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ABSTRACT

A parallel algorithm for the efficient solution of a time dependent reaction convec-

tion diffusion equation with small parameter on the diffusion term will be presented.

The method is based on a domain decomposition that is dictated by singular per-

turbation analysis. The analysis is used to determine regions where certain reduced

equations may be solved in place of the full equation. Parallelism is evident at two

levels. Domain decomposition provides parallelism at the highest level, and within

each domain there is ample opportunity to exploit parallelism. Run-time results

demonstrate the viability of the method.
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1. INTRODUCTION. In this paper, a new approach to solving partial differ-

ential equations which model fluid flow is discussed and demonstrated. The algorithm

is appropriate for modeling laminar transonic flow, such as through a duct of variable

width. The method is an asymptotics-induced numerical method suitable for parallel

processors which represent the state of the art in scientific computers. The contents

of this paper concentrate on a description of the method and computational results.

The complete theoretical basis for the algorithm has been developed in I32] and will

appear separately.

Competition between convection, diffusion, and reaction is crucial to the under-

standing of fluid flow. When modeling transonic flow, except in regions of rapid

variation such as in shocks and boundary layers, convection and reaction dominate

over diffusion. A novel aspect of this method is the use of asymptotic analysis to

exploit these physical properties, providing the theoretical basis for a domain decom-

position. The analysis identifies the following two types of subdomains: regions where

the solution is smooth, where a reduced equation may be solved; and regions of rapid

variations, such as in a neighborhood of a shock, where the full equation must be

solved. Domain decomposition provides large-grain parallelism. The domain decom-

position is independent of the choice of numerical schemes for the subdomains; thus,

schemes may be chosen which are a source of smaller-grain parallelism. Even though

large grain parallelism is not exploited in the implementation, significant speedups

are demonstrated. In addition to dictating the domain decomposition, asymptotics

also provides a means of approximating solutions to the problem. In this way, a set of

simplified problems is obtained that is better conditioned for numerical computations;

hence, they may be solved by conventional techniques. The use of asymptotic analysis

to precondition the computations is a new aspect of this method.

The techniques presented herein are applicable to Computational Fluid Dynamics

(CFD) in the transonic and supersonic regimes, in physical settings such as laminar

flow through a nozzle (duct) and laminar flow around airfoils and other bodies. The

gasdynamic equations, including viscous effects, are used as a model in these settings.

Except for very simple geometries and boundary conditions there is no analytic solu-

tion to these gasdynamic equations, and a numerical solution is difficult to obtain. For

these reasons new algorithms are usually developed and tested on a more tractable

canonical equation. The convection-diffusion-reaction equation

au ou a2u - r(x)u = o,
(1) a-"t + A(x't'u)-_x - eff_x2

is such a canonical equation and will be the focus of this paper. The flows considered

in this paper are not reacting fluids. Here, the reaction term arises from the effects of a

variable cross sectional area in a duct. When the equation is nondimensionalized [24],

the diffusion coefficient e is inversely proportional to the Reynolds number. Based

on free-stream conditions in transonic flow, the Reynolds number for this problem

is large. Asymptotic analysis exploits the smallness of the positive parameter e and

involves study of the solution as e tends to zero (e _ 0). This equation contains many

of the properties that make the gasdynamic equations difficult to solve; namely, it is



capable of modeling rapid variations such as shocks and boundary layers. The method

is capable of obtaining solutions to (1) when the shock is not stationary, which extends

Howes' studies [12,13] into the time-dependent regime.

Asymptotic analysis gives qualitative and quantitative information as e _ 0. The

numerical method presented here exploits the analysis to determine an accurate so-

lution for small positive e. The method is in the spirit of matched asymptotic ex-

pansions [19,16], but it is not a numerical implementation of matched asymptotics.

The asymptotic analysis involves the derivation of analytic upper and lower bounds

on the solution, and is performed in the style of Howes [9,10,11]. Initially, bounds are

discussed which are valid only in certain subregions. Then the bounds are combined

to form a global a priori error bound.

Another novel feature of the method is the availability of extensive error informa-

tion in the form of both a priori error bounds and reliable a posteriori error estimates.

Reliable a post_riori error estimates are obtained using the error analysis which ac-

companies the numerical schemes used to solve the sub-problems. In addition, a priori

error bounds are provided through the use of asymptotic analysis. The error analysis

is based on the physical mechanisms associated with the problem; hence, it is based

on accurate information (see [23]), not on the truncation of a Taylor series of a poorly

behaved function.

The method is an iterative technique. A linearized version of the original problem

is solved in each step of the iteration. Theorems establishing the convergence of the

method are presented, the proofs will appear in a subsequent paper. Computational

experiments show that in just a few steps of the iteration, the solution to the nonlinear

equation may be obtained. The iterative algorithm as well as the theorems associated

with it are novel.

In the next section, some of the ideas behind multiple scales asymptotic analysis

are discussed. In addition, an introduction into how the asymptotic analysis and

the numerical analysis are blended to form a computational method is presented.

In Section 3 the problem is presented. Asymptotic analysis specific to this problem

is discussed with the theorems supporting the method in Section 4. The iteration

and method for detection of the subdomain boundary is discussed in Section 5. The

numerical schemes used in the method are presented in Section 6. The method is

stated in algorithmic form in Section 7. In Section 8 computational results on an

Alliant FX/8 are presented.

2. MULTIPLE SCALES. Many problems of scientific interest have multiple

scales. These problems are characterized by the presence of distinguishable physical

mechanisms, each associated with a temporal or spatial gauge or scale. When mod-

eling a shock in a duct, for example, the width of the duct provides one scale, and

the thickness of the shock layer provides another. The resolution of these scales is

frequently required to determine the physics of interest. Asymptotic analysis provides

analytic tools to identify and utilize the multiple scales. The relative importance of
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any two physical processes in a given domain may be measured by the ratio of the

corresponding scales; thus, the various scales may be ranked by a set of dimensionless

parameters, the ratios of scales. When the ratio of two scales is a large or a small

number, then it often happens that one of the competing mechanisms is dominant

in most of the domain. For example, in laminar duct flow with large Reynolds num-

ber the effects of viscosity may be ignored except in a neighborhood of the shock

and boundary layers. The scales of the various competing processes (and, therefore,

the relative magnitudes of the dimensionless parameters) usually change as the phe-

nomenon evolves. Consider the behavior of the solution of the nonlinear parabolic

equation,

(2) e[u] := u, + uu_ - _u= - ru = 0,

where _ is a small positive parameter. This equation may be used as a model for shocks

and boundary layers. For example, if r(z) = -a'(z)/a(z), where a(z) is the width of

the duct of Figure 1, then this equation is associated with the flow through the duct

[13]. There are (at least) two sets of scales appropriate when modeling shocks--the

It 11 A(x)

t -

jl

FIG. 1. Variable width duct. (From [32].}

scales associated with the original variables (x, t), and the scales appropriate in a

small neighborhood of the shock (these are discussed in Section 4).

The most easily tractable multiple-scale problems are those in which there are

only a small number of widely separated groups of scales and the motion on the

fastest scales has little influence on the smooth part of the solution. An identifying

feature of this class is the presence of local regions in which the solution undergoes

rapid variation. Such regions are called boundary or internal layers, when located in

the neighborhood of a boundary or in the interior of the domain, respectively. These

are the problems that are most natural for multitasking because it is easy to break up

the domain according to the regions of different local behavior. The method presented

here is appropriate for this class of multiple-scale problems.

The decomposition into domains is accomplished using a symbiosis of numerics

and asymptotics. The asymptotic analysis identifies the regions where diffusion is
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negligible.In these regions, itis sufficientto solve a reduced equation. Solving this

reduced equation can significantlyreduce the work in the numerical method, and/or

increase the potentialfor parallelism.For example, thisallows the use of the method

ofcharacteristicsto obtain a good approximation forthe solutionof (2). The numerics

provides a means of solution in the subdomains, and alsoa feedback mechanism. The

numerical scheme can expose regions of unexpected behavior, confirming or correcting

the asymptotics-induced subdomain boundaries. This decomposition permits the use

of locally refined meshes, allowing the concentration of computational effortin the

regions where itisneeded most.

There is much literatureon multiple-scalesproblems. Analytic methods for

multiple-scalesproblems are discussed in the books [3,16,20,34].The theory ofmultiple-

scalesanalysis isdiscussed in [17,6,21].The books [2,25]discuss both the techniques

and the theory behind them. Finally,numerical techniques for multiple-scalesprob-

lems are discussed in the papers [22,26,331.This listismeant only as an introduction

to the literature,and not as a complete list.

3. THE NONLINEAR PROBLEM. The method will be described and demon-

strated by solving (2) on the domain

(3)

subject to

(4)

D := {(x,t)10 < x < b, 0 < t < T},

_(_,0) = _(_), 0 < • < b;

(5) u(O,t)=a(t), 0<t<T; and

(6) _(b,t) = Z(t), o < t < T.

The portion of the boundary along which the data is specified is denoted by

H:={(x,t)10<x<b, t=O)A((x,t)lO<t <T, x=O,b).

For the sake of simplicity, it is assumed that all boundaries are inflow boundaries,

that is, a(t) >_ ao > 0 and f/(t) < /_0 < 0. The boundary data is assumed to be

compatible; thus,

(7) a(0) = 3(0), and _/(b) = fl(0).

The coefficient of the forcing term r(x) is bounded with bounded derivatives. In

addition, it is assumed that the solution to the reduced equation

(s) P0[_]:= _, + _ - r_,= 0
4



has continuous derivatives at (x,t) = (0,0), and (x,t) = (b, 0). This last restriction

prevents the formation of corner layers, and may be expressed as

da d7

(9) d--/+ 7_ r_=0, for (x,t) = (0,0);

(10) dr
d"t + _/_xx - r7 = 0, for (x, t) = (b, 0).

Under these conditions, the solution to (2) is uniquely defined [4].

4. ASYMPTOTIC ANALYSIS. Asymptotic analysis is employed to identify

the dominant physics, creating an efficient and accurate numerical method. Here we

sketch the analysis in the neighborhood of a shock. Readers wishing full detail and

proofs of the results are encouraged to consult [32,11,10]. Shocks form in regions of

merging characteristics (see Figure 2). Since the boundary conditions imposed on

0.5

0.0

0.0 0.5 1.0

:g

FIG. 2. Characteri, tic8 of,ready-,tare 8olution u = - tanh[(.5 - z)/2e], for e = .05. (From [32}.)

the problem are inflow conditions on both the x = 0 and x = b boundaries, the

characteristics are traveling in the direction of increasing x from x = 0, and in the

direction of decreasing x from x = b. These will merge (become asymptotically close)

somewhere inside D, forming a shock. The merging of the characteristics stabilizes

the shock, and keeps it from dispersing.

Since the behavior of u as e J. 0 is of interest, it is natural to first study the solution

of the reduced equation (8). Weak solutions _ are sought for (8) with boundary data



(4-6). In order that _ be uniquely defined, it is necessary to impose an entropy

condition [18]. Suppose that _ has a single shock. That is, suppose _ is the solution

to (s) subject to (4-6) that is discontinuous only along a curve ix, t) = (r(t),t). For

small e, this curve lies in the shock-layer region of the solution to the full problem.

The size of this region tends to zero as e _ 0. Analytic methods for choosing r are

discussed by Whitham [36], Kevorkian and Cole [16], and others. The path of the

discontinuity is an analytic tool needed only for the theory. Since r is not needed for

the computations, methods for choosing r will not be discussed here.

The initial and boundary data are assumed to be smooth; thus, the shock does

not exist at t = 0. Rather, r is assumed to be undefined for t < t r, where t = t r is

the time fi becomes discontinuous. It is natural to describe ti in terms of the following

functions:

{ _0(z,t)
_(_,t) = _,(_,t)

_,(_,t)

for 0 < t < t r

forx<F-1(t) andt>t r

forx>F-l(t) andt>t r.

The shock speed for fi is

(11) (e,(r(t),t) + e,(r(t),t))/2),

so the entropy condition may be expressed as

(12) til (r (t), t) > (e, (r (t) , t) + _2(r(t),t))/2) > ti,(r(t), t).

Under these conditions,

i13) _(t) = e1(r(t),t) - a2(r(t),t) > 0.

The regions where _ is a good approximation to u are defined by presenting

functions which bound the difference _- u. These bounds are small except in an

asymptotically small neighborhood of the shock. The bounds, based on Howes [11],

are reflected in the following theorem.

THEOREM 1. (Howes) Let _ be the solution to P0[fi] = 0 and u the solution

to P[u] = 0 on D, each satisfying the the boundary data (4-6). The solution to the

reduced equation, _, is possibly discontinuous on the curve (x,t) = (r,t). Assume

that the boundary data satisfy the following smoothness conditions: the data (4-6)

satisfy the compatibility conditions (7),(9-10), and a,/3, "Y, with their first and second

derivatives are all bounded. Then for e small enough

I,_- {,I= O(l_exp[-f'Cx,t)le'/']) + oCe)

when the derivatives of _ are continuous across r, and

I,,- _,I= o(_ exp[- f' / ,'/'1) + o(#2 _exp[- f / ,1/'1)+ o(,)
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in the more general case when the derivatives of ft are not continuous across F. Here

f(x,t) is a distance function between (x,t) and (F,t), and _ is an upper bound on the

difference of the normal derivative of _ across F.

It is now reasonable to utilize the theorem to make the definitions of the subdo-

mains more precise. The internal layer is the following neighborhood of F:

(14) DXL = {(x,t)l(x,t) E D,]x- F-X(t)l < A(t)}.

Here A(t) < Kri(t)el/41nl/_e is the width of the internal layer at time t (K is a

constant independent of e). The outer region is the complement of Din with respect

to D, that is,

(15) DOR = ((x,t)l(x,t) e D, lx- r-l(t)l > zx(t)}.

The upper bound on the size of the internal layer is based on the exp[-f2/e _/_] term

in the error bounds of Theorem 1.

Theorem 1 motivates a preconditioning for the problem in DoR. The theorem

states that (8) may be solved in place of (2). In addition, the theorem provides an

error bound if diffusion (artificial or implicit in the numerical scheme) is incorporated

into the solution process of either (8) or (2). Thus, the numerical method for Don

may be chosen from the wide variety of methods designed for hyperbolic equations

[1,35,8,281.
The solution in the outer region is used to provide boundary data for the problem

in the internal layer. (This is justified in Section 5.1.) Thus, it is possible to have

boundary data for the internal-layer problem which is perturbed from the exact so-

lution. The effects of this perturbation are that the height and location of the shock

can vary by the same magnitude as the perturbation itself. This results in an error of

magnitude O(1) as e _ 0 in an asymptotically small neighborhood of the shock, and

is reflected in the error bound of the following theorem [32].

THEOREM 2. Let u and v be solutions to (2) on the domain DtL with their

boundary values satisfying the following smoothness conditions: the data are bounded

with bounded derivatives. Assume that the curve defining ODIn is smooth. I Let

¢(x,t) = u- v, for (x,t) e OD,L.

Then for e and A small enough

(16) lu -- v I = O(¢) + O((1 -t- f2/e2)-l),

where f(x,t) measures the distance from (z,t) to (r,t).

The theorem is the source for a second preconditioner. Namely, a scaled and

translated coordinate system based on (16). Let f = Ix-r(t)f. Setting _ = (x-F)/Q,

i The curve is continuous with a continuous tangent.

7



the second term in the right hand side of (16) will be large when 5: -- O(1) as _ _ 0. An

analogue of _: will be used for the spatial coordinate in D1r_, and will be described in

Section 6.2. The use of this scaled and translated coordinate system creates a better

conditioned numerical problem, thus it is a preconditioning.

The local error bound of Theorem 1 is now used to form a global a priori error

bound. The bound, as presented in Theorem 3 below, is sharp in Don; however, the

bound reflects the possibility of shock displacement in the internal-layer region.

THEOREM 3. Let u be the solution to (2) satisfying (4-6). Suppose v is obtained

by first solving (8) in DOR subject to (4-6), then solving (2) on D,t, with boundary

data v on ODzL. Assume the compatibility conditions (7),(9-10) obtain, and that the

data (4-6) are bounded with bounded derivates. If E = lie- vlla, then for, small

enough

E=O(,)

in DoR, and

E = O(e 1/4 In 1/2 e)

in DIL.

The computational results were much stronger than the theorem suggests. Both

the magnitude of A, and the magnitude of the error in the internal-layer subdomain

were smaller in the computational results. Thus, the a priori error bounds of the

asymptotic analysis did not reflect all of the accuracy and behavior of the computa-

tional algorithm.

Asymptotics identified two subdomains and provided preconditioners for the prob-

lems within the subdomains. The preconditioner for the full equation in DIL is the use

of the local scale _ = (x -r)/e dictated by Theorem 2. This scale allows the diffusion

to be modeled accurately, hence the grid is fine enough to resolve the shock. It is

reasonable to use this scaling in the method, because computationally the internal-

layer subdomain is of width O(e). The preconditioning in the outer-region subdomain

Don is to solve (8) in place of (2), and was justified in Theorem 2. First, the domain

decomposition and preconditionings are combined with a functional iteration to form

the computational method. The particular numerical methods discussed herein are

not new; however, their combination to form this method is.

5. DISCUSSION OF THE METHOD. An iteration is formed by linearizing

the reduced problem. Each step of the iteration requires the solution of (8) in the

outer-region subdomain, and (2) in the neighborhood of a shock. This is discussed in

Section 5.1. Once the iteration has been described, the boundary detection scheme

is presented. The method assumes no a priori information about the location of the



internal-layer boundary, and is supported by theory. In Section 5.3, convergence of

the method is presented. Numerical details of the method will be presented in Section

6.

(18)

with initial conditions

5.1. Iteration. In general, each step of the iteration requires the solution of a

linear convection-reaction equation in the outer-region subdomain, followed by the

solution of a nonlinear convection-diffusion-reaction equation in the internal layer.

The convection-reaction equation

(17) U,k+' + U_U_ +t - rU k+' = 0

is formed by lagging the convection coefficient of (8). The boundary of the internal-

layer subdomain is allowed to change during the iterations. Thus, denote the outer-

region subdomain for iterate U _+t by D_R, and denote the complement of D_R with

respect to D by D_L. That is, U k+l is obtained by solving (17) in D_R , then solving

(20) in D_z ..

The solution of (17) in D_on is obtained via a modification of the method of char-

acteristics to account for the forcing term rU k+l. The characteristic transformation

(x,t) -+ (_,r) is defined by setting t= r, and by solving

_
Or

x_(0)=_, for b>_>0;

= o, for¢ < o;

= 0, for > b;

where, (_, r) = (ya(r), r) is the image of the curve i x, t) = (0, t), and (_, r) - (yb(r), r)

is the image of the curve i x, t) = (b, t). Utilizing this transformation, it is a simple

task to solve

(19) U_ +1 :rU k+'

in place of (17) along the characteristicsdefined by (18). This transformation becomes

singular in a neighborhood of a shock, hence cannot be applied in the internal-layer

subdomain. This fact isthe basis of the procedure used to determine aD_L.

Solutions to the reduced equation are poor approximations to the solution of the

fullequation in regions of large gradients, such as in the internal-layersubdomain.

Thus, the fullequation issolved in the internallayer at each iteration.The equation

(20) U,_+I + U_+IU: +1 - eU21 - rU _+1 : 0

is solved in the internal-layer subdomain for each k. Boundary data for the internal-

layer subdomain is provided by the solution of (17) in the outer region. This is justified

by observing that for e small enough, the boundary of the internal-layer subdomain

will be an inflow boundary.

9



5.2. Boundary Detection. It is desirable to be able to compute the location

of the internal-layer subdomain during the course of the iteration. This has the

advantage of requiring less a prior information. In addition, if the initial guess provides

a poor approximation to the location of the internal-layer subdomain, the method will

be able to correct the location of the boundary in the course of the iteration.

The method used to locate the internaMayer subdomain boundary is based on

properties of the transformation used to solve (17). The transformation used to solve

(17) will become singular (or nearly singular) in the region where characteristics merge

(see Figure 2). Thus, the Jacobian

(21) jk = ax/a ,

of the transformation (18) will be asymptotically small in a neighborhood of the shock,

while it is O(1) in the outer-region subdomain. (For more details on the relationship

between the magnitude of J_ and the nature of the transformation, see [31].) This is

the measure used to locate the boundary of the internaMayer subdomain. The size of

the Jacobian is monitored via the solution of an ODE along each characteristic path

of interest. Combining the partial of (18) with respect to _ and the partial of (21)

with respect to r, the equation

(22) OJk
Or

_OU k

- j --_--x (x(_,r),r)

may be derived. The Jacobian is determined by solving this equation subject to

Jk(xo, to) = Jko for (xo, to) e II. The behavior of the solution inside the domain D is

of primary interest; therefore, it is sufficient to monitor )k := J_(x_, t_)/Jo k in place of

J_ to determine the boundary. The ratio is determined using (22) with )_ in place of

gk, subject to .lk(xo, to) -- 1 for (xo, to) E II. The curve on which )k becomes nearly

singular, that is, where

(23) _J't(x,t) = TOL,

for some small number TOL, is the boundary of the internal layer subdomain for

iteration k. The subdomains separated by (23) will, in general, be different than

the subdomains used in the theorems. Thus, the subdomains used in the numerical

method are

(24) b*oR = {(z,t)l(z,t) • D, _lk(x,t) > TOL},

b_L = {(x,t)](x,t) • D, _lk(x,t) < TOL}.

The theory applies provided

(26) D,,. c bo,,_cbh __... _cb, i,, ___

lo



however, convergence was observed when this relation failed, thus the constraint (26)

is not a necessary condition for the computational method to converge.

Heuristics, based on both accuracy and efficiency, are used to choose TOL. If

TOL is too small, then accuracy will suffer. This is because the internal-layer subdo-

main will be too small, and the data provided at the boundary of the internal-layer

subdomain will have large perturbations as compared to the desired solution. If TOL

is too large, the internal-layer subdomain will be too large, and the computational

mesh will be refined in regions where the solution is smooth, creating excess work.

5.3. Convergence. An advantage to this method is the availability of extensive

error information. A global error bound based on Theorem 3 will be presented in this

section. First, convergence of the iteration is established by showing the iteration is

a contraction mapping. For more details on these results, see [32].

The convergence of the iteration (17) to a solution of (8) in the outer region will

be shown by comparing successive iterates, then establishing a lower bound on the

latest time at which the iteration is a contraction. For the sake of the theorem, the

boundary of the internal-layer subdomain is assumed to be stationary from iteration

to iteration (£)_R 1 = b_R = Don). With the analysis that follows, this theorem

provides a lower bound for the largest time at which the iteration will converge:

k OO

THEOREM 4. Let {U }k=x be the set of successive iterates of (17) in the sub-

domain DOR satisfying (4-6) with initial guess U °. Assume U ° satisfies (4-6) and is

Lipschitz continuous on D. The boundary data arc assumed to satisfy the compatiblity

conditions (7),(9-10) and to have bounded first and second derivatives. Let

6 = sup [Uk - U -I I.
D

Then

(27) IU _+x - Ukl < 6Ce-Xt(e m- 1)

for (x, t) E DoR. Here C, )t and R arc known positive constants.

This theorem provides an upper bound on the latest time for which the iteration

converges. Apply the infinity norm to (27) to obtain

iiu +, _ u lloo_<Ollu -

Then the following corollary provides the conditions for convergence.

COROLLARY 5. Suppose that the conditions of Theorem 4 obtain. Let Tm_x be

the largest positive number such that

G' = sup Ce-Xt(e nt- 1) < 1.
0<t<Tm_,x

11



If the bound on time in (3) satisfies 0 < T < Tn_x, then the iteration in DOR defined

by (17) is a contraction mapping; therefore, the sequence of iterates converges to

v = limk-.oo U k = U °°, which is a solution of (8) on Don satisfying (4-6).

A statement of an a priori error bound for the computational method is presented

in Corollary 6 below. As with Theorem 3, the bound is sharp in DoR; however, the

bound is crude in the region of the shock.

COROLLARY 6. Let u be the solution to (2) satisfying (4-6). Suppose each

iterate U k is obtained by first solving (17) in Don subject to (4-6), then solving (20)

on DIL with boundary data U k on igD1r.. Assume that the compatibdity conditions

(7),(9-10) obtain, and that the data (4-6) are bounded with bounded derivates. Suppose

0 < T < Tm_, and let v = U °°. If E = Ilu - vii1, then for, small enouoh

in DOR, and

E = O(e)

E = O(_ 1/4 In 1/2 E)

in DtL. Here A = O(e 114 In 1/2 c).

As with Theorem 3, the computational results reflect that both A and the error

in the internal-layer subdomain are smaller than the corollary suggests.

6. NUMERICAL DETAILS. The asymptotic analysis has provided a means

to precondition the numerical problems. Because the sub-problems are well condi-

tioned, the choice of numerical schemes may be made from a variety of standard

methods. This is not usually the case. The class of problems for which the new

algorithm is applicable are notoriously difficult to solve, and only a small number

of schemes could be employed for its solution (prior to preconditioning). Since the

sub-problems are well conditioned, numerical schemes used in the method presented

here can be chosen based on criteria such as efficiency or the potential to exploit

parallelism.

6.1. Schemes in the Outer Region. The method of characteristics is used to

solve the hyperbolic PDE in the outer-region subdomain. This method allows the

exploitation of physically motivated parallelism. In addition, the method of charac-
^k

teristics allows handling of the free boundary at aD1r. in a straightforward manner.

The method is not limited to using the method of characteristics for the problem

in b_L. For example, the schemes for hyperbolic conservation laws [1,8,35] might

be modified to account for the term rU k and used. If this where done, then the
^k

method for detection of cgDIL could be based on the gradients instead of monitoring

the Jacobian.
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The method of characteristics scheme involves laying down a characteristic co-

ordinate system, updating solution values, and monitoring the Jacobian. To update

the solution and monitor the Jacobian requires a negligible computational cost. The

discrete version of (18) is used to determine the characteristic coordinate system.

Thus, for each iteration k, a set of characteristics ¢ k_I_ix_ J'i=l are computed and used

as the computational grid. Here, the superscript k is the iteration number, and the

subscript i identifies the characteristic. To determine a characteristic,

(28)

is solved for each i = 1 to 18 .

conditions

_
dt

All of H is an inflow boundary for D, thus initial

are specified along all of II. On the (x, t) = (0, t) portion of H, the initial condition is

_ -- 0 at _'_ -- il, for i = 1 to I=. On the (x, t) -- (x, 0) portion, the initial condition

is _, = (i - I_ - 1)h at r_ = 0, for i -- I_ q- 1 to I T. And on the ix, t) = (b,t) portion,

the initial condition is _ = b at r_ -- (i- I v - 1)1, for i -- I v q- 1 to 18 . Here I and h

are the increments for-time and space, respectively. The locations of characteristics

are desired at time increments of At. It is assumed that r_ is some integer multiple of

At; thus, the same temporal points are used for all characteristics for all iterations.

Each characteristic is obtained on a At interval using the Trapezoid rule to solve (28).

The Trapezoid rule is solved via a Newton Iteration. The computed value of x_(t,)

is denoted x.k •
I,J"

As mentioned in Section 5.2, ._k is monitored along each characteristic to deter-

mine the boundary of the internal-layer subdomain at each iteration. The solution to

(22) along characteristic i is

(20) =

where

(30) S_(t) = _ k

Since computations of (30) are better conditioned than those of (29), S_ is monitored

in place of _k. Denote the computed value of S_ (ti) by S_i. The integral is determined

using the right-hand rectangle rule

k k

(31) S_1+, = S -k.,,,+ AtU:(x,,i+,, ty+,)

with the initial value S_(r_) = 0. The monitoring is performed at a minimal cost.

It is necessary to keep only the most recent value of S_, thus minimal storage is

Uz_ (xi.i+ 1, ti+l) are saved fromrequired for this technique. In addition, the values of k k

the Newton iteration, hence very little computational cost is required.

13



The criteria used to determine the boundary will now be made more precise. The

boundary cOb_n is defined by ,_k = TOL, hence a characteristic is considered to be in

the outer region as long as

S_j >_ ln(TOL).

Let t = t_ = 3"At be the first time this inequality is violated for characteristic i

during iteration k. Then the point (x,t) = (x,_,3"At) is considered to be inside

b_L, and characteristic i is considered to be incident with the boundary at the point

(x,t,) = (x,5._1 , (3" - 1)At), and is .flagged as being part of b_n.

After x_kj has been determined, the solution U k+l is computed by solving (19)

subject to (4-6) using the right-hand rectangle rule

(32) U k+l [1 + At _ k+li,$'+1 = )'(xi,j+l)lU_,i •

This formula is used until either j = T/At, or until characteristic i enters b_n ,

whichever happens first. This formula has minimal computational requirements; how-

ever, the iteration requires the storage of the most recent iterate for a portion of D.

6.2. Schemes In the Internal Layer Region. The sub-problem in the internal-

layer subdomain requires the solution of a parabolic PDE subject to boundary data

provided by the solution in the outer region. There are two major aspects of the

computations in the internal-layer subdomain--mesh generation, and the difference

technique. The mesh follows the shock, and has been scaled; therefore the variation in

the solution is resolved on the new coordinate system. Thus, the mesh provides a pre-

conditioning for the problem in the internal-layer, and the computations are not overly

sensitive to the particular difference scheme used to solve the partial differential equa-

tion. Russell's Modified Method of Characteristics (MMC) [30], an explicit/implicit

finite difference method, was chosen to solve the equation due to the regularity of the

linear algebra problems which it generates. As with the schemes in the outer-region

subdomain, other methods (see [7,5]) could be employed for the solution in b_L. It

is necessary that the boundary of the internal-layer subdomain be identified with re-

spect to the grid in the internal-layer subdomain. This is described first. Then the

finite difference technique is reviewed.

The base of the internal-layer subdomain is identified by finding which character-

istic (or set of characteristics) has the lowest time at which it is flagged as being part

of the internal-layer subdomain boundary. Denote the computed value of t r by _r. For

t > _r, the base is taken to be the region between the two outer-most characteristics.

This could result in non-flagged characteristics being part of the base, but this is not

a problem. Once the base characteristics have been located, it is simple to identify

whether a flagged characteristic is on the left or on the right boundary of D_L- A

flagged characteristics with an index of lower value than a base characteristic is on

the left boundary, and a flagged characteristics with an index of higher value than a

base characteristic is on the right boundary.

14



A description of the method used to locate the left and right boundaries is fa-

cilitated by first introducing the coordinate system. The computations will be done

on a scaled and translated coordinate system with temporal variable t* = t/E. (The

spatial variable will be described later). The temporal grid is the set of points {t_},

where t_ = nat ° for n = tr/(eat*) to T/(eAt*). These points are a refinement of

{ty} , the temporal points on which the characteristics are known. The left and right

boundaries of the internal-layer subdomain at time t_ are denoted by L,, and R_,

respectively. Algorithm 1 describes the method used to determine R; the procedure

used to determine L is symmetric, and hence will not be described.

Do n = 7r/(eAt') to Tl(eat*)

If (t_, ¢ t_/e) for any j

then Rn := R,,-1

otherwise

j := et*./At

H := number of characteristics incident with the right boundary at t*

IfH =0

then R,, := R,,-1

IfH>l

then

i := index of right-most characteristic incident

with the right boundary

R,, := x.k •

ALGORITHM 1 Determination of R,.

It is now appropriate to describe the coordinate system on which the computations

in the internal layer are based. Denote the middle of the internal-layer subdomain at

time t by M(t) -" [R(t) + L(t)]/2. Then the spatial coordinate in the internal layer is

(33) x" = [x- Met)lie.

The temporal coordinate is also scaled, t* = tie. Equation (20), may be written as

(34) _r_+l + d-t 0 k+l v,.ek+l - _+1_z'z" - er0_+l = 0.

Here, e_+l(x',t *) = U(M + cz*,et*), and e(x*) -- riM + ex*). This is the form of the

equation solved in the internal layer.

Equation (34) on the grid defined above is solved using the MMC. The reader

should refer to [27,29,30] for a more complete description of the MMC; however, a

review of the method is presented here for the sake of completeness. Denote the the

spatial points of the computational grid by z_. =iax °, for i = -I IL to I IL. Since

ax* is a constant and the width of b_n varies with time, the number of grid points

also varies with time, and 1 tn = IZ_'(t). The MMC involves approximation of the
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convective term U#+' + (_-t - _-k+l) t-Tk+xv=,by a backward Euler approximation along

the subchar_teristics of (34) using the following formula

(35)
{ dM__(C)

+ dt (fl'+l(x*, t*)) U=._-Tk+l"(X,r 1..,,

.-_ [_rk+l(x*,t* ) -- _rk+l(_*,t* _ At')]/At ".

Here ?_* = x ° + At'(_vt(t'd'_a") -- UJ'+t(x°,t* - At')) and Uk+x(_*,t * - At') are

determined by linear interpolation between spatial grid points. This linear interpo-

lation is performed element by element, thus there is ample opportunity to exploit

parallelism within the method here. Once this quantity has been calculated, the sec-

ond derivative is approximated using a centered difference. Hence, the full formula in

the internal layer is

2(36) 1 - ,ZXt'_(x') + (ax.)------z At']

At"

(mx.)2 (LTk+I(x * -¥ AX*vt*) -J¢-_fk+l(x. _ Ax*,t*)) = brk+l(_',t* -- At').

There is a domain of dependency requirement on the method [29], which requires the

absolute value of the partial with respect to x* of the convection coefficient to be

bounded by 1�At*. Since M is independent of x*, this requirement is that

(37)
_rzk+ 11 *

• tx ,t')l < 1.

Extra inner iterations may be necessary to step the solution between the temporal

grid lines, t*
n"

7. OUTLINE AND IMPLEMENTATION OF THE ALGORITHM.

7.1. Algorithm. As a summary, the numerical method is outlined in Algorithm

2 below. The parameters such as TOL and At are assumed to have been provided by

the user. Several steps are not mentioned. For example, if the domain of dependency

requirement is violated in the MMC, it may be necessary to reset At*. However,

Algorithm 2 shows the major computational requirements.

The algorithm requires an initial guess. In the theory, the initial guess must

satisfy the boundary conditions (4-6), and must be Lipschitz continuous; however,

for the computational method, it is only required that some approximation technique

which is consistent with the effects of the terms of {2) be used to determine U °. The

MMC was chosen for the initial guess. The computations were done on the original
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Do k = 1 till converged

^k
I. Solve in DOR

A. Do i = l to I_

1. j .= At

2. x, i :=
3. Do while j < T/At and S_ < ln(TOL)

a. j:=j+l

from ti-1to t_b. Step xi

c. Compute solution value using (32)

d. Update sizeof S_ with (31)

II.Solve in D_L

A. Determine aD_L

1. Find base (determine _r)

2. Find R using Algorithm 1

3. Find L (symmetric to R)

B. Set boundary values along aD_L

1. Initialconditions

2. Right boundary values

3. Left boundary values

C. Discretize

1. t' := tr/e

2. Determine At* to satisfy (37) as a subdivision of {ti}

3. t* := t*+ At*

4. Do while t* < Tie

a. t* := t* + At*

b. Obtain U k at t*

i. Form right hand side of (36)

ii. Solve implicit portion of (36)

c. If (37) is violated, go to step C.1.

ALGORITHM 2 Computational method.
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coordinates, x, and t. In order that the domain of dependency requirement be met,

artificial diffusion was added instead of restricting the size of At.

Use of artificial diffusion could lead to some ill effects, especially in the location

of the shock. The size of the diffusion coefficient effects the speed of a nonsteady

shock. Thus, using artificial diffusion may result in computing the location of a

nonsteady shock incorrectly. This will be shown in the Model Problem II. However,

this inaccuracy is acceptable because the method is not sensitive to errors in the initial

guess, as long as U ° is continuous.

7.2. Parallelism. Parallelism may be exploited at several levels in the imple-

mentation of Algorithm 2. Consider first the parallelism which may be exploited

in the solves for the characteristics. Characteristic x_ is obtained at discrete points

in time by solving (18) using a Newton iteration. These solves may be scheduled

asynchronously, or they may be grouped as vectors. Grouping characteristics and

assigning the spatial location of each characteristic in a group to a component of a

vector allows the exploitation of vector processing capabilities. Once the location of

the characteristic is known for a time step, the value of ln(_rk) may be approximated

using (31).

For a large number of processors, a parent process could spawn a task for each

characteristic, and allow them to all execute in parallel. In turn, the task solving a

particular characteristic could then spawn two tasks, one for the monitoring of the

Jacobian, and one for the updating of U _+1. To avoid extra computations, the child

task monitoring the Jacobian would need a means of interrupting the parent task

computing the characteristic; however, no communication from the task computing

U _+1 to the parent task is needed. This is reflected by the data dependency graph in

Figure 3. The parent routine is labeled OR. The tasks which compute characteristics

are labeled C_, for i = 1 to Ip. Each characteristic task spawns two processes, one for

the Jacobian monitor, and one to obtain the value of the solution. These are labeled

J and U, respectively. The data dependency graph for /_R is a subgraph of the

dependency graph for the whole problem.

For a smaller number of processors, since a large number of characteristics will

be computed, the exploitation of the medium grain parallelism outlined above is not

needed. Thus, for the implementation on the Alliant FX/8, a single task performs the

Then the same task updatesNewton iteration to determine the new location of x_.

the values of S_ and U_ +1 at the new characteristic location.

Other parallelism evident from the description of Algorithm 2 is reflected in Figure

4. Nodes are labeled with the corresponding step number of Algorithm 2. The only

sequential step is the location of the base of 0b_L, and this is a small portion of the

overall computations. The major portion of the computations are the characteristic

solves in the outer region and the discretization for the internal layer. More efficient

methods could possibly be applied in the internal layer, potentially providing more

parallelism.

A less obvious source of parallelism is the exploitation of another type of domain
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FIG. 3. Data depeadeacy for character_tic solves. (From [32].)

decomposition to form a pipeline out of the outer (k) iteration. To obtain U 2 up

to time t = T1 requires the knowledge of U 1 for 0 < t < T1, but not for t > TI.

Thus, U 1 for T1 < t _< T2 can be computed at the same time that U 2 is determined

for 0 < t < T1. In general, subdivide the domain D in the temporal direction as

0 < T1 < T2... < T_v < T. While U 1 is being computed for T_ < t <_ Tk+l, the

computations for U 2 through U k could be taking place, thus forming a pipeline based

on the temporal subdivision of the domain.

7.3. Implementation. Algorithm 2 was implemented on an Alliant FX/8 using

a package called Schedule [14]. This package provides a common user interface to the

parallel capabilities of a variety of shared memory parallel computers. All of the

synchronization required to enforce the data dependencies is automatically provided

by the Schedule Package once the graph has been specified correctly. Moreover,

there are no machine dependent statements within the user code. All such machine

dependencies are internal to Schedule. This provides for transportability of the code

between the various machines Schedule has been ported to. The implementation is

meant as a demonstration of the viability of the method. Thus, not all of the available

parallelism has been exploited. Even so, significant speedups were achieved, and will

be discussed in the section on the experiments.

A useful feature of Schedule is the automatic generator of a data flow graph

associated with a computation. In Figure 5, the graph Schedule produced for an

older version of the code [23] is shown. The nodes represented by circles form the

static portion of the data dependency graph (the portion of the graph which does not

change for different input data). The rectangular nodes associated with static nodes
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FIG. 4. Data dependency for algorithm.
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FIG. 5. Dependency graph generated by Schedule. (From [23].)

represent dynamically spawned processes which, in this case, are each a characteristic

grid line. The graph represents a snapshot of computation shown midway through

its execution. The black nodes represent computed processes, the hatched nodes

represent active processes, and the white nodes represent processes waiting to execute.

Information from this graph and various statistics available with it have been used to

improve load balance in this algorithm.

The matrix equation in step II.C.4.b.ii is a symmetric positive definite tridiagonal

matrix of about 300 unknowns. Since the number of unknowns is small, the Linpack

tridiagonal solver, spts], [15] was parallelized instead of using a more complicated

block scheme. The scheme in sptsl uses two dual sweeps of the tridiagonal matrix.

The first dual sweep is for the forward elimination, and begins at both the top and

bottom of the matrix, then works inward. The backward substitution sweep begins

at the middle of the matrix, then works outward in both directions. Thus, the com-

putations can be parallelized for a maximum speedup of two. The implementation

used for this method had a speedup of about 1.5 on 2 to 8 Computational Elements

(processors) of the FX/8 over the compiler-optimized version of the sequential code.

8. EXPERIMENTS. Two problems are solved, each demonstrating different

features of the algorithm. Model Problem I has a steady shock and no forcing term,

with an exact solution being known. It demonstrates that the behavior of the error in

the computations is the same as the theoretical error estimates of the theorems in the

outer regions. Model Problem II has a nonsteady shock. It is used to demonstrate
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that the method is not sensitive to the initial guess.

8.1. Model Problem I. The first model problem will demonstrate that the

error tends to zero as e _ 0. With no forcing term, (2) is Burgers' equation,

(38) ut + uu_ - eu=_ = O.

The initial and boundary conditions are that

u = -2 tanh(x/E),

for (x,t) E H. Under these conditions, the exact solution to (38) is u = -2 tanh(x/e),

hence the computed solution may be compared easily to the exact. The Lt error is

presented for runs with different values of e in Table 1. The error was measured at

Table 12 L1 error

Error

I 0-2 I 5.0 × 10 -02

10-s I 2.2 x 10 -°s

10 -4 ] 2.3 x 10 -04

time t = .1, and remained constant for the

Only one pass of the domain decomposition

presented in Table 1 indicate that the error

remainder of the computational domain.

was needed for this problem. The results

in the computational method is O(e).

8.2. Model Problem II. The second model problem has a nonsteady shock,

and shows the effect of the forcing term on the location of the shock. In addition,

this method demonstrates that the method is not overly sensitive to the accuracy of

the initial guess. The equation solved is

ut + uu= - eu== - 4 sin(2_rx)u = 0,

subject to the initial guess

u(x,O)=cos(z'x), for O<x<l=b

(see Figure 6). Then the boundary conditions are

u(O,t) =1, u(1,t)=-l, for T>t>O.

For the experiments presented here, e = .001. If there were no forcing term (r = 0),

then this problem would have a steady shock develop in the center of the domain;

however, the forcing term is r = 4 sin(2rx). This represents a duct of width A(x) =

exp[2 cos(2_z)/_r], which has the general shape of the one in Figure 1. The effects of

the shape of the duct on the location of the shock are reflected by the internal-layer

subdomain having a different location as time increases. The movement of the internal
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FIG. 6. Initial guess ]or iteration. (From [32].)
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FIG. 7. Flow lines and domain decomposition. (From [32].)
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layer subdomain can be seen in Figure 7, where the characteristics of the outer-region

solution and internal-layer subdomain after four passes of the domain decomposition

are shown.

The initial iterate is obtained using the Modified Method of Characteristics on

a rectangular grid with 100 spatial points. Figure 8 shows the initial iterate, U °, at

v o

2.0

1.0

0.0

-1.0
l

0.0
[ , t

0.5 1.0

Z

F G. 8. t = .3. {From[32].)

time t = .3. The use of artificial diffusion resulted in the location and the width of

the shock being wrong for the initial iterate. Comparing the initial iterate, U °, with

U 3 in Figure 9, these errors may be seen. The initial guess has the wrong amplitude,

and the shock is slightly to the left and wider than the shock in U 3.

The succession of internal-layer subdomains may be seen in Figures 10-13.

One of the manifestations of the convergence of the iteration is that the internal-

layer subdomain has a much smoother boundary after convergence than before. The

boundary for U 4 is smooth up to approximatedly time t -- .3.

Timings for computing the initial guess and the first iteration are presented in

Table 2. Speedup is the execution time for multiple CEs divided by the time for one

CE. Efficiency is the speedup divided by the number of CEs. The data indicates that

significant speedups were attained, even though a significant portion of the parallelism

was not exploited. For example, the pipelining described in Section 7.2 was not used.
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FIG. 9. U ° (dotted) and U S at t : .3. (From [32].)
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FIG. 10. Internal-layer boundary for U x. (From {321.)
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FIG. 12. Internal-layer boundary for U 3. (From [321. )
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FIG. 13. I,,t,,,,,l.t,,_,_,. bo,,,aa,-yfo_ u'. (From {3Z].)

Table 2 s Timings

CEs

(P/

1

2

3

4

5

6

7

8

RUN TIME SPEEDUP EFFICIENCY

(seconds) (S) (n)

90.4 1.00 1.00

47.5 1.90 0.95

34.5 2.61 0.87

27.9 3.23 0.81

24.3 3.71 0.74

21.7 4.16 0.69

19.8 4.57 0.65

18.5 4.89 0.61
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9. CONCLUSION. In this paper, asymptotics and numerics have been blended

to form a new computational method. The method has potential to exploit a large

amount of parallelism and provides high accuracy. Asymptotic analysis provided a

theoretical basis for the domain decomposition, and guided in the derivation of rigor-

ous local and global error bounds.

Two types of subdomains were identified by the asymptotic analysis of this prob-

lem: smooth outer regions, and an internal-layer subdomain with a shock. Pipelining

the outer iteration provided large-grain parallelism. Smaller-grain parallelism was ex-

ploited by using a modification of the method of characteristics in the outer regions,

and by blocking the computations in the shock layer.

The method was developed for an important problem in computational fluid dy-

namics; however, the method is suitable for a wide range of problems in physics and

chemistry. Namely, this approach is suitable for problems with internal layers and

boundary layers interspersed with regions where the solution is smooth. Examples of

such problems other than transonic flow through a duct include the location of stagna-

tion points (flow of zero velocity) where two opposing jets intersect, and combustion

fronts.

The availability of estimates and bounds on the error is important in the design of

numerical methods. Rigorous a priori error bounds were established for the method

presented here. In addition, the particular numerical schemes used for the subprob-

lems allowed a posteriori error estimation. The a priori error bounds were shown to

much larger than the errors observed in the computations; thus, sharper error bounds

are expected.
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NOTATION

D

DIL

DOR

bxL

boR

L(t)

L.

P

Po

R(t)

R.

s,_(t)

T

U k

tr

¢*

U

fi

Z*

_(t)
,¢(t)
Xk..

%2

(3)

(14)
(15)

(25)
(24)

Sec. 6.2

Sec. 6.2

(2)
(8)
Sec. 6.2

Sec. 6.2

(30)

(31)

(3)

(17),(20)

Sec. 4

Sec. 6.2

(2)
(8)
Sec. 4

(33)

(35)

(lS)

Sec (6.1)
Sec (6.1)

Computational domain.

Internal-layer subdomain.

Outer-region subdomain.

Computational internal-layer subdomain.

Computational outer-region subdomain.
A

Location of the left boundary of DIL.

Computed location of L(t) at t..

The full nonlinear operator.

The reduced nonlinear operator.

Location of the right boundary of/)IL.

Computed location of R(t) at t..

Integral for monitoring Jacobian.

Discrete values of S_(t).

Upper bound on time t for D.

Iterate k.

Time that the solution to the reduced problem becomes multivalued.

Scaled and translated internal-layer coordinate.

The solution to the full operator.

The solution to the reduced operator.

Scaled and translated internal-layer coordinate.

Spatial coordinate for internal-layer computations.

Spatial location used in MMC.

Characteristic coordinate.

Characteristic grid line i for iteration k.

at time t..Computed value of x_
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