 0.06
β [−] −0.0035 t0 [s] 0.00
N [−] 4.0000 tf [s] 10.0

Table 1: Parameters used in the numerical simulations.

In Fig. 2, it is plotted the time evolution of the remodeling parameter778

p at two different points of the macroscopic domain, that is at X3 = 7 cm779

and X3 = 21 cm. We observe that the evolution of p is quite different at780

these two points. Indeed, at X3 = 21 cm, p increases and it is always greater781

than one. On the contrary, at X3 = 7 cm, it is monotonically decreasing782

and tends to be lower than one. In Fig. 3, we show the spatial profile of the783

effective coefficients [Ĉ ]33, [ĈR]33 and [D̂R]33. The effective coefficient [Ĉ ]33784

(see Remark 3) can be computed by using the analytical formula (see e.g.785

[56, 69]),786

[Ĉ ]ijkl = 〈[C ]ijkl − [C ]ijp3([C ]p3s3)
−1[C ]s3kl〉

+ 〈[C ]ijp3([C ]p3s3)
−1〉〈([C ]s3t3)

−1〉−1〈([C ]t3m3)
−1[C ]m3kl〉. (81)
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Figure 2: Evolution of the remodeling parameter p at two different points (X3 = 7 cm and
X3 = 21 cm) of the macroscopic domain.

We observe that even if a loading ramp condition has been imposed on u(0)
787

at the border X3 = L, the effective coefficient [Ĉ ]33 does not vary on time.788

This is because, in contrast to the case in which the plastic-like distortions789

are accounted for, the cell and homogenized problems (cf. (48) and (49)) are790

decoupled. On the other hand, the pulled-back effective coefficients [ĈR]33791

and [D̂R]33, given by Equations (47a) and (47b), respectively, do change in792

time since their equations are coupled with an evolution one and, as it can793

be observed, they are strongly influenced by the initial distribution of p. In794

fact, at the spatial point X3 = 21 cm, that is, when p > 1, [ĈR]33 decreases795

and [D̂R]33 increases with time. The contrary occurs at X3 = 7 cm, i.e. when796

p < 1.797
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Figure 3: Spatial distribution of the effective coefficients [Ĉ ]33, [ĈR]33 and [D̂R]33 at
different time instants.

Additionally, in Fig. 4 it is illustrated the third component of the macro-798
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scopic leading order term of the displacement uε at three different time799

instants. Particularly, we plot the numerical solution of the homogenized800

problems (46) and (49), represented with [u
(0)
R ]3 and [u(0)]3, respectively. We801

note that, as expected from our election of the boundary condition, the dis-802

placement component augments monotonically in time. However, we notice803

that the introduction of the plastic-like distortions, has a direct impact on804

the displacement distribution in the interior macroscopic points. Specifically,805

in these points the displacement has a higher magnitude.806
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Figure 4: Spatial distribution of the macroscopic leading order term of the displacement

with remodeling ([u
(0)
R ]3) and without remodeling ([u(0)]3).

The situation described in our numerical simulations, although simplified,807

could be a good starting point in the study of the remodeling of biological808

tissues. For example, the geometrical properties of bone’s osteons permit to809

model them as layered composites (see e.g. [69]).810

8. Concluding remarks811

In the present work, we studied the dynamics of a heterogeneous material,812

constituted by two hyperlastic media, with evolving micro-structure by the813

application of the asymptotic homogenization technique. The evolution of814

the micro-structure of the composite media was characterized through the815

development of plastic-like distortions, which were described by means of the816

BKL decomposition.817

The asymptotic homogenization method was applied to a set of problems818

comprising a scale-dependent, quasi-static law of balance of linear momen-819

tum and an evolution law for the tensor of plastic-like distortions. After820
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obtaining the local and homogenized problems, we rewrote them by consid-821

ering the De Saint-Venant strain energy density within the limit of small822

deformations. Although the selection of the strain energy density was due823

to its simplicity, it is helpful for the description of remodeling processes un-824

dergoing small deformations. For instance, this could be the case for the825

modeling bone aging. Then, the theoretical setting developed in the present826

work is applicable (Elastoplasticity is actually quite appropriate to model827

the bone [73]). In such a case, appropriate constitutive laws describing the828

progression of the material properties should be found based on experimental829

literature (e.g. [35]). Nevertheless, for studying a larger range of problems,830

we need to select nonlinear constitutive laws and write the corresponding cell831

and homogenized problems.832

As a consequence of the introduction of the tensor of plastic distortions,833

two independent cell problems were inferred, which reduce to the classical834

cell problems encountered through a homogenization process in linear elas-835

tostatics. We proposed an evolution equation for the inelastic distortions836

describing a remodeling process. Such evolution law models a stress-driven837

production of inelastic distortions, as the one that is often encountered in838

studies of inelastic processes constructed on the decomposition given by (5)839

[78]. Thus, the evolution law is suitable for the case of finite strain Elasto-840

plasticity, and for the case of remodeling of biological tissues. Finally, we841

outlined a computational procedure in order to solve the up-scaled problems842

and perform numerical simulations for a particular case where the composite843

body is considered to be a layered one. Besides, we assumed that the leading844

order term of the asymptotic expansion of the tensor of plastic distortions845

F (0)
p was considered to depend only on the macro-scale variable X. This846

consideration, however, might be relaxed by allowing F (0)
p to take into ac-847

count the heterogeneities of the composite material through the microscopic848

spatial variable Y . The numerical results showed the influence of the plastic-849

like distortions on both the effective coefficients and the macroscopic leading850

order term of the displacement.851

As future work, we intend to deal with the resolution of a particular852

problem, like for instance the modeling of bones [49], tumor growth [67, 2,853

43, 52, 70, 71], or tissue aging [20]. A further step could be the study, with854

the aid of the Homogenization Theory, of the coupling between the results855

presented in this work and the fluid flow in a hydrated tissue, or in the case856

of wavy laminar structures.857
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Realpozo, J., Sabina, F., Sevostianov, I. (2013). Effective elastic prop-957

erties of a periodic fiber reinforced composite with parallelogram-like ar-958

rangement of fibers and imperfect contact between matrix and fibers. In-959

ternational Journal of Solids and Structures, 50(13):2022-2032.960

[37] Hammer, D. A. and Tirrell, M. (1996). Biological adhesion at interfaces.961

Annual Review of Materials Science, 26(1):651-691.962

[38] Hashin, Z. (1990). Thermoelastic properties of fiber composites with im-963

perfect interface. Mechanics of Materials, 8(4):333-348.964

[39] Hashin, Z. (2002). Thin interphase/imperfect interface in elasticity with965

application to coated fiber composites. Journal of the Mechanics and966

Physics of Solids, 50(12):2509-2537.967

[40] Holmes, M. H. (1995). Introduction to perturbation methods (Vol. 20).968

Springer Science & Business Media, Springer-Verlag, New York.969

[41] Hori, M., Nemat-Nasser, S. (1999). On two micromechanics theories for970

determining micromacro relations in heterogeneous solids. Mechanics of971

Materials 31:667-682.972

[42] Javili, A., Steinmann P., Kuhl, E. (2014). A novel strategy to identify973

the critical conditions for growth-induced instabilities. Journal of the974

Mechanical Behavior of Biomedical Materials 29:20-32.975

38



[43] Jain, R. K., Martin, J. D., Stylianopoulos, T. (2014). The role of me-976

chanical forces in tumor growth and therapy. Annual Review of Biomed-977

ical Engineering 16:321-346.978

[44] Olsson, T., Klarbring, A. (2008). Residual stresses in soft tissue as a979

consequence of growth and remodeling: application to an arterial geom-980

etry. European Journal of Mechanics A/Solids 27:959-974.981

[45] Kuhl, E., Holzapfel, G.A. (2007). A continuum model for remodeling in982

living structures. Journal of Material Science 42:8811–8823.983

[46] Lefik, M., Schrefler, B. (1996). Fe modelling of a boundary layer cor-984

rector for composites using the homogenization theory. Engineering with985

Computers 13:31-42.986

[47] Leyrat, A., Duperray, A., Verdier, C. (2003). Cancer Modelling and987

Simulation, chapter Adhesion Mechanisms in Cancer Metastasis Ed.988

L. Preziosi. Chapman & Hall/CRC Mathematical and Computational989

Biology.990

[48] Lin, W. J., Iafrati, M. D., Peattie, R. A., and Dorfmann, L. (2018).991

Growth and remodeling with application to abdominal aortic aneurysms.992

Journal of Engineering Mathematics, 109(1):113-137.993

[49] Lu, Y., Lekszycki, T. (2016). Modelling of bone fracture healing: in-994

fluence of gap size and angiogenesis into bioresorbable bone substitute.995

Mathematics and Mechanics of Solids 22:1997-2010.996

[50] Lubliner, J. (2008). Plasticity Theory (Dover Books on Engineering).997

Dover Publications.998

[51] Lukkassen, D., Milton, G. W. (2002). On hierarchical structures and999

reiterated homogenization. Function Spaces, Interpolation Theory and1000

Related Topics 355-368.1001

[52] Mascheroni, P., Carfagna, M., Grillo, A., Boso, D. P., Schrefler, B.1002

A. (2018). An avascular tumor growth model based on porous media1003

mechanics and evolving natural states. Mathematics and Mechanics of1004

Solids DOI: 10.1177/1081286517711217 (In press).1005

39



[53] Marsden, J. E., Hughes, T. J. R. (1983). Mathematical Foundations of1006

Elasticity. Dover Publications Inc., New York.1007

[54] Maugin, G. A., Epstein, M. (1998). Geometrical material structure of1008

elastoplasticity. International Journal of Plasticity 14:109-115.1009
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