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Introduction and summary

This thesls gives a contribution to the theory of series with

. pogitive terms. Many of the classical results Iin this theory are
inequalities involving two series, the terms of which stand in cen
tain relation to each other. As an example we take a well~-known

theorem due to G.H,Hardy (see e.g. [8] theorem 326).

b d
Ifa >0 {(n=1,2,...), 0 < %=1 &, <=y 0 <p <1, then

=  =1/p..P py1/p ~1/p »
DI (a1 aea an) < (1-p) Tp=1 B4 {0.1)
for each value of p is the constant (1-p)~ P best possible
in the sense that the theorem becomes falge if (1_p)~1/p is

replaced by a smaller constant.

We refer to (0.1) as to Hardy's inequality.
We will study the corresponding inequality for finite series; i.e.
we will consider
-1/p(,P py1/p

Egzq n (a,1 taaet an) <A E:=1 a s (0.2)
for some natural number N. Formula (0,2) is usually referred to
as a finite section of (0.1). Let AN(p) denote for some value of
p€ (0,1) the smallest {or best possible) value of A for which (0.2)
holds for that value of p for all ay ;.0,...,aN 2 0. That such a
smallest value does exist follows from the fact that RN(p) ig the

maximum of the continuous function F(x1....,xN) =

'.:}:N

=1 n'1/p(x£-+...4-x§)1/p on the compact set defined by

E§=1 x, = Ty Xq 20,000,x 20. 4s (0.1) also holds for series
with a_ = O for n > N, we see that XN(p) < (1-p)—1/p. Moreover,
considering only the sequences Bgveeesdy with ay = 0, we gee that

?~N<p) ;XN_1(p). From this it follows that limg A (p)

£ (1-p)"1/p. However, from the fact that the constant (1-p)b1/p
in (0.1) is best possible, it follows that this limit cannot be
smaller than (1-p)_1/b. So we have

Ag(e) = (1-p)" P 4 o(1) (N~e). (0.3)

For the meaning of the symbols o and & we refer to [1].



In this thesis we intend to obtain more information about the
asymptotic behaviour of best possible constants in finite sections
of classical inequalities, such as XN(p), if the number of terms
in the section tends to infinity. Actually, instead of (0,3) we
shall find for :\.N(p) the formula

Ag(®) = (1=p) P - (1) P 2x2 (105 1) 4 H((10g M)72).

(0.4)

Although there are many theorems of the same type as (0.1), omly
few results are known about the best possible constants occurring
in the corresponding finite sections. Using eigenvalue theory of
truncated integral equations, N.,G.de Bruijn and H.5.Wilf [3] have
derived an asymptotiec formula for the best possible constant in

Hilbert's inequality for finite series

SAE

n="1 a

= =4 (m-m)q aa

2
m,n n

n (a1 },O,...,aN)O).

In a seperate note H.S.Wilf [12] remarked that the method of [3]
can be extended to several other cases, some of which are also dis
cussed in this thesils with slightly improved results (see Sec.8).
N.G. de Bruijn [2] proved for the best possible constant KN of a
finite section of N terms of Carleman's inequality (see [4])

~ veeg ) V/m = =
2n=1 (a1 an) <e 2n=‘l & (a1 }0,...,O<En=1 %n <=,
(0.5)
the asymptotic formula
Ag=e- 2nle (log N2 4 g((log N2, (c.6)

The method employed in this thesis is essentially the one used in
N.G. de Bruijn's paper [2] on Carleman's inequality.

Just as in Carleman's original proof of (0.5) the basic tool is the
theory of Lagrange multipliers. By this the problem transforms in-

to a question concerning an iteration process, and the study of that



iteration process produces proofs of formulas such as (0.4} and
(0.6). )
It may be mentioned that J.W.S.Cassels [5] also used Lagrange mul=~

tiplier theory to prove inequalities such as (0.1) and (0.5), but
he obtained no information about the corresponding finite sections.

This thesis coneists of 13 Sections and an appendix.
Sec,1 contains some results and examples on iteration processes,
and has no direct relation to series. The principal result in this
Section is theorem 1,2, which states that if under certain condi-
tions {zn] converges to a zero z, of a continuous function ¢(z)
and
Z .-z = n"1w(z Y+ n"29(z ) + d(n-Bx(z 3y {n>N),  (0.7)
n+1 n n n n [}
then either a-z = 8n~") or a-z = d((1og 0™y, In both cases
the theorem gives even more information about a-z . The arguments
in the proof of theorem 1.2 may be regarded as typical of a way of
arguing that will be applied in the following Sections.
A complete discussion of (0,2) starts in Sec.,2. The proof of {(0.4)
is completed at the end of Sec.,7. As kN(p) is the maximum of a
differentiable function in (x1,...,xN) subject to certain restric-
tions, we make use of a lagrange multiplier to determine it (in
Sec.2). By our calculations we then obtain an iteration process
{(the iterates depending on a parameter A) which is of the form

-z = n-1(¢(k,zn) + Rn(k.zn)),

29 =Nz,

1
where ¢(A,z) is a convex function of z attaining one minimum in
(1,») which is positive for A less than a certain number o (w>1),
zero for A = w, and negative for A > w; and where Rn is a nuisance
term which for fixed A and z is Cﬂn'1) but which, nevertheless,
tends to 4w if zT A%n%, where q = p(1-p)'ﬂ. If z, 2.lqmq, %

XI



is not defined and the procedure stops (or breaks down), We define
a breakdown index Ni which is, roughly speaking, the last value of
m for which Zy,q 2D still be defined. Determining N, for each
value of p, we shall obtain information about kn(p)‘ which equals
the only value-of A for which the Nth jiterate equals AN, In Sec.
3 we prove that for A 2> @ no breakdown occurs, so AN < o, Some
additional results in this Section constitute a proof of Hardy's
theorem for infinite series. The important result that there
exists a C > O such that w(k,zn(l)) >C n-* for A€ (1,w) is proved
in Sec.4. By virtue of this result the Rn(A.zn(x)) is small in
comparison to qu.zn(k)) when zn(k) is small and n is large. In
Sec.5 we introduce a number p which exceeds the zero of ¢(w,z) and
define Dy to be the largest index such that zn(k) is less tham p.
We also define an auxiliary index E)\ with Dy < E}‘ £ N)\ Lo, and
prove some results in preparation of Sec¢.6. In this Section it is
proved that

log N, = log D, + dg(1) (afw),

and that the recurrence relation ias so well approximated Sy the
differential equation dz/d{log n) = ¢{A,z) that

P
log D, = [ Cotnznaz + d) (atw).
! «

A standard treatment of the latter integral is the topic of Sec.7.
In Sec.8 an asymptotic formula for the beat possible constant in a
finite section of an inequality due to E,T. Copson (see e.g. [8]
theorem 33%1) is derived from (0.4) by Holder's inequality. As an
additional result we obtain a formula for the largest eigenvalue
of finite submatrices of a certain infinite matrix.

In Sec.9 a clasa of iteration problems is described which can be
treated analogously to the one of the Hardy case. Theorem 9.1
generalizes the results of Se¢m.3~ 7. The proof of this theorem
is omitted, since no essentially new arguments are needed.
Applying theorem 9.1 to the iteration problems arising from some
other inequalities of E.T, Copson ([6]) we obtain asymptotic for-
mulas for the best possible constants in finite sections. This may
be found in Sec.10. The inequalities in this Section are general-

XII



izations of those in Secs.2 and 8. Not only Lagrange multiplier
theory but also application of Holder's theorem is used in order to
transform the finite sectiom problems into iteration problems.

In Sec.11 we show that an inequality of K.Knopp gives rise to an
iteration problem of the same nature, and we formulate an analogue
of theorem 9.1. Application of this theorem produces a formula for
the constant in the finite sections.

In Sec.12 the result of Sec.11 is extended to some other inequali-
ties, some due to E.T. Copscon, another originating from our system-
atic treatment,

For the results of the Secs.10, 11 and 12 we refer to the list of
formulas on pages 78 and 79,

In Sec.13 we discuss some cases, at first sight seemingly of the
same type as the previous ones, but in fact behaving quite
differently.

In the appendix we throw some more light on theorem 1.2, discussing
an example in detail. TFor an iteration problem of the form (0.7)in
which it depends on the value of a continuous parameter, whether the
solutions are @(n~") or d((1log n)'1), we give a formula which is
uniform in the parameter and thus illustrates how the different
types of solutions are related. One of the tools will be a version
of Banach's theorem on the fixed point of a contraction operator,
by means of which we show the existence of small solutions of an
auxiliary iteration problem.

A list of formulas and a list of references may be found after the
appendix.

With respect to the notation Secs.2~ 7 are to be regarded as a unity.
Notations dintroduced in the other Sections are valid only in the
Section where they are introduced, with the exception of the T's
and S's in Secs.9 - 12, which denote properties.
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1. Preliminary results

This Section contains two theorems on iteration processes and some
examples. The iteration processes we will study have the follow-
ing form

2= 0y Zp 4-Z = Fn(zn) (n=1,2,...). (1.1)

n+1
Theorem 1.1. If the F_ in {1.1) satisfy
F, (x) = 2~ e(x) + d(n~ o (x))) (n+w, -= < x < )y (1.2)

whereas ¢ and ¢ are continuous functions and ¢ has a discrete set
of zeros; and if, moreover, the sequence {zn} given by (1.1) and
{1.2) is bounded, then limm.mzn exists and ¢(limn_q‘zn) = 0.

Proof. As the sequence (zn} is bounded, the z, are in some com-
pact interval J on which ¢ is continuous. 5o the G-term may be
replaced by d(n~"!) and we obtain

-2, = n'1£&p(zn) + dn~My1.

2 =
17 % Zpa

As the maximum of je(x)| on J exists, we have (with &4 > 0, B > 0)

-1 -2

izn+1' znl <n A+ n “Band so |z - z | -0, Consequently,

every point x satisfying ";'1 = lim !ilrtl‘ n-ew? .sx £1lim sup, . 2, =0,
is an accumulation point of the sequence {z }e

If L, < §,, there exists a 6, and a &, in (C,,C ) with the property
that ¢(x) # O for x€[6,,6,1. We shall prove that [, 2 6, if

w(x) > 0 on [8,,5,]13 the proof that {, £ b, if ¢{x) < 0 on [56,,5,]
is analogous. Let min {o(x)| x€ [5,,8,1} = u > 0.

Let m be so large that athe 6(n~1)-term is larger than -4u, and
that ‘znﬂ -z

dent that such a number m can be determined, since I, > 6, implies

| <& - b6, for n > m, whereas z, > 64. It is evi-

that z, > 0y for infinitely many values of n.

(*) We call x an accumulation point of the sequence {zn) if each
open interval contalning x also contains z, for infinitely
many values of n. The possibility that all these z, may be
equal to x is not excluded.



Then Z, > 61 for all n > m, which is proved by an induction argu-

ment. As a matter of fact, z, >6 and n 2> m imply z >86, , as

either 2 > 6 and z 4 >z =-lz 4 ~-z1>z2 - (623g3) »b6,, or
2 €(5 ,6 ) and z_ . ~ 2, >4 > 0. So g »6,. As this
constitutes a contradiction, we have proved that lim infu*a,zn =

= lim sup,_ 2z, = B. It only remains to be proved that ¢{(p) = O.
For this purpose we suppose that ¢(B) # O and we can find an inter-
val J' = [p=b6,B8+b] such that ¢{x) # 0 on J'. z,€J' if n > m,.
Now ¢(x) > 0 on J' implies min {p(x)| x€J'} =u, >0 and ¢(x) <0
on J* implies max {p(x)| x€J1} = B, < 0. So we have in the case
of 9(p) >n0, thit B+ b 2;zn+1 = znl1 * Z:=m1(zv+1 - zv) >

>z, *+ I v, -1139" ) for1n >m . If (p) < O, we have
B-~-5< zy ¥ 8:=m1v- (g, + Bv" ). If v is sufficiently large, we
have u, - By~? >4u, and u, + By~ < #1,. The above inequalities
are therefore in contradiction with the fact that 8§=k v"1» w if
n-+we By this the proof of theorem 1.1 is completed.

We would make some remarks.

Remark 1. We can prove the convergence of z, to a zero of ¢ in
the same way as in theorem 1.1, if {1.2) is replaced by Fn(x) =
= an(¢(x) + G(bn¢(x))) where a3 0 (or a, < 0) for all n, a - 0,

b -0 if n~w, and I _, a_diverges.
n n=1 "n

Remark 2. A sequence z, given by (1.1) with Fn satisfying (1.2)
may diverge as is shown by the simple example

-1 3
z2, = 24 21 " zn = -n zn.
In this case we have z, = 2, z, = -6 and it can be proved by induc~
tion that z, 4 > 2{2n-1), Zy, € ~4n. In this example

lim inf 2
n-e 0
no finite accumulation points.

= ~oo, lim sup, 2, = = and the sequence {zn] has

n

Remark 3. Even if a sequence {zn} given by an iteration procedure
indicated by (1.1) and (1.2) has a finite accumulation point, the
limit of zZ, does not necessarily exist, as will be shown by the
following example which we shall describe only roughly. We take
¢(x) = 1 and we try to find a continuous function ¢, such that the
sequence {zn} given by



2y =0, z -z = n'1(1 + n-1¢(zn))

n+1

has zere as accumulation point, whereas 2 subsequence of {zn} tends
to +wx, The function ¢ will be zero, except for a set of disjoint
negative peaks at relatively large distances. We shall construct

a sequence a,,a,,a,,... of real numbers, with the properties

0<a <a, < .t. and a =+« if n-+ «, a sequence n, ,n, Ny 4... OF
positive integers with -« if k» o, and a sequence d,,dz,d,,...
of positive real numbers., The function ¢(x) is zero except for
values of x in the intervals (ak-nk ,ak+nk )3 ¢ is linear on the
intervals [a -nk ,ak] and [a ’ak*nk ], whereas ¢(ak) = ~d
(k=1,24044).

If a, = 8311 v-1 and n, = 100, we have 2, = O and 2, = 23=1 vl
for n=1,...,100. So ¢(z,,) = O, and z,, = a,; we therefore take
d, so large that z,, = O; then we find z,, = (102)71, Zy =

= 2”’”:'1 and so on, until z exceeds a,-n,1. It is easy to show
that m, = min {n| z, >3, + n,i} is finite, since 1 + n ¢(x) >

>1 ~=-n 1d for x€:[0 a, +n, 1]. and 1 = n 1d > 4+ if n is suffic~

iently large. We take a, =2 +Z 20 and n, = ml; then
m, v=m,
¢(zn) =0 for n =m ,m+1,.0.,m); zn = a2.1 We take d, 80 large
that sn2+2 : 0. if m, = min {n}| z, s a, +n, }, we take a, =
m -

= zm + Ev;mz v , ny; =m?, and d, so large that zn +2 = 0. When

nk and d have been constructed in this way, and if m =

~1

= min {nl 2, >a + n }, we take a, . = zm¥ sz o Ve m g =
and dk 4 80 large that 2 + 2 = 0. It 11 be cYear that the

z, obtained in this way are1denee everywhere on the positive real
axis,

It is easy to show that no example of this phenomenon can be found
with ¢{x) = 0 and consequently having the form Zyq " %y = n-1w(zn%
where ¢ i8 a continuous function. The existence of two "forces"

¢ and n'1¢ working in opposite directions is essential for this

effect.

We now come to the major result of this Section. It also concerns
an iteration process of the form (1.1), but (1.2) is replaced by

the more gpecial formula

B0 = 3 Letn) + ¥, g(2lx)y;, (1.3)



It is, however, this situation which we shall meet in the following
Sections. As theorem 1,2 asserts something asbout the behaviour of

the z, if n- w, no requirements are made upon the beginning of the
jteration.

Theorem 1,2. If b < g, ¢€:c(“)([b,c]). ¢€ZC(1)([b,c]).
=y

x€¢'%(Mb,el); b <a<e, o'a) = 0, g*a) >0, ¢(a) > 0; and 1f,
moreover, the sequence {zn) satisfies the two conditions

1lim z = a
n—+o n

and olz)  x(z)

+ o nj‘ o)) (@ >N) (1.4)

1
net " 2 T q G’(zn) YT

then either limnﬁagn(a - zn) = ¢(a), or

cg ot _Bloglogm 1 e
%p 2 " TTogm - & (log m)? T dTTEZE'SS?Q (n-w=) (1.5)

where a = %(F"(a)g B = %‘?’“ (a).

( c(k)(Eb,c]) denotes the class of all functions which have con-
tinuous k'D derivatives (k=0,1,2,...) on (b,c) and continuous right
kth derivatives in b and left kth derivatives in ¢.)

Proof. The proof is divided into different parts.

(1) First, we make some trivial simplifications and conclusions.

From 1:Lmn_,mzn = a, it follows that ¢(a) = 0. As {zn} is bounded

and x is continuous we may replace U(n-zx(zn)) by o(n~?). Tt will

be convenient to have

Zne1 n n+1

1 ¢1(2n) 1
- ee— (tp(zn) + T + U(;;)) (1.6)

inatead of (1.4). If we write (1.4) in this form, then
44(x) = o(x) + ¢(x); s0 ¢,(a) = ¢(a).

We restrict ourselves to a (possibly small) closed subinterval

J = (5, ,6,]c [b,c] with the following properties: a€ (5,,5,) and
0 < olx) < ¢(a); lotx)] < %x p"(x) > 0; and %¢(a) < ¢(x) < %¢(a)
(s0 %¢(a) < ¢1(x) < %w(a)) for x€ J. The juastification of these

reatrictions of J will be apparent later on.



Let n, be an integer which exceeds N,, and which is so large that

for n > n/ zn€J and that the O~term in (1.6) is in absolute value
<«}n-1¢(a). Then it will be clear that z_ , - z, > 0 for n >n_,
and this implies a - z }0.
From now on we consider only values of n exceeding B . For x€ J
we have

o(x) = alx-a)? + B(x-a) + 0((x-a)")
and

§(x) = ¢p(a) + O(x-a).

Substituting t = a - 2 we can write (1.6) as

t
t -t {at;- st’n+ ﬂ(t;) + 3%34 c(-z-:l) + d(g;—)} .

- L
n+1 n n+1
We put nt = n{a - zn) = 8 . As we already know that t = o1}

(n -+wx), we may write the recurrence relation for the s as

2 (s - @) + (s,+1) o(1)}. (1.7

We already have s > O for n > n_ and n~1an—- 0.

(2) Next, we prove that we have either Um s = ¢(a) or 8 ==
if n+» e, As (sn} is a solution of an iteration process which is
of the form (1.1), (1.2), either we have lim s = ¢$(a), or (an}
is unbounded., The latter implies that a subsequence diverges to
+w. But if a subsequence of (an) tends to 4+« then {an} itgelf

tends to +w. This may be seen if we write {(1.7) as

1 11 1 1
801 -8, =3 {E(sn-’]) - ¢(a) + sn(o(1)+§) + (-2-4-0(1))}.
If 0o(1) + 3+ > 0 {which is the case if n is sufficiently large) and
s, > B >2¢la) + 1, we have &,,1 = 8, > 0 and hence 5__ , > B. As
this holds for every B, lim 8P | .%n +w implies B, oo We
have thus proved that either n(a -~ zn)—— ¢(a) or n{a- z ) 4o It

remains to be proved that in the latter case (zn) satisfies (1.5).

{(3) Very roughly speaking, (1.5) means that the influence of ¢
and of the U-term is negligible in comparison with the influence
of P



We shall prove that there exists a positive constant C such that
tp(zn) > Cn'i' if n > n . We would remark that for n >n_, tp(zn)> 0,
as &, <z, < a.1 Let n, (n, > n ) be chosen so large that &> 5¢(a)
orz <a- 5n” ¢(a) for n >n, . Now J is so chosen that ¢(z) <
< #a~z) if z€(61 s8), and we have therefore

z -z < (ae1)™" (%(a-zn) + 3070 y(a)), (1.8)

n+1

formyn. Ifw =a-2z - un'1¢(a) then (1.8) becomes

1 -1
LA A <-(n+1) W

Moreover, w_ > 5n  ¢(a) - #n rb(a) = n ¢(a) >0. For m >n, we
have w . > 1~ -}(n+1) 1)w > (1 ~ (n+1) )*w 3 and so

w >w n* '1' If we determine a number C, (C > 0) such that
tp(x) 2 C, (x~a)? for x€ (&, ,a](") then we have

q:(zn) >C, (zn-a)z > C1v; >C wn‘ n'lr n -t > C, ((p(a))zn:% n'* =
-+

= Czn
for n > n,.

If C = min (C,,C;) where G, =<}min(n*'¢(zn)i n = ng+l,...,n, } then
we have q;(zn) >Cn"¥forn >n..
(4) The next step in our proof is to show that, heuristically
speaking, the differential equation

Le@) - oata))

can be used as an approximation of (1.6). In fact we shall show
that for n > n,

2
n
f (o(£))7at = 10g n + 0(1). (1.9)
1
2
n -1 .
If K = bf (p{t)) " at - log n (n > no), then we shall obtain the

(]

(*+) The existence of C, can be proved as follows:
o(x) = (x-a)’e, (x); 9, (x) = a + B(x-a) + 0((x-a)*). So
¢, (8) = a > 05 ¢ (x) #£0 on [5, ,a] and ¢, (x) is continuous.
S0 min{e, (x)] J:GZC&1 ,all = c, >0.



H

result K = &(1) (n > n, ), showing that the sequence ..
n v n°+1 v

with H, = KN.‘ -~ K, converges absolutely.

To this end we need an estimate for w(zn) -~ @(y) where y€ (zn.z

).

n+1
Such an estimate is

0 < w(zn) - oy} < w(zn) - @fznﬂ) <

<tz g - 2) <D™ Loz + 3e(ain™"] <

< ;;(m-‘l)-“ (max (o(x)| x€[6,,a]} + 3¢(a)) < 7,

Using the mean value theorem for integrals we obtain (with
%€z 2 4) )

n+1
-z,

zn+‘1 + 1o
w(xs g n+1

fn+1
dt n _
] n+t n 'J ety * log 7 l -

1 q;(z)+n ¢(z)+d(n 2y n
= m tp();) + (n+1)108 H:‘l_l =
-1 2
9lz_ )= oly) +n” 9. (z )+ &(n <)
1 n 1 1" n n
= ——-7‘- ‘p(m) + 1+(n+1 )108‘ ml <
-1
(z_)~ 9o(x)+ 3n" ¢(a)
1 9V Fy { 1
<z ey + 3 1+(n+‘|)1og l<
< 1 1D 4 Bn: Wa) s E ,
n 3C n” 2n?* nVn
as o(n) > olz 1) > clas1)" ¥ > e 2™t ang
-1

[1 + (n+1) 1og (1 - (n+1)” )l = 2\;:2 v e < ey

2 o
- ) ¥ con-
as lKn+1 Knl < En?, with some constant E, and En=1 n¢ con

verges, we have K = 6(1), and hence (1.9).

(5) It remains to be proved only that formula (1,9) implies (1.5).
s ¢(x) = alx~a)? + ﬁ(x-a)’ + O((x~-a)*") (x~ a) we have

- 1 - B g
olx) = a{x-a) a? (x-a) + o) (x ~a)

and thus



¥ at
{‘)l; —‘K—)- m+-ﬂ—log——+0’(1) (y 1 a).

As znf a, the combination of this result with (1.9) yields

1 B 1
—~ + = log = log n + 0(1) (n-we ).
ala znf a a~2
From this implicit asymptotic formula we obtain an expression for
z, by iteration (ef. [1] Ch.2).
If (a-z ¥ -1 . v we have v+« and n'1vn = 0(1) if nwew. S0 we

n
derive from

-1

a”v, = log n + 0(1) - Ba‘a log v,

that a'1vn < (2 + |l a~?) logn (n- «); and the latter formula

implies log v, = ¥(log log n). But this yields

-1

« v, =logn + ¢(log log n).
Taking logarithms again we obtain
-1
- log a + log v = log log n + ¢((1og log n)(log n) ),

and therefore log Vo T log log n + ¥(1), This result yields at
once

a'1vn = log n - Ba"a log log n + S{1}.

From the latter formula we obtain without difficulty

- - 1 - log log n 1
Zp =2z log n f" {log n)? * d((los !1;)'

This completes the proof of theorem 1.2.

Remark 4. It will be clear that we could prove ¢(z ) > C_ n~
each @ > O in part (3) of the preceding proof. To this end, it
suffices to take instead of J a (possibly small) subinterval, on
which |o'(x)]| <34a. If ¢,(x) + d(n'1) < B on that interval for
some B > ¢{a), we take n, so large that z, lies in the considered

for

interval and s, >p for n > n,, where p is 8o large that the sub-

stitution w_ = (a-z ) - (1-3a)” -1 a s yields for n = n,

w > n'; (p - (1-%«)- 8) > 0.
1 :



as Cu n™® > ¢, n"P for B > &, it follows that it has to be proved
only that ¢(zn) > E% n~% for a small value of «, in order to
obtain w(zn) >Cn ., From this it follows that we have one degree
of freedom more than we need. In the proof of theorem 1.2 we took
p sufficiently large. In Sec,.4 we have to prove an analogous re-
sult in a much more complicated situation. There we shall use the
other degree of freedom taking o sufficiently small and p fixed
but > B.

Remark 5. In Secs.11 and 12 we shall meet with a situation where
" all conditions of theorem 1.2 are satisfied except ¢'"(a) > O,
¢(a) > O which are replaced by ¢"(a) < 0, ¢(a) < O.

A completely analogous proof shows that also in this case we have
either n(a-zn)-» ¢{a) or

1 B log log n 1
P T W A . S N, { N —
n xlog n o (log n)? (log n)’>

Remark 6. The sign of ¢(a) is irrelevant if we %now that for

n > No all z, are on the same pide of a. If we omit e.g. the
requirement ¢{(a) > O in theorem 2.2 and replace it by z, < a, then
we have almost at once‘n(a-zn)-o +e0 in,the cases where ¢(a) < 0.
Moreover, if ¢(a) £ O and n(a-zn) - +w, then the proof of (1.5)
does not meet with much difficulty, as we still can prove w(zn)~>
> C n'%, (e.g. instead of (1.8) we may take Ziq - 2y <

< %(n+1)'1(a-zn) ).

We conclude this Section with a more or less detailed discussion

of two examples illustrating theorem 1,2. For a detailed discus-
sion of another example, we refer to the appendix.

Example 1. Let {zn(x)} be the sequence of functions defined on
{0,1] by the following iteration process

z1 (x) £ 0,

. (1.10)
(x) -z (x) = (n+1)"] ((zn(x)- 1)2&n'1xb.

z':14-1

10 zn(x) increases with n, for each fixed value of x. If for



some x' and m we have z (xt) > 1, then z me1 (x') =1+a {a>0)
and z (x') >1 4+ a (n=2 3,...), and aoz {(x')+o if n-e by
theorem 1.1. Iet ﬁn(z) denote z + (n+1)" (2-1)2, then for n » 2

ale_(z ) 2(z_-1)
n n n 2
Ho 't Tma 21w

As 2, {(x) = 3(1+x) and x n-1(n+1)-1 are increasing functions of x,
we have that 2, (x) is an increasing function of x for n 2 2.
For x = 0, it is proved that 0 K z, £1-n by induction, using

- - -2
z =@ (z ), and so0 2 é‘in(1-n 1) = 10" + 2”2 (en)”]

n+1

-1 -1
€1 - (n+1)" 0 if z & 1-n" . Solim zn(O) =1, For x = 1 we

n+1

have 22(1) = 1 and the sequence z (1) increases to +o,
Let x, {n > 2) denote the only solution of the equation z, (x) =

then x > 0 and x < x_ as z (xn) =1+ x, n (n+‘l)"‘I > 1.

n+1 n n+1

Let limn-maxn =c¢ thene <x, = -3 + Vik < % and ¢ > %, since it

can be proved by induction that z (4) <1 - %n'1. So we have
proved for the z, defined by (1,10) the following proposition.

There exists a number ¢, O < ¢ < 1, such that
z (x)» +w if n— e for x > ¢, and lim z_(x) =
n N0 n

for x L ¢.
Instead of the latter proposition we shall prove
zn(c) =1-cn s d(nna),

and

zn(x)

]

1 - (log 1)~ + 9((log n)~2) (0&x<e)

(2). If sn(x) = n(1 = zn(x)) then (1,10) yielda for the s :

81(x) = 1,

- - (1.1
8,10 = 8, (x) =207 (s (x) = x - 0" (a_(x))7). )

By the result already proved we have an(x)a -o 1f n+w for x > ¢,
and s (x) >0 for 0 ¢ x  ¢c.

Applying theorem 1.2 we obtain that for x £ ¢ either an(x)w x or
sn(x)-w. We shall prove that the first possibility is realized
only for x = ¢.

If sm(x') £ x' for some m and x' then sn(x')--m 1f new; so0

10



s, (x) >x for 0 g xge. If ¥ (s) =8+ n"'s - n7?s? then
= -1 ?

5,41 (x) = ¥ (s (x)) - xn ', ¥ (s) increases for s < #(n+n’). 4s

8, = n(1-zn) £ n, ’i’n(an) decreases 1f s decreases. Moreover,

8, (x) = 1-x and -x ng

are decreasing functions, so 8, is a decreas
ing function of x on [0,1].
If u, = 0, v, = % then 8,(u,) = 15 8,(v,) = v, 5 s,(u,)z%)h
z .

5, (vz) =v, - v, < v, ; so numbers u, and v, can be found with
u <u <v, <v ands, (u,) =1, s (v,) = v,» Repeating this
argument we have after the kP (k > 3) step an interval [uk,vk]

= 1: = -1 -1
such that 0 < u, < v, < +; 8, (u) = 1, 81 (uk) = 1+k~ (Fk"')>
> 13 sk(vk) = Vs Byiq (vk) v, - k ‘v, < Vil and then we con-
struct a proper subinterval [uk+1 ,vk+1}c [uk,vk].

As the seguence (un} increases and {vn) decreases, we have

0 < limn_. Sy =< limn_. o'n = Sp < 3.

If x€ [0,¢ ,) then an(x)—» ooy if x€ [°£‘°r3 then lim en(x) = X,
whereas x € (cr.ﬂ implies sn(x)—» -=, We shall prove c, = . by
deriving a contradiction from c, < c.- If Cy < .1 Wwe choose n so0
large that sn(cz) < c.; since s decreases this would imply

c, > sn(cz) > sn(cr) >ec .. Fromc,=c it follows that cp=c = c.

(3) The case: X = ¢. Theorem 1.2 does not give any further

information in this case. We already know that en(c) = ¢ + o{1)

1

{(n+w) f(or zn(c) =1 -cn s 0(1) n°' (n+w)) and we shall

prove that

s (c) =¢ 4-v}n'1 ¢+ 0”1 o(1) (n-e),

Using the substitutions bn = sn(c) - c3 dn =n bn‘ we have bn>0’
b, = 0(1) (n- ), whereas b, and 4, satisfy ‘

o -1 2
by =1=e, b 4 -b =1 (b -n (b +)°)

and
d.‘ = J=c,

-1 1
d -dn-n {Zdn-c

2, - 2, -2,.2 3.2
nel +1 (dn-adnc-c Ymn (dn+adnc)n dn}'

From the fact that bn > 0, bn-» 0, it follows that bn+1 - bn <0
infinitely often. So 0<nb =4 < b; +2b ¢+ ¢? infinitely

11



often, and the sequence {dn} has an accumulation point in {0,c?].
On the other hand it follows from d = n-o(1) that a1

=2 {24 - c® + 0(1)}; and thie implies that either lim __d_ =

= §c* or 4 + 4=, (we use 4 > 0), Solim  _d =jc* and this

-d =
n

means
z (c) = 1 - nle+n"2(36%40(1)) = 1 - n” e+ G(n72).

We shall not give more terms of the expansion of zn(c).

(4) "The came: 0 £ x < c. The fact that an(x)» « for x€ [0,e)
glves at once

z,(x) = 1 - (log ). d((10g n)~?)
by application of theorem 1,2.
Of course the U-term in this formula depends on x. In order to
obtain a (poasibly rough) estimate which holds uniformly in
0 & x<e¢, we can refine the arguments used in the proof of theorem
1.2. In this way it can be proved that

c+X
1 (m o-x 1 ) (n-sw
.'sn(x) = 1 = 108 n + 0 (c-x) (108 n)g ’ 0 s; < c)

but we shall not give the proof here.

Example 2. This deals with an iteration process of the form

Zoeq ™ %y = . (w(zn) + d(n'1«b(zn)). for which the z converge to
a zero a of ¢ with ¢'(a) # 0. We have formulated no general re-
sults other than the almost trivial theorem 1,1 for situations like
this, nor shall we do so. With the exception of Sec.13 we shall
not meet situations of this type. Nevertheless, the following
example shows how aome of our methods can be employed.

Let {zn(x)} be a sequence of functions defined for x 2 O by the

following process:

z,l(x) =0,
{zm @ -z @ = @D (e @%aenly, (112
We shall prove that there exists a number ¢ (1 < ¢ < g) such that
0L x<¢ implies zn(x) =-1410 'xeo(n2 log n), (1.13)
zn(c) ® 1 - % n'1c+d(n'2), (1.14)

12



and x > ¢ implies zn(x)—o w if nw,

(1) a1 2z are polynomials; zn(x) is an increasing function of x
for n > 2. This may be seen as follows: z,>-3; z > - §(n+1)
implies s ., >z + (ne1)"1 (22 -1)>-«}(n+2), thus L >--1-(n+1) for all

dz 2z (x) ez (x) :
ns d:“ =224 (x)= z'(x) + —2 7 Bt n(nlﬂ >z;l(x) (1+ ;4_—?):
so z'(x) > 0 implies z! (x) > 03 zé(x) = 3 as za(x) = ${(x-1).

All z, > =1, sgince z, > -1 and z, > «1 implies z >=14+

1
+ 0 @)™ > -1, 12 z,(x) > 1 for some m and x, then z (x)~=

n+1
if n+ = for that value of x.

From these considerations and from theorem 1.1 it follows that if
D~ = there are only three possibilities: =z (x) -1 z (x) t+1§

z (x)+w. For x = O we have ldm _ =z (0) = -1 as z (0) < -1+ n?
(with equality for n = 1 and n = 2 only). But even for x = 1 we
can easily prove z_ (1) » =1 by induction, as z &) < -1 + 3n .
If x, =3thenz(x)=1whereasz(x)=‘l+x2 (a+1)1>1.
So, for the number x, with z,(x,) = 1, we have x, < x, (x; =

= =3 + V30 < 5—). By repetition we find a decreasing sequence {x }
with ¢ = 1:I.mn_m n 21, TFor x > ¢ we have zn(x)-w if new for
0 £ x £ ¢ we have Izn(x)l <1 and go either lim _ _z = 41 or

limn_.w z, = -1,

We will first prove that zn(x) -+ =1 for 0 £ x < ¢. Suppose
zn(xo)-. +1 for some x, < ¢, then there exists an m such that n > m
implies zn(xo) > O. zu'l(x) is positive and continuous on [x_,cl,

so min [zn'!(x)l xC[xo.cfl} = a > 0. We then have z! , (x) =

=1 -1 .
= zn'!(x) + (m+1) (azmz;! +m ) > a3 likewige zn'H_a(x) D Gyeeey
z +k(x) > a, On Cxo,c]. If n > m is so large that zn(xo) >
> 1 ~ jale~x,) then zn(c) > zn(xo) +ale=x ) =1 + jale-x ) > 1,
which is impossible. So z (x)} - -1 for 0 < x < c.

On the other hand let limn_’”zn(c) = =1, then we shall find a num-
ber ¢, > ¢ with lim an(c1) = -1, in contradiction to the maximum
property of ¢, For x < 3, and m 3 it follows from z {(x) <0

-1
that z_ ,(x) <0 + (@41)7 (<1 + 3n” ) 0. If limn_mzn(e) = =1,

13



we can find an m (m > 3) such that z (c) < -4, but as zm(’x) is a
continuous and increasing function of x, we can find c¢q (c<cq<3)
such that z (cq) < 0. But then z, (c ) €0 for all n » m and so
lim 2z (e;) = -1. So it follows that m |z (e) =

We complete the discusslon by proving the asymptotic formulas
(1013) and (1-14):

(2) The case: x = ¢. Now we have z = +1, z, < 1, The substitu-~

= - - -1 1?2 _an~]
tion t, = 1 z, leads to t, = 1, L ty (n«t-‘l) (21: t,-cn 3.

As tn* o, tn > O we conclude that tm-‘l - tn <0 infinitely often.

So 2t - t? - en”! < O infinitely often. As t - O, this can occur
n n - n

only if tn <1- V 1-n ;c infinitely often. This meansg that the

sequence {sn} with s = nt has a finite accumulation point.

Moreover, { an} satisfies

_ =1 -1 2
s, =1, s, 4-8 =n E}sn-c-n s, 1.
In the same way as in example 1, we find that
- e _e? + o(1)
zple) =1 - 5 - S (n~w)

which provea (1.14).

(3) The case: 0 £ x < c. Of course formula (1.13) is not uniform
in x. By the substitution an(x) = n(zn(x) + 1) we get

- -1 2
81(1) =1, 8n+1(x) - sn(x) =n (x-sn+n s ).
As zn+1 = 0(1) (n-~) we have 8,1 - 8, = 11- (x-sn+ sn-o(1)).
As 8, > O, we have either s_-x or 8 - e, If g »= thens > x
n -1 n n .18,

and x - s, +n s’ >0 infinitely oftem 80 8 > n-X-n X -...
infinitely often and thus n~ e > 4 infinitely often, in contra-
dietion to the fact that n 1sn = 0(1). So we have proved
an(x)-x if n-es,

If dn(x) = u(en(x) - x), then d, =1 - x,

- 1.2 =1 2 -2 2 -3.3
dn+1 dnzn [x“+n (Zxdn-dn-!-x)-q-n (2xdn+dn)+n dn].

14



As we already kmow that n'1dn(x) = 0(1) (newx), we have
-1, 2 -1
dn+1(x) - dn(x) =n (x° +0(1)) =0 d(1).
From this it follows that d = ¢(log n), and this implies

zn(x) = -1 + § + d(lgf;g).

2. Hardy's ineqnality(‘)

In this Section we start a discuseion about the finite sections of
the inequality stated in the following theorem due to G.,H.Hardy
(see [8] theorem 326),

If 0 <p <1, then

1/p “1U/P w

=1 (2P p
b (@™ (ag+ ... an)} £ (1-p) T8y (2.1)

for all convergent series 2§L1 a, with non-negative terms;
unless all a, are zero, there is strict inequality and the
constant (1-p)'1/p is best possible.
Ir AN(p) is the best possible constant in the following inequality
for finite series with non-negative terms BqseserByy

. 1/p
N -1 .. p P N
T4 7 (ag+...+ an)] Shp) 2o a

then kN(p) is the maximum of

/p

1
F(E) = F(x,l’aca.xN) = (n”” (x?:*— ooo'*'xi)}

n=1

N
under the restrictions Zn=1 x,

(Throughout these Sections p has a fixed value in (0,1).) The
N
points x = (x1,...,xN) satisfying I _, x, = Ty X,20,0000%y >0

3:1' x1 >,0,..o,xN}0.

form a compact set S in RN on which the function F is continuous; F

(+) Notations introduced in this Section are also valid in Secs.
3«7,
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therefore attains a maximum on S, Moreover, the maximum of F is
attained at a point x for which x4 > O,...,xN > 0., In fact, let
y€s have y, =0, y,=56>0 (1< %, £ N), then we consider z(t)
defined by zn(t) =¥, (1< ng N, nék, nid), zk(t) = bt, z.z(t) =
= 6(1-t). So zZ(t)E S for all t€[0,1]. Now it suffices to chserve
that we have f£'(t)- +e if t {0, where f£(t) = F(z(t)).

We shall use the theory of Lagrange multipliers to determine the
maximum of F on S. As F(x.],...,xN) is homogeneous of degree 1 in

x,"ooo’xN we have

N 3
F(x,‘,...,xN) =L _q X, a: (F(x.],...,xx)).

If therefore

9 N
-a-x; (F(x1,...,xN) -AE . xn) = 0 {k=1,.0.,N) (2.2)
or
e -
oy (F(x1....,xN)) = A
N
for a set (x1,...,x A'), then we have F(x,l,..‘,xN) = At L D x}.

N
Now (2.2) and 2n=1

of F on the subset of S with x,‘;éo,...,xN . But the maximum of F
is attained at a point of this subset; and so the maximum equals

X, = 1 are necessary conditions for an extremum

the largest stationary value of A i,e. the largest value of A for
which there is a solution x‘;""'xl‘! of

xkc:“ {a” (xp+...+x1’)} p-xz§=1xn3=o (k=1y...,8),
(2.3)

and

Now {2.3) can be written as
~1+1/p

APzl 0T T Rl D)) (k=1,0..,N). (2.4)

If we take differences, (2.4) is transformed into

-1 . -1+1/p
K(Xk xk+1) k 1(k 1(xp+...+x£)) (k=1,40.,N=1),

- _ _1,‘_1/? (205)
)\x;{ P. N.1{N (x}]’+ ...+x§)}
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So we bave to solve (2,5) and 23;1 x, = 1; if we omit the latter

equation the X 1000y Xy are determined except for a multiplicative
constant. Because of the homogeneity of the problem, no informa-
tion about A ig lost. This justifies our omitting E:i:,‘ x, = 1.
We write (2.,5) in a more tractable form by the substitutions

P(1~P)-1= q3 zkz k-“xl:p(xg + sest Xi) (k=1,aotsN)o (206)

From (2,6) it follows that 0 < @ < = and further that

- R - I -1 _-p _ -1 _
29= 1 Zy 4= 7 kX (k+1) X1 = (k+1) (k=1,...,80). (2.7)

By the substitutions (2.6) we transform (2.5) into

1- xﬁ” P o z:(/q, (k=1,.0.,N-1)

(2.8)
_ w1 _1a
A =N ZN »
Combination of (2.8) with (2.7) gives
- =l K =1,.=1 1/q -
2= N Bt Tt T 2 (1-x k ) (k-'n....,N-1)zz o
zy = (AN, (2.10)

The fact that J\N = ).N(p) is the largest value of A for which
{2.9) and (2.10) have as solution (1,3&,...,%’1) trivially implies
that we have z, < (AJ))? for k=1,...,F-1. Tt will become clear
that there is exactly one value of A for which (2.9) and (2.10)
have a positive solution. We consider the either finite (if z, >

> (Am)? for some m) or infinite sequence {zn}, z_ = zn(k) depend~

n
ing on the parameter A, given by

29=1, 2z =-l1— - (1 7\'1n'1z1/q) (2.11)

n+1 +1

The latter expression is of the formz . = Qn(l,z.n), where Qn()k,x)
is defined if x > 0, A > 0 and x < {(An)%. For each n, 2 (A,x) is
a continuous function of A and x (provided that 0 < x < (An)3);
for fixed A and n it is an increasing function of x; for fixed x
and n it is a decreasing function of A. If x > 1 and @n(k,x) is
defined, then @ (A,x) > 2 (A,1) > 1.

We shall prove that 1= )\1 <A, < ..., and that zm.,(x) can be
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calculated from (2.11) 1f A > A_. 2z  ,(X) will be seen to be a
decreasing continuous function of A for A > k .
The process starts from the constant functicn z, (x) 2 1., We ob~
serve that A = 1 = A, is the only solution of z,(x) - =0,
Because of the properties of &, we can calculate z,(k) for A > 13
z, (A) is a continuous decreasing function of A, Further, z,(A)-
w4wif Ad15 2, (M 4142 A=, So z,(A) = (20)% = 0 has exactly
one root in (A,,«); from what has been said above, it is obvious
that this root equals A,. For A > A, we find the continuous de-
creasing function z,(A), which tends to +e if A$X, and to 1 if
A=w. 2, (A) - (30)% = O hae exactly one root in (A,,=); and this
root equals A,. By repetition of this argument we obtain the de-
gired proof. kn is the only solution of zn(x) - @)% =0
{n=1,2,...). From now on we shall deal with (2.11) instead of
(2.9) and (2.10).
For a fixed value of A it may happén that we can calculate 51,22,
SITL L e but no more z's; this happens if 2z, < (M) for
k=1y.00om, and 2 o > > (A(m+1))). We say then that the iterationm
process breaks down at m+1. We now define the breakdown index N,
ag followg: if there exists an m for which breakdown occurs, N, is
defined by

N, = max {al z_(0) < (an)?);

for values of A for which the process does not break down we defire
Ny = w, For any finite N, the process breaks down at Ny+1. So
Ny = m if and only if Xm <ALA 40 and Ny = « if and only if A
exceeds all Am, although we have not yet established whether this

ever may happen. Formula (2.11) is equivalent to

-z, = (n+1)” {1~ (n+1)z + nz (1 ‘1 '1 1/q) }.

z, = 1, Zie1
(2.12)
We can write this as
Zy=, 2 42, = (n+1)'1 [w(x,zn) + Rn(l.zn)]. (2.13)
where
olA,x) =1 - x + ql'1 x1*1/q (2.1%)

and
L -q -y 1-v 1+v/q
R (Ax) =£ _, 0¥ GhH A
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s L e 1L s
Henceforward we shall make use of the notations introduced below.
$(x,x) = -1 + (g+1) A x1zq; §{A,x) is the partial derivative of
p{A,x) with respect to x. x(A,x) = (q+1)(q?«.)'1 x-1+1/q; so x{A,x)
is the second partial derivative of ¢{A,x) with respect to x. For
every A > O, we have x{A,x) > O for x€(0,«); this implies that
w{A,x) is a strongly convex function. For every A > 0, ¢(A,x) has
one zero, ¢{A,x) has one minimum for x€ (0,~). The minimum equals
1 - Aq(q+1)~q-1. which we denote by b(A) and it is attained for
x = A3(q+1)™% = ¢(A). Further, a(r) denotes #x(A,c(A)) =
(2q)'1 A-q(q+1)q; w denotes the value~(q+1)1+1/q. Notice, that
b(A) 20 if A £ w, and b{(A) € 0 if A > w, We have b(A) = O only if
A = t; the value of x corresponding to this is c(w) = g+1.

We shall show that no breakdown occurs for A » w; in fact we shall
prove (in Sec.3) that for A 2 o zn(h) is defined for all n, and
zn(X) < g+l, For 0 < A € @ we shall find a breakdown situation,
and we shall show that Nk-ow if A 1 w. Qur main interest will be
in the asymptotic behaviour of Ny if A %w. We shall conclude this
Section with some heuristic arguments which don't prove anything,
it is true, but which may, nevertheless, show us the way of handl-
ing our problem.

If instead of (2.13) one considers the iteration process 31(k) = 1,
zn*1(k} - sn(l) = (n+1)'1 @(A,zn), one can prove that for this
process zn(x) < q#1 if A > w, and that z (A) increases to +w if

A < w. One may expect that for A > w, the sequence {zn} calculated
from (2.13) does not behave very differently from the sequence cal-
culated from the process simplified by omitting Rn(k,zn), which is
small if n is large. So one may try first to get some information‘
about the behaviour of zn(l) for A » w. This will be dome in Sec.
3. In that Section we shall prove not only that limn_"”zn(w)=q+1,
but also that n(1+q - zn(w))u-m. This means that zn(w) satisfies
an asymptotic formula, as stated in theorem 1.2, We obtained that
formula on account of ¢(w,x) only, as will be remembered. One tius
may get the impression that also for A < w but close to w, the in-
fluence of Rn(x,zn) is small if zn(X) is close to ¢(A). Our method
consists in fact in proving this., Different parts of the proof
~are prompted by arguments used in the proof of theorem 1.2.
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The next part consists of the results of Sec.l, where it is proved
that oA,z (1)) > cn? for A £ w, where C does not depend on A,
This is a generalization of part (3) of the proof of theorem 1.2.
If we replaced (2.13) by the differential equation

4Qog 8) _ (p(x,2))”", (2.16)

we should obtain if NA < o

f !
log N, = (olr,2))"' dz.
1

1f Atw the peak of (tp(k,x))'1 tends to =, In Sec.5 we introduce a
number p (p > g+1) and we conjecture an asymptotic formula, viz.

108 % = [° G2 Tax + 0(1) ate (27
1

(Notice that the maximum of (q:(?\,x))“"1 is attained for a value of
x < q+1). The proof of (2,17) is given in Secs.5 and 6, of which
Sec.5 contains only auxiliary results.

A standard proof of the formula

Jp (cp(k,x))-1dx = n (alw) b(k))-% + J9(1) (ta) (2.18)
1

will be given in Sec.7.
Once (2.18) has been proved we may transform it into

g = - 2n?(q+1) w(log M™% + d((1og N)"B) (2.19)

(it will then be clear that A%« implies N- ),
If we write (2.,19) with the original parameter p, it gets the fimal
form

Mg = (1=0)"P 2 262 (12p) 1P (105 M2+ 0108 M), (2.20)
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3. The case: A > w

This Section 1s devoted to some fundamental resulte about the be-
haviour of z (A) for A % w. We mentioned before that for A >
the process (2 11) does not break down and that zn(k) < q+1 for all
n. In we fact shall prove the following slightly stronger lemma.

Lemma 3.1. If A 3 w then z, (A} is defined for all n and

z, (A) £ q+1 =~ qn . (3.1)

Proof. 4As z (A) is a decreasing function of A for A > A, (n>1)
it suffices ta prove that w > )\ and z (w) £ q9+1 - gqn -1 for all n;
once this has been proved we shall have that z () exists for Ao
and zn(x) z, (w) € q+1 - qn 1 we supply the proof by induction
with respect to n. z,l(n) =1 =Qq+1 - q. As 1 < (q+1)4+1 = wl,

z, (w) can be calculated. If we suppose that zn(m) is defined and
z,(0) £ a+1 - qn =1 then 1t follows that zn(m) < (wn)? = (g4 )q+1nq’
and s 2, {w) can be calculated. We then find that z__, (w) =

= @ (m.z (m)) 2 (0,941 - qn~ ") is defined, and because of the
monotonicity prcperty of & (l,x) with res_gect tox it is not less than
Qn(w,zn(w)). So z 1(0) £ Qn(m,qi-‘l - qn” ). and the proof will be

n+
completed if we show that

Qn(w,qﬂ - qn'1) £ q+1 - q(n+‘l)'1. (3.2)

But we have (with y = gq+1 - qn-1)

@n(w,u)=;1_ L v(1- 1/Q(Q+1)-1-1/q n-“)'q. (3.3)
We use the inequality
= -q -k _-k
1- (q+1 Sn ( zq+‘l)n) q+1 nt 2kz?..(l-c)(q’"‘l) n ,
(3.4

(the geries in the right~hand side is an alternating series whose
sum is positive). )
: -1 -1 =1 -1y~
The inequality 1 - x(g+1)” 'n” > x holds for xg (1+(g+1)"'n" ") ;
] w1
s0 we may substitute x = (1 - q{q+1) 121 1) 4 in it, on account of
(3.4). The result of this substitution is
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q 1/a 1/4
1-Q- (q+1)n) q+1)n > (- YE!%E) ‘ (3.5

Combining (3.3) with (3,5) we obtain

Wn(w.q+1 - qn”1).s (ne1)" s a(n+1) " N (q+1) = q+1 = q(ase1) 7

This completes the proof.

Lemma 3.2. 1imn_.”an(w) = q+1.

Proof. We define R;(Z\.x) = Rn(lk,x) 0£x £ g+l
R (A,q+7) x > g+1
4] x <0

is z (m)€(0,q+1) we replace (2.13) (for A = w) by z, =1,

z -z, = (a+s1)™] (tp(m,sn) + Rn(w,zn)). Theorem 1.1 yields at

n+1
once lim _ zn(m) = q+1.

If A > w, then o{A,q+1) < ¢lw,q+1) = 0, @(i,x) being still a
strongly convex function of x with ¢(A,1) > O and »(d,x) > 0 for x
large. This implies that ¢ (A,x) has two zeros t{(A) and u(A), satis-
fying 1 < t(A) < q+1 < u{)), for each value of A > w. As the mini-
muam of ¢(A,x) is attained for x > g+1, ¢{A,x) is decreasing on
{1,9+1]1. For A > w we have the following analogue of lemma 3.2.

Lemma 3.3. If A > w, then 1imn_.mzn(>\) = t(A).

Proof. As we have proved z (A) € q+1 for A 2w, it suffices to
show that every zn(h) exceede a fixed number, in order to apply
theorem 1,71 in the game way as in the previous lemma., A4s 2z
can be negative only if z, > t(A) we have that zn(A) >
>min {(t(A) + v(A), 1}.

n+1 ~ Zn

Remark. As ¢(A,t(A)) = ~r(A) > -2 and x(A,x)} > 0, we have
w(k x} > «r(A)(x~t(X)) for x > t(A)., If z 2N > t(l), then

T > 2 () ¢ (@)™ 0z () > (1= 2D 2 (M) +
+ r(A)(n«x-‘l )'1 t{d) > t(A). Se zn(I\) ~ t{A) does not change sign

more than once.
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Let

2q 3
1 1- 1 182 eh,x)
a(r) = -4 __q_} ° (3{—.) = 3? [ ax* * ]x-_-c()\.)

then we have thé following lemma.

Lemma 3.4.
( )"c( )- 1 - d((&l) log lo n*of( 1 ) (3 ?)
Zpr@l = el Tl log n - (a(w)®  (log n)? (log ny /" ‘

Proof. Application of theorem 1.2 for the interval [0,q+2] gives
the result almost at once. We would only observe that lemma 3.1
means that n(q+1 - zn(m)) > q, whereas R (w,x) written as

n (x) + O(n” xv(x)) on [0,q+2] y:.elds b, {q+1) =+q. So
n(q+1 - zn(w))4 w,

We conclude this Section with some remarks on the theorem that
states the infinite inequality (2.1); it must be noticed, however,
that the proof of (2.1) resulting from our remarks on finite sec~
tions, which we shall give below, is much more complicated than
Elliott's proof given in [8] theorem 326, If we were interested
in the infinite inequality only, our approach would be too compli-
1+1/4 we have

= (1-p)""P, Once (2.20) will have been proved, we shall have
proved that for all convergent series with non-negative terms we
have (2.1):

cated for the result. Since q = p(1-p)'1, w = {q+1)

® -1 1/p “1/p =
Zpan {n~ (a + aeet a 1} £ (1-p) Zooq By
Gl - P p 1/P "1/P oo
Indeed, if L _, {n (b1+ ...4-bn)} > (1~p) Z,.q b, for some

sequence {bn}, then there would exist a ‘finite” sequence biyeonyb

0,..., With 5::=1 {n‘1(b11’+ ...+b§)}1/p > (1-p)-1/P z:=1 b, and this
contradicts formula (2.20), (Notice that A, < A, < ,.., see Sec.?
Moreover, the constant (1-p)-1/p in (2.1) is best possible; for,if
we replaced it by a smaller one, we could find, on account of

(2.20), a’finite” series violating (2.1) with the new constant., The
fact that there iz atrict inequality for all convergent series, is

the only detail of the theorem quoted in Sec.2, which does not fol-
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low from (2.20). We shall revert to this question later. Firet
we shall prove that for any sequence {xn). with

-1 _~p.. P - = =

n o ox (x,‘ +oeeet xi) = zn(w) (n=1,2400.), 8n=1 x diverges.

{Al11 such sequences differ only by a multiplicative constant.)
Using lemma 3.7 we derive from zn(m) £ g+1 - qn'1 (n=1,24.0.),

that (n(g+1) ~ q) X§ }xﬁ 4 oees + xﬁ; and this implies xﬁ >

> e (@a)™P 4 Lol ¢ 2P _) and thus

x'g > (5=1)""(q+1)™? xg H:;f (1+ v asn)™ (ny2). (3.8)

Using the fact that there exists a positive constant C such that
nz;f (1 + v @)™ ;.C(n-1)1/(q*1) we find that there exists a
constant C* (we may take for x, any positive number) such that
x, »C* (n-1)?% (n=2,...), with o = ((qm)"1 - 1) p'1.

Because of the relation between p and q we have o = -1 and so

2;;1 X diverges.

Using the result of lemma 3.4, we can obtain even much more in-
formation about the x,. From (2.8), which reads for A = w:

1 - (x;1 xn‘1)1'p _— n-1(zn(m))1/q. (3.7), and the definitions
of w, alw), ¢(v) and d{w), we find by straightforward calculation:

log x - 1lo x--1+—2——+a—-—-(5———57-1° 1o n+6( 1 )
€ Xneq & X " atn log n' =n (log n)? n{log nji/*

where & = d{w) (@lalw) )3)-1 = %(1-q2). In order to obtain a fore
mula for x we use a summation method (see [1] Ch.3). If ¥, =
= log x, + log n - 2 log log n we have

. _ &log logn 1
Yo = Yneq © n{log n;: + d(nh,og nji)’
As 2v=n (yn - yn*") converges we have y =3I (yv - yv+1) +

+Um y.. Iflim ¥ =log A (A > 0) we find
¥, = log A - a(log n)”! log log n + O((log n)-1).
From this it is derived without difficulty that

x, = an~? {(10g n)2- a{log n)(log log n)+ &{log n)}l. (3.9)
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The divergence of the special series f: X, is not yet sufficient

=1
to prove the strict inequality inm (2.1) for all convergent series

(except ﬁ:=1 0). 1In order to prove this, we can argue as follows.

let ﬁ:w1 S, be a convergent series giving equality, i.e.
£ . {n” 1(c +oaat € }} /P (1~p)-1/p T
n=1 . n=1 "n

Now ¢, 2 ¢, > se., Otherwise we should obtain a series violating

2
(2.,1) by rearrangement of the ¢'s; moreover ¢_ > O for all n, and

we may assume ¢, £ 1. We take y = n~? c;p (c§+ ...i»cg) and prove

- = - =1 P -1 -p
that y = zn(m}. As ¥,=1. ¥ ., = (n+1) +ncn(n+1) oyt Tt Ve

have to prove that ¢ ¢™P, = (1 - w1 n? yq/q>-q’ or that
n n+1 n

- -1+1
w(el"P. y /p.

-1 P
a n+1) = (a7 (P 1Heeete))

(3.10)

In order to prove (3,10) for a fixed value of n, we consider for

m > n+2 the function

H(x [XEEY.S ) -r(x esoyX ) +
1' ’ m 1’ m

b N,

= -1,.p p P
+ 3, { (m+v) (x1+...+xm-+cm+1+...+c

m+v

(F is the same function as in Sec.2). We know that H attains the

m
maximum (nS ¢, on the set, defined by E =15 F 2v=1 Gy

vz
Xy 204.00yx 20, at the point (c1,....cm). On the compact set V
defined by ¢ ne S £x 1....,xm.s 1 the partizl derivatives of H are
obtained by differentiating term by term, and hence

H(x1,...,x ) = F(x1....,x ) +

a"k "k

- oo - - "1"’1/
+ xi 1 B, _q(m+v) 1{(m+v) 1(x§+-..+x§+c§ o} ?

1+...+cmw

(k=15...,m), a8 the latter series converges uniformely on V; (it
oo Y

has 8v=1 c; as a majorant, where c; =1 if n=1,....m, c; =Cy if

n>m. H(x1,....xm} is a homogeneous function of degree 1. We

infer that

(5

H(x1,...,x )) = @ (k=14.0.,m).

ax,
*5 X =CpeeeesX =Co
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The latter relation is the same as

- o - - "14'1/})
p-1 4 Nl Pl o +c§)} =

ck n:k w (k=1 gr e 'm) . (3 .11)

-

Multiplying both sides of (3.11) by ¢, P, and subtracting the for-
mulas for k=n and k=n+1, we¢ obtain (3.10).
By this we have proved that there is strict inequality in (2.1) for

all non-trivial convergent series.

L, A fundemental result about w(A,z (A))

As we are interested in what happens if 2t w, we may confine our-
selves to values of A for which w-X is small. So, from now on we
shall only consider values of A in (A;,w] where X, = (q+1)1fq, but
further restrictions will be made in the following Sections. If

A > A, and zn(k) < q+1 then certainly n g Ni, so the restriction
guarantees that no breakdown occurs, when zn(l) < g+1.

We have the following monotonicity property: if A £ w then z,(X) <
<z,(A) <ot <2y M) LT H <wor z, (M) <2,() <.uuy 1 N =o.
This follows at once from (2.13), as zn+1(k) -z, () >o0.

The present Section is almost completely devoted to the fundamental
lemma 4.1, The version in which we prove it, is, however, somewhat
stronger than the one we actually need. The usefulness of this
lemma was already suggested by the proof of theorem 1.2. It is
analogous to part (3) of that proof. However, it should be remark-
ed that the situation is now essentially more difficult, as we
state a result which is uniform in A. We refer to the methodolo-
gical observations made in Sec.1 {Remark 4).

Lemma %,1. For every positive number o there exists a constant Cy
(Cy > 0) such that for all A€ (A,,w]l, and all n (1L n <N + 1,

if N <wor 1 n<w, if N = ), ¢(A,zn(k)) satisfies

¢(A,zn(k)> >C n"%. . (4.1)
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Proof. It obviously suffices to prove that for every a (a > 0)
there exist C, (C, > 0) and L € [A,0) such that (4.1) holds for
all A€ (L, uwl, as a matter of fact, if we take C% = min{C,, b(Zy)}
we have q:(?s,zn(k)) > C) n~% for all AE (A ,0l. Moreover, it will
be clear that once we have found Ca, and Ca‘, we may teake [, = [,
and Cy = CO,_| for every a > a,. So it suffices to prove lemma 4,1
for « < #. Further, the result w(w,zn(ﬁ)) > ca,w n~% 18 a con-
sequence of lemma 3.4k; so we confine ourselves. to values of A < w.

o(A,x), 9$(h,x) and x(A,x) are continuous functions for Ay < A < e,
0 < x < w~. {(For the notations we refer to Sec.2.) In the point
(v,q+1) we have ¢(w,q+1) = 0, ¢{w,q+1) = 0, x{w,q+1) > 0, so there
exist b,, n, and v, with b, >0, A, L 1, <w, 1LY, < g+1 such
that for the set G defined by n, < A < w, Y, < x < q+1 the follow-
ing propositions hold:

(1) 41f (A, x)E€ G, then lo(A,x)]| = ¢(A,x) < 13 (4.2)
(11) if (A,x)E G, then |o(A,x)| < Fa; (4.3)
(111) dinf {x(x,x)| (A, x)}E€ @} = 2b,. (4.4)

From the results of Sec.3 we use that 1im =z (w) = g+1, and that
zn(w) £ q+1 - gn “1 5 c(w) - qn < c¢lw) -(9/10)qn . This enables
us to choose an index m, which we take > 6, for reasons that will

be explained below, with the property

Y <z () <cla) - % qu™". (4.5)

Using the continuity of zm(k) in A = w, and the continuity of ¢{(})
we are able to determine n, with 1, € n, < w such that for
A€ (n,,e] we still have

Y, <z,00 <e() - 2 qn” . | (4.6)

We define an index A, depending on ) as
Ay = max {n| z.n()\) < e{n)}

if the maximum exists and 4, = = if zn(l} < e()) for all n. As we
speak only about values of A exceeding A sy 1t will be obvious that
we have A, < Ny. For A€ (n,,0) it is trivial that A, > m, whereas
Ay <o for those values of A, In order to prove the latter pro-
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poaition it suffices to remark that for fixed A€ (A,,w) we have
‘m‘” - zn(l) > (a+1)™1 b(A), so the sequence =, (1), s,(}), ...
increases faster than {B, log n} (B, > 0), posaibly until the
process breaks down, but it will certalinly not break down for
un(k) < q+1.

From now on we consider only values of A€ (n,,w). We have to eati-
mate Rn(x,nn()u)). Ir zn(X) <. ¢(A) then Rn(l,zn(x)) < nn(;.,c(x));
and Rn(l,c(K)) < Rn(w,c(n)) = Rn(w,q-ﬂ) for A€ (n,,w). Using the
trivial fact that (q+v) < (q+1)(v+1) ror all natural v, we have
that R (w,q-ﬂ) < #q Ek‘.‘ = $q(n-1)" ; and this is not larger
than (3/5) aa~! for n » m. Combination of these estimates yields for
A€ (n,,w) and m < n £ Ay

R (A2 (M) < -5?- e, , (4.7)

For a fixed A in (n,,w) we have that ¢(A,x) is a decreasing, strong-
1y convex function of x in (y, ,6(A)]; therefore, for x€ (v, ,c(1)) we
have

oA, 7y) = 9(r,0(}))

N EE?

(e(r)~x) + b(A). (4.8)

Application of (4.7) and (4.8) to (2.13) gives

(A) (X)< [‘?(7‘971 )"‘P(xvc(i))
-Z

(e(M)-z, () ro(0)+ 2 aa”],

+1l elA) - ¥4
(4.9)
for A€ (n,,0), mK n g A,.
The mean value theorem allows us to write
o(A,7) - o(r,e(2))
0 < c(%’) - = Hi(l,!‘)i. (4.1))

where x, € (v,,6(2)), so (A,x,)Ea.
Combination of (4.9), (4.10) and (4.3) gives

M-z, < {raleM-z, 0N+ M)+ 23],

for A€ (n,,w), m & n g A .
So we have approximated (2.13) for ngng A‘.\ by a linear recurr-
ence relation. By the substitution

w () =e()- s (M) 287D - (1-d0) 2 qn”’ (4.2)
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(4.11) is reduced to the homogeneous relation 'n()‘) - () <
< #a+1)™1 vn(k). which can be.written as

v ) > (1 - fal@en™) w (). (4.13)

For A€ (n,,0), mg<n g A,, we derive, from (4,13) and 4o < 1, that

W > w ) (1 - @ hHie, (h.14)

'n-r‘l

From (4.6) and (1-%a) > # it follows that for A€ (n,,w],

e(r) - zm(J&) - (1-'!’0:)'41(3/5)qm'1 >(‘1/10)qn'1 and so vm(a\)>1—16 qm'1.
Now (4.14) implies L () > 0,...,'1&”(7\) > 0, and vn(l) >

>w () 2% 2% for m <n & 4 +1. From the definition of 4, and

(4.12) weiinfer thiit‘aihv_.‘(?\) < 207! b(A). So 'A;‘+1 ) >
> wm(?x) m (A1+1) gives
2" b > af (e e o). (4.15)
Therefore, if n > m and
-1 =2/a 2/x
n < {2a” b{(A)} m(vm(l)) . (4.16)

then 2a'1b()~.) <m® n"%“ wm(l) and so by (4.15) n < 441, n g4
which yields

e(\) - zn(x) + 24:'11:(?0 > vn(k) > mi* pte vm(k). (4.17)

If m <ng A&y, A€E(N,,w), then z (A) < c(A) and (A,z (A))E€ G; and
by application of (4.4) and Taylor's theorem we get

oAz (M) > B + by -(e() - 2 (V). 4.18)
As (4.2) implies b(A) < 1 if A€ (n,,w), we derive from (4,18)

o(r,2, (M) > B + Bye (eA) - 2. () >
> 3905, (4™ (AN + (V) - 5, (AN'), (4.19)
where b, = min {1, ba™b, ).
Using a? + e? > #(d+e)® which holds for all & and e, we get from

(4.19)
oA,z (1)) > g-(xzb, (2" (A) + c(n) - znlao (4.20)
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For values of n satisfying n > m and (4.16), we obtain when com~
bining (4,17) with (4.20)

2

cp(k,zn(k)) > %a b, n” wi(k) 2%, {4.21)

25, 1°°2 q2.1072 by by, then b, > O and for values
of n satisfying n > m and (4.16) we infer from (4.21) that
o(r,z (R)) > B, n"®. TFor values of n for which (4,16) does not

hold we have

If we denote %a

oz (M) 2BV >6(A))? 3 faln (n (A" (4.22)

With b, = -?;aa 2% 2 ¢%.1072, (4.22) implies that (A2 (1)) > bn™"

Fipnally for 1 £ n £ m we have

o(x,z (X)) > inf {o(a,x) 1 (X,x)€G*} = b, >0, (4.23)

where G* denotes the set defined by n, < A < w, 1 x<q+1~ -125 qn™ 1

So cp(l\,zn(?\)) > bsn-a for 1< ngm. Ifb, = qu\—1 then ¢{A,zy) =
= @(A1) = ax7 > by

If we take [, = 1, Cq = min {b,,b ,b, 4b ,Cy )} then for all
AE(Lyyw] and all n with 1 £ n < Ny+1 (or 1 K n < =), we have

tp(l,zn(k)) >C, n~%. This completes the proof of lemma 4.1.

In the following Sections we shall use lemma 4.1 only for o = +
and write ‘3.1 instead of Ci' (Later, we shall use constants which
will be denoted Cz ,C, gyseey but this notation has nothing to do with
the C, of this lemma.)

Lemma 4.2. TFor each number A there exists a number EA’ zA€ [xg o)
such that AC({A,w) implies A, > A,

Proof. Let A > 0. Using z;;,,(0) < c(w) and the continuity of
c{1) and of zu]ﬂ(k) in A = w we choose %, €[A;,w) such that for
Z, < A £ v we still have ZEA]M(}‘) < ¢(A) which implies Ay > [A]+1.

We will conclude this Sectlion with a discussion of the proof of

lemma 4.,1. Among the properties used, the convexity of ¢(A,x)
should be mentioned first. The continuity of zn().) and ¢{i) and
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the results of Sec.3 [viz; 1imn* z, (@) = oc(w) and the estimate
given by lemma 3.1 which is of the rorm z (@) <olw) -By n n”

(B> 0)] enable us to choose m and 1, such that (4,6) holds for m
and A€ (n,,w). (4.6) is of the form

Y <5 (A) <o(d) - B n,
Moreover, we have the estimate of R given by (%.7) which can be
written as Rn(k,sn(l)) B,n , and whioh holds for A€ (n,,w),
1€ 2, €0(d). The substitution (4.12) which can be written as

w () = () -z (A) + 207 BR) B a7,

gives the homogeneous expression (4.13) because #afy; + P, = By.
Further we have used wm(x) > 0 which followed from B, - Py > O.

At the beginning of the proof we observed that it is sufficient to
consider only emall values of o, As we have to take §, =

= (1-%(1)"132 it follows that we can restriét ourselves to small
values of a, obtaining B; < B, if and only if 8, < B,.

We remarked already (see Sec.1 Remark 4) that we could give a dif-
ferent proof of the existence of a constant C with w(k,z (x)) >
>C n‘%, starting from the fact that z (w) < (g+1 = qn” ) implies
n{q+1 - zn(w))*-m (mee lemma 3.4).

5. Some auxiliary results

In this Section we shall introduce some new notations and discuss
some results in preparation of Sec¢.6. The usefulness of these
results will be clear in that Section. We start, introducing the
numbers p and o defined by

p = (20)% g~

1+1/q (5.1)

o = max {2 (»q'1, L(g+1)w q’1).

We confine curselves to values of A¢ (A ,w), where A, =

= max (§q+1,%, ).
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Lemma S5.1. If A€(A,,0), and x > p them ¢(A,x) > q(zl)"‘ x1+1/q.

Proof. Firat we observe that @(A,p) - q(2}s)'1 ;)1""/q =

=1 -p+a@0)" o5 o061 + @071 PV < o(-1 + ") o
Further, ¢(A,x) = q(a}.)'1 x1+1/ 9 44 an increasing funotion for

x > p, its derivative with respect to x, -1 + (q+1)(2A)~" /1
being positive for x > p > (2A)%(g+1)7 1,

Lemma 5.2. If Ay > o, and N; < w then le+1(A) > 2p.

Proof. We remember A,  N,. By the definition of N, we have
Tyyu1 > A:(Nkn)q, and as A > A, 24, > 1, Ny+1 > 4, > o we have
ZNXM P> 0 > 2pe

In virtue of lemma 4,2 there exists a A, E[)A,,w) such that A€(A,dl
implies A, > o; to show this we only have to take A, = mx{}\.,,zq_1}.
From now on we shall consider only values of A in (A,,w). We give
the following definitions of DX and EA

D)‘ = max {nl zn(k) < ﬂ}g (502)
if the maximum exists, if the maximum does not exist, and so
zn(l) < p for all n, we define D, = =

E, = max (nl(z, ()" <iarlesn™!, a3 4 (5.3)

1f the maximum exists; if z (A) < (#nA)3(a+1)™? for arbitrarily
large n,we define E, =w. We observe that the index-set W,, of
which E, is the m?x:mmn is not empty if A€ (A, ,w); as ¢(A) < q41 <
< {#o(3g+1)(q+1)" ' }", we have A4, E€W,, Further, D, > 4,, as p >
>c(d). If A€ (A,,w), then D, < N,, since B+ (A) > 2p if the
process should break down; and D, < = as the sequence {zn(1~)} can~
not be bounded, since 2] (A) - zh(l) > (_n+1)'1b(1\);

The following lemma states a property of E,.

Lemma 5,3. There exista A;€ [A,,w), such that A€ (A;,0) and
n K E) (or n < wif E, = o) imply that

(2, (0179 < maiqen) ™.
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Proof. If zn(k) > {# na(g+1 )-1 )q for some n < N,, then we have
(see (2.11))

nA .4 1 a Al gl
2 28 OO argy)) = o7 + we 3
(29+1)

and the latter guantity is certain to exceed [}(n+1)(q+1)'1}q, ir
n"l""1 (n+1 )-(q-t-‘l) > (2q9+1 )q(2q+2)'q, which is the case if n > A*.
So we take A\E[A,,w) such that Ay > A* for A€(Ay,w), (thus A; >
>max (,,%,,)).
Lemma 5.3 has the consequence that E, < = implies

max(nl(z. ()2 <yn(asn)™, 0 2 4,) =

= atafnl(z, Y 3 3anee)™!, 0 3 40 1,
tor A€ (Ay,w).

We shall use the following lemma, in order to obtain a relation
between Dy and Ej.

Lemma 5.4. There exists a number A, ,€[A;,w) such that
szﬂ(A) < 2p for AE (A, 4u).

Proof. If le“(M 2 2p, then we conclude from z, (A) < p that

Dy

-1
p < snx“(l)- zD).(A) = (D+1)7 (o(r,zy, (W) + RD"("’ZDAO‘))];

Dy

and this implies

p < D (p(1) + Ry (1,p)), (5.4)

D)\
where p(A) = max (@(A,1), ¢(A,p)).

But (5.4) is impossible if D, is large enough, say D, > B, Thus
it guffices to take A, = max {k,,{B] (see lemma 4,2), as we have
then Dy > 4, > B for A€ (A,,w), This completes the proof.

Lemma 5.5. If A€ (A,,w), then D, < E,.
Proof, This lemma is an immediate consequence of the preceding

one. As zp (M) < 2p we have (z; (A% < (207 ¢ yatasnk
< i(on»‘l) A(q+1 )'1; and this inequality (for which we use
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D}‘ > A)«. 20, A2A, > 1) implies DX“ < E,.

We shall conclude this Section with two lemmas concerning the parts
of the recursion 1 -~ D, and D) ~ E; {or Dy - =) respectively.
Lemma 5.6 is analogous to a part of the proof of theorem 1.2, and
it will be employed in the same way as its analogue in theorem 1.2

Lemma 5,6. There exists a constant C,, such that for AE (A,,w),
1< ng D and xé(zn(k). zn+1()\)) the following inequality holds:

lo(r,x) = o(r, 5 (W) <Cn™", (5.5)

Proof. From lemma 5.4 it follows that z (A) < 2p for all n with
1€ n g Dy, (notice that znﬂ(?t) >z, (?\) if n < N,). First, we
suppose 2(2p) /4 £ Dy, (as Dy > 2(29)1/q there are valuee
of n satiafying thie condition). As XA > A, implies A > Ay 2 4q+1
(and thus A > 1) we have 2\ > q+2, 3\ > q+3, ... . For A (A, ,w)
and 2(29)1/(l £ n £ D, we have therefore the following estimates:

R (Myz () < R (A,20) =

= £, algr)ee = (aw=1 (D A0V Y ¢

v e/

< q(grNA~2(2p) 117/ zw <

2
< alaN 2@ ¥ 5 n e ra, (2001, .

If max (R (A2 (A0 1 <0< 2(2p)"2) = d,, and max (d,,d,) = 4,

then we have for all A€ (A,,w) and 1 £ n £ D, the estimate *
Rn(?s,zn(k)) £4,. (5.6)

Let T denote the compact set {(A,x)| A€ [A,,wl, x€[1,2p]].

Let max {g(2,x) |[(A,x)E T} = ¢, max (lsp(?s,x)ll(l,x)€'l‘} = q,.

(*) For the pregent lemma the estimate (5.6) will do; for further
use (lemma 6.2), we observe that we have. in fact

R (A2 (M) € d; 077, (5.7)

for l€(?\“w) and 1€ n & DA’ it 4, = max(d,, d,o2(29)1/q).
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IfF A€M, ,0), 1< g D and x€ (zn(k), zn+1()\)), then we have by
the mean value theorem and the estimate (5.6)
1+1-zn) =

2c, (e, +d,) ) c,
“n

leOh,x) = oMz )l S ¢y (x-2)) <¢, (2

{(p()\,z )+R (A,z )}S

(c, +4, )< .

= 0+l n+1 n

Lemma 5,7. There exists a constant C, < > 0) such that for
A€ (@), B <n<E (or B <n<w) and xC (zn(x). zn+1(x)):

e ,x) <G o,z ().

Proof. If F’A = D)‘+1, there is nothing to prove. We start proving
that R_(A,z (A)) <o,z AN if p < 2 (A) < 27U n)™ . 1n

that case we have

R (2, (00) < &, 00"/l g2 1 Jasdd(aed) 1, e

1+1/q
< g%(zn(x))

(because (q+v) < (v+1)(q+1) for all natural v). Lemma 5.1 gives
immediately that R (A,z (A)) < o(r,z (A)). So

z () - 2 () <2 9O,z (MW)). (5.8)

Because ZDA+1 (A\) >p >c(A) it follows that for x€ (zn()\), Z .1 an

we have

@A ,x) <(p(x,zn+1(X)) = (p()\.zn()\))+ (z (X)-zn()\))q)()\,y)

n+1

with y€ (zn(X), Z0 1 (A)). For y > c¢{(A), however, we have
0 < ¢pM,y) = =1 + (q+1)A” y1/q < (q+1A" - 1/q

From this, by applying the formulas (5.8) and (5.3), we obtain
without dlfficulty @(A,x) <cp(x,z ) + (z 2 ) - z, ) -

e @ G 3o,z W) (Te2(nen) arnA™! (2, 0N <
< 2cp()\,zn()\)), which holds for A€EQ, ,m), D, <n<E (or Dy < n <
if E, = =) and x€ (zn(X), Z 41

and we have found at the same time that C, = 2 meets the require-

(A)). So we have provec lemma 5.7,

ments.
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6. The behaviour of Ey and N,

The aim of this Section is to prove formula (2.17). #e define for
A€ (A, ,w) and yE[1,)

J -1
ex(Y) =J (W()\sx)) dx.
1
Notice, thatf (cp(k,x))"1 dx < o for A€ (A, ,0), as 1 + % > 1.
With this notdtion (2.17) reads )
log N, = 8,(p) + §(1) (atw. (6.1)

The validness of this formula is stated in the following lemma.

Lemma 6.1. If A < w, then N, < = and (6.1) holda.

The proof of lemma 6.1 consists of three different parts related
to the parts of the recursion 1 — D, Dy — Ej and Ej ~ Ny respect~
ively. We shall formulate the partial results in the following
lemmas.

Lemma 6.2. log Dy = 8(p) + G(1) atw. (6.2)

Twemma 6,3. If A < w, then E, < « and
log E, = log D, + 0(1) (T, (6.3)

Lemma 6.4, If A < w, then N, < = and

log Ny = log E, + 0(1) atw. (6.4)

Combination of the results (6.2), (6.3) and (6.4) constitutes a
proof of lemea 6,1. The proof of lemma 6,2 is analogous to part
(4) of the proof of theorem 1.2.

Proof of lsmma 6.2. If Sn(l,x) denotes (A ,x) - cp().,zn(k)) then
lemma 5.6 states that for A€ (A, ,w), 1< n £ Dy and
x€ (zn(?»). Z) 41 (A)), we have iSn(l,x)l <, a7, Using the mean

value theorem we may write

8, (2,4 (A))-g (2 (W) = (z_ 4 (A)-2 (M) 6] (x),
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with x€(zn(>~). znﬂ(k)). S0, we have

4 9z )R (2 ()
ex(znn(}.)) e (Z (X)) n+1 ‘P(’\-,Z (}‘))4’3 (A’x'j' ’ (6.5)

ae 8] (x) = (tp(k,x))_1

Moreover, we have the estimate (5.7) (3. z () g d,n , for
A€ ), 1. IFK Q) =8 (zn(x)) - log n, then we get
in (6‘5)

(:\)- K M=

q;(i\,z (A))+R A,z (R))] 1
[m,z (x))+s x) + log(1- 23
If n, is chosen so that C1 -C, n:% >¥C,, then we have for

n, S n £ D)‘ that

§ (A x)-R, (2, )
plA,z (7\))+Sn(?~,x) *

K, M) -k 0] < |8

-1 -1
dn +Cn
+ %i1 +(n+1) log(1- E}T)l<% 5—_F—L—:,T + La <
Cyn *~C,n 2n
C
1 2 1 %
<.__[_ (c +d,)+-]-_-—. (6.6)
nVn Cy : 2 nVn

Relation (6.6) gives Kp ((A) = K () +3 n’(K‘M(A) - K, (M\)<
<K ().)4—2 -1 G vick () + G, Inordertoobtain

(3\) = d(1) uniformly in an interval (A*.w) we make a further
restrlction for A. We take A,€ [A,,w) so large that z (A) < c(d)
for A< (Ay,0); so A; > max {A, ’;n.’} (see lemma 4,2). We shall show
that

lxk, M) <c,, (6.7)
1

for A€ (A;,w), where G, does not, of course, depend on A, In vir-
tue of lemma 4,1, we have cp(x,z (A)) > ¢ n, i for A€ (A,,w). By
the mean value theorem we have ek(z ) = (z )= (e, )

with x€ (1, 5, (x))}. But ¢(A,x) is }lecreasing on (1, 2z, (A)), as

2y, (1) <6(M). 80 8 (2, A)) < (z, M-1)(9hyz, IV

<gq C"1 n;}. Ir C =q 0:1 n? + log n,, ithen we have proved that

Ik, M)l < Ox(z (A)) + log n, < Cg for A€ (Ay,w).
For \E (A, ,0) we 'have therefore
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18, (z 4 (A)) - log(B+Ni< C; + C (6.8)

]&4-1
Formula (6.8) implies that log D, = el(z&+1 a)) + (1) O»fw).
Further it is obvious that for A€ (Ag,w)

2p
e}.(zn‘xﬂ()\)) - 8, (p) <Jp (@(w,x)) = Cys
S50 we have proved

log Dy = 8 (p) + d(1)  (Tw).

Proof of lemma 6.,3. For A& (A;,0), Dy <n < E, and x&(z (),
2,1 (A)) we have that ¢(A,x) < Bw(l,zn(k)) {by lemma 5.7). From
this it is evident that

6y (2, 4 (A)) = 8, (2 (A)) >3z M) = 2, (W) (oChyz )™

> e, (6.9)
As 1imy» I(cp(l x))" dx exists, it is obvious that EA < «, for,
otherwise we should obtain (by (6.9))
r (e(n,x))” Tax > r (w(x ) ax > 157 (n+1)"]
¢ ’ 2 “n=D,+1 ’
DA.H .
which is a comtradiction. If C, = r (¢(w,x))’1dx, we find by sum
mation of (6.9) P
-1
1 5 -1
¢, > el(zEx(M) - ex(zn)\n(k)) -2- n=D, +1 (n+1)
1 Ea

>3 2n=DA+‘I log((n«t-?_’) (n+1)‘1) = -2- {10g(E, +2) - log(Dk«t-Z)}.

So we have found 1log(E,+2) - log(Dy+2) < 26,. But as 1 £ D < E,
we have

log E, - log D, < log 3 + log(E,+2) ~ log(Dy +2).
So we have log E, < log D) + log 3 + 209 s and thus

log E

, = log D, + &(1) tw.

A
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Proof of lemma 6.4. In fact we shall prove the stronger proposi-
tion that there exists a number M such that NA - Ey < M for all
AE ()\, 40). The proof of the assertions in the lemma then follows
immediately, since Nj < Ey+M < =, and log N)<1log E, + log(1+ME;‘1).
We consider only the first term of R ()L,zn()t)) For n > E,, n<NK
(or n <= if Ny = =) we have (z ()L))‘Vq +(q+1)” Xn, and so

M-z M)> 3%‘1&( Ny, o) >

Zn4e q+1)

> zn()t) 16 (q+1

If we denote 1 + ?13 q(q-m)"I by 6, then 8 > 1 and for n > E) we
have z, ()L) > bz (\) until the process breaks down. So we have
forn>E)‘butn xif N)‘

n-Ej

(A) >06 25, 41 ). (6.10)

Zne1
Clearly Ey > 1, for A€ (A; ,w). We introduce the following abbrevia-
tions 5, = 61/q (s0 5, > 1),0, = 2(q+1). o0, is defined as follows:
if 8, £ ¢2/® then o, is the largest root of x-1log x = % log &,,
otherwise o, = 2.
Let M, = max {2(log 0, )(log 6,)71, 2, 0,} and M = M, +1, then we
shall prove that for N = Exo-M we have

M, 1
6, (Ey#1) oy ' 2 N. 6.11)

Once (6.11) will have been proved, we shall have N) < N since other
wise zN()L) would be defined and both zN()L) <A ¥ and, in virtue
of (6.10),

N-Ej-1 aM, .
2 (A)> & . zEXH(A) 26, -(E+1)% o732 » 129,

which is a contradiction. So N) < Ej+M.
For the proof of (6.11) we use the following three facts,

(1) M7 10g 0, <% 10g 5,. (6.12)
(11) From M, » 2, E,+1 » 2 it follows that M,(Ey+1) 3
> M +Ey+1 = N; this implies that log M >log N~ log(Ex+1).
(111) M]? 1ogM, <%10g 6,.
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Combination of (4i) and (1iii) gives

'M;" (log N - Log(E +1)) g #1og 6,. (6.13)

Addition of (6.12) and (6.13) yields
log o, + log N.g M, log 6, + log(E,+1), (6.14)

which is eguivalent to (6.11). This completes the proof of lemms
6.4, so that the proof of lemma 6.1 i1s now also completed.

We conclude this Section with a remark about an alternative method.
N.G. de Bruijn in his paper [2] used one strong and elegant argu-
ment to obtain the result equivalent to log N, = log D, + 0(1)

(A Yw). This argument enables him to avoid many of the trouble-
some arguments we needed in Secs.5 and 6. We shall explain how,
for the case q £ 1, the procedure can be simplified by a general-
ization of this argument. If n > Dy (we confine ourselves to
values of A€ (Ay ,w)), then z, {A\) 2 p and therefore p(A, z, a)n >

>+ 2@ 00" 5440 1(zn()»))1+1/q. by lemma 5.1. If n>1

-1 -1 1+1/q
we have z__. ) - zn(l) >3 (me1)7 q 07 (2, (1)) . For n > D,
we compare zn(?s) with y defined by

@A)y ¥ 4= yn=~}(n+1)'1 q_w"1 yth (n > D,).

ny D +1 n+1 n

By induction we can see y < z, (A) for D;‘ <ng N, (or D;'<n < o
if Ny = =), From this it follows that y 1/a < an for D’\ <n < X

(Dy<mn<=). Soy 4 -7, <3 (ne)™ kny <ta 7y, iyn.
<2 -1 _ -1 =

and therefore ym_,‘ S e From this we derive Ty b S

=30 g0 7], y1/q >3:2 @™ g0 V5 (e,

for Dy <n g Ny (or <w if N, = oo) and some constant C,, > O.

For the 1atter inequality sign it is essential that -1+41/q 2> 0; so
¥ ~1+1/g >p -1+1/q

Now we can see that Ny <e, since otherwise the inequality

72 =371, > G, (@#1)" would hold for all n > D, and so, as

-1
limn* wln = 0,
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-1 o -1 -1

64

- -1
Ipp#1 © En:DAH n = Yne1) > Cp zn=nl+1 (n+1)

which is impossible ag the latter szries diverges, Moreover, from
N

-1 -1 .

yDA+1 > Gy 8n =D+ (n+1)" " we find immediately that there exists a

constant G, such that log N, - log D, < C,y» for it is easily seen

that yD1+1 = (591*1(A))-1 ot

7. The integral et(p)

In order to complete the proof of the formula

-3

log Ny = ®a(w) b + g1 (e, (7.1

we have to prove the following lemma.

Lemma 7.1. J© (o(r,x))ax = xaw) O F + 6() (A Tw. (7.2)
1

Proof. If A is close to w, the integrand (<p(-l,x))'1 has a sharp
peak at x = ¢{(A). If J = (a,B) is a given interval, with q+1& (a,B)
then we find (on account of the continuity of ¢(A)) a number

Q\J€ [1,w), such that for AE(Z\J,w) we have c¢(A\)€ (a,B). Then we
have for A€ (A;,w)

P B
I s -] wol<l vl [ sl

and go we find

P - g -
I? e ax = [F (orx) Yax + 801) (At @) (7.3)
1 a

Thia means that the contribution of a fixed neighbourhood of q+1is
almost equal to the whole integral when Afw. In a neighbourhood
of ¢(\) we approximate the integrand by a function whieh is simpler
(for g=1 it will be the same function as (tp(l,x))~1). This pro-

cedure iz known as Laplace's method (see [1] ch.h).
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If we take ¥y = x -~ c(A), then J is transformed into an interval
containing 0 if A€ (A;,w); instead of ¢(A,x) we obtain ¢*(A,y),

which can be written in a closed interval, containing zero, as
e*(A,y) = b(A) + a(x) y? + a(A) y? + O(y*), - (7.4)

where d(A) = % {1-q) q"'2 (q+1)2‘:’l A'Zq; and the G-term is also uni-
form in A in a closed neighbourhood of A = w. In view of (7.3) it

] -
suffices to evaluate for some fixed & J (p*(A,¥)) 1dy for A ta.
-5
On such an interval (-56,5) we shall approximate ((p"‘(?.,y))-1 by

(e(A) + a{r) y’)'1. Moreover, we take & so asmall, and A € (1,w)
so close to w,that for y€ (-56,6) and A€ (A;,w) we have b(A) £ 1,
and

e*(A,y) > #(b(A) + a(r) ¥*). (7.5)
The possibllity of such a choice follows from
@* (A, ¥ - 3N+ alN)y D) >y (da(A) + a(X)y + Sy D).
&
We shall further evaluate J (@*(A,g'))'1dy for Ate. I e =
= -»d(?\)(a(?»))"1 =1 q"l (q-;)(q-ﬂ 1% 2"% we have

3

11+ (M3) e g* (A7) = (B(A)+ a(M)y?)l = S (M) Iy D) + 8(y*)  (7.6)

for y€ (-6,6) ana A€ (Ag,w). 4s y* < (a(®))™ (b (A)+ a(A)y?)?, com-
bination of (7,5) and (7.6) involves that there exist positive con
stants k and k, such that for y€ (-6,6) and A€ (Xg,w)

1 1+ e(M)y b(A) lyl
lq}*()\.,y) T B0+ a(My? | <x, B+ a(h)ya)z * Kae (7.7)

<]
As J e(AN)y (b(A) + a(A)y? )'1dy = 0, (the intergand is an odd
function), and

5 b(A) iyl oo dy? 1 1.
[, woos ety o < v [” oY Emyr = atn < o

we find from (7.7)

6
dy ay
Ja ¢y T J:b(k) Yamgr + o e -8
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Now

5
j (b(A)+ a(k)yz)'1dy = J“ (b(r)+ a(l)yz)-1dy+6(1) o te)
and the latter integral equals n{a(A) b(l))-i.

2e a(A) ~ alw) a-%q'1(q+1)q 2" b(A) we have
2@®) b)Y = nate) »ANF + 0(1) ate),
which completes the proof of lemma 7,1.

Bearing in mind the relation between AN and Ni we derive from for-
mula (7.1) that

3 1
b0y = srtisr T ¢ Ol e): @

as At o implies B ~ =,
From the latter formula we derive formula (2.20) without difficulty.
So

Ay =(1=p) P 2x2(1-0) "R (205 1724 6((20g 1)73).

8. An inequality due to E.T.Copson

We write (2.1) in an equivalent form; taking a* =ya§, and p* = p'1

in (2.1), and then omitting the asterisks we obtain

- - - C)
z ., nP (a ¢ oens an)p-s P (p-1)"F L.

n=1 ag. (801)

1

Now p > 1, and (8.1) holds for all convergent series 2:31 aﬁ with
a, 20, 8 20, «003 unless all the a, are zero, there is strict
inequality; the constant pP(p-1)"P is best possible.

Translating the result of the previous Sections for finite aections
of (8,1) we obtain an asymptotic formula for the best possible

constant in these finite sections,
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Ir AN(p) is the smallest value of A such that

N - N
DI P (a,+ ...4—5\11)P <AL, aﬁ (p >1), (8.2)
then we have for AN(p) the formula
P D p+1 on? 1
A (p) = (p 1) - (p-']) (log N)? *d((log NP )‘ (8.3)

We consider the following inequality due to E.T.Copson (see e.g.
[8] theorem 331)

P p P P
1 (bn+bn+1+...) <P E o b (p > 1) (8.4

which holds for all sequences b, ,bz 1eeey With b, 2 O, b,;o, soay
such that E n=1
i8 strict inequality; the constant pp is beat possible.

Now the inequalities (8.1) and (8.4) are reciprocal in the sense
that either of them can be derived from the other by applying the

n? b!’; convergesy unless all the bn are zero, there

converse of Holder's theorem' (aece [8] theorem 15).

In this Section we shall derive from (8.3) an asymptotic formula
tor v-N(p), the best possible constant in the finite sections of
S (8.4)5 i.e. uN(p) is the smallest value of p, for which

E§;1 (bn+ b

for all by >0, +.0y by 30
We shall use a finite version of a well-known device, which is often
used as & proof of the fact that (8.1) and (8.4) are reciprocal.

P N P P
neqt et B LRE L n b (> 1) (8.5)

We defime ¢ for m=1,...,N; n=1,...,N by ¢ n=n-‘l if m £ n;

Cpp = ° if n > n. We write the double sum F(x,z) =
b

X
= Em,n=1 cm.n x ¥, in two different ways obtaining

& a7t (x1+...+xn)yn =

- xm(m' Tt ..+n'1yN>. (8.6)

m=1
We only consider x, }O,...,xN 203 ¥q >,0....,yN 20 and apply
Holder's inequality to the left-hand side of (8.6). If q is the

conjugate of p, i.e. p"I + q'1 = 1 and therefore q > 1, we find
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-1 N - a1/a, (N 1/p
N 10 (rgreeex )y (B n  (xgeeiex DY) (z _, yi} .

n= =1
8.7)
Applying (8.2) (written with q instead of p) to the right-hand side
of (8.7) and replacing the left~hand side of (8.7) by the right-
hand side of (8.6) we obtain

EN‘_,' x, {m~ y +aaatN” yN {)LN(q) ZN q}‘l/q {EN__,‘ yp}‘l/p
(8.8)
which holds for all x, >O,...,xN 2> 0, ¥, 2,0,...,)'N 2> 0.
Now it can be seen easily that the maximum of the linear form

s q
EZ=1 dm X under the restrictions 8:=1 x, = 1, X, = O....,xN

equals {ZEM di }"/p. This i1s a consequence of Holder's theorem

20,

but ‘'we can also prove it by using a Lagrange multiplier. We shall
apply this result in (8.8) with d_ = n! Yo+ e #+ Ny ae
(8.8) holds for all x

1 :;O,...,xN 20, y1 0,...,yN 0, we can
for each ¥, }O,...,yN 2> 0 replace the left-hand side by the maxi-

mum it attains on Ef::,‘ xg = 1, and still have inequality. So
-1 ~1_ yp 1/ 1/q 1/p
(2, @y PV P @V L (g YR, sl9)

which holds for all I, > O,...,yN 2> 0. If we replace ¥, by nbn
(n=1,...,8) (8.9) yields

&

n="1

(b + ...+ b)Pg (AN(q)}P/“- z§=1 o’ vP, (8.10)

which holds for all b1 )O,f..,bN >0

Formula (8.10) implies uy(p) < {kN(q)}p/q.

In order to prove the opposite inequality, we reverse the arguments.
Applying HOlder's inequality to the right~hand side of (8.6) we
obtain

x,y) <{ SI:‘,I xg }1/q . {2§=1 (n'1yn+.. .+N'1yN)p}1/p. (8.11)

If we apply (8.5) with n™' y_=b_ (n=1,...,N) to the right-hand
side of (8.11), we obtain that for all X, 20,000,xy >0, and all
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Y4 20peces¥y 20

) € (nygle) Eh o y2VVP Ll S3)VS, (8.12)

n=1

For each set x, > 0,...,Xy >0 the maximum of Flx,y) =

1

- 2::;1 n (xg 4 eo0 + X )y under the restrictions EN o1 y!’; = 1
¥4 205e00,¥g 20 equals {E 'q(x +oeee X )q}1/q Combina~

tion of this result and (8. 12‘) givu for all x, 2 0yeveyxy 20

T g 078 (gt eeer 23 g gDV SN A, (8.13)
But formula (8.13) implies Ay(q) {pN(p))Vp.

So we have proved uN(p) = {kN(q)}p/ q, and we derive an asymptotic
formula for py(p) from (8.3). It reads

2 p+1
pylp) = pP - Z Ve g1 ), (8.14)
NF (log m?2 ((103 N>

If we take p=2 in (8.2) and (8.5) we find in (8.3) and (8.14)

Ag(2) =nyg(2) = & - W + W) (8.15)
As uN(Z) is the maximum £n~1 {n” y + eee + N yN}Z it En—‘! y

it will be seen that }LN(Z) is the largest eigenvalue of the N x N
matrix A of which the element in the ith row and ;j column equals
(13)'1 nin(i ) 1 = (max (1,3)) -1, By a method using truncated
integral equations H.85.Wilf [12] obtained for this eigenvalue

b - 1682 (log N)~? + &((log log N)(log n). By means of matrix
transformations he derived KN(E) = uN(Z). As our H-term is small-
er, our result is slightly better.
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9, A certain class of iteration problems

One can rightly wonder in virtueA of which properties we came to a
successful result in the iteration problem belonging to Hardy's
inequality. In this Section we shall formulate a list of proper-
ties which allow a treatment as in Secs.2~ 7. This means that we
shall describe a oclass of iteration problems, which have almost all
the properties used in Secs.2~ 7 in common with the Hardy case.

We divide these properties into three groups T,, T, and T,; T,
contains the trivial properties characterizing the situation; T,
concerns the behaviour of the iterates for the boundary value of
the parameter; ‘l‘, concerns the occurrence of breakdown, It will
be clear that many of these properties cean be replaced by other
ones; e,g, the fact that in T, the %(A,x) are decreasing with
respect to A and that A} w (the boundary value) can be replaced by
stn(k,x) increasing and AV w. An equivalent alternative of Too Tyo
T, will be given in Sec.11. It should be emphasized that it ie
not our aim to give a set of conditions which are all necessary for
an asymptotic behaviour of the same type as in the Hardy case; e.g.
many of the strong monotonicity conditions ocan be omitted, but this
causes & lot of unessential complications in the proofs, and in
the cases in which we shall apply the results of this Section,
these conditions are always met. Nor did we take much trouble to
make the set minimal in the sense that no properties are mentioned
that follow from other ones.

The z, are given as functions of a parameter A by the procedure
z,(A) =1 9.1)

By P2, (W) = & Nz (W)=z, (W)= Tl Colhy 2, (N)+R, (A2, (WD)

Moreover, there is a breakdown condition i.e. there is a sequence
of functions (fn( A) }; and roughly speaking, z, is defined only four
those values of A which satisfy z, M) <f, ()')”"’zn-'l(}‘)(fn-‘l(”'

To fn’ Qn’ ¢ and Rn satisfy the following requirements.

(1 fn()s) is continuous and inereasing for A€[w,,ul; for each
value of A we have fn(k)—o +w monotonically if n-— = ; there
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(2)

(3)

)

(1)
(2)

(3
(&)

We

exist constants I' and 0 such that 0 < fn(l) < rn° for

A [w, 0],

Qn(k,x) is for each value of n defined and continuous for
(A,x) satiasfying A€ [w, ,0], =x€ [1,fn(l)); it is decreasing
with respect to A, increasing with respect to x3 Qn(u,1) =1
and Qn(x,x)» 4o 1f xf'fn(k) for fixed n and A.

¢(A,x) ie continuous on D = {(A,x) | A€ [w, ,0], 1 £ x < =};
¢{d,x) is decreasing with respect to Aj

2 3 4
ot = 00,x), <ok yx) = 1 Ox), e x), e, 0
ax? ax ax*

exist and are continuous on D; x{(A,x) > O on D

¢{A,x) attains one strong minimum b{X) for x = c(A); BQ)
and o(A) are continuous on [w,,w], b{A) is decreasing, ¢(A) is
inereasing; bw) = 035 c¢{w) » 1. [We use the notation a{i)=
=¥x(x,e(r)).]

On every compact set G = {(A,x)IAE [w, ,0], x€ [1,4]} we have
Rn(l,x) = n'1r(k,x) + 8(a™2) for n 2N,; r{A,x) is continu-

G
ous on D and decreasging with reaspect to A.

zn(w) satisfies the inegualities
. -1
zn(w) < fn(w), zn(w) < ¢l{w) - Bn

for all n, whereas B > 0, B > r(w,c(w)).

There exist p, T, M, », L and L' with p > ¢{w), O <t < 1,
M >0, p€ [w,40), L > 0, L' > 0 such that the following pro-
positions hold for n > M and A€ (p,a):

2 G, tf W) >cf ()5

f, (M) > p; if x€[p,7f ()] then 0 K R (A,x) <L 9(A,x)
and §(hyx) <Ln;

if x€ [rfn(x), £(2)) then Rn()s,x) > Ltnx ;

I et ax < w.
P

define N, ='max{nlz1(K)< f1(k), zz(k)< fa(k),...,zn(l)< fn(l)),

if this maximum exists, and take Nj = e« 1f it does not. We have

N,
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down. The following theorem supplies the answer.

Theorem 9.1. If the iteration procedure (9.1) satisfies T, T,
and T, then Ny < = for A€ [u, ,0) and

log M = n(a(d) BT 4+ g(1) o).

This theorem can be proved by a series of arguments which are
analogoues to partes of Secs.2-7. Only some extra care is needed,

()

s Rn(A.x) may be negative for some A and x and, therefore, 2041

may be less than zn(x). We shall not give the proof here.

10, Generalizations of Hardy's inequality

In this Section we consider finite sections of two inequalities
concerning series with positive terms, both due to Copson (see [6]).
We shall give an asymptotic formula for )\N(p,s) and p.N(p,a) if

N- =, where xN(p,s) is defined if p > s > 1 am the best possible
constant, such that for all sequences a, >,o,...,aN > 0 the follow
ing inequality hold

N - N -
Ejeq D 8(a1+...*an)p$ Ay(p,8) e B #(n an)p

(p2s>1 (10.1)

and }LN(p,s) is defined if p > 1 > & 3 O, as the best possible con-

stant such that for b.1 p3 0""‘bN >0

N

Enz'l n

's(bn+...+bN)p§: we(p,s) 532:1 n %(n bn)p
(p>1>8320). (10,2)

One might notice that (10,1) and (10.2) are generalizations of the
inequalities considered in Sec.8. Formula (10.1) reduces to (8.2)
if p = 8; (10.2) reduces to (8.5) if s = O.

From Copson's paper we know that AN(p,s) - pPle-1)"P 1f N-w,
#y(ps8) ~ pP(1-8)"P if N=«. In this Section we will show that
(10.1) and (10.2) both give rise to the same iteration problem,
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which will turn out to be of the type described in the previous
Section.

For the determination of XN(p.s) we use a Lagrange multiplier,
analogous to the discussion in Sec.2. TFirst we would observe that
Ay(Ps8) is the maximum of Flx se..,xy) = N

n=1
ject to the restrictions 22;1 n~%(n xn)p =1, x; >0,.00,xy >0.

The maximum is attained at a point x = (x1,...,xN) for which

-8 P -
n (x1+...+xn) sub

x, > 0,...,xN > 0, which can be proved in the same way as in Sec.2
From the homogeneity of degree p of F(x1,....xN) it follows that

F(x1,...,xN) = p'1 2 . x

n=1 *n ?x—n F(x1,...,xN).

From this it follows that, if

3%; (F(x1....,xN)-kE§=1 n"(nxn)p)= 0 (k=1,...,N),

(10,3
z!r:z‘l n-s(nxn)p =1

for a set (x1,...,x A'), then we have F(x1,...,xN) = A'. So we

find that Ay is the largest value of A for which (10.3) has a
solution X ... xy with x; > O,.00yxy > 0. As before (10.3) has

N

only one solution with Xy > 0yee0yxy > 0. The system (10.3) can

N
be written as

[~ -8 r-1 -8 _p-1 _

‘ Zoex B (x1+...+xn) = AKP xi (k=1,...,N), (10.4)
Z':=1 n-s(un)p = 1.

In analogy with Sec.2 we find that this is equivalent to
1-8" -1, -1_1/ay"1

F’1 = gt mr G 0 Y

1 (k=1,...,8-1), (10.5)
Zy = A3 M,

To obtain (10,5) we have taken differences in (10,4) and used the
substitutions (o)™ (xqteeetn) = 3 (k=t,een, M5 (=177 = gy
(p-1)~ (p-s) = 8', So q and s' satisfy the conditioms q > O,

0K 8'<1. If 8' =0 (which corresponds to s = p), then the sy-
stem (10,5) is the same as (2.9) and (2.10).
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Now we shall discuss (10.2). We remark that (10.1) and (10.2) are
reciprocal in the sense that either of them can be derived from the
other by the so-called converse of Holder's inequality (see Sec.8)
The latter fact has been proved by Hardy in [?]. We shall use the
finite version of a well~known device in order to apply Holder's
inequality (see e.g. [1], Sec.8,9); this device can be considered
a refinement of the one used in Sec.8, its principal tool being a
change of order of summation. With xn = aﬁ (n=1,...,N), pi = p&1
(10.2) gets

E§=1 np'sxn ;.n; N a8 (x;fp+...+x;/p)p. (10.6)
For any set of positive numbers Pin (1 € n gk N} we get by
changing the order of summation and applying Holder's inequality

(q* = 1-p)

N N N
=1 ¥ 8:=1 Pen = ot Ban Xk Pin 2
N 1/p 1/pyP, N 1/a',2'
> 2n=1 (xn +oaatxy ) (zkzn Pyn ) .
(10.7)
]
The equality sign in (10,7) holds if and only if plgq is propor-
1 1/q°' 1 1
tional to xk/p and so pkﬁq = ynXP xk/p (M &ng kK N). This

implies that uy in (10.6) is the smallest (and as it will become
clear the only) value of u for which Fyseres¥ys X oeee Xy can be
found satisfying

a'/p gk a'/p p-s
Ty =k
xk{ n=1 n/ y y (1gngkg M.  (10.8)
/p N 1/ _ ,1/a' _~8/q'
In zk:n i =¥ n

N
Eliminating y,,...,¥y from (10.8) and putting &__ x;/P =t
{n=1,...,N) we obtain

- -y ! -g! -
B 2§=1 N A W7D R N ¢S PRORS L)
(10.9)
N -8 . ~q' _ ,~q' ,p-5
¥ En=1 n tn = tn N .

Taking differences we get from (10,9)
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_q' _ -q'
vt o= (8 - t,)

-5 ,=q' y~a' P8 -q' p-s
1 - - - -
w k7S e (=t ) T K= (8=t )7 (=) (10.10)
(k:Z,.. . N=1)
-8 ,=a' _ =q' ygPes -t.)"2" (§_1)P~®
[ » NZ ot =ty N (tN_1 tN) (N-1)¥77,
We employ the following substitutions t;1 teq = u (k=T,...,N=1);
uy = 0 (an elegant way of formulating this is introducing a new
gt
variable t in (10,9) and taking t =05 (1-u)™? = wv
Ne1 1P I k
(k=1,0.0,N); XF z, (k=1400.,0); /% =2a; q' = -q. 4s

k
q' < 0, we have q > O. and to the smallest value of u corresponds

the largest value of A. Carrying out the substitutions listed
above we obtain from (10.10) the same process as (10.5) with s in-

stead of g'. So we shall study an iteration process given by

2,0 =1, 2 (M= —s (B0 5 0T G )
(10.11)

where 0 £ 8 <1, q > 0. The process breaks down at N if zN(A) >
> AN, but 2, (0 <Az (0 <AL
We shall show that the process given by (10.11) is of the type de~
scribed in the previous Section (for s = 0, we know already that it
is). It then follows that there is exactly one value of A (denoted
by Xﬁ) such that the process breaks down at N and zN(A) =22 M9,
Moreover, the theory yet developed will give us an asymptotic for-
mula for Xﬁ if N+ »., Let this asymptotic formula be written
symbolically as

Ay = Asf (g, s, N}, (10.12)

then in view of the substitutions made we have for the original
problems the results that AN(p,s) from (10.1) satisfies

Ag(pes) = Asf ((p-1)'1. (p-s)(p-1)'1, Ny, (10.13)

and that uN(p,s) from (10.2) satisfies

(uN(p,s}}1x(p'1) = Asf (p~1, s, N). (10.14)

We shall now show that the process (10.11) satisfies T,, T,, T,
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from Sec.9. To this end we write it in the forms

z,‘(p = 1f zn+1(k) = ‘Pn(i\,zn(l))
and. - ’ '
2 (V) 21 g, (-2, (0 = (ne1) ™ (o (hyz (V4R (hyz_ (AD)),
where .. ‘Dn(k"*’)‘ = E%T +‘ '(n—gq)“-sxo _yx-‘ln-‘]x‘l/q)-q‘
e(Ayx) = 1 = (-8) x +q A x‘]ﬂ’xq,
R (3 = mx (7 (1 T D e A T g

The breakdown condition is given by z > n? so fn(}“) = nA%,

As to T, we take w, = 13 @ = ((q+1)(1-s)'1)1+11}q. (from the pro-
perties of ¢(A,x) it follows that we have to take this value for w
in prdgr to get To satisfied), By straightforward verification ore
can show that T°~ is satisfied. We confine ourselves to the follow-
ing short remarks, ¢{(A,x) = =(1-8) +(q+‘1))\"1 xq/q;

M a0 = 397 (1-8) WU g 8

CxAgx) = (q+1)q;1x
12 (1= (@e 1) TNy (W) = (1-8)%(ge1) " E0Y

107 (@) (=003 ew) = (187" (q+1) > 13

B(A)
aluw)

r(h,x) = x (#s(s-1)+qs A% 4 g q(aen) 272 522y,

ol

1

r{w,c(w)) = $(g-c) < c(w)-1. The presentation of Rn(?x,x} on com-
pact sets G is proved by observing that.n’Pn(k,x) - n r{A,x) con-

verges uniformely on G to a continuous function.

The following lemma proves that the process under consideration
satisfies T, . ' '

Lemma 10.1. z_(w) < £ (0), z_(0) € c(w) = n~ (c(w) = 1)
——————— n A n R n .
' . . v(n=‘|,2,.-o).

Proof. We use induction with respect ton. z,(w) =1< wl, We
remark that c(w) < w? g fn(w). So, if for some n 1z (w)

, Y o .
g efw) - n (c(f‘o) - 1), then 241
Qn(m, c{w) = n~ (c(w) =~ 1)), *Thus, we have to prove only that the

(w) is defined and not larger than

latter quantity is not larger than c(w) - (n+1)'1 (c(w) -1). 3imple
calculation shows that the inequality ¥,(w, c(w) - 0" (e (w) - 1)) £
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€ c(w) - (n+1)-1(c(w) - 1) is equivalent to

-1)5/q

1
(1-n-1(1- (c(w))'1)) /q((nc(w))'1+ (14n )<1.  (10.15)

In order to prove (10,15) we replace n-1 by x, obtaining a functiom,
say g(x), in the left-hand side of (10.15), and we shall show that
g(x) £ 1 for 0 £ x £ 1. Throughout the rest of this proof we write
c@) =t"1; so t(qgs1) = 1-s. glx) = (1= (1-t)x)1/q(tx+ (1+x)5/q).
As g(0) = 1, it suffices to prove g'(x) £ 0 for 0 £ x £ 1. g'&x) g
£ 0 is equivalent to h(x) £ 0 if

h(x) = qt = (1-t)t(1+q)x + (1+x)-1+s/q (s-1+t - x(1-t)(8+1)).

Again h(Q) = qt + s-1+t = O, so it suffices to prove that h'(kX)g 0
for 0 { x £ 1. Bearing in mind the relation between s, q and t we
have to prove that (1+x)-2+5/q(-2qs - (1-t)(8+1)8x) £ (1-t)(1-8)q,
which is trivial, as the left-hand side is negative, and the right-
hand side is positive. This completes the proof.

One can show that equality in (10.15) only occurs for n=1, but we
shall not need this.

Instead of T’ one can prove much stronger propositipns but we shall
not do this. One has to be aware, however, of the freedom of
choice we have in determining p, v, M, 1, L and L', First, we
choose p > c(w) such that for x > p and A€ [1,0] r(A,x) > 0, and
e(A,x) > %4 A1 x1+1/q. As Rn(k,x) > " r(A,x), we have Rn(k,x)z
>0, if r(A,x) > 0. For T we may take any number in (0,1). We
take T = 2°%, If we now denote x1/q(kn)-1 by t, we have

1

L N I (I A R C I S a L RS S R TN

1

and since (1+n~ )° <1+ en~! and (1-t)"% = 14qt + [(1-t)"% = 1 - qt]

we find that t~1 £(t) £ sq + (1+8) £~ ((1-¢)"2 < 1 -qt). So we find
that for x < A% nd we have Ax~1~1/4 R (A,x) <

< max {sq + (1+s) £ ((1-)"2- 1- qt) logtg#) =1,. SolL, =
= 8q + 2(1+8)(22-1-3q). For » < x < tA%n? we have 0 < Rn()\,x) £

£ L,X'1 x‘]""‘/q < 2q-1L1 o(A,x); ¢(A,x) < (g+1)T n. In order to

answer T, (2) it suffices to take L = max (2q'1L1 s (@+1)%), and

1

n > M, where TM‘? >p. For AIn? < x < A% we use n” x-1Rn(l,x) =
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= £(t) and so n~1x~1 Rn(x,x) > 2q~'1-%qg-n'1, which exceeds L' if
n > M, for appropriate L' and M,. This yields T,(3). In order to
arrange for T, (1) to be satisfied it is sufficient to take n > M,
where M_ is choeen such that for n > M, ((a+1)” Tpy1-ate >

> (-7 }q)q = 273, We then have to take M = max (M,,M;,M,). For
4 any number in [1,w) can be used. 4s q > 1, T!(k) is satisfied.

By theorem 9,1 we find for the N, from problem (10.11) the asymp-

totic formula -3
log B, = x(a(A) b(A))7F + €(1) (ato).

As a{\) - aw) --}q'1(q+1)q(1-s)1'ql'q b{A) we have n(a(A) b(X))-%a
= nla(w) b(x))"i +0(1) (te) and so

log B = x(ae) AT + d(1) atw).  (0.16)

In the same way as in the Hardy case we obtain from formula (10.16)
the formula for Ay. So we find for (10,12)

1+1/q 2+1/q
. . 3::1) -2 (3:1) n? ( 1)
M (1-3 1«8 \1-8 Tog ™2 * +d {iog W3 /° (10.17)
- For the original Ay (p,s) from (10.1) we find from (10.17) the
formula

P - p+1 2
apeie)=(Z) - BB e o) @0.18)

which is written in the original parameters according to (10,.13).
For the best possible constant uN(p,a) from (10.2) we find by com-
bining (10.17) and (10.14) the formula ’

2

P - p+1
“N(P"’)“(’I‘E’E '%(ﬁ;) (102 E "g((lo; N)’)' (10.49)

If we take g=p in (10.18) and e=0 in (10,19) we find again the re-
sults of Sec.8, (8.3) and (8.14) respectively.

One can specialize (10.2) for p=2, in order to obtain a formula for
the largest eigenvalue of a certain matrix. Doing so, we find that
the largest eigenvalue X' of a finite gection of N rows and,cdmmna
of the symmetric matrix A with Ay = (14)¥#"" “‘i‘;(i 1),

0 £ 8 <1 satisfies

AL = 4(1-8)"2 - 1672(1-8)"*(10g M2 + F((10g M).
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11. An inequality due to K.Knopp

If one compares N.G. de Bruijn's result (see [2]) for Carleman's
inequality (quoted as formula (0.6) with formula (2.20), one may
notice that if p {0 in (2.20) one obtains (0.6) with the exception
of the S-term for which we have not proved that it is bounded if
p $§ 0. Moreover, it is known that lim ' OEn'1(a¥1’+ e # a§)31/p =
=(a1---an)1’/n {see [11], II No.82). In this Section we shall
study an inequality due to K.Knopp (see [9]) which can be consid-
ered to be the amalogue of (2.,1) for p < 0. If we use the letter t
instead of ~p, this inequality reads

D Call CoLR +a;t))'1/t<(1+t)1/t 27, a (11.1)
where a, > 0, a, 20, ¢ouy t >0 and E:=1 a  converges; the prime
in I' means that if one has a, >0, eosy & >0,
>0y oe.y One must read Z:=1 ingtead of En
(1 +t)1/t
problem to be discussed in this Section is to derive an asymptotic
formula for AN(t) if Now, ).N(t) is the best possible constant
such that for all sequences a, 20, ceey ay >0

fmet = 0, fme2 z
=1° The constant

is best possible, whereas there is gtrict inequality. The

N, -1, -t -t =1/t N
@ (@ +.iva ) < M) Z 4 8- {(11.2)

84 1%

It will be clear that now the prime means that one must read 232_1

. N .
E.nstead of 2n=1 if a, >0, sauy a, >0, a4 = 0, & 204 cony

ay > 0. We shall characterize Ag(t) as the maximum of the functimn
SN a1, -t ~t, =1/t
Ft(x) = F'(x1,....xN) = I (n (x1 *eeetx N on the com-
N
pact get S in RN given by }:n=1 x, = 1, x, 20, eauy Xy 2 0.

First we shall make clear that max {F'(x)| x€5) exists and is
l'{ > 0, Let the b's
denote non-negative numbers, the c¢'s positive numbers. If for some

k, 1<k <N, we have b 2 b, then it is obvious that

attained at a point x' for which x% >0, veey X

k+1 k

F'(b,], R NPPL AL NPT ,bN)g F'(b1, ceny bk~1'bk+1 ,bk,bk+2, cee .bN).

So we have at once that sup {F'(x)| x€S} & sup {Fr(x) | x€T} were

T is the compact set defined by Enz‘! X, = 1, x, >,x2 2 eee 22X 2
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> 0. As TC S we see that sup (F'(x)| x€S} = sup {(F'(x)| x€T}.
As F'({) is continuous on the compact set T, the supremum is a

n=1 xn = 1, x1}]%E>ooosz:>o}q 80
T*c T, For each point of T\T* we can find a point of T* where the

maximum. {(x1'000’x )I

value of F' is larger. This follows from the fact that for a point
(c1,ca,...,ck,O,...,O)GZT\T* (k < N) we have :
Uag o Frlcyseeescy 41(1=¥)e ,¥0,40,...,0) =
= F'(c1,...,ck.0,...,0),

and
lim?& o dy Fi (e qreeeaCy_ 1,(1-y)ck,yck, seres0) =
_ o=t 1/t -t -t =11/t 1/t _t+1
= ¢ {-k (c1 *oeoke ) +{(k+1) ey } > o0.

So max (F'(x)| x€T) is attained at a point of T*. On T* however,
-1, =t -ty =1/t
' = -
we have F (x1,...,xN) F(x1,...,xN) E§=1(n (x1 +eeotx )) .
S0 XN(t) is the maximum of F(x1,...,xN) under the restrictions

E§=1 x, =1 X 2%, 2 .00 2xy >0, F(x1,...,xN) is homogeneous

of degree one in KareessX By the same arguments as used in Sec.2

N
we have therefore that KN(t) is the uniquely determined largest
valne of A for which

é -, - - -
3;; C Zg=1{n 1(x1t+...+x )] 1/t k2£;1 x, 1 =0,

(=1, e0.,N), (11.3)
2 x =1 (11.4)

have a positive solution. If we subsgequently take differences,
omit (11.4) and employ the substitutions

-1 _t , ~t -t
kT ox (x1 Feeat X ) = Z, (k=1,...,N),
-1 (11.5)
t{t+1) =18 (so 0<s8<1),
we obtain in the same way as in Sec.2 that AN is the only value of
A for which
e, K =1 -1/8 =
29 = N T T At T AN " > (k=1,..0,8-T),

21/8_ (m)_—] (11.6)
N =

has a solution (1,...,zN).
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Again, we consider zn as functions of A defined by

20 =1,z ()= e =Bz (D)1= 2

TN (72",

(11.7)

Now zn(x) is defined for A > A and Xn is the value of A such

n-1}

that z (A) = n"%\"% . £, (A). If we write (11.7) in the forms
z.‘(A) 1, n“(k) = <I> (A, z, (1)) (11.8)
and
z,(A) =1, Z 1 (?s)-—zn(l) = (n+1)”! (w(k,zn(l)H Rn()-,zn()x)))
{11.9)

with breakdown functions fn(?s), then we have

- . s
Qn(?x,x) = (as1)" Vs n(ne)™! x(1- ATy 1/8) '

plAx) =1~ x~ ax™] x1"1/8

R ()\,x) = -x(-—s(‘hs)i\ 2, x -2/8 —s(‘l 6)(2-8)A"7n -2x-3fsh” }.
Now ¢(A,x) is a negative concave function if A < (‘1-3)1"1‘{8 = w,
and the meximum of ¢(A,x) tends to zero if Atw.
The problem turns out to be analogous to the previous cases, the
only difference being that in this case {‘zn()‘)} decreases to break-
- Sz of the
properties T,, T,, T, from Sec.9. The properties §,, &, , 5, de~

down. We shall list the analogous properties S° s S

scribe a gituation in which the analogy of Secs.2~ 7 can be carried
out with decreasing (zn(k)}.

For an iteration problem, given in the forms (11.8) and (11.9),
with breakdown functions fn(}\), the properties S,, S, and S, read.

SO

1) fn(k) is continuous and decreasing for A& [w, ,w]l; for each A
we have fn(l) 4 O if n+eo; there exist constanta I' > 0 and
o > 0 such that £ () >In"" for A€ [w,0l;

{2) Qn(x,x) is a continuous function on the set in the (A ,x)-plane
{A,x) I €L, ,w], x€ (fn(?\),ﬂ}; it increases with A as well
as with x3 ‘Dn(m,ﬂ £ 1; there exists an M, such that for
AC[wy 0] and n > M,

lime' fn(l) <bl),()"’x) < fn+1 )
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(3) ¢(\,x) is continuous on D = {(A,x)| A€ [w, ,0l, x€(0,1]}.

¢(\Ayx) is increasing with respect to A;
9 92 P ot
a—x(p(l.x)=¢()\.x). J‘P()\,x)=x()~,1), o—xy‘P()\,x), K;‘P()\,x)

exist and are continuous on D; x(A,x) < 0 on D; ¢(A,x)
attains one strong maximum b(A) for x = ¢(A); b(A) and c(A)
are continuous on [w,,w], b(A) is increasing; c(A) is de-
creasing; b(w) = 0; O < c(w) < 1. [We use the notation
a(d) =#x(\,e(r)).]

(4) On every compact set G = {(A,x)|AE [w, y0], x€[d,1]; d > 0}
we have Rn(x.x) = n-1r()~,x) + d(n-z) for n > Ng; r(A,x) is

continuous on D and increasing with respect to A.

223

zn(w) satisfies the inequalities
-1
zn(w) > fn(w); zn(w) > c(w) + Bn

for all n, whereas B > 0, B> -r(w,c(w)).

S There exist p, T, M, p, L and L' with 0 < p < c(w), T > 1,

M>O0, p.C[m1 o), L >0, 0 <L' <1 such that the following

propositions hold for n > M and A€ (p,w).

(1) on(x, rfn(x)) <t A

(2) Tfn()‘) < ps if x€ [tfn(X),p], then Lp(A,x) < Rn(x,x) £0
and ¢(A,x) < Ln;

(3) 1if x€ (£ (), £ (A\)], then R (A,x) < - L'nx;

@ [Pt ax > .
o

If N =max {n|z, V) >£,(\)y.eyz, A)>£E ),z AW)> £ (W),

then Nw = = and we can prove the following theorem.

Theorem 11.1. If an iteration procedure written in the forms
(11.8) and (11.9), satisfies S,, S, and S, then N, < = for
A€ [w,,0) and

log K = x(a) b(N7F 4 g(1) ).
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In the present case of Knopp's inequality we take w, = 1; w equals
(1-5)1’1’;’: sb s @ R and f are already given. Moreover,

*(A'x) = =1 4 (1 B)}s"l ‘1/3' x(l'x) - -3-1(1-$)k-1 x—1-1/s;
a(d) = - 387 1(1-8)"% A%, b(A) = 1-(1-8)%"1 A8, c(A) = (1-8)5275,

alw) = - %5-1(1-8)'1: clw) = 1-83 r(l.x)=-}s(‘l-a)f2 x1-2/s;

L]

r(w,c{(w)) = ~3s. The verification of S, presents no difficulties;
S1 is a consequence of lemma 11.1 given below; by arguments of
the same type as in Sec¢.,10 we can prove that S2 is satisfied.

Lemma 11.1. zn(m) >n"8 8, zn(w) >1-8+ on”’ (n=1,2,...).

Proof. As w > 1 both inequalities hold for z1(u;) = 1., We shall
proceed by induction with respect to n, First we prove that
1-s+8n" ) > w8 (n=1,2,...). If (1-8)"12"7 is denoted by n
then wn(1- s+ sn~1)1/8 > 1 is equivalent to 1 + sn > n°. But this
is proved by 1 + an > (1+9)%, (0 < s < 1).

Suppose we have proved z, (w) >1-8+8n -1 then it follows that

z, (@) > n” co’s, 80 z_ 4 (w) is defined. If we show that z_ ,(w) >
> 1-8 +s(n+1) then the proof by induction can be completed.

Now z_ (w) d)n(w, 1« 8+ 81 ) and we shall prove that

& (v, 1-8+8n 1) > 1-e48(a)”. But, as n = (1-)"" 2”7 we

have to prove that (with ¥ = (1+sn)1’/s) E(1 - r_"ln) > 13 and this
is equivalent to 1+sn > {1+m)%.

is the iteration process (11.7) satisfies S, S, and S, and as
w{a(X) b(X))-& = x(a(w) b(l))'% + o(1) (A M) {notice that
a(A) =~ alw) = =45 " (1-8)"% A% b(A)]1, we find by applying theorem
11.1

log N. = na(w) b(YF + g(1) to). (11.10)

A

By simple calculation we obtain from (11.10) a formula for )\N
Ay = (1-9)1‘-1/5 - 2(‘1»:3)2-.1'/B 1:2(108 M2 . &((1og N)™2).
With the original parameter this formula reads

M) = (e E20eu) Y 2P0g )72 4 (Lo M 7).
(11.11)
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We observe that if t is replaced by -p formula {11.11) reads the
same as (2.20) which is valid for 0 < p < 1.

The analogues of the formulas (3.7) and (3.9) hold, since it can
be proved that

znﬁn) -1
J (¢(&) 'X)) dx = ng n + 6(1) (n-om),
1

12. Extensions of Section 11

In this Section we shall discuss some results which stand in the
same relation to Sec.11 as the results of Secs.8 and 10 to Secs.
2-7. Mrst, we shall derive from the result (11.11) the analo~
gous result for the Holder reciprocal of Knopp's inequality. There-
after we shall discuss a pair of reciprocal inequalities which are

generalizations of Knopp's inequality and its reciprocal.

It is appropriate to start with a slightly different form of the
result of the previous Section. If AN(p) is the best possible con-
gtant such that for all a, > O,...,aN > 0 the inequality

‘}:N

| P N P
n=1 {n (a,‘ LA an)} £ A-N(p) 2n=1 an (12.1)

holds, whereas p < O, then AN(p) satisfies

P p+1 2
W = () - () e w02

If a~® in (11.2) is replaced by a_ (n=1,...,N) [notice that for
attaining the maximum, all a  in (11.2) are posgitive] and t is
replaced by ~p-1 then (11.2) transforms inm (12.1) and (11.11) in
(12.2).

Starting again from formula (8.6) and writing down the analogues

for p < O (hence 0 < q < 1 as p-1+ q-1= 1) of all the arguments in
Sec.8 ((12.2) is the analogue of (8.3)) we produce a proof of the
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formula

llN(q) = q%+ aqq”ﬁ-q) ,;2(108 N)'2+0'((log N)'B) (0<q<1)

(12.3)
for the best possible constant such that
N q N q
Lo (z1+ ceetzy) 2uyla) L4 (n zn) . (12.4)

for 0 € q < 1 and all z, >,0,...,zN > 0.
Formula (12.4) is a finite section of a well-known inequality due
to Copson (see [6], or [8] theorem 34i).

We start the discussion of the second topie of this Section with a
generalization of this inequality due to Copson. In [6] it is

proved that for a, > 0,a, 2> O,..., O<p<1, 8L0O and

wvel ! 2
L _q,n {n an) < = we have
had -8 P P -p ® -8 P
.41 (an+am1+...) > p (1-8) Eoq B (n an) ’ (12.5)

unless all the a, are zero; the constant pp(‘!-a)-p is the best
possible. If s = 0 (12.5) reduces to the inequality mentioned
above., Now we congider 'p.N(p,s), the best possible constant such
that for all x, 20,00e4xy, 205 0Kp <1, 80

N o
2:=1 np'sxn< pN(p,a) Eg=1 n's(x;/p+ ves +x;{/p)p. (12.6)

Writing down the analogues for 0 < p < 1 (hence g = 1~p > 0) of the
arguments in Sec.10, starting from the analogue of formula (10.7)
we obtain the system

1-8
1 k -1, =1 «1/gqy% _
2 =1, 2y 4= EIT*'(EIT) zk<1-l Kz Y, (k=1,...,8-1)
z;/q = AN, (12.7)

and if Ay, the value of A for which (12.7) has a solution, satisfies
an asymptotic formula (if N-— «) written symbolically as

)\ﬁ = Asf(q, 8, N), (12.8)

then uN(p s8) satisfies

(pN(p,a))1/(1'p) = Asf{1-p, 8, N). (12.9)
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With the experience of Sec.10, we expect that an inequality can be
formulated, finite sectlions of which, by direct use of the method
of the Lagrange multiplier, give rise to an iterafion problenm,
which is identical te (12.7). Moreover, this inequality has to be
a generalization of (11.1) and reciprocal to (12.5). We start with
the finite series problem, formulating the infinite inequality
afterwards. So we consider the following generalization of (12.1);
(we again take -p = t as parameter, the condition imposed on s will
later appear to be in accordance with the analogy)

')31::1 n-a(a1 P an)'té Ag(tys) 3:;.1 n"%(n an)'t, (12.10)

8, > 0400002y >0; £>0, sg-t. Fors=-t=p (12.10) reduces
to (12.1). Using Lagrange multiplier theory to calculate AN(t.a)
just as before, we find that XN(t.s) is the only value of A for

which there exist positive XyseeesXy with

X{x;(t+1)k-(s+t)-x££:+1)(k+1)~(s+t%'= k-s(x1+...+xk)-(t+1),
(k=1,...,N=1)

~(t+1) ,~(8+t) -{t+1)
4 )\XN N = N) N

N-s(x1+ vee + X

-8 -t
2§=1 n (n xn) = 1.

The reduction of this system does not differ from previous cases g0
we only mention the substitutions used, omitting all calculations.
-1 =1 _ N ~ ~1
By z, =k X, (x1+ veot xk) *fk-1,...,N), q = (t+1) (s0 0 <
< q<1); and s' = (t+s){(t+1) (so s' £ 0), we again obtain
(12.7) with &' instead of s. So kn(t,s) from (12,10) satisfies

(t,8) = asf((t+1)™ 7, (t+a) (t+1)™7, W). (12.11)
Ay

We would observe that (12.10) is & finite section of the ineguality

5, 0%y e ra ) g (-t 67

~8 -t
n=1 n=q O (moa )T, (12.12)

which holds for a, > 0,a
Zoq
our asymptotic considerations; as in the previous cases there is

2 > 04eevy t >0, 8% ~t3
n"%(n an)-t < «, The proof of thie inequality follows from

strict inequality (cf.Sec.3).
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In order to obtain am explicit expression for formula (12.8) by
applying theorem 11.1, we would prove that the iteration procedure

- 2, (M) (1= A Tn '1(zn(x))"/q)q
(12.13)

satisfies S,, S, and S,. As this proof does not differ essential-

ly from previous cases in Secs.10 and 11, we shall omit it, giving

only some calculations. If we write (12.13) in the form (11.9) we

find @{A,x) = 1~ (1wg)x ~ q)\.'1 x""“/q and

Rn(l,x)z nx((1+n'1)8(1-A'1n°1x'1/q)q- 1-en s l'1n'1q x'1/q}.

Moreover, we have

£ ) =0 A e = ((1-) (1.7 )T,

-3a7 (=) (1-0)T A% a(w)
1-1-8)""1-0% T 2 )

24 (M) =1; n+1 (n+1

a(A) 397 (=) (1) 25
b(A) (1-q)3(1-8)"% 279,

r{A,x) =3x (s(8=1)~ 2aq)~.-1 x'1/q + q(q-1))"2 x'a/q};

[
n

clw) = (1-q)(1-8) 1, r{m,c{w)) = -3(q+s).

For (12.8) we find by theorem 11.1

ax = (1= s)’1+1/q (1-8

“3*1/q 2“2
N~ \i-q ?:E)

1
(i-q)(log W2 * d((log }—157)‘

For the original problems, discussed in this Section, we find from
this result the asymptotic formulas wanted.
For uN(p,s) from (12.6) we have by application of (12,9)

_{1-8\P (1-8VP" ___2 an? 1 )
vy(py8) = (‘5— ( P ) i-s (log M)Z * d.(log w3/ °
For XN(t,a) from (12.10) we obtain by (12,11)
t =1
1-8 1-8 41 __2n? ( 1 )
Aultes) ‘;( T ) - ( t ) -8 (log M)Z * d {log N 3/°

If we take 8 = 0 and s = -t respectively these formulas agree with
the results already known for the inequalities (12.4) and (12.1).
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13. Instability
All iteration problems we have studied, can be obtained by a choice
of the parameters s and q in the following problem

zg =1, z 4= E%T + (;%7 e z, (1-%’13-1321/q> q:
with breakdown functions AIn%. With s=0 and q > O this problem
becomes the one arising from Hardy's inegquality. The generaliza-
tion considered in Sec,10 had 0 £ 8 <1, q > 0. The problem of
Sec.11 had 8=0, -1 < g < 0; in the generalization of thig problem
in Sec.12 we had s < 0, -1 < q < 0.
In his book [1], N.G. de Bruijn discusses an inequality due to
Copson, which gives rise to an iteration problem, which can be
written in the form given above, with the parameter values 5 = },
q =~% (see [1] Sec.8.9 and Sec.8.10). The behaviour with respect
to breakdown is then different from the cases studied so far in
this thésis., N.G. de Bruijn discovered a remarkable discontinuity
in the asymptotic behaviour of the zn's. We shall discuss an
example which shows the same behaviour. This example has 8 < O,
q > 0, but it can be shown that for 1 < q € 0, and &8 < O, one can
find equivalent examples.
The behaviour, we shall observe is related to example 2 of Sec.1,
as the preceding cases are to example 1 of that Section. Most of
the proofs will be omitted as they are more or less analogous to
previous cases or to arguments in N.G. de Bruijn's discussion in
[1] (Sec.8.10). Writing t = -s we have the iteration process

2, (0 21, 2 (M= e (327)1+tzn(x)(1-?\—131'1(3!1()\))1/‘1)-{1,
(13.1)

with breakdown at N if zn(k) < 2%? for n < N, and zN(l) > A,
The value of A such that z (A) = AIN? is denoted by Aglast). That
XN(q,t) ie uniquely determined is proved in the same way as in
Secae.2 and 9. If we write zn(A,q,t) to express the functionality
with respect to q and t then we see that for fixed A and q,
zn(l,q,t). when defined, is a decreasing function of t. As

zn((q+1)1“/q,q,o) is defined for all n, we have zn((qn)’”/q,q,tk

<o for t > 0 and all n and this implies Ap(q,t) < (qn)“vq for
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all n. 1lim A, (qst) exists, as {A (q,t)} is a bounded increasing
sequence; we denote this limit by q(q,t) n{q,t) € (Q+1)1+1/q
In the same way as in Sec.10 we now have that for s > p > 1 and

a,}o.a,}o,“.

P s=p)gN -8 P
2§=1 (a *eeava W (P-1' p-1) g0 (n an)

and for p > 1, 8§ <0 and b, >0, b, 20, +s0

N

L

n=1 u’s(bn-i- cee +bN)ps {?\.N(p-1, -8) }I""1 N 1 n"%(n bn)p.

ne
Thus we are speaking about the inequalities concerning series with

non-negative terms {(cf. Copson [6])

> o8 P s~ - -8 P

Zpeq B (a teeovay ) n(p_1. 5—%) I (n an) (13.2)
(s>p>1),

and

« -
X n %(b_+b
n

-
= n+1+...)p-S (nip-1, -8))F"" &

-g P
n=1 n " (a bn)

(p>1, 58<0). (13.3)
If we write (13.1) in the usual form

z,(A) =1, (A) = (n+1)” (w(k.zn(k))i-Rn(h,zn(k))),

n+1
we denote by w(g,t) -—-in accordance with our previous notations~ -
the value of A for which the strongly comvex function ¢{A,x) =

= 1 ={1+t)x+ qk'1 ::'H"V'ci has a minimum equal to zero. It is found
that wlq,t) = ((t+1)"1(q+1))1*1/9,

Without proof we mention the following resulis:

Lemma 13,1. If q is fixed, then n(g,t) is a decreasing function
of t.
Lemma 13,2. The process (13.1) satisfies T (see Sec.9).

Lemma 13.3. 1n{q,t) > w(q,t) for each positive t and q.

A discontinuity of the type N.G. de Bruijn discovered occurs only
if n(q,t) > wlqg,t).

In order to give a clearer description of the different behaviour
we take £ = q and study the best possible constant n of the in-
equality
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=1 n'1~p(x1+ oot xn)p.s 1’12:=1 n xﬁ, (p>1). (13.4)

From the above discussion we know that 1 < n & (q+1)1+1/q,v and that
for A > n the iteration process

1+q -
2, M= s () s 0T G Ve
(13.5)

does not break down. Moreover, from lemma (13.2) we know that

z.l(x):-:’l,

1 > olg,q) and as w(g,q) = 1 we have n > w(q,q). Writing (13.5)in
the usual form we have @(A,x) = 1« (T+q)x+ qx'1 x1+1/q. IfA>1,
¢{A,1) < 0, whereas x(A,x) = (kq)-1(q+1 );‘:::HVcl is still positive if
x > 03 so ¢{A,x) is still convex. As ¢(A,0) = 1, and ¢(A,X)» +=
if %+, we have that ¢(A,x) has two zeros s{A) and t(A) with

0 < 8(A) <1< t(A) < =. We observe that if 1 < A, < A, then
s(Ay) > 8(A,) and t(A;) < t(A,). The discontinuity announced
above is given by the following results,

I. If A>n, then lim 2z (A) = s(A), (lemma 13.8)
II. for A = n we have 1imn_mzn(n) = t(n). (lemma 13.9)
The effect II is called instability.

We can give the proof in the following steps:

Lemma 13.4. If zm(k) > t{A) for some value of m and A > 1, then
A< 1.
Lemma 13.5. If A > n, then lim inf zn(k) > s(r).

Lemma 13.6. If lim infn*wzn(?\} = g(A) for A > 4, then

m zn(l) = a(A).
Lemma 13.7. The sequence {zn(k)} has for A 2 7, no accumulation

_point in (S(X)q t(l))o

Lemma 13.8, If A > n then limn_’wzn()x) = a(}A),
Lemma 13.9. 1imn_.mzn(q) = t(q).

Extending the analogy with the results of Sec.9, we can determine

a number p (sufficiently exceeding t{(n)), and define
D:\ = max {n} zn(x) < pl.
As before N, denotes the breakdown-index. The number p can be

67



chosen in such a way that we can prove

lemma 13.10. If A < v, then D)‘ < o Nx < w and

log N, = log D, + 0(1) ().

There is another remarkable difference between the present problem
and the problems discussed in the previous Sections. When, in the
previoua Sections, we considered infinite series, we had alwaya
atrict inequality. We shall show that in the preeent case we have
a sequence X, ,X 4... such that Z:ﬂ n'1 xz converges and

> =1-p P oo -1
DI (x1+ et xn) = 1 8n=1 n xz.
Aemembering some results in Sec.3, we shall show that for the se-

quence X, X qe.. aetermined as follows

-1 -1
x =1 0 x (x1+ ...+xn)= zn(q) (n=z1,2,...3, (13.6)

the series $:=1 . x;’: converges. We observe that the x, ,x,,...
are uniquely determined by (13.6). As limn_.wzn(n) = t{n) > 1, we
may determine a and M such that a > 1, M > 2, and that n 2> M

- -1 o
implies zn(n) >a. Nown™ x_ (x1 + ...+xn) >a forn > M, and
thus

x, < (an-‘1)'1(x1+ ceetx 42 < a"Ma-1)"" (xy+ 2ot x

n1) <

o (n-1)-1(x1  euat xn) IIn"?‘ (a1,

as (e~ Yy < (w-1)"")"2, we £ina 222 (e <
< ((H~1)-1(n 2))1/"' and, therefore, x < An -1+1/a
.omo appropriately chosgen positive oonatant A. As ~141/a < 0,

for all n and

2:1:1 n" xp converges.

We conclude this Section with some remarks about arbitrary values
of q, and t. So from now on we have no longer t = gq.

First, we remark that if n{q,t) = w(q,t) we can prove in the same
way as in lemma 13.2, ..., 13.7 that lim z (0) = e{w), and A >

n-see “n
> @ implies lim zn( 2) = s(A). In this case, however, there is

no discontinulty as s(n) = t{n) = c{w).
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Lemma 13,11. If t > q then

Limy o (q,b) 1y 2 (M) <ldm | dimy oo by 2, (M)

Lemma 13.12. If t > q, then n(q,t) > w(q,t) and A > n implies

lim zn(l) = 8(\), whereas lim oz (n) = t(n).

In Secs.l1~ 12 we developed a method by which under certain con~-
ditions the influence of Rn(x,x) can be neglected. One of the con
ditions was n(q,t) = w(g,t). It will be clear that if nlq,t) >

> w(q,t) no such method exists as the Rn(k,x) play an essential
part in that case.

We have proved that for t > q we have n(q,t) > w(g,t), but from
lemma 13%3.1 it followa that then alsc for some t < q we have

n{q,t) > w(g,t}). As for such t we have w(q,t) > 1, the phenomenon
is much more complicated, ag we can not 1onger see from @(A,x)

alone, whether it ocours or not.
For the cases that n(q,t) > w(q.t), we have no explicit formula for

n(a,t); one can, however, make numerical estimates for each value
of g and t, but we shall not do so.

69



Appendix

For iteration problems satlsfying the requirements of theorem 1.2,
two different types of convergent solutions are possible. In exw
ample 1 of Sec.1 the type of solution depends on the value of a
continuous parameter., In this appendix we intend to throw some
more light on this phenomenon by another typical example to be dis-~
cussed in detail. In fact, we shall have sequences {z } depending
on a continuous parameter x, with z = g(n” ) at a certaln point
x=¢, 2z = g((1og n)~ ) for all values x in ar open interval
having ¢ as left end polnt. We ghall find an asymptotic expres~
sion for z, which holde uniformly for x in a right neighbourhcod
of ¢, [e,c+h). By this it will become clearer how the two types
of convergent solutions of the iteration problem are related. A=
in Sec.2 comparison of the recurrence relation with a differential
equation will suggest the desired asymptotic formula (see (6)).

(1) We consider a sequence {zn] satisfying

=1, 2 -1
Z 4~ %y =B (zn +1n ). (A.1)

The {zn} depend on a parameter x which runs through [0,1] (there-~
fore we sometimes write zn(x)). In order to avoid difficulties
arising from non-monotonicity in the beginning of the iteration,
we start from 2z , and we prescribe its value by requiring Ty = Ko
The number 100 is certainly large enough. It is easy to see that

zn(xo)* we fOr Dee if zm(xo) £ 0 for some m and x . Moreover, if

z >6 >0 for all n, then T (z

n vmyg b vl
diction. So there are only two possibilities z = == Or zn->0. If
lim .2, = O, then either z = (log n)“1 + 8((log n)"a) or z =

= n"1(1 + 0(1)) if new, {(by theorem 1.2 applied for the sequence

{-zn}).

- zu)divergea, hence a contrs

{(2) We shall first prove that there exists a number ¢ (0<¢<1)

with zn(x)—’ 0 for x€ [c,1] and zn(x)—* -0 for x€ [0,e).
1

By induction we can prove z (1) 2> 2n"', To this end we remark that
(1) =1, and that dz +1/dz =1-22.0"" >0 for n » 100 and
z.n <1. So, 207 g z <1 implies 2(as1)~"< 207N ekn 3- n"2gz_ <1
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Moreover, zn(x) increages with x for x€ [0,1] and n > 100, since
2. increases and dzn+1/dzn > 0. It x is the root of z, (x) = 0,

1
then x . = 0'2 x <1 fgr all n' and xn < x40 since zn+1(x ) =
z, (x ) «n z (x ) - = 2 ¢o. Therefore, lim _ x exists;
limn__w x, =c¢ say, and 0 < ¢ £ 1 (we even have proved 0 < ¢

£ 1/50). It is easy to see that the number ¢ has the desired pro-
perties.

{32) We can prove that z (x) = (log 1. G((iog n)"2) for
x€ (¢,1], and that zn(c) a1+ @),

if an(x) 1s defined by nz = s , then we have s, = 100x and

B -1,.2 -2_-2 '
Bi4q = 8, =B (sn- 1-n (s +1)- n s, ). We know already that
an(x)--m for x¢ [0,0)3 8, (1) s and sn(x) = o(n) {(n-~w) for
x< {e,1]. In the same way as for example 1 of Sec.1, we can prove

that x€ (¢,1] implies sn(x)- + and hence zn(x) = {log a)~?

+ &((1og n)-a), and that an(c)$1 and zn(c) =n"1 4 d(n"%).

(&) We denote (log n)(zn(x) log n=-1) by tn(x). Then we already
know that tn(c)--eo if n-w, and t, = d(1) for x€ (¢,1]. Straight-
forward evaluation ylelds for t = g(1)

t

o =2 2 -2 -1 -2 .2
ne1-tp=-n  (log n)° + ¥(n™°) - n” (log n) L

so lim _t t_(x) exists for x€ (e,1]; we denote this limit by t(x).
We shall now prove that t(x) <O in a right neighbourhood of c.

48 ¢ € 1/50, we have ¢ < {log 100) . If we restrict ourselves to
values of x in (¢, (log 100)~ 1), then we have z, < (log 100)'1
For x€ (¢, (log 100) 1} the assumption t(x) > O leads to a contra-
diction, since t(x) > O implies that N = max{ n| t, < 0} exists

and exceeds 99; but for n > N we then have

n n -1, 2 -1
Znet = Tuan (Byaamn) * 2y <2y m Ty v (R ) <
- n -1 -2 -2
< (log M)~ - 2Nt (v (log v} = + v ).
(Notice that t < O means z < (log )™M, s

23=N+1("-1(1°3 w72 e v2) > ogwmin™ + ()™
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- (1('.»@(:1{-'1)).‘| - (aen)”!

and (log N)'1 - (103(1‘(-1-‘1))"‘l - (N-c-‘l)'1 < 0 for N 3 100, we have
z,,q <O for sufficiently large n, which is impossible for x€(c,1l

(5) We shall prove that ¢ <x, < x, < (log 100)~" implies ~ew <

< t(x,) < t(x,) < 0. Let each of the sequences {zn) and {zl;}
gatisfy (A 1) for n » 100, whence z, - 0, z;l*o for new, z, <

< (log n) v 28 < (log n) for n >, > 100, Moreover, assume
Zoge < Ziget (in our above notation we may also write z = zn(zm},
2} =z (z! ) ). If6_= 3!~ z, then it follows from (A.1) that

100 n n

5 . = (1-a )6 witha_ =n"(z'+2 ). As the z ‘s are strictly
n+1 n° n n n n n
monotonic functions of the initial value z,,, we have &, =

-1
=z, (2],) - 2 (z,,) >0. For n >m we then have &, 6, 4 =

- (1-0. ), and as « < av'1(1og v)‘1 this implies a’1on+1 >

> II (1 2y 1(105 v)® ) > ¢(log n)~ =2 () for an appropriate posi-
tive C S50 (log n)(.'v.r'1 log n -1 - {(1log n)(zn logn=1) > C&m, and
this proves the atrict monotonicity of t(x) on (e¢, (log 100)-1).
We make the trivial remark that solutioms of (A.1) which differ

asymptotically, have different values of z, .

(6) Comparison with a differential equation, If zn-»o then

z - zn-oO, and it will be reasonable to compare the difference

n+1
equation (A.1) with the differential equation

dz/dn = 222 . n-1).

where z is regarded as a function of the continuous variable n. If
we take w = z~ | as the dependent and x = 2! as the independent
variable, then this differential equation is transformed into

dw/dx + wz + x-1 =0,

n -1 -1 n -1 -1
(%) Hvzm(1-2v {log v} ') = expi z, log(1~2\c {logv ) )} >
>e:t:p{-2:'1 (105 ) la(a- {1/50) (log 100)"1 z\' . '2(105 v)—2)>

>exp(-2fmf1 x7 (log x)'1dx +C, } = exp{ C, = 2 log log nl.
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a so-called "special Riccati equation". Applying the usual device
for this type of equation, i.e. substituting w = y' y'1, we obtain
xy" +y = 0. It should be kept in mind that we are interested in
the behaviour of the solutions for x- 0 only. In a neighbourhood
of x = O, the solutions of xy" + 3y = O can be written as

y(x) = (e, +¢, log x)(x + +.0) + ¢ (<1 4+ 0x + ...).

It follows that

(e, + ¢, log x)(1 + ...) + 02(1  oeas)

k] 2
W(x) = (C + {:z 108. x)(x + ..,) + 02(-1 + Ox + ooo)‘

1

Since it is only the ratio of ¢, and c, that is significant, we

put € = ~¢ c11.

f1-elog x)(1+ .o.)=e(1+ ...)
X(1-€10g X) {1+ 200)-€(=1 40X + 00a)

(1+€log n)(1+ cun) =~ {1+ ...)
2" 14elog n)(14...) + e(1-0n""

+ aua)

If ¢ = O we have w(n) = n + ®(1) and z{(n) = 2~ . #(n~%). For
small lel an approximation of w is (n+en log n){1+ en+ ¢ log n)
First, we observe that for ¢ <€ O we have w-w for some finite value
of n. This can be regarded as an analogue of the sitﬁation that
the discrete sequence {z-n} produces negative values of z, from a
certain value of n onward.

We shall direct our attention to ¢ 2 O only.

-1

As z = 1"1 we can approximate z(n) by n= + €(1 + ¢ log n)-1. We

shall show that these expressions are good approximations of solu-

tions of (A.1), uniformly in ¢ for € in some interval O £ ¢ £ g

(7) let vn(c) =0+ (14 e log 0)~7 ana

v (8 = v (e) 4 0T (v ()P + 072 = b (o).

We shall derive some estimates for b (:) which hold uniformly ine.
If ¢{(1 + ¢ log n) = en(c) then

e (0 = e (e) ((e_(£)) log (1an™ ") « 7).
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Now we have, if n 2 100

- ~1 -1 .2 =3 =2 -1.2 -1
‘bn(s)-(n-c-'l) n4n T4n 7420 e 4n e e e log(1+n ') <

<2n 2+e (20 2" "e (e log(1+n‘1 1) (1+e 103(14-1{'1 NN
n n ' n n
< 2n'}+en(2n'24-n'1en-en los(1+n'1 )+ei(1og(1+n"1 N3 <

<2n'3+en(2n'2+(3/2)n'zei)< 2n'3+l+n’2;an <n~2(ke+1/50).

-1 2 -1
Moreover, bn(c) >0 for € »0, since n” ‘e > €141%n log(1+n ).
(8) In vn(c) + pn(c) is a solution of (A.1) then
Ppeq = Py * 2n 1p v, +n 1p2 -b . (A.2)

We shall shOw that there exist solutions {p } of {(A,2) which are
g((n log n)~ ) uniformly in ¢ in a right neighbourhood of 0., We
now use some Banach space terminology. Let X be the space of all
amteee ) Wwith x, = d(n'1). If we define a romm
by lixll = sup{ nlxnl | n=100,101,... }, then X becomes a real Banach

sequences X = (xw »X

space. We shall only consider values of ¢ with € £ 1/5. Then we
have 2v < } (n »100). (A further restriction on ¢ will be made
below.) We ghall show that for ¢ £ 1/5 Ppeq ~ Pp* 2n'1pnvn(c)=
-1
= -n_1an has a leution pEX if a€X. If we consider q ,-p,
+2n pv = =n a_, or

nn n

-1 - -
= {1 ~-2n vn) (nqana-q )

Pn n+1

we mee that this formula defines a mapping of X x X into X; we
denote this mapping by p = A(a,q). We shall prove that if a€X,
and if p(a) is defined by

1

(1-2k" k)-1} v oa_,

(pla)), =p, = £ _ (1, v

n V= k=n
then p(a) = A(a, p{a)). First we prove that p(a)<X. 4s

v

nl\é:n (1'2};—171&)-1 < nkan (1-‘1'1!-1)-1 £ v% (n-—'l)'%

we have |p | < (n-1>"* ffall :; vt < 26a-1)"Nal < 327" flall.
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Sop = ¢(n~") ana pE X. Moreover, it is clear that

-1 -1, ~1
P, = (1- 2n vn) (n a + pn*1)'
So B = A(E.'B)‘
Let B be the mapping of X into X defined by (B(E))h = ri. More~
over, we put b = n"1dn. whence d - {dn}€ZX for all ¢ in [0,1/5].

We now have to study the mapping A* of X x X into X defined by

A*(r,q) = A(d + B(z), Q).

We must show that there exists a p€ X with p = A*(p,p). It will

then be clear that {p } is a solution of (A.2), since p = A(x,p)

-1

means p = (1- 2n~ A ) T P, ) and therefore, with x =

n
=d + B(B)v it means,
-1 - -1
P, = (1-2n vn) 1(bn +n pi + pn+1).
Defining s = T(r) by
= -1 -1 -1 2
s, =2, (0 k*n (1- 2x fk) Pvi(a, + ) (A.3)

we have 8 = A{d + B(r),s), and we must prove the existence of an
element pC X with p = T(p).
To this end we use a theorem which is an extension of Banach's

theorem on the fixed point of a contraction operator. With the

notations
S({o’p) = {El EQX, l}g-%ll( pl
Sx ap) = {2zl 2€%, lz-x 1 < o)

this theorem is as follows (see [10], nap.I, 8.7).

Theorem. If X is a Banach space and T is a mapping of X into X
satisfying

IT(x) - T(p) I galix - gl (A.4)

with a fixed a < 1 for x, y€ S(x_,p), and if
lx, - stx )l < (1-a)p,
then the operator T has exactly one fixed point in 3(50.9).
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We shall apply this theorem with x, = 0. We have

Tl = sup {nl(r(@) | | n > 100} -

= gup {nz {nk=n (1-2x" vk)"1} b, l 2100} £

=1

< sup {n(a-1F @S _ v (hes1/50) | n 3 100) g (8e+2/50)100/99.

We restrict ourselves to values of ¢ which are so small that
(8e+2/50)+100/99 < 1/21. 1In order to apply the above theorem we
further must show that the operator T given by (A.3) satisfies a
condition of the form (A.4) on a sphere around 0. Im fact

IT(x) - Tl < #ix - gl if x, y€ 5(0,1/10). This can be seen as
follows

(0 - ) 1 =5, (my_ (-2 v )T v - 52 <

v

< (n-‘l)e} 2::___“ v'% Ix, =yl Uxl+ly,1) <
< (2/5)(31-1)-1 sup (vix, - ¥y,l I\v)n}< 3] sup{vlx, - 5, |v >nl.

Hence [|T(x) - T(y)l = sup(n| (T(x) -T(l))nl ] n 2100} <

<#sup (nlx -y I n > 100} =4llx - yll. We notice that, with

a =4, p = 1/10, T(Q) < 1/21 < (M1-a)p. By use of the theorem we
have the existence of a solution {pn} of (A.2) with xpnl < n'1/10
for all considered values of ¢,

A simple observation suffices to obtain the desired result. As
P, = d(n'1), v, = & ((log n)'1) and b = d(n'a(log n)"1) hold uni-

formly in e, we have p . -p = g(n” e(log n)" ) and hence p =

n+1
= d(n-“(fmg )™ uniformly in ¢ in an interval Ogege, (c.> 0).

(9) Our solution vn(c) + pn(c) of (A.1) satisfies

lim (log n)}{{v () + p (e))logn=1) = -5-1,
Do n n
(or -« if € = 0). We have already observed (see (5)) that if [zn}
and [21'1] are solutions of (A.1) (for n » 100) with z 0, 2!~0,
then
1imn_’“(1og n)((zn-zr'l) logn=1) =

if and only if Ty = z:”. Roughly speaking, this means that all

solutions of (A.1) for which lim _ _(log n)(z logn-1) is large
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negative, can be written as vn(c) + pn(c). It is now also clear
that t(x) attaine all values in an interval (-e,n).
Thus, for those values of x for which t(x) < -¢]', [i.e. the valwes

of x in (¢, v, (c,) + py, (g,))] we have
2,(x) = v (= (N + p (- GGNT),

(notice the uniqueness of p(c)).

We further observe that t{x) is continuous in % right neighbourhood
of ¢ (e.g, (e, Vy,{c,) + Dygo(egy))), since it is monotonic and at-
tains all values in an interval (ew,7), Moreover, t(x)» -«, if
xtc.

So we have the following picture of thé solutions of (4,1). There
exists an h > 0 and a continuous increasing function c{x) on

[¢, c+h), such that c{e¢) = O (hence e(x) > O for x > ¢), and such
that

1 e{x) 1
zn(x) =2t T3 (c(x)log n d(n Tog n)' (4.5)

uniformly in x€ {¢, c+h).
This result indicates, how the two types of converging solutions
of (A.1) are related. As a matter of fact, for z, (c) (4.5) yields
z, (¢) =n" (1 + 0o{(1)), whereaa for x > ¢ we obtain z, (x) =

= (log m71 + d((10g m"D).
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A list of asymptotic formulas proved in this thesis

This liet contains only results concerning inequalities.

References to the literature (given by means of [ ]) relate to the

corresponding infinite inequalities. Secs. are Sections of this

thesis. In all cases a, >;0,...,aN > 0.

&)

(2)

(3

(#)

78

E:ﬂ {n'1(a§+ n.+a§)}1’{p < (D) 8;{:1 a, (0<p<1)

(@) = (1=p) P (1op) VP 222 (208 724 G((L0g M),

[8] theorem 326; Sec¢s.2-7. Equivalent to a special case of
(3.

N
En:‘l (an +a

P

P N P
+ ...+aN) .s)sN(p) 2n=1 o oa {(p>1)

n+1
Ag(®) = 2P - (p-1pP*" 2n®(10g M2 + (10 W),
[8] theorem 331; Sec.8. Special case of (4).

N -8 P N -5 P
Toqn (ag+ec.va ) gAlpys) £ n" (na) (p28>1)

(o) = (25)°- 2= (2" e + oty

[6]1; Sec.10. Equivalent to (1) if p= s.

Z§=1 n”"(anv« ont aN)p < XN(p,s) Z’g___,] 2~ %(n an)p (p>1>830)

- 1
A(pes) = Tf‘s')p*% (=) (10?3)2 * d((lo; n)*)‘

[61; Sec.10. Identical to (2) if s=0.




(5)

(6)

(7)

(8)

, 7] +...+a‘P>}‘1"'P PRSI (p>0)

=1
() = (142) 22 (1ep) VP 2xP(10g 172 4 Hl(10g M),

{913 Sec.11. For the meaning of the prime see Sec.11.
Equivalent to a special case of (8).

p N P
::21 (an+ ceot aN) >,XN(p) Z 4 (n an) (0<p<1)

kn(p) =pP 4 pp+1(1-p) 21:2(103; PRI g((10g m=),

(6], or [8] theorem 344; Sec,12. BEguivalent to a special
case of (7).

-e(a;ll/p*_“‘"a;‘/p)l) (o<p<1,

= np'san < A (p,s) Sn
s£0)

n="1

o = (527~ (5277 22 s oty

{61; Sec.12., Eguivalent to (6) if s=0.

=1

N  -s -p N -5 -P
2n=1 n (aal,l +eeet an) £ )“N(P’B)En:‘l n {n an) {(p>0,
s<-p)
=5

Ay(poe) = (2 - (T2 B %Lfém?f (‘(ﬁv)-

Sec.12. Equivalent to (5) if s = ~p.
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Samenvatting

In dit proefschrift wordt voor een aantal ongelijkheden tussen
eindige reeksen met positieve termen onderzocht, wat het asympto-
tische gedrag is van de in die ongelijkheden voorkomende constane
ten, indien het aantal termen van de reeks naar oneindig nadert.
In 8 1 wordt een tweetal algemene stellingen over iteratieprocessen
bewezen en met voorbeelden toegelicht.

Daarna begint in § 2 de tot in alle details uitgevoerde bepaling
van een asymptotische formule voor de best mogelijke constante die
optreedt in een eindige versie van de ongelijkheid van Hardy. Wor
een vaste waarde van p in (0,1) trachten we een formule te vinden
voor kN(p) als New , waarbij XN(p) het kleinste getal is zodat woor
alle a4 > 0,...,aN > 0 geldt :

N -1, p Py 1/P N

Zn=1 {n (a1+ oot an)} < AN(p) En=1 a .
In 8 2 wordt aangetoond dat de vraag naar XN(p) gelijkwaardig is met
een vraag over een iteratieproces. De bestudering van dit itera-
tieproces in de 88 3 t/m 7 geeft ons, behalve enige nevenresulta-
ten in § 3, de gewenste asymptotische formule voor XN(p):

Ap) = (1-p)~1/p- (1-p)'1'1/p aueilag N2 + d((1log ﬁ)fB).

De gevolgde methode is in wezen die van N,G. de Bruijn‘'s (2] arti-
kel over de ongelijkheid van Carleman.

In 8 8 wordt het eindige analogon van een bekende kunstgreep uit
de theorie der reeksen aangewend om ult het bovenstaande resultaat
een soortgelijke formule af te leiden voor de constante in een
elndige versie van een ongelijkheid van Copson. A4ls nevenresultaat
vinden we tevens een formule voor de grootste eigenwaarden van
eindige deelmatrices van een zekere oneindige matrix.

Een klasse van iteratieproblemen, die een soortgelijke behandeling
toelaten als in het geval van de ongelijkheid van Hardy, wordt be-
schreven in 8 9.

pe 88 10, 11 en 12 zijn gewijd aan ongelijkheden die aanleiding
geven tot soortgelijke iteratieproblemen, waarbij in § 10 direct
het resultaat van § 9 wordt toegepast, terwi]l we in de 88 11 en2
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gebruik maken van een alternatieve vorm die in § 11 geformuleerdb
wordt.

In de laatste paragraaf worden ongelijkheden besproken, die bij
eerste beschouwing analoog schijnen te zijn aan de voorgaande ge-
vallen, maar die toch een geheel ander gedrag vertonen.

Een opmerkelijke eigenschap van iteratieprocessen, die in 8 1 reeds
naar voren komt, maar voor de gegeven beschouwingen over reeksen
van weinig belang is, wordt in het aanhangsel door een uitgewerkt

voorbeeld geillustreerd.
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STELLINGEN

7Z5j A een Banach algebra met eenheidselement; a en b onderling ver-
wisselbare elementen van Aj b= 03 =zij de complexe functie f locaal
analytisch in een omgeving van het spectrum van a3 zij F de "principal
extension' van f; Fn de "principal extension' van f(n). Dan‘is

-1

Flasb) = 2870 (an)7! ¥ (a) b7,

Litteratuur., E,Hille, R.S.Fhilips,
Functional analysis and semigroups,
blz. 164 e,.v.

II

Bekend is dat in een ring de verzameling W der wortelgrootheden be-
vat is in de verzameling J der eigenlijk nilpotente elementen, Jkan
wezenlijk groter zijn dan W, zelfs in een commutatieve Banach algebra

met eenheldselement.,

Litteratuur. B.L.van der Waerden,
Algebra II, blz., 143,
M.A.Naimark, Normed Rings, blz. 162.

III

Verscheidene stellingen over lineaire functionalen op een Riesz
ruimte kunnen gegeneraliseerd worden tot stellingen over lineaire

afbeeldingen van een Riesz ruimte in een complete Riesz ruimte.

Litteratuur. N.Bourbaki, Eléments de
Mathématique, Livre VI Intégration,
Chap.II, 8.2.

Iv

Het door Coxeter geuite vermoeden over afhankelijkheid in Artin's



axioma's van de affiene meetkunde is julst, mits het goed geinterpre-

teerd wordt,

Litteratuur. H.S.M.Coxeter,
Introduction to geometry, blz. 191.
E.Artin, Geometric Algebra, blz.51 e.w

v

In een Banach algebra met eenheidselement zij M(U) de aanduilding voor
de verzameling der elementen waarvan het spectrum in de open deelver-
zameling U van het complexe vlak ligt., Indien M(U) samenhangend is,

dan is O samenhangend.

VI

Zij A een commutatieve B*-algebra met eenheidselement; € het com-
plexe vlak., Indien er een niet lege open deelverzameling 0 van €
bestaat, zé dat M(O) relatief compact in A is, dan is A volledig iso-
morf met een eindig dimensionale algebra c”.

VIiI

Z2ij A een Banach algebra met eenheidselement; € het complexe vlak;
zij F de verzameling van de complex-waardige functies, f, gedefi-
nigerd op open deelverzamelingen van € x A, waarvoor f{{,a) locaal
analytisch en f{a,z) locaal constant is (a,a vast, [, z variabel);
zij 8 de deelverzameling van € xA bestaande uit punten (a,a) waarvoor
a tot het spectrum van a behoort, de zgn. spectrale graph. Dan is de
natuurli jke afbeelding van de ruimte van de kiemen van functies van F
in de punten van © op de ruimte van de analytische kiemen in C
continu. Het is te verwachten dat deze afbeelding een bruikbaar hulp-

middel zal zijn in de functietheorie in Banach algebra's.

VIII

In wiskundige uiteenzettingen worden lacunes vaak overbrugd door zegs-

wijzen als: '"men ziet zonder veel moeite dat ..."; ‘thet is onmid-



dellijk duidelijk dat .,.". Het is mogelijk een genormaliseerde
lijst op te stellen, die in de behoefte aan dergelijke uitdrukkingen
voorziet, Beperking van de gebruikte ultdrukkingswijzen tot een
dergelijke 1ijst zou de leesbasrheld van wiskundige geaschriften ten

goede komen,

IX

De laatste jaren is op verschillende wijzen een groothelid "studie~-
rendement" gedefiniéerd en gemeten. Uit individuele, kwalitatieve
gegevens is waarschijnlijk informatie te verkrijgen die voor onder-

wijsverbetering waardevoller is.

X

Om de toekxomstige ingenieurs vertrouwd te maken met de maatschappe-
l1ijke verantwoordelijkheid die 2zij zullen dragen, is het nuttig hen
tijdens hun studie te confronteren met de geschiedenis van de tech-
niek en de invloed daarvan op de samenleving.



