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Introduction and summary 

This thesis gives a contribution to the theory of aeries with 

positive terms. Many of the classical results in this theory are 

inequalities involving two series, the terms of which stand in ce~ 

tain relation to each other. As an example we take a well-known 

theorem due to G.H.Hardy (see e.g. [8] theorem 326) • 

... 
If an~ 0 (n=1,2, ••• ), 0 < l:n=1 an < ""t 0 < p < 1, then 

(0.1) 

for each value of p is the constant (1-p)-1/P best possible 

in the sense that the theorem becomes false if (1-p)-1/p is 

replaced by a smaller constant. 

We refer to (0.1) as to Hardy's inequality. 

We will study the corresponding inequality for finite aeries; i.e. 

we will consider 

(0.2) 

for some natural number N. Formula (0.2) is usually referred to 

as a finite section of (0.1). Let AN(p) denote for some value of 

p E: (O ,1) the smallest (or best possible) value of A for which (0.2) 

holds for that value of p for all a1 ~o, .•• ,aN ~0. That such a 

smallest value does exist follows from the fact that AN(p) is the 

maximum of the continuous function F(x1 , ••• ,xN) = 
N -1/p( t1 t1)1/p = l:n=1 n x; + ••• + XN on the compact set defined by 

~= 1 xn = 1, x1 ~ o, ••• ,xN ~0. As (0.1) also holds for aeries 

with an= 0 for n > N, we see that AN(p) < (1-p)-1/P. Moreover, 

considering only the sequences a 1 , ••• ,aN with aN= 0, we see that 

AN(p) ~ AN-
1 

(p). From this it follows that limN-.., AN(p) ~ 

~ (1-p)-
1
/P. However, from the fact that the constant (1-p)-1/p 

in (0.1) is beat possible, it follows that this limit cannot be 

smaller than (1-p)-1/P. So we have 

(N-+<») • (O .3) 

For the meaning of the symbols o and 6 we refer to [1]. 
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In this thesis we intend to obtain more information about the 

asymptotic behaviour of best possible constants in finite sections 

of classical inequalities, such as AN(p), if the number of terms 

in the section tends to infinity. Actually, instead of (0.3) we 

shall find for AN(p) the formula 

AN(p) = (1-p)-1/p- (1-p)_1_1/p 2n:2 (log N)-2 + d((log N)-3 ). 

(0.4) 

Although there are many theorems of the same type as (0.1), only 

few results are known about the beat possible constants occurring 

in the corresponding finite sections. Using eigenvalue theory of 

truncated integral equations, N.G.de Bruijn and H.S.Wilf [3) have 

derived an asymptotic formula for the best possible constant in 

Hilbert's inequality for finite aeries 

_N ( )-1 N 2 
~-

1 
m+n a a ~ A E 

1 
a 

m,n= m n n= n 

In a seperate note H.S.Wilf [12) remarked that the method of [3] 

can be extended to several other cases, some of which are also di~ 

cussed in this thesis with slightly improved results (see Sec.8). 

N.G. de Bruijn [2] proved for the best possible constant AN of a 

finite section of N terms of Carleman's inequality (see [4]) 

... 
(a1 ;::..o, .... o<En=1 an<.,.,), 

(0.5) 
the asymptotic formula 

2 ( )-2 .I -3 AN = e- 2n: e log N + o( (log N) ) • (0.6) 

The method employed in this thesis is essentially the one used in 

N.G. de Bruijn's paper [2) on Carleman's inequality. 

Just as in Carleman 1 s original proof of (0.5) the basic tool is the 

theory of Lagrange multipliers. By this the problem transforms in­

to a question concerning an iteration process, and the study of that 
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iteration process produces proofs of formulas such as (0.4) and 

( o. 6). 

It may be mentioned that J.W.S.Cassels [5] also used Lagrange mul­

tiplier theory to prove inequalities such as (0.1) and (0.5) 1 but 

he obtained no information about the corresponding finite sections. 

This thesis consists of 1~ Sections and an appendix. 

Sec.1 contains some results and examples on iteration processes, 

and has no direct relation to series. The principal result in this 

Section is theorem 1.2, which states that if under certain condi­

tions (zn} converges to a zero z
0 

of a continuous function ~(z) 

and 

z - z = n+1 n (0.7) 

then either a-z = d(n-
1

) or a-z = e((log n)-1). In both cases 
n n 

the theorem gives even more information about a-zn• The arguments 

in the proof of theorem 1.2 may be regarded as typical of a way of 

arguing that will be applied in the following Sections. 

A complete discussion of (0.2) starts in Sec.2. The proof of (0.4) 

is completed at the end of Sec.7. As AN(p) is the maximum of a 

differentiable function in (x
1

, ••• 1xN) subject to certain restric­

tions, we make use of a Lagrange multiplier to determine it (in 

Sec.Z). By our calculations we then obtain an iteration process 

(the iterates depending on a parameter A) which is of the form 

where ~(A,z) is a convex function of z attaining one minimum in 

(1, ... ) which is positive for A leas than a certain number w (w > 1 ), 

zero for A = w1 and negative for A > w; and where R is a nuisa~ 
1 n 

term which for fixed A and z is ff(n- ) but which, nevertheless, 

tends to~ if z1'Aqnq, where q = p(1-p)-
1

• If zm :;.,4qmq, in+
1 
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is not defined and the procedure stops (or breaks down). We dedne 

a breakdown index NA which is, roughly speaking, the last value of 

m for which zm+
1 

can still be defined. Determining NA for each 

value of p, we shall obtain information about "N(p), which equals 

the only value·of A for which the Nth iterate equals Aq~. In &c. 

3 we prove that for A ~ w no breakdown occurs, so "N < w. Some 

additional results in this Section constitute a proof of Hardy's 

theorem for infinite aeries. The important result that there 

exists a C > 0 such that (j)(A,zn(A)) > C n-t for AE:(1 1 w) is proved 

in Sec.4. By virtue of this result 

comparison to (j)( At z (A) ) when z (A) 
n n 

the R (A,z (A)) is small in 
n n 

is small and n is large. In 

Sec.5 we introduce a number p which exceeds the zero of ~(w,z) and 

define DA to be the largest index such that z (A) is leas thaa p. 
n 

We also define an auxiliary index EA with DA < EA ~ NA ( "", and 

prove some results in preparation of Sec.6. In this Section it is 

proved that 

and that the recurrence relation is eo well approximated by the 

differential equation dz/d(log n) = ~A,z) that 

Jp -1 
log DA = (~A,z)) dz + 0(1) 

1 

A standard treatment of the latter integral is the topic of Sec.?. 

In Sec.8 an asymptotic formula for the beat possible constant in a 

finite section of an inequality due to E.T. Copson (see e.g. [8] 

theorem 331) is derived from (0.4) by Holder's inequality. As an 

additional result we obtain a formula for the largest eigenvalue 

of finite aubmatricee of a certain infinite matrix. 

In Sec.9 a class of iteration problema is described which can be 

treated analogously to the one of the Hardy case. Theorem 9.1 

generalizes the results of Seca.3- 7. The proof of this theorem 

is omitted, since no essentially new arguments are needed. 

Applying theorem 9.1 to the iteration problema arising from some 

other inequalities of E.T. Copson ([6)) we obtain asymptotic for­

mulae for the beet possible constants in finite sections. This~ 

be found in Sec.10. The inequalities in this Section are general-
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izations of those in Secs.2 and 8. Not only Lagrange multiplier 

theory but also application of Holder's theorem is used in order to 

transform the finite section problems into iteration problems. 

In Sec.11 we show that an inequality of K.Knopp gives rise to an 

iteration problem of the same nature, and we formulate an analogue 

of theorem 9.1. Application of this theorem produces a formula for 

the constant in the finite sections. 

In Sec.12 the result of Sec.11 is extended to some other inequali­

ties, some due to E.T. Copson, another originating from our system­

atic treatment. 

For the results of the Secs.10, 11 and 12 we refer to the list of 

formulas on pages 78 and 79. 

In Sec.13 we discuss some cases, at first_ sight seemingly of the 

same type as the previous ones, but in fact behaving quite 

differently. 

In the appendix we throw some more light on theorem 1.2, discussi~ 

an example in detail. For an iteration problem of the form (0.7)in 

which it depends on the value of a continuous parameter, whether ~e 

solutions are d(n-1) or d((log n)-1), we give a formula which is 

uniform in the parameter and thus illustrates how the different 

types of solutions are related. One of the tools will be a version 

of Banach's theorem on the fixed point of a contraction operator, 

by means of which we show the existence of small solutions of an 

auxiliary iteration problem. 

A list of formulas and a list of references may be found after the 

appendix. 

With respect to the notation Secs.2- 7 are to be regarded as a unity. 

Notations introduced in the other Sections are valid only in the 

Section where they are introduced, with the exception of the T's 

and S's in Secs.9 -12, which denote properties. 
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1. Preliminary results 

This Section contains two theorems on iteration processes and some 

examples. The iteration processes we will study have the follow­

ing form 

(n=1,2, ••• ). ( 1 .1) 

Theorem 1.1. If the Fn in (1.1) satisfy 

(n ... co, -co < x <co), (1.2) 

whereas ~ and ~ are continuous functions and ~ has a discrete set 

of zeros; and if, moreover, the se.quence { z } given by ( 1. 1) and 
n 

(1.2) is bounded, then lim z exists and ~(lim z ) = 0. 
n-co n n- n 

Proof. As the sequence {zn} is bounded, the zn are in some com­

pact interval J on which ~ is continuous. So the d-term may be 

replaced by d(n-
1

) and we obtain 

As the maximum of l~(x)l on J exists, we have (with A> 0, B > 0) 

I zn+1 - zn I < n -
1 

A + n -
2
B and so I zn+1- zn I ... 0. Consequently, 

every point x satisfying ,, = lim inf z '*' x~ lim sup z = 1;. 
( ) n ... .., n n ... oo n • 

is an accumulation point * of the sequence {zn}. 

If ,, < 1; 2 , there exists a 6 1 and a 6 2 in (,,,, 2 ) with the prope~ 

that ~(x) I 0 for x€:[6 1 ,6
2
]. We shall prove that 1;1 ~6 1 if 

~(x) > 0 on [6 1 ,62 ]; the proof that 1; 2 ~ 62 if ~(x) < 0 on [61 ,62 ] 

is analogous. Let min {~(x) I xE:: [61 ,62 l} = ~ > o. 
Let m be so large that.the d(n-1)-term is larger than -t~. and 

that I z
0

+1 - zn I < 62 - 61 for n ~ m, whereas zm > 6 1 • It is evi­

dent that such a number m can be determined, since ' 2 > 61 implies 

that zn > 61 for infinitely many values of n. 

(•) We call x an accumulation point of the sequence {z } if each 
n 

open interval containing x also contains z for infinitely 
n 

many values of n. The possibility that all these z may be 
n 

equal to x is not excluded. 



Then zn > o
1 

for all n ~ m,. which is proved bJ an induction argu­

ment. As a matter of fact, zn > o
1 

and n ? m implJ zn+1 > o1 , ae 

either z ? o and z 1 ~ z - I z 
1 

- z I > z - (o. -61 ) ? o1 , or n 2 n+ n n+ n n • 
z E: (6 ,o ) and z 

1 
- z > in-1p. > 0. So r ~ 6

1
• As this n 1 2 n+ n ., 

constitutes a contradiction, we have proved that lim infn-co zn = 

= lim supn-co zn = ~. It only remains to be proved that ~(~) = 0. 

For this purpose we suppose that ~(~) ~ 0 and we can find an inter­

val J' = [~-o.~+o] such that ~(x) ~ 0 on J 1 • znE: J' if n ?m1 • 

Now <p(x) > 0 on J' implies min {<p{x)l xE:J 1 } = p.1 > 0 and <p(x) < 0 

on J t implies max {<p{x) I xE: J 1 } = p.
2 

< 0. So we have in the case 

of <p( ~) > 0, that ~ + o ? z 1 = z + 'Ifl (z +
1 

- z ) > 
1 

. 
1 

n+ m1 v=m, v v 
> z + En v- (p.

1 
- Bv- ) for n > ~. If <p(~) < 0, we have 

m, v=m, 1 1 
~- 6 < z + 'Ifl v- (p.

2 
+ Bv- ). If vis sufficientlJ large, we 

m, -1 v=m, -1 .1.. 
have p.

1 
- Bv > fp.

1 
and p.

2 
+ Bv < fl"t. The above inequalities 

are therefore in contradiction with the fact that ~=k v-
1

- co if 

n-<». By this the proof of theorem 1.1 is completed. 

We would make some remarks. 

Remark 1. We can prove the convergence of zn to a zero 

the same way as in theorem 1.1, if (1.2) is replaced by 

= an (q>{x) + Cf(bncj){x) )) where an ? 0 (or an ' 0) for all 

bn- 0 if n-co, and E;=1 an diverges. 

of <p in 

F (x) = 
tl 

n, a - 0, 
n 

Remark 2. A sequence z given by (1.1) with F satisfYing {1.2) 
n n 

may diverge as is shown by the simple example 

-1 3 
z1 = 2, zn+1 - zn = -n zn. 

In this case we have z
1 

= 2, z2 = -6 and it can be proved by induc­

tion that z2n_1 ~2(2n-1), z2n' -4n. In this example 

lim inf z = -•• lim sup z = +m and the sequence {z } has 
n-• n n-• n n 

no finite accumulation pointe. 

Remark 3. Even if a sequence {z } given by an iteration procedure 
n 

indicated by (1.1) and {1.2) has a finite accumulation point, the 

limit of zn does not necessarily exist, as will be shown b7 the 

following example which we shall describe only roughly. We take 

q>(x) = 1 and we try to find a continuous function •• such that the 

sequence {zn} given by 

2 



has zero as accumulation point, whereas a subsequence of {z } bmds 
n 

to +•• The function 4l will be zero, except for a set of disjoint 

negative peaks at relatively large distances. We shall construct 

a sequence a
1 

,a
2

,a
3 

, ••• of real numbers, with the properties 

0 < a 1 < a
2 

< ••• and an- • if n .... •, a sequence n, •Da ,n, , ••• of 

positive integers with ~-.., if k- ... , and a s~quence d
1 

,d
2 

,d,, .•. 

of positive real numbers. The function ~(x) is zero except for 

( -1 -1) 
values of x in the intervals ~-~ ,~+~ ; ~is linear on the 

intervals [ak-n;
1
,~J and Cak'~+n;

1
J, whereas'(~)= -dk 

(k=1,2, ••• ). 
-1 ....n -1 

If a1 = t1!,1 v and n1 = 100, we have z1 = 0 and zn+1 = l;""'1 v 

for n=1 , ••• , 100. So '( z'llO ) = 0, and z111 = a 1 l we there fore take 

d1 so large that z102 = 0; then we find z
103 

= ( 102) -
1 

, z 10 ~ = 
1 -1 = t103 v- and so on, until zm exceeds a 1 -n1 • It is easy to show 

\1=102 1 
that m1 = min {n I zn > a 1 + n~ } is finite, since 1 + n -

1
t(x) > 

-1 [ -1] -1 > 1 - n d
1 

for xE: O,a
1

+n
1 

, and 1 - n d
1 

> t if n is suffic-
m2 -1 2 

iently large. We tak& a
2 

= z + E 1 v and n
2 

= m
1

; then 
m1 v=m1 

t<z) = 0 for n = m1 ,m1 +1, ••• ,m~; z 
1 

= a 2 • We take d2 so large 
n n2+ 1 

that z 
2 

= 0. If m
2 

=min {nl z > a
2 

+ n; }, we take a, = 
n2 + m2 -1 2 n 

= z + E 2 v , n, = m
2

, and d, so large that z 
2 

"" o. When 
m2 v=m 2 n,+ 

ak' ~ and dk have been constructed in this way, and if ~ = 

{ I -1} mft -1 2 
z min n zn > ak + nk , we take ak+1 = z + E v- v , nk+1 = lll:k 
and ~+ 1 so large that z + 2 = 0. It !f11 be~ear that the 

zn obtained in this way ~~ 1 dense everywhere on the positive real 

axis. 

It is easy to show that no example of this phenomenon can be found 

with ~(x) = 0 and consequently having the form z 
1 

- z = n-
1
!f>(Z ), 

n+ n n 
where If> is a continuous function. The existence of two "forces" 

-1 
~ and n t working in opposite directions is essential for this 

effect. 

We now come to the major result of this Section. It also concerns 

an iteration process of the form (1.1), but (1.2) is replaced by 

the more special formula 

F (x) = 1 [!f>(x) + t(x) + d'(~)]. 
n n n nt 

{1.3) 

3 



It is, however, this situation which we shall meet in the ftlllowing 

Sections. As theorem 1.2 asserts something about the behaviour of 

the zn if n- ... , no requirements are made upon the beginning of the 

iteration. 

Theorem 1.2. If b < c, cpE:C(lt-)((b,c]), cpE:C(1 )((b,c]), 

xE:C(O)([b,c]); b <a< c, cp 1 (a) = o, cp 11(a) > o, cp(a) > 0; and if, 

moreover, the sequence {zn} satisfies the two conditions 

lim z = a n-• n 
and 

1 cp(zn) x(zn) 
zn+1 - zn = ii (cp(zn) + -n- + <1(----;r--)) (1.4-) 

then either lim n(a - z ) = cp(a), or 
n-oo n 

1 P log log n "'( 1 ) 
zn•a- --.- +o 

a log n a~ (log n)2 (log n)2 
(n .... ..,) (1.5) 

1 1 
where a =~"(a), 13 = b'~~"" (a). 

( C(k)((b,c]) denotes the class of all functions which have con­

tinuous kth derivatives (k=0,1,2, ••• ) on (b,c) and continqous right 

kth derivatives in b and left kth derivatives in c.) 

Proof. The proof is divided into different parts. 

(1) First, we make some trivial simplifications and conclusions. 

From lim z = a, it follows that cp(a) .. 0. As {zn} is bounded n ....... n 

and x is continuous we may replace ~(n- 2 x(zn)) by ~(n- 2 ). It will 

be convenient to have 

instead of (1.4). If we write (1•4-) in this form, then 

• 1 (x) = t(x) + •(x); so t 1 (a) = 9(a). 

(1.6) 

We restrict ourselves to a (possibly small) closed subinter-val 

J = [6
1 

,6
2

] c [b,c] with the following properties: aE: {61 ,6
1

) and 

0 .( cp(x) < lj)(a); lcp 1 (x)l < tt cp"(x) > 0; and ~cp(a) < cp{x) < ~cp(a) 

(so ~cp(a) < cp
1 

(x) < ~t(a)) for xE: J. The justification of these 

restrictions of J will be apparent later on. 

4 



Let n
0 

be an integer which exceeds N
0

, and which is so large that 

torn> n z €J and that the 0-t~rm in (1.6) is in absolute value 
1 

0 D 

<in- ljl(a). Then it will be clear that z 1 - z > 0 torn> n
0

, 
n+ n 

and th.is implies a - z J. 0. 
n 

From now on we cone.i.der only values of n exceeding n
0

• For x€J 

we have 

!p(x) = a.(x-a)2 + j3(x-a)J + 0'( (x-a)~ ) 

and 

~(x) • ljl(a) + d(x-a). 

Substituting tn =a- zn we can wr.ite (1.6) ae 

t 
tn+1 - t • -11 {a.tt - IJt' + d( t~ ) + IP(a) + o( ..... !!) + 0( ..!..t )} • 

n n+ n n n n n n 

We put ntn = n(a-zn) .. sn• As we already know that tn = o(1) 

(n _.,.), we ma;y write the recurrence relation for the e as 
n 

s - s = 1 {s - ~(a) + (s +1) o(1)}. 
n+1 n n n n 

(1. 7) 

-1 We already haTe sn > 0 tor n > n
0 

and n sn .... 0. 

(2) Next, we prove that we have e.ither l.im s = cp(a) or s - oo 
n-oo n n 

if n-•· As {sn} is a solution of an iteration process which is 

of the form (1.1), (1.2), either we have lim s • '(a), or {sn} 
n ....... n 

is unbounded. The latter implies that a subsequence d.i.verges to 

+co. But if a subeequence of {s } tends to +oo then {s } itself 
n n 

tends to +oo. This ma;y be seen if we write (1.7) as 

If o(1) + t > 0 (which is the case if nis sufficientl;y large) and 

sn > B > 2cp(a) + 1, we have sn+1 - sn > 0 and hence sn+1 > B. As 

this holds tor ever;y B, lim supn-oo sn = +oo implies sn .... +•. We 

have thus proved that either n(a- z )- ~(a) or n(a- z )- +- It 
n n 

remains to be proved that in the latter case {z } satisfies (1.5). 
n 

(3) Very roughly speaking, (1.5) means that the influence of ' 

and of the d-term is negligible in comparison with the influence 

of •· 

5 



We shall prove that there exists a positive constant C such that 

~(z ) > cn-i if n > n • we would remark that for n > n , ~(z )> ~ 
n o o n 

as 61 -' z < a. Let n
1 
(~ > n ) be chosen so large that s > 5fjl(a) 

n 
1 

o n 
or zn <a- 5n- fjl(a) for n ~n 1 • Now J is so chosen that ~(z) < 

< t(a- z) if z E: (6
1 
,a), and we have therefore 

for n ~ ~. If w =a - z - 4n-
1

fjl(a) then (1.8) becomes 
n n 

1 ( ,-1 
wn - wn+1 < 4 n+1 wn. 

(1.8) 

Moreover, w > 5n-
1
.(a) - 4n-

1
.(a) = n-1 t(a) > 0. For n ~n 1 we 

n, 1 1 1 1 1 t 
have w 1 > (1 - t(n+1)- )w > (1- (n+1)- ) w ; and so 

n+ n n 
wn > w n! n-t. If we determine a number C

1 
(C

1 
> 0) such that 

n, ( •• ) 
q>(x) ~C 1 (x-a)2 for xE: (6

1 
,a] then we have 

-1-n z 

for n ~ n1 • 

If C = min (C
2 

,cl) where Cl = 1-min{n 1- ~(zn) I n = n0 +1, ••• ,n
1

} then 

we have <p(zn) > C n-1- for n > n
0

• 

(4) The next step in our proof is to show that, heuristically 

speaking, the differential equation 

d(z(n)) ( ( )) 
d(log n)= 1P z n 

can be used as an approximation of (1.6). In fact we shall show 

that for n > n
0 

IfK 
n 

zn J (~(t))- 1 dt 
s, 
z 

Jn (~(t))-1dt-
15, 

log n + 0'( 1 ) • (1.9) 

log n (n > n
0
), then we shall obtain the 

(••) The existence of ~ can be proved as follows: 

6 

q>(x) = (x-a) 2 ~ 1 (x); ~ 1 (x) =a.+ 13(x-a) + O'((x-a)2 
). So 

~ 1 (a) = a. > 0; <p
1 

(x) f. 0 on [6
1 

,aJ and ~, (x) is continuous. 

So min{~ 1 (x) I xE: [o
1 

,a]} = C
1 

> o. 



result K = d(1) 
n 

(n > n ) , showing that the sequence E"" x 
o v=n

0
+1 v 

converges absolutely. with xv = Kv+1 - Kv 

To this end we need an estimate for tp(z ) - tp(y) where yf:. (z ,z 
1

). 
n n n+ 

Such an estimate is 

0 < r.p(z ) - r.p(y) < r.p(z ) - tp(z 
1

) < 
n n n+ 

< -
4
1

Cz 
1 

- z ) < -
4
1

<n+1)-
1 

[r.p(z ) + 3~(a)n- 1 J < 
~ n n 

< t<n+1)- 1 (max (r.p{x)l xf:. Co 1 ,a]} + 34J(a)) < Dn-
1

• 

Using the mean value theorem for integrals we obtain (with 

;y;t:_(zn,zn+1)) 

I 1J
zn+1 dt I I z 1 - z I 

Kn+1 - Knl = ;pm + log n:1 = n+ \P (y.) n + log n~1 = 

n 

1 lr.p(zn)+n-1~1(zn)+O(n-2) n I 
"' n+1 ~p(Yj) + (n+1 )log n+1 = 

1 ltp(zn)- tp(Yj) + n-\,<zn) + &(n-2) n I 
= n+1 ~p(Yj) + 1+(n+1 )log n+1 < 

1 r.p(zn)-r.p{Yj)+3n-1~(a) 11 n I 
< ii r.p(;y;) + ii 1+(n+1 )log n+1 < 

-1 -1 ·'·' ) < .:! n D + 3n 'f\a + _1_ < 
n tc n-f 2n2 nfii' 

as r.p(y,) > ~p(z 
1

) > C(n+1 )-t > tc n -t and 
n+ 

_! 00 _:i 

As 1Kn+
1 

- Knl <En 2, with some constant E, and En~ 1 n ~ con-

verges, we have Kn = 0(1), and hence (1.9). 

(5) It remains to be proved only that formula (1.9) implies (1,5}. 

As ~p{x) .. a.(x-a) 2 + ~(x-aY + O((x-a)") (x- a) we have 

1 1 

-;prx) "' a.(x-a)2 
a + ere 1 > 

a.2 (x-a) 
(x -a) 

and thus 
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Jy dt 1 A 1 
~ = ( ) +-It; log- + l1(1) 

6 '1'\ "1 a. a-y a.• a-y 
1 

(y fa). 

As znt a, the combination of this result with (1.9) yields 

1 +JL 1 "'() (i(a-z ) a.t log a::z a log n + v 1 
n n 

(n-oo). 

From this implicit as'3Mptotic formula we obtain an expression for 

z by iteration (cf. [1] Ch.2). 
n 

If (a-z )-1 = v we have v _.., and n-1v = o(1) if n-.... So we 
n n n n 

derive from 

a.-1v =log n + l1(1) - ~a.- 2 log v , 
n n 

that a.-1vn < (2 + 1~1 a.-2 ) log n (n- c); and the latter formula 

implies log v = l1(log log n). But this yields 
n 

a.-1v =log n -+ l1(log log n). 
n 

Taking logarithms again we obtain 

-1 
- log a. + log vn = log log n + l1((log log n)(log n) ), 

and therefore log vn =log log n + d(1). This result yields at 

once 

From the latter formula we obtain without difficulty 

1 6 log log n d( 1 ) 
zn = a - a. log n - ;:'~' (log n)' + (log n)i • 

This completes the proof of theorem 1.2. 

Remark 4. It will be clear that we could prove <p(zn) > Ca. n-a. for 

each a. > 0 in part (3) of the preceding proof. To this end, it 

suffices to take instead of J a (possibly small) subinterval, on 

which IIP'(x)l <ia.. It $ 1 (x) + d(n-
1

) <~on that interval for 

some ~ > !j!(a), we take n
1 

eo large that zn lies in the considered 

interval and en > p for n > n 1 , where p is so large that the sub­

stitution wn = (a-zn) - (1-ia.)-
1 n- 1 ~ yields for n = n1 

w > n~ 1 
(p - (1-ia.)- 1 ~) > o. 

n1 
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As Ca n-a > Ca n-P for p > a, it follows that it has to be proved 

only that ~(zn) > ~ n-a for a small value of a, in order to 

obtain ~(z ) > C n • From this it follows that we have one degree 
n 

of freedom more than we need. In the proof of theorem 1.2 we took 

p sufficiently large. In Sec.4 we have to prove an analogous re­

sult in a much more complicated situation. There we shall use the 

other degree of freedom taking a sufficiently small and p fixed 

but > p. 

Remark 5. In Secs.11 and 12 we shall meet with a situation where 

all conditions of theorem 1.2 are satisfied except q>' 1(a) > 0, 

cp(a) > 0 which are replaced by ~p"(a) < 0, q>(a) < 0. 

A.completely analogous proof shows that also in this case we have 

either n(a-zn) - fjl(a) or 

a -
1 p log log n o( 1 ) 

a log n - a' (log n)2 + (log n)2 • 

Remark 6. The sign of fjl(a) is irrelevant if we~now that for 

n > N
0 

all zn are on the same side of a. If we omit e.g. the 

requirement cp(a) > 0 in theorem 1.2 and replace it by z <a, then 
• n 

we have almost at once n(a-z ) - +oo in .. the cases where (j!(a) < 0. 
n 

Moreover, if q>(a) ~ 0 and n(a-z ) - +~, then the proof of (1.5) 
n 

does not meet with much difficulty, as we still can prove q>(zn) > 
> C n-t, (e.g. instead of (1.8) we may take z 

1 
- z < 

< ¥n+1)-1 (a-z ) ). 
n 

n+ n 

We conclude this Section with a more or less detailed discussion 

of two examples illustrating theorem 1.2. For a detailed discus­

sion of another example, we refer to the appendix. 

Example 1. Let {zn(x)} be the sequence of functions defined on 

[0,1] by the following iteration process 

{

z
1 

(x) = o, 
(1 .10) 

z 
1
(x)- z (x) = (n+1)-

1 ((z (x)-1)
2
+n-

1x). 
n+ n n 

(1) zn(x) increases with n, for each fixed value of x. If for 
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some x' and m we have z (x') ~ 1, then z 1(x') = 1 +a (a> 0) 
m m+ 

and z (x 1 ) > 1 +a (n=2,3 •••• ), and so z (x•) ..... if n ... oo by 
m+n 

1
n 

theorem 1.1. Let ~ (z) denote z + (n+1)- (z-1) 2 , then for n ~2 
n 

d(~ (z )) 
n n = 1 + 

d z 
n 

2(z -1) 

n~1 > 1 - n~1 > 0 • 

-1 ( )-1 As z
2 

(x) = f(1+x) and x n n+1 are increasing functions of x, 

we have that z (x) is an increasing function of x for n ~ 2. 
n -1 

For x = 0, it is proved that 0 ~ z ~ 1 - n by induction, using 
n -1 -2 -1 

z 
1 

= ~ (z ), and so z 
1 
~~ (1-n-1) = 1-n + n (n+1) ~ 

n+ n n n+ n 

~ 1 - (n+1)-
1 

if z ~ 1-n-
1

• So lim z (0) = 1. For x = 1 we 
n n ..... .., n 

have z
2

(1) = 1 and the sequence zn(1) increases to +oo. 

Let x (n ~2) denote the only solution of the equation z (x) = 1 
n 

1 
n 

then x > 0 and xn+
1 

< x as z 1 (x) = 1 + x n- (n+1)-1 > 1. 
n n n+ n n 

Let lim x c then c < x, = -3 + 114 < t and c ~*• since it n ... .., n 

can be proved by induction that z (t) < 1 - tn-
1

• So we have 
n 

proved for the z defined by (1.10) the following proposition. 
n 

There exists a number c, 0 < c < 1, such that 

z (x) ..... +oo if n_, co for x > c, and lim z (x) = 1 
n n.....,., n 

for x ~ c. 

Instead of the latter proposition we shall prove 

zn(c) = 1 - c n- 1 + O(n-2), 

and 

z (x) 
n 

(0 ~ x <c) 

(2) If sn(x) = n(1- zn(x)) then (1.10) yields for the an: 

{
s1(x) • 1, (1.11) 

s 
1

(x) -a (x) = n-
1 

(a (x) - x- n-1 (s (x)) 2 ). 
n+ n n n 

By the result already proved we have s (x) ..... - ... if n .... "" for x > c, 
n 

and s (x) > 0 for 0 ~ x ~c. 
n 

Applying theorem 1.2 we obtain that for x ~ c either s (x) ... x or 
n 

s (x) ...... 
n 

We shall prove that the first possibility is realized 

only for x = c. 

If sm(x•) ~ x 1 for 

10 

some m and x' then s (x') ..... _.., if n ... .., ; so 
n 



a (x) > x for 0 ~ x ~e. If Y (e) = a + n-
1

s - n-2 s 2 then 
n 

1 
n 

s 
1

(x) = Y (s (x)) - x n- • Y (s) increases for s ~ f(n+n2 
). As 

n+ n n n 
s = n(1-z ) ~ n, Y (s ) decreases if an decreases. Moreover, 

n n n 
1
n 

s
2 

(x) = 1-x and -x n- are decreasing functions, so an is a decrea& 

ing function of x on [0,1]. 

If u
2 

= 0, v
2 

= f then s
2 
(~) == 1; s2 (v2 ) = v2 ; a,(~) = t > 1; 

s, ( v
2 

) = v
2 

- tv: < v
2 

; so numbers u, and v, can be found with 

u
2 

< u, < v
3 

< v
2 

and s
3 

<u,) = 1, a, (v
3

) = v, 1o Repeating this 

argument we have after the kth (k ~ 3) step an interval [uk,vk] 

such that 0 < uk < vk < f; sk(uk) = 1; sk+1 (uk) = 1+k-
1 

(f-k-1 )> 

> 1; sk(vk) = vk; sk+1 (vk) = vk- k-
2
v~ < vk; and then we con­

struct a proper subinterval [uk+1 ,vk+1J c [uk,vk] • 

As the sequence {u } increases and {v } decreases, we have 
n n 

0 < lim u = c tJ ~ lim v = c < f· 
n-."" n "' n-oon r 

If xE: [O,c D) then s (x)-. +oo; if xE: [c DoC ] then lim a (x) = x, 
"' n "' r n .... .., n 

whereas xE: (c ,1] implies s (x) .... -oo. We shall prove c tJ = c by 
r n "' r 

deriving a contradiction from c,e <cr. If c,e < cr• we choose n so 

large that s (ctJ) < c ; since a decreases this would imply 
n "' r n 

c > s (ctJ) > s (c)> c. From ctJ = c it follows that ctJ=c =c. 
r n"' nr r ... r "'r 

(3) The case: x =c. Theorem 1.2 does not give any further 

information in this case. We already know that a (c) c + o(1) 
1 1 n 

(n ....... ) (or z (c) = 1 - c n- + o(1) n- (n ...... )) and we shall 
n 

prove that 

Using the substitutions bn = sn(c)- c; dn = n bn' we have bn>O, 

bn = o(1) (n ....... ), whereas bn and dn satisfy 

and 

[ 

d1 • 1-c, 
-1 2 -1 2 -2 2 -d 

1
-d =n {2d -c +n (d -2d c-c )-n (d +2d c)-n 3d2 }. 

n+ n n n n n n n 

From the fact that b > 0, b .... 0, it follows that b 1 - b < 0 
n n n+ n 

infinitely often. So 0 < n bn = dn < b~ + 2bnc + c 2 infinitely 
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often, and the sequence {dn) has an accumulation point in (O,c2 ]. 

On the other hand it follows from d = n•o(1) that d 1 - d • 
D D+ D 

= n-
1 

{2d - c1 + o(1)); and this implies that either lim d = 
D n~• D 

= fc2 or d - +•, (we use d > O). So lim d .. ic' and this 
D D n~• D 

means 

We shall not giye more terms of the expansion of z (c). 
D 

(4) The case: 0 ~ x <c. The fact that s (x)~ ... for xE: (O,c) 
D 

giTes at once 

zn(x) = 1 - (log n)-
1 

+ d((log n)-2) 

by application of theorem 1.2. 

Of course the ~term in this formula depends on x. In order to 

obtain a (possibly rough) estimate which holds uniformly in 

0 ~ x < o, we can refine the arguments used 

1.2. In this way it can be proved that 
lfC+X 

in the proof of theorem 

1 ~(o+x e-x 
z (x} = 1 - -

1 
+ rJ -) 

n og n e-x 

but we shall not giye the proof here. 

(n~•, 

0-'x<c) 

Example 2. This deals with an iteration process of the form 

zn+1 - zn • n-
1 

(cp(zn) + d(n- 1 ~(zn)), for which the zn converge to 

a zero a of lfl with cp' (a) /t. 0. We have formulated no general re­

sults other than the almost triYial theorem 1.1 for situations like 

this, nor shall we do so. With the exception of Sec.13 we shall 

not meet situations of this type. Nevertheless, the following 

example shows how some of our methods can be employed. 

Let {zn (x)} be a sequence of functions defined for x ~ 0 by the 

following process; 

{

z
1
(x) = 0, 

zn+1(x)- zn(x) = (n+1)-
1 

((zn(x))
2
-1+n-

1
x). 

We shall prove that there exists a number c ( 1 < c < ~) 

0.$; x < c implies zn (x) • - 1 + n - 1x+ o'(n - 2 log n), 

( 1 -1 ( -2) 
ZD C ) ,. 1 - J D C + f!J D t 

12 

(1.12) 

such that 

(1.13) 

(1.14) 



and x > c implies zn (x)- oo if n ........ 

(1) All zn are polynomials; zn(x) is an increasing function of x 

for n ~ 2. Thi£! may be seen as follows: z1 > -t; zn > - f(n+1) 

implies zn+1 >zn+ (n+1)- 1 (z~-1)>-t(n+2), thus zn>-t(n+1) for all 

dzn+1 2zn (x) •z~ (x) 1 ( 2zn) 
n; ~= z~+1 (x) = z~ (x) + n+1 + n(n+1) > z~ (x) 1 + n+1 ; 

All zn > -1, since z1 > -1 and zn > -1 implies zn+1 >- 1 + 

+ n-
1

(n+1)-1x > -1. If zm(x) ?1 for some m and x, then zn(x) ....... 

if n ....... for that value of x. 

From these considerations and from theo~ 1.1 it follows that if 

n- oo there are only three possibilities: z (x) t -1; z (x) f +1; 
n n -

z (x)- ..,. For x = 0 we have lim z (0) == -1 as z (0) ~ -1 + n-1 
n n-oo n n 

(with equality for n = 1 and n = 2 only). But even for x = 1 we 

can easily prove z (1),.. -1 by induction, as z (1) < -1 + 3n-
1

• 
n n -1 -1 

If X! = 3 then z
1 

(x
1

) = 1 whereas z,Cx,) = 1 + x
2
2 (2+1) > 1. 

So, for the number x, with z,Cx,) • 1, we have x, < x
1 

(x, = 
= -3 + V30 < i>• By repetition we find a decreasing sequence (xn} 

with c = lim x ~ 1. For x > c we have z (x) ... .., if n-oo; for 
n-- n n 

0 ~ x ~ c we have lzn(x)l < 1 and so either lim z = +1 or 
n-• n 

lim z • -1. 
n-- n 

We will first prove that zn (x) - -1 for 0 ..$ x < c. Suppose 

z (x ) ... +1 for some x
0 

< c, then there exists an m such that n ~ m 
n o 

implies zn(x
0

) ~0. z~(x) is positive and continuous on (x
0
,c], 

so min (z~(x)l xE:(x
0

,c]) =a.> 0. We then have z~+ 1 (x) = 

= z~(x) + (m+1)-
1 (2zmz~ + m-

1
) >a.; likewise z~+ 2 (x) >a., ••• , 

z~+k{x) >a., on (x
0
,c]. If n > m is so large that zn(x

0
) > 

> 1 - fa.(c-x
0

) then zn(c) > zn(x
0

) + a.(c-x
0

) • 1 + ta.(c-x
0

) > 1, 

which is impossible. So zn(x)- -1 for 0~ x <c. 

On the other hand 1et lim z (c) = -1, then W§ shall find anum-
n-- n 

ber 01 > c with lim z (c,> = -1, in contradiction to the maximum n-oo n 
property of c. For x < 3, and m ~ 3 it follows from z (x) < 0 

m 
that z 

1
(x) < 0 + (m+1)-1 (-1 + 3m-

1
) ..$ 0. If lim z (c) = -1, 

m+ n-.... n 
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we can find an m (m ? 3) such that z (c) < -t, but as z (x) is a 
m m 

continuous and increasing function of x, we can find 01 (c < c1 < 3) 

such that zm(c 1) < o. But then zn(c1) < 0 for all n ~m and so 

lim z (c1 ) = -1. So it follows that lim z (c) = +1. 
n ... m n n ... oo n 

We complete the discussion by proving the asymptotic formulas 

(1.13) and (1.14). 

(2) The case: x = c. Now we have z - +1, 
n 

z < 1. The substitu­
n 

(n+1)-1(2t -t2 -cn-1). 
n n 

tion tn = 1-zn leads to t 1 = 1, tn+1 - tn 

As tn- 0, tn > 0 we conclude that tn+1 - tn < 0 infinitely often. 

2 -1 So 2t - t - en < 0 infinitely often. As t - 0, this can occur 
n n \1 -t' n 

only if t < 1- v 1-n-lc infinitely often. This means that the 
n 

sequence {s } with s = nt has a finite accumulation point. 
n n n 

Moreover, (sn} satisfies 

In the same way as in example 1, we find that 

c c 2 + o(1) 
z (c) = 1 - -- -

n 3n 36n' 

which proves (1.14). 

(3) The case: 0 ~ x <c. Of course formula (1.13) is not uniform 

in x. By the substitution sn(x) = n(zn(x) + 1) we get 

Asz+1=o(1) 
n 

-1 ( -1 2 
s 

1 
(x) - s (x) = n x- s + n s ) • 

n+ n n n 

( ) -1 ( n- oo we have 8 
1 

- s = n (x- 8 + s •o 1)). 
n+ n n n 

As sn > 0, we have either s - x or s - ""• If s - ... then s > x 
1 n n n 1n 

and x - 8 + n- s 2 > 0 infinitely often; so s > n- x- n- x 2
- ••• n n _

1 
n 

in£inite1y often and thus n s > t infinitely often, in contra-
1 n 

diction to the fact that n- s = o(1). So we have proved 
n 

s (x)- x if n-•· 
n 

If d (x) = n(s (x) - x), then d1 = 1 - x, 
n n 

-1[2 -1( 2) -2( 2 -33 d 1 - d = n x + n 2xd - d + x + n 2xd + d ) + n d ] • 
n+ n n n n n n 
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As we already know that n-1d {x) = o(1) {n .. oo), we have 
n 

d 
1

{x) - d (x) = n-
1

<x2 
+ o{1)) = n-

1 
0(1). 

n+ n 

From this it follows that dn = d(log n), and this implies 

z {x) = -1 +!. + d(10
g. n). 

n n n~ 

In this Section we start a discussion about the finite sections of 

the inequality stated in the following theorem due to G.H.Hardy 

(see [8] theorem 326). 

If 0 < p < 1, then 

.... 1 p p 1/p 
l: {n- ( ) } n=1 a, + • • • + an .::; 

-1/p 
{1-p) l: "" 

n=1 

tor all convergent series t""' 
1 

a with non-negative terms; 
n= n 

unless all an are zero, there is strict inequality and the 

constant (1-p)-1/P is best possible. 

It ~(p) is the best possible constant in the following inequality 

for finite series with non-negative terms a1 , ••• ,aN' 

EN (n-1 ( p P) }1/p ( ) I:N 
n=1 a, + • • • + an ~ AN P n=1 an' 

then AN(p) is the maximum of 

F(!,) = F(x1 , ••• ,xN) E t!=1 

1 p 1/p 
{n- (x

1 
+ ••• + X:>} 

N 
under the restrictions l:n=1 xn = 1, x1 ~ o, ••• ,xN ~0. 

(Throughout these Sections p has a fixed value in {0,1).) The 
N 

points ! = (x1 , ••• ,xN) satisfying I:n=1 xn = 1, x1 ~0, ••• ,xN ~ 0 

form a compact set S in ~ on which the function F is continuous; F 

(•) Notations introduced in this Section are also valid in Sees. 
3-7. 
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therefore attains a maximum on S. Moreover, the maximum of F is 

attained at a point~ for which x1 > o, ••• ,xN > o. In fact, let 

z.€:8 have yk = 0, Y,e = b > 0 (1~k,£~N), then we consider !_(t) 

defined by zn(t) = yn (1~ n,N, n,!k, n;U), ~{t) = bt, z,e<t> = 

= 6(1-t). So !,(t)€: S for a+l. t€: [0,1]. Now it suffices to observe 

that we have f 1 (t) ... +ao if t J.o, where f(t) = F(!_(t)). 

We shall use the theory of Lagrange multipliers to determine the 

maximum ofF on s. As F(x1, ••• ,xN) is homogeneous of degree 1 in 

x
1

, ••• ,xN we have 

If there fore 

(k=1·, ••• ,N) (2.2) 

or 

~ (F(x1, ••• ,xN)) = X 

for a set (x1·····XN,X•), then we have F(x1·····xN) = x• E==1 x~. 
N 

Now (2.2) and En=
1 

xn = 1 are necessary conditions for an extremum 

ofF on the subset of S with x 1 ~o, .•• ,xN#O. But the maximum ofF 

is attained at a point of this subset; and so the maximum equals 

the largest stationary value of A i.e. the largest value of A for 

which there is a solution x1•••••xN of 

cl _N -1 1/P N 
-,. -[~ 

1 
{n {~ 1 + ••• + ~)) -A E 

1
x ] = 0 

u~ n= n n= n 
(k=1 1 ••• ,N), 

(2.3) 

and 

r! 
1 

X = 1. 
n== n 

Now (2.3) can be written as 

1-p N -1 -1 -1+1/p 
Xx. = E -k n {n {~ 1 + ••• + ~)) (k=1, ••• ,N). (2.4) 

K n- . n 

If we take differences, {2.4) is transformed into 

{ 

-1+1/p 1-p 1-p -1 -1 MXJt - Xk+ 1)= k {k {~ + ••• •xi>> {k=1, ••• ,N-1), 

1 1 1 -1+1/p (2.5) 
A xN -p = ~ {N- {~ + ••• + ~) } • 
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So we have to solve (2.5) and EN 
1 

x = 1; if we omit the latter 
n= n 

equation the x
1

, ••• ,xN are determined except for a multiplicative 

constant. Because of the homogeneity of the problem, no informa­
N 

tion about A is lost. This justifies our omitting tn=
1 

xn = 1. 

We write (2.5) in a more tractable form by the substitutions 

(k=1, ••• ,N). (2.6) 

.From (2.6) it follows that 0 < q < • and further that 

(k=1, ••• ,N). (2.7) 

By the substitutions (2.6) we transform (2.5) into 

{

1 - _p-1 1-p 
""k ~+1 

A = 

( k=1, ••• ,N-1) 

Combination of (2.8) with (2.?) gives 

(2.8) 

1 k ( -1 -1 1/q)-q 
z1 = 1, zk+1 = k+1 + k+1 zk 1 - A k zk (k=1 , ••• , N-1), 

(2.9) 

(2.10) 

The fact that AN = AN(p) is the largest value of A for which 

(2.9) and (2.10) have as solution (1,z2•••••zN) trivially implies 

that we have zk < (A~)q for k=1, ••• ,N-1. It will become clear 

that there is exactly one value of A for which (2.9) and (2.10) 

have a positive solution. We consider the either finite (if zm ~ 

~ (Am)q for some m) or infinite sequence {z }, z = z (A) depend-
n n n 

ing on the parameter At given by 

1 n -1 -1 1/q -q 
z

1 
= 1, z 

1 
= -

1 
+ -. -

1 
z (1 - A n z ) • 

n+ n+ n+ n n 
(2.11) 

The latter expression is of the form z 
1 

= ~ (A,z ), where~ ~,x) 
n+ n n n 

is defined if x > 0, A > 0 and x < (An)q. For each n, ~ (A,x) is 
n 

a continuous function of A and x (provided that 0 < x < (An)q); 

for fixed A and n it is an increasing function of x; for fixed x 

and n it is a decreasing function of A. If x ~ 1 and ~ (A,x) is 
n 

defined, then~ (A,x) ~~ (A,1) > 1. 
n n 

We shall prove that 1 = A1 < A2 < ••• , and that zn+1(A) can be 

17 



calculated from (2.11) if A> A • z 1(A) will be seen to be a 
n n+ 

decreasing continuous function of A for A > An· 

The process starts from the constant function z
1 

(A) • 1. We ob­

serve that A = 1 = A1 is the only solution of z 1 (A) - Aq = 0. 

Because of the· properties of lb 1 we can calculate z
2 

(A) for A > 1; 

z
2 

(A) is a continuous decreasing function of A. Further, z 2 (A}­

- +• it A~ 1; z2 (A)' 1 it A-.... So z2 (A) - (2A)q • 0 has exactly 

one root in (A 1 ,.); from what has been said above, it is obvious 

that this root equals A2 • For A> A2 we find the continuous de­

creasing function z, (A}, which tends to +• if A l A2 and to 1 if 

A-.... z, (A} - (3A)q = 0 has exactly one root in (A 21 •); and this 

root equals AJ• By repetition of this argument we obtain the de­

sired proof. An is the only solution of zn(A) - (nA)q a 0 

(n=1,2, ••• ). From now on we shall deal with (2.11) instead of 

(2.9) and (2.10). 

For a fixed value of A it may happen that we can calculate z1,z
2

, 

••• ,zm,zm+
1 

but no more z's; this happens it ~ < (kA)q for 

k=1, ••• ,m, and z 
1 
~ (A(m+1))q. We say then that the iteration 

m+ 
process breaks down at m+1. We now define the breakdown index NA 

as follows: if there exists an m for which breakdown occurs, NA is 

defined by 

NA = max (nl zn(A} < (nA)q}; 

for values of A for which the process does not break down we de~ 

NA = .... For any finite NAthe process breaks down at NA+1. So 

NA = m if and oil.ly if Am < A-' Am+1 , and NA • ... if and only if A 

exceeds all Am' although we have not yet established whether this 

ever may happen. Formula (2.11) is equivalent to 

We can write this as 

z1 = 1, zn+1 - zn • (n+1}-
1
[~p(A,zn) + Rn(A,zn}], (2.13) 

where 

1 
,-1 1+1/q !p(A,X) : - X + qA X (2.14) 

and 
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= q(q+1) x1+2/q + q(q+1)(q+2) 
21 A2 n 3! A' n 2 

1+3/q 
X + • • • • (2.15) 

Henceforward we shall make use of the notations introduced below. 

~(A,x) = -1 + (q+1) A-
1 

x1/q; '(A,x) is the vartial derivative of 

~(A,x) with respect to x. x(A,x) = (q+1)(qA)-1 x-1+1/q; so X(A 9x) 

is the second partial derivative of ~(A,x) with respect to x. For 

every A> 0, we have x(A,x) > 0 for xE:(O,oo); this implies that 

~(A,x) is a strongly convex function. For every A > 0, ~(A,x) has 

one zero, ~(A,x) has one minimum for xE: (O,oo). The minimum equals 

1 - Aq(q+1)-q-
1

, which we denote by b(A) and it is attained for 

x = Aq(q+1)-q = c(A). Further, a(A) denotes tx(A,c(A)) = 

= (2q)-1 A-q(q+1)q; w denotes the value (q+1) 1+1/q. Notice, that 

b(A) :;:.. 0 if A~ w, and b(A) < 0 if A > w. We have b(A) = 0 only if 

A= w; the value of x corresponding to this is c(w) = q+1. 

We shall show that no breakdown occurs for A ~w; in fact we shall 

prove (in Sec.3) that for A~ w zn(A) is defined for all n, and 

zn(A) < q+1. For 0 <A< w ~e shall find a breakdown situation, 

and we shall show that NA- oo if A 1 w. Our main interest will be 

in the asymptotic behaviour of NA if A f w. We shall conclude this 

Section with some heuristic arguments which don't prove anything, 

it is true, but which may, nevertheless, show us the way of handl­

ing our problem. 

If instead of (2.13) one considers the iteration process z
1

(A) = 1, 

z 1(A) - z (A) = (n+1)-
1 ~(A,z ), one can prove that for this 

n+ n n 
process z (A)< q+1 if A ~w, and that z (A) increases to +oo if n n 
A < w. One may expect that for A >,.. w, the sequence {z } calculated 

n 
from (2.13) does not behave very differently from the sequence cal-

culated from the process simplified by omitting R (A,z ), which is 
n n 

small if n is large. So one may try first to get some information 

about the behaviour of z (A) for A ~w. This will be done in Sec. 
n 

3. In that Section we shall prove not only that lim z (w)=q+1, n-... n 
but also that n(1+q- z (w))-oo. This means that z (w) satisfies 

n n 
an asymptotic formula, as stated in theorem 1.2. We obtained that 

formula on account of ~(w,x) only, as will be remembered. One thus 

may get the impression that also for A < w but close to w, the in­

fluence of R (A,z ) is small if z (A) is close to c(A). Our method 
n n n 

consists in fact in proving this. Different parts of the proof 

are prompted by arguments used in the proof of theorem 1.2. 
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The next part consists of the results of Sec.4, where it is proved 

that •(A,z (A)) > cn-t for A~ w, where C does not depend on A. n . 

This is a generalization of part (3) of the proof of theorem 1.2. 

If we replaced (2.13) by the differential equation 

d(log n) _ ~ (' ))-1 
dz - ,. ~,z ' (2.16) 

we should obtain if NA < ... 

If\ 1 
log NA = (•(A,z))- dz. 

1 

If Afw the peak of (.(A,x))-
1 

tends to.... In Sec.5 we introduce a 

number p (p > q+1) and we conjecture an asymptotic formula, viz. 

log NA =JP (.(A,x))-
1

dx + t1(1) (l t 111). (2.17) 
1 

(Notice that the maximum of (•(A,x))-
1 

is attained for a value of 

x < q+1). The proof of (2.17) is given in Secs.5 and 6, of which 

Sec.5 contains only auxiliary results. 

A standard proof of the formula 

~ (•(A,x))-
1

dx = ~ (a(w) b(A))-t + t1(1) 
1 

will be given in Sec.?. 

(At w) 

Once (2.18) has been proved we may transform it into 

~ = 111 - 2~ 2 (q+1) w(log N)-2 + t1((log N)-3) 

(it will then be clear that ). f w implies N- •). 

(2.18) 

(2.19) 

If we write (2.19) with the original parameter p, it gets the ~ 

form 
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3. The oaae: A ~ 111 

This Section is devoted to some fundamental results about the be­

haviour of zn (X) for A ~ m. We mentioned before that for X ?• 

the process (2.11) does not break down and that z (A) < q+1 for all 
n 

n. In we fact shall prove the following slightly stronger lemma. 

Lemma 3.1. If X~· then z (A) is defined for all nand 
n 

-1 
z (X) ~ q+1 - qn • 
n 

~· As zn(X) is a.decreasing function of X for 

it suffices to prove that m > X and z (m) ~ q+1 -
n n 

X >X 
1 

{n > 1) 
-1 n-

qn for all n; 

once this has been proved we shall have that z (X) exists for X~ 111 

1 n 
and z (X) ~ z (w) ~ q+1 - qn- We supply the proof by induction 

n n q 1 q 
with respect to n. z1 (•) = 1 = q+1 - q. As 1 < (q+1) + = m , 

z
2

(w) can be calculated. If we suppose that zn (Ill) is defined and 

zn(w) ~ q+1 - qn-
1 

then it follows that zn(w) < (wn)9 = (q+1)q+1n9, 

and so z 
1

(w) can be calculated. We then find that z 
1

(w) = 
~ 1 ~ 

= ~n(w,zn(111)). ~n(w,q+1 - qn- ) is defined, and because of the 

monotonicity property of ~ (X,x) with re~ to x it is not leas than 
n 1 

~n(w,zn(m)). So zn+1 (w) '~n(w 1 q+1 - qn- ), and the proof will be 

completed if we show that 

( -1) -1 w w,q+1 - qn ~ q+1 - q(n+1) • 
n 

But we have (with~ = q+1 - qn-1) 

( ) 1 n ( 1/q( )-1-1/q -1)-q 
~n w, ~ = n+1 + ii+'1 ~ 1 - ~ q+1 n • 

We use the inequality 

1 q ~ (1 1 ) 
- {q+1}n ~ + (q+1)n 

-q 
= 1- q + r.""k· =2ckq){q+1)-k n-k 

(q+1 )n 
(3.4) 

{the aeries in the right-hand side is an alternating series whose 

sum is positive). 

The inequality 1 - ( ) -1 -1 ( ( -1 _,)-1 
x q+1 n ? x holds for x~ 1+ q+1) n ; 

( ( ) -1 -1)1/q so we may substitute x = 1 - q q+1 n in it, on account of 

(3.4). The result of this substitution is 
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q )1/q 1 ( q 1/q 
1 - (1 - (q+1 )n (q+1 )n ~ 1 

- (q+1 )n) • 

Combining (3.3) with (3.5) we obtain 

wn(w,q+1- qn- 1 )~(n+1)- 1 + n(n+1)- 1(q+1)=q+1- q(n+1)-1• 

This completes the proof. 

Lemma 3.2. lim z (w) 
n-.., n 

Proof. We define R* (). ,x) 
n 

q + 1. 

0 .:;;; X ~ q+1 

X > q+1 

X< 0 

As z (w)E:(O,q+1) we replace (2.13) (for).= w) by z
1 

= 1, 
n 1 

z 1 - z = (n+1)- (~(w,z ) + R*(w,z )). Theorem 1.1 yields at 
n+ n n n n 

once lim z (w) = q+1. 
n-... n 

If).> w, then ~(X,q+1) < ~(w,q+1) = 0, ~(X,x) being still a 

strongly convex function of x with ~(X,1) > 0 and ~(X,x) > 0 for x 

large. This implies that ~(X,x) has two zeros t(X) and u(X), aatUr 

fying 1 < t,().) < q+1 < u().), for each value of ). > w. As the mini­

mum of ~(X,x) is attained for x > q+1, ~(X,x) is decreasing on 

[1,q+1]. For).> w we have the following analogue of lemma 3.2. 

Lemma 3.3. If ). > w, then lim z (X) = t().). 
n-oon 

Proof. As we have proved z ().) < q+1 for). ~w, it suffices to 
n 

show that every z ().) exceeds a fixed number, in order to apply 
n 

theorem 1.1 in the same way as in the previous lemma. As zn+1 - zn 

can be negative only if z > t().) we have that z ().) ~ 
n n 

·~ min { t (). ) + b (). ) , 1 } • 

Remark. As $(X,t().)) = -r().) > -2 and x(X,x) > O, we have 

~().,x) > -r(X)(x-t().)) for x > t().). If zn(X) > t(X), then 

z 
1

(X) > z (X) + (n+1)-1 ~(X,z (X)} > (1 - r(X)(n+1}-1) z (X) + 
n+ n

1 
n n 

+ r(X)(n+1)- t(X) > t().). So zn().) - t(A) does not change sign 

more than once. 

22 



Let 
2q 

d(A) = t 1;~ • (q~1) 1 [a' w<;.x>] 
= 3i ax x=c(A) 

then we have the following lemma. 

Lemma 3.4. 

zn(w)=c(w)- a(w)iog n- (:{:h, 1
tfo! 0 !):+cf((lo~ n)'). (3.7) 

Proof. Application of theorem 1.2 for the interval [O,q+2] gives 

the result almost at once. We would only observe that lemma 3.1 

means that n(q+1- zn(w)) > q, whereas~n(w,x) written as 

n-
1 ~ 0 (x) + d(n-2 xo (x)) on [O,q+2] yields cp

0 
(q+1) = tq. So 

n(q+1 - z (w) )- ""• 
n 

We conclude this Section with some remarks on the theorem that 

states the infinite inequality (2.1); it must be noticed, however, 

that the proof of (2.1) resulting from our remarks on finite sec­

tiona, which we shall give below, is much more complicated than 

Elliott's proof given in [8] theorem 326. If we were interested 

in the infinite inequality only, our approach would be too compli­

cated for the result. Since q = p(1-p)-1 , w = (q+1) 1+1/q we have 

w = (1-p)-1/P. Once (2.20) will have been proved, we shall have 

proved that for all convergent series with non-negative terms we 

have (2.1): 

a • n 

00 { -1 ( p p }1/p -1/p ... 
Indeed, if En=1 n b1 + ••• + bn) > (1-p) En=1 bn for some 

sequence {bn}' then there would exist a nfinite~sequence b
1

, ••• ,bm' 

...111 -1 p p 1/p -1/p ...111 
0, ••• with ;t;n=1 {n (b1 + ••• + bn)} > (1-p) ;t;n=1 bn' and this 

contradicts formula (2.20). (Notice that A1 < A2 < ••• , see Sec .2) 

Moreover, the constant (1-p)-
1
/P in (2.1) is best possible; for,if 

we replaced it by a smaller one, we could find, on account of 

(2.20), a •rinite" series violating (2.1) with the new constant. The 

tact that there is strict inequality for all convergent series, is 

the only detail of' the theorem quoted in Sec.2, which does not f'ol-

23 



low from (2.20). We shall revert to this question later. First 

we shall prove that for any sequence {x }, with 
1 n ~ 

n- x·P(xP
1

+ ••• +xP):z(ld) (n=1,2, ••• ).t 
1

x diverges. 
n n n n= n 

(All such sequences differ only by a multiplicative constant.) 

Using lemma 3.1 we derive from z (ld) ~ q+1 - qn-1 (n=1,2, ••• ), 
n 

that (n(q+1)- q) xP ~~ 1 + ••• + xP; and this implies xP ~ 
n n n 

? (n-1)-
1 (q+1)- 1 (~ + ••• + ~- 1 ) and thus 

Using the fact that there exists a positive constant C such that 
n-2 ( -1( )-1) ( )1/(q+1) . nv=1 1 + v q+1 ? C n-1 we find that there exJ.sts a 

constant c• (we may take for x
1 

any positive number) such that 
0 -1 -1 

xn~G*(n-1) (n=2 1 ••• ), witha=((q+1) -1)p. 

Because of the relation between p and q we have a = -1 and so 
00 

En=1 xn diverges. 

Using the result of lemma 3.4, we can obtain even much more in­

formation about the Xn· From (2.8), which reads for A = w: 

( -1 ,1-p -1 -1( ( ))1/q ( ) 1 - xn xn+1 = w n zn ld , 3.7 , and the definitions 

of w, a(w), c(w) and d(w), we find by straightforward calculation: 

1 2 a log log n C1( 1 ) 
log xn+1- log xn =- ii+ n log n + n (log nP + n(log n) 2 ' 

where a = d(w) (q.(a(w) )3)-1 
= j<1-q2 ). In order to obtain a for­

mula for xn we use a summation method (see [1] Ch.3). If yn = 

= log xn + log n - 2 log log n we have 

a log lo' n + d( 1 ) 
Yn - Yn+1 = - n(log n z n(log n)t • 

As E"" (v - y 
1

) converges we have v = E00 

(Y. ... Y. ) + 
v=n "n n+ "n v=n v · v+1 

+ limn-.ooYn· If limn .... ..,Yn = log A (A > O) we find 

Yn = log A - a(log n)-
1 

log log n + O((log n)-
1
). 

From this it is derived without difficulty that 

xn = An -
1 {(log n)2 - a( log n) (log log n) + d(log n) }. 
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"" The divergence of the special aeries E 
1 

x is not yet sufficient 
n= n 

to prove the strict inequality in· (2.1) for all convergent seriee 

(except E:=
1 

0). In order to prove this, we can argue as follows. 

"" Let En=
1 

en be a conver.gent series giving eqilality, i.e. 

c • 
n 

Now c
1 
~ c

2 
:? ••• , otherwise we should obtain a series violating 

(2.1) by rearrangement of the c's; moreover en> 0 for all n, and 
-1 -p ( p P) we may assume c

1 
.::s; 1. We take y n = n en c1 + ••• +en and prove 

that yn zn(w). As y
1 

= 1. y 
1 

= (n+1)-1 +ncP(n+1)-1 c-P
1 

y , we 
n+ n n+ n 

have to Prove that Cp -p -- (1 - , .. - 1 n-1 y1/q)-q, or that 
n cn+1 w n 

( 1-p 1-p) _ -1 { -1( p p)}-1+1/p 
w en - cn+1 - n n c1 + ••• +en • (3.10) 

In order to prove (3.10) for a fixed value of n, we consider for 

m :? n+2 the function 

F(x
1

, ••• ,xm) + 

"" -1 p p p p 1/p 
+ E 

1 
{ (m+v) (x

1
+ ••• +x + c 

1
+ ••• +c )} , 

v= m m+ m+v 

(F is the same function as in Sec.2). We know that H attains the 
~ m m 

maximum 111 I:v=
1 

cv on the set, defined by I:v=1 X\, = I:Y=1 cv, 

x
1 
~ 0, ••• ,xm ~ o, at the point (c1 , ••• ,em). On the compact set V 

defined by cm+1 ~ x
1

, ••• ,xm ~ 1 the partial derivatives of Hare 

obtained by differentiating term by term, and hence 

(k=1, ••• ,m), as the latter series converges uniformely on V; (it 
.., 

has I:v=1 c~ as a majorant, where c~ = 1 if n=1, ••• ,m, c~ = en• if 

n > m). H(x1 , ••• ,xm) is a homogeneous function of degree 1. We 
infer that 

(k=1, ••• ,m). 
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The latter relation is the same as 

(k::1, ••• ,m). (3 .11) 

( ) 1-p Multiplying both sides of 3.11 by ck , and subtracting the for-

mulas for k=n and k=n+1, we obtain (3.10). 

By this we have proved that there is strict inequality in (2.1) f'or 

all non-trivial convergent series. 

4. A fundamental result about ~(A,z (A)) 
n 

As we are interested in what happens if X f w, we may confine our­

selves to values of X for which w-X is small. So, from now on we 

shall only consider values of X in (X 0 ,w] where X0 = (q+1) 1/q, but. 

further restrictions will be made in the following Sections. If 

X > X. and zn (X) < q+1 then certainly n ~ Nx, so the restriction 

guarantees that no breakdown occurs, when z (X) < q+1. 
n 

We have the following monotonicity property: if' X~ w then z
1

(X) < 

< z
2

(X) < ••• < zNX (X) if 1\ <""or z
1 

(X) < z
2
(X) < ••• , if Nx =""• 

This follows at once from (2.13), as z 1 (X) - z (X) > 0. 
n+ n 

The present Section is almost completely devoted to the fundamen~ 

lemma 4.1 • The ·version in which we prove it, is, however, somewhat 

stronger than the one we actually need. The usefulness of this 

lemma was already suggested by the proof of theorem 1.2. It is 

analogous to part (3) of that proof. However, it should be remark­

ed that the situation is now essentially more difficult, as we 

state a result which is uniform in X. We refer to the methodolo­

gical observations made in Sec.1 (Remark 4). 

Lemma 4.1. For every positive number a there exists a constant Ca 

(Ca. > 0) such that for all XE: (X0 ,w], and all n (1 ~ n < Nx + 1, 

if NX <""or 1 ~ n < ... , if N,_ == ..,), ~p(X,zn(X)) satisfies 

(4.1) 
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~· It obviously suffices to prove that for every a (a > 0) 

there exist Ca (Ca > 0) and Ca.E:CA.,w) such that (4.1) holds for 

all ).£(Ca.9 w], as a matter of fact, if we take Ctt:: min{Ca.• b(!;a)} 

we have !p().,zn().)) > C~ n-a tor all ).£().
0

,wJ. Moreover, it will 

be clear that once we have found Ca and Ca , we may take z;a:: Ca 
1 1 1 

and Ca • Ca, tor every a > a 1 • So it suffices to prove lemma 4.1 

for a< f. Further, the result <p(w,z (11'1)) > Ca (II n-cr. is a con-
n ' 

sequence of lemma 3.4; so we confine ourselves.to values of).< ~~'~• 

q~().,x), t.p(A,x) and x(A,x) are continuous functions tor At < A < ... , 

0 < x < ~. (For the notations we refer to Sec.2.) In the point 

(11'1,q+1) we have <p(ll'l,q+1) = o, ~(ll'l,q+1) = o, x(w,q+1} > o, so there 

exist b
1

, T}
1 

and y
1 

with b1 > O, A0 ~ T}
1 

< w, 1 ~ y1 < q+1 such 

th.at tor the set G defined by Tl, < A < w, r, < X < q+1 the follow­

ing propositions hold : 

(i) if (A,x)E: G, then l~p(A,:x:} I = <p(A 9:x:) < 1; 

(ii) it ().,x) E: G, then I t.p().,x) I < ta; 

(iii} inf {x(A,x)l (A,:x:)E:G} = 2b
1

• 

(4.2) 

(4.3) 

(4.4) 

From the results of Sec.3 we use that lim z (w) • q+1, and that n-.oo n 

z (w) ~ q+1- qn-
1 = c(w)- qn-

1 
< c(!ll) -(9/10)qn-1 • This enables 

n 
us to choose an index m, which we take ~6, for reasons that will 

be explained below, with the property 

(4.5} 

Using the continuity of zm(A) in A = w, and the continuity of c(A) 

we are able to determine T}
2 

with T}
1 
~ T}

2 
< w such that tor 

A E: (T}
2

,CII] we still have 

(4.6) 

We define an index AA depending on A as 

if the maximum exists and AA =..,if zn(A} < o(A) for all n. As we 

speak only about values of A exceeding A , it will be obvious that 
0 

we have AA ~ NA. For A£ (T}pw) it is trivial that AA ~ m, whereas 

AA <.., for those values of A. In order to prove the latter pro-
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position it eu!fices to remark that for fb:ed AE: (A1 ,111) we have 

•n+
1

(A) • •n(A) > (n+1)-
1 

b(A), so the sequence z
2

(A), a,(A), ••• 

increases faster than {BA log n} (BA > 0) , pouib~ until the 

process breaks down, but it will certai~ not break down for 

z (A) < q+1. 
n 

From now on we consider on~ values of AE: ('fl 2 ,w). We have to esti-

mate Rn(A,zn(A)). If zn(A) < c(A) then Rn(A,zn(A)) < Rn(A,c(A)); 

and Rn(A,C(A)) < Rn(lll,c(w)) • Rn(t»1q+1) for AE:('fl 2 ,t~). Using the 

trivial fact that (q+v) < (q+1)(v+1) for all natural v, we have 

that Rn(t»,q+~) < fq ~ 1 n·k • fq(n-1)-
1

; and this is not larger 

than(3/5)qn· for n ~m. Combination o! these estimates yields f'al:' 

A E: ( 'll tt t») and m ~ n -' A A 

(4.7) 

For a fixed A in ('fl 2 ,t») we have that ~(A,x) is a decreasing, st~ 

ly convex function of x in (y1 ,c(A)]; therefore, for xE: (y
1 

,c(A)) we 

have 

~(A,y 1 )- ~(A 1 C(A)) 
~(A,x) < (A) (c(A)-x) + b(A), (4.8) 

c - y, 

Application of (4.7) and (4.8) to (2.13) gives 

1 [~(A,y 1 )-'P(A,c(A)) ~ 1] 
•u+

1
(A)-zn(A)< n+1 c(X) _ y, (c(A)-zn(A))+b(A)+ 

5 
qn· , 

for AE:(tJ1 ,t»), m~ n~ AA. 

'l'he mean nlue theorem allows us to write 

tp(A,y1 ) - ~(A,c(>.)) 

0 < c(>.) _ y, • lt(A,x1 )1, 

where x1 e: (y,.c(>.)), so (>.,x1 )E:G. 

Combination of (4.9), (4.10) and (4.3) gives 

z 
1 

(A)•z (A)< ...L
1 

fia(c(X)-z ().)) + b(A) + ~ .9. }, 
n+ n n+ n J n 

for AE: Cllu•>, m-< n ~ ~· 

(4.9) 

(4. 'D) 

(4.11) 

So we have approXimated (2.13) !or m ~ n ~~by a linear recurr­

ence relation. By the substitution 

(4.12) 
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(4.11} ia reduced to the homogeneous relation w (A) - wn+1 (A) < 
1 n 

< f(n+1}- u wn(A), which can be.written ae 

(4.13} 

For AE: (ra1 ,w), m ~ n-" -'A• we derive, trom (4.13) and fu < 1, that 

w 
1

(A) > w (A) (1 - (n+1)-1 )fa. 
n+ n 

(4.14) 

From (4.6) and (1-fa) > t it tollowe that tor AE: ( ra 2 ,w], 

c(A) - zm(A) - (1-fa)-1 (3/5)qm-
1 

>(1/10)qm-1 and eo wm(A)> 
1
1
0 

qm-
1
• 

Now (4.14) implies w 
1

(A) > o, ••• ,wA, 
1

(A) > o, and w (A)> 
f -f m+ -.+ n 

> w (A) m a n a tor m < n ~ ~ +1. Fr.om the definition ot AA and 
m 1 

(4.12) we inter that wAA+1 (A) < 2a- b(A). So wAA+1 (A) > 

> wm(A) mfu (-'A+1)-fa gives 

2a-
1 

b(A) > mfa {-'A+1)-f
4 

wm(A). {4.15) 

~eretore, it n > m .and 

1 
-2/a 2/a 

n < (2a- b(A)J m(wm(A)) , (4.16) 

then 2a-\(A) < mfa n-fa wm(A) and eo by (4.15) n < ~+1, n ~ ~ 
which yields 

(4.1?) 

If m < n-" ~· ).E:(1'1 1 ,w), then zn(A) < c(A) and (A,zn(A))E: G; and 

by application ot (4.4) and Taylor's theorem we get 

2 
q~(A,z (A)) > b(A) + b1 •(c(A) - z (A)) • 

n n 
~4.18) 

Ae (4.2) implies b(A) < 1 it AE:(rau•>, we derive trom (4.18) 

q~{A,z (A)) > b (A))
1 

+ b1 • (c(A) - z (A))
2 
~ 

n n 

>i-a•b 1 (4u-
2

(b(A))
1 

+ (c(A)- zn(A))
2
}, (4.19) 

where b
1 

"' llin ( 1 , 4a'"' b1 } • 

Using dt + e 2 ~f(d+e) 2 which holds tor all d and e, we get trom 

(4.19) 

(4 • .20) 
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For values of n satisfying n > m and (4.16), we obtain when com­

bining (4.17) with (4.20) 

-ct 
n (4.21) 

If we denote ict2 b2 ma.-2 q 2•10-2 by b5 , then b, > 0 and for values 

of n satisfying n > m and (4.16) we infer from (4.21) that 

~(X,zn(X)) > b, n-et For values of n for which (4.16) does not 

hold we have 

(4.22) 

1 2 ~ 2 ~ ~ 
With b4 K 4<1 m q •10 , (4.22) implies that ~(X,zn(X)) > b4 n • 

Finally for 1 ~ n ~ m we have 

(4.23) 

9 -1 where G• denotes the set defined by T} 2 < X < w, 1 ~ x < q+1- 10 qm • 

So ~(X,z (X))> b
5

n-a. for 1 < n ~ m. If b
6 

= qw-
1 

then ~(X,z 1 ) = 
n -1 

= ~(X,1) = qX > b6 • 

If we take ta. = T}
2

; Ca =min {b,,b,,b
5 

,b
6

,ca.,w1 then for all 

XE:(ta.,oo] and all n with 1 ~ n < Nx+1 (or 1 ~ n < oo), we have 

~(X,zn(X)) >Ca. n-a. This completes the proof of lemma 4.1. 

In the following Sections we shall use lemma 4.1 only for a • t 

and write c1 instead of Ct. (Later, we shall use constants which 

will be denoted C
2

,C
5

, ••• , but this notation has nothing to do with 

the ca. of this lemma.) 

Lemma 4.2. For each number A there exists a number tA, tA E: [X0 ,ro) 

such that X E: ( tA, w) implies Ax > A. 

Proof. Let A> o. Using z[A]+1(w) < c(w) and the cont1nuity of 

c(X) and of z[A]+1(X) in X .. 111 we choose tA E: [X0 ,w) such that for 

tA < X~ 11t we still have z[A)+1(X) < c(X) which implies Ax~[A]+1. 

We will conclude this Section with a discussion of the proof of 

lemma 4.1. Among the properties used, the convexity of ~(X,x) 

should be mentioned first. The continuity of zn().) and c().) and 
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the results of Seo.3 [viz. lim z (~) • o(~) and the estimate 
n-• n 1 given b;r lelllllll!l. 3.1 which is of th'e form z (~) < o(w) -~ 1 n­

n 
( ~ > O)J enable us to chooee m and TJ, such that (4.6) holds for m 

and A.E: ( q
2 
,.) • (4.6) is of the form 

Y1 < z (A.) < c(A.) - ~ m-
1

• 
m 

Moreover, we have the estimate of R given b;r (4.7) which can be 
1 n 

written as R (A.,z (A.))~ P,n- , and which holds for A.E: (q 2 ,~~t), 
n n 

1 ~ z ~ o(A.). The substitution (4.12) which can be written as 
n 

gives the homogeneous expression (4.13) because ta~, + ~~ = ~,. 

Further we have used wm(A.) > 0 which followed from ~ 1 - ~' > 0. 

At the beginning of the proof we observed that it is sufficient to 

coneider onl;r small values of a. As we have to take ~' = 
= (1-fa)· 1 ~ 2 it follows that we can restrict ourselves to small 

values of a, obtaining ~' < ~ 1 if and onl;r if ~% < ~ 1 • 

We remarked already (see Sec.1 Remark 4) that we could give a dif­

ferent proof of the existence of a constant C with ~(A.,z (A.)) > 
-t 1n > C n , starting from the fact that z (~) < (q+1 - qn· ) implies 

n 
n(q+1- z <•>>-• (see lemma 3.4). 

n 

5. Some auxiliary results 

In this Section we shall introduce some new notations and discuss 

some results in preparation of Sec.6. The usefulness of these 

results will be clear in that Section. We start, introducing the 

numbers p and a defined by 

a .. {21+1/q -1 -1) max wq , 4(q+1)w q • 

'lie confine ourselves to values of A. E: (A. 1 ,w), where ~ • 

= max (ttl+1,Ao ) • 

(5.1) 
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1+1/q 
X • 

~· Firat we observe that ~(A 1 p) - q(2A)-
1 

p
1

+
1
/q • 

~ 1 - p + q(2A)-1 
p 
1+1/q > p(-1 + q(2A)-1 p1/q) • p(-1 + .A-1 ) ).0. 

FUrther, •(A,x) - q(2A)-
1 

x
1

+1/q is an increasing function for 

x > p, ita derivative with respect to x, -1 + (q+1)(2A)-
1 

x1/q 

being positive for x > p > (2A)q(q+1)-q. 

Lemma 5.2. If Ax~ a, and NA < • then zNA+1 (A) > 2p. 

Proof. We remember AA ~ NA. B.r the definition of NA we have 

zN +1 ~ Aq(NA+1)q, and ae A> A1 ~ Ao > 1, NA+1 > AA ~ e1 we have 
A q 

ZNA+1 > Cl > 2p. 

In virtue ot lemma 4.2 there exists a A
2 

E: [A1 ,w) such that 1E:(1
1
,eil 

impliea AA ~ o; to show this we only have to take A2 • max{11 .~a- 1 }. 

From now on we shall consider only values ot A in (A
1
,.). We give 

the following definitions of ~ and EA 

DA • max { n I zn (A) < p}, (5.2) 

if the maximum exists, if the maximum does not exist, and so 

zn (A) < p for all n, we define DA = •• 

if the maximum exists; it zn(A) < (fnA)q(q+1)-q for arbitraril.7 

large n, we define E;l,. =oo. We observe that the index-set WA, of 

which EA is the ma.ximum ia not empty 1t A£ (A, 9111); as c (1) < q+1 < 
< {fa(fq+1)(q+1)-

1
}q, we have AA£wA. FUrther,~ ~AA, asp> 

> c(A). If AE:(A19 w), then~~ N1 , since zNA+1 (A) > 2p it the 

process should break down; and. ~ < ... ae the sequence { zn (1)} can­

not be bounded, since zn+
1
(A)- t.n(A) > Cn+1)-1b(A).o 

'rhe following lemma states a prope:Hy of E1• 

Lemma .5.3. !'here exists A,£ [A1 ,w), euch that A£ (Au•> and 

n ~ E1 (or n < ... it EA • .) imply that 

[zn ( ;l,.)] 
1
/q <t nA(q+1) - 1 • 
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~· It zn(A.) ~ (i nA.(q+1)-
1

}q tor some n ~ NA., then we have 

{see {2.11)) 

and the latter quantity is certain to exceed (i(n+1){q+1)-1}q, it 

nq+1(n+1}-(q+1) > {2q+1)q(2q+2)-q, which is the case it n > A•. 

So we take A.,€(A. 11 !11) such that AA. > A• tor A.E:·{A.,,!II), (thus A.,~ 

~ lll.aX (A.,' tA•)) • 

Lemma ;.3 has the consequence that EA. < • implies 

max(nl(zn(A.)) 1/q <tnMq+1)-1, n ).AA.} .. 

• min(nl{zn(A.))1/q ~tnA.(q+1)- 1 , n ~ ~}- 1, 

We shall use the following lemma, in order to obtain a relation 

between DA and E).• 

Lemma ;.4. There exists a number A.~E:(A.,,w) such that 

•n +1 (A.) < 2p for A..E: (A.., ,w). 
X 

Proof. It zD1+1(A.) ~ 2P, then we conclude from zDA(A.) < p that 

p < zD +1 (A.)- zD (A.) ::. (D). +1 )-1 (!f(A.,zn. (A.)) + RD (A.,zD (A.))}; 
A. A. -A. A. A. 

and this implies 

p < »i1 
(p(1) + R»,., (1.,p)), 

where p(A.) • max {!f(A.,1), !f(A.,p)}. 

But (;.4) is impossible if DA. is large enough, say Dl > B. Thus 

it eutticea to take A.~ • max {A.,,tB) (see lemma 4.2), as we have 

then DA. ~AA. > B for A.E:(A.._to). Thia completes the proof. 

Proof. This lemma ia an immediate consequence ot the preceding 

~ Ae z +1 ().) 1 
< 2p we have (zDA.+

1 
(A.)) 1/q < (2p) 1/q ~ ta(q+1 )-1-: 

< t(DA+1) ~q+1)- ; and this inequality (for which we use 
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We shall conclude this Section with two lemmas concerning the ~ 

of the recursion 1 -I?., and I?.,- Ex (or Dx- oo) respectivel,y. 

Lemma 5.6 is analogous to a part of the proof of theorem 1.2, and 

it will be emplo7ed in the same wa7 as its analogue in theorem 1.~ 

Lemma 5.6. There exists a constant C
2

, such that for X£ (Xu •), 

1 ~ n ~ D~ and x (. (z (A.), z 
1 

(A.)) the following inequalit7 holds: 
" n n+ 

Proof. From lemma 5.4 it follows that z (A.) < 2p for all n with 
---- n 
1 ~ n ~ Dx+1, (notice that z +1 (A.) > z (X) if n < Nx>· First, we 

1/ n n 1/ 
suppose 2(2 p) q ~ n ~ D).., (as Dx ~ c:s ~ 2(2p) q there are values 

of n satisf7ing this condition). As A. > X~ implies X > ~ ~tq+1 

(and thus A. > 1) we have 2X > q+2, 3X > q+3, • •• • For A.£ (A.u!D) 

and 2(2p)
1
/q ~ n ~ Dx we have therefore the following estimates~ 

R (A.,z (A.)) < R (>..,2p) • 
n n n 

.., -1 -v 1-Y 1+v/q = I:v=Z q(q+1)•• •(q+v-1)(yJ) >.. n (2p) < 

< q(q+1)>..-2(2p)1+1/q E:2 v-1(n-1(2p)1/q)v-1 < 

2 1+2/q -1 -1 ( ,-1/q < q(q+1 >x-: (2p) n .. d
1

n < t d1 2p = d,. 

If max(Rn(>..uzn0·~)11 ~ n < 2(2p)
1
/q} = d,, and max (d1 ,d1 ) = ~· 

then we have for all X£ (>..~,w) and 1 ~ n ~D).. the estimate(•) 

R ( >.., z ( >..) ) ~ dL • 
n n • 

LetT denote the compact set {(>..,x) I >..£ cx,,w:J, x£[1,2pJ}. 

Let max {cp(X,x)l(>..,x)E:T} = cd max {llji(A.,x)ll<>..,x)E:T} = c
1

• 

(5.6) 

(•) For the present lemma the estimate (5.6) will do; for further 

use (lemma 6.2), we observe that we have in tact 

RnO.,zn(>..)) ~ d5 n-\ 
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If X€ (Aplll), 1 ~ n ~~and x€ (zn(X), zn+
1

(X)), then we have by 

the mean value theorem and the estimate (5.6) 

I~P(X,x) - !p(X,z )I ~ c 2 (x-z ) < c2 (z 
1
-z ) = 

n n 11+ n 

c
2 

c
2 

2c
2 

(c
1 
+d~) C

2 
= -

1
{q>(A,z ) + R (A,z )}~ -

1 
(c1 +n )~ n --

n+ n n n n+ • n 

Lemma 5.7. There exists a constant c, (c, > O) such that for 

X€ (>.,~,111), I?,< n < E?., (or I?,< n < ao) and x€ (zn(X), zn+
1

(X)): 

!p(X,x) < C, !p(X,zn(X)). 

Proof. If E?., z ~+1, there is nothing to prove. We start proving 

that R (X,z (X)) < !p(X,z (X)) if p < z (X) < 2-qnqX q(q+1)-q. In 
n n n n 

that case we have 

R (X, z (X)) 
n n 

< 
....i..( ('))1+1/q{.J.. r2 .2 (q+2Hq+3) 1 )< 
2A zn " 2 + 3 q+1) • 4 + 3·4Cq+1 )2 • 1f+• • •J 

< ~(zn(X))1+1/q 

(because (q+v) < (v+1)(q+1) for all natural v). Lemma 5.1 gives 

immediately that R (X,z (X)) < !p(X,z (>..)). So 
n n n 

z 
1 

(X) - z (X) < 2 (n+1 ) -
1 

1P (X, z (X)). (5 .8) 
n+ n n 

Because zl1., +
1 

(X) > p > c (X) it follows that for x€ (zn (X), zn+
1 

(X)) 

we have 

!p(X,x) <q>(X,z 
1

(>..)) = q>(X,z (X))+ (z 
1

(>..)-z (X))q,(X,y) 
_ n+ n n+ n 

with y€ (z (X), z 
1

(>..)). For y > c(X), however, we have 
n n+ 

From this, by applying the formulas (5.8) and (5.3), we obtain 

without difficulty !p(X,x) <~P(X,z (X))+ (z 
1

(>..)- z (X))· 
1 1/ n n+ 1 n 1/ 

• (q+1)X- (z 
1

(>..)) q<q>(X,z (X)){1+2(n+1)-·1 (q+1)X- (z 
1

(>..)) q)< 
n+ n n+ 

< 2~P(X,zn (X)), which holds for A E: (X~,.,), ]\ < n < E?,. (or ]\ < n <oo 

if K = ao) and x€ (z (X), z 
1

(>..)). So we have proved lemma 5.?, 
-,.. n n+ 

and we have found at the same time that c, = 2 meets the require-

ments. 
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6. The behaviour of El and NA 

The aim of this Section is to prove formula (2.1?). We define for 

AE: (Au Ill) and 7E: (1,•) 

et..(y) = JY (~.p(t..,x))-1 dx. , 
Notice, that J (~p(A,x) )-1 

dx < ... for AE: (ApCII), as 1 + 1 > 1. 

With this notltion (2.1?) reads q 

(6.1) 

The validness of this formula is stated in the following lemma. 

Lemma 6.1. If A< w, then NA < ... and (6.1) holds. 

The proof of lemma ·6.1 consists of three different parte related 

to the parte of the recureion 1 - D)., DA, - EA and EA- NA respect­

ively. We shall formulate the partial results in the following 

lemmas. 

Lemma 6.2. log DA = ~(p) + 0(1) 

1••mma 6.3. If A < !I)' then Et.. < ... and 

log EA *log DA + ~(1) 

Lemma 6.4. If A < 111, then NA < ... and 

log NA • log Et.. + ~(1) 

(At !I)). (6.2) 

(A f w). (6 ., ) 

(A f w) • (6.4) 

Combination of the results (6.2), (6.J) and (6.4) constitutes a 

proof of le~a 6.1. The proof of lemma 6.2 is analogous to part 

(4) of the proof of theorem 1.2. 

Proof of lemma 6.2. If Sn(A,x) denotes !p(A,x} - ~p(A,zn(A)) then 

lemma ,5.6 states that for A£ (A~ ,w), 1 ~ n ~ ~ and 

x£ (z (A}, z 
1

(A)}, we have IS (A,x)l < c.n-1
• Using the mean 

D D+ n ~ 

value theorem we ma7 write 
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with xE:(z (1), z 
1
(1)). So, we have 

n n+ 

1 
~p(A., z (A.))+ R (). ,z (A.)) 

e). (zn+1(A.))- e). (zn(A.))= n+1 ~p(X zn(X))+ sn('A. xJ ' <6 -5) 
' n n ' 

as e~(x) = (~p(A.,x))- 1 

Moreover, we have the estimate (5.?) R (A.,z. ().)) ' d n-
1

, for 
n n ~ 

A.E: (A.pw), 1 ' n ' 1\. If Kn (A.) = e1 (zn (1)) - log n, then we get 

in (6.5) 

If n
1 

is chosen so that C
1 

- C
2 

n;t > fC
1

, then we have for 

n
1
_ ~ n .:$, D1 that 

I 1 
S (A.,x)-R (l,z (1))

1 Kn+1(A.)-Kn(A.)I<ii l.(x,z (X})~s {~,x) + 
n n -1 -1 

1 1 I 1 d, n + C n 
+ -11 +(n+1) log(1- -

1
) <- t 1 

1 n n+ n C n- C n-
1 - 2 

1 [ 2 1 ] 
0

4 < - c ( c, + d, ) + - = - • 
nVn 1 

2 nYn 

+ _1_ < 
2n

2 

(6.6) 

Relation (6.6) gives KD 
1 

(A.) = K (1) + l: ~ (~ 
1 

(1) - K (1))< 
.., .I ).+ ~ Y=~ + y 

< Kn
1 

().) + I:y .. 
1 

C
4 

y-'1 = K~ (1) + C
5 

• In order to obtain 

KDx+
1

(1) • d(1) uniformly in an interval (l*.w) we make a further 

restriot~on for 1. We take A. 5 E: [14 ,w) so large that zn (1) < c(l) 
1 

for A.€ (1 5 ,w); so 15 ~ max {A., ,c;~ } (see lemma 4.2). We shall ahar 

that 

I K ().) I < 06 • 
n, 

(6.?) 

for A.E: (A. 5 ,w), where c
6 

does not, of course, depend on A.. In vir­

tue of le!IUIIB. 4.1, we have !p ()., z (A.)) > C
1 

n;t for A.E: (1 5 ,111). B7 
n, 1 

the mean value theorem we have e~ (z (1)) = (z (A.)-1)(~p(l,x))- , 
" n1_ n1 

with x E: (1, z (A.)). But ~p(l ,x) is decreasing on (1, z (l)), as 
n1 n~ 

z (1) < c(A.). So e
1

(z (A.))< (z (l)-1)(~p(l,z (1)))- < 
n1 ~ ~ ~ 

-1 t -1 t 
< q C1 n

1
• If c

6 
= q C

1 
:1!

1 
+ log n

1
, then we have proved that 

IK (l>l < e 1 (z (l)) +log n1 < c6 for lE: (15 ,~»). n1 n
1 

For ).E: (15 ,~») we have therefore 
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I6A.(z~+ 1 (A.))- log(l\+1>1< C5 + c6 = c7 • (6.8) 

Formula (6.8) implies that log~= ~(ziiA+ 1 (A.)) + d(1} (A.tlll). 

Further it is obvious that for A. E: (!.. 5 ,w). 

J
2p 1 

6" <ziiA+1 (!..)) - ~ (p) < P (<p(w,x))- dx = c8 • 

So we have proved 

log~= 6/,.(p} + 8(1) (A. f w). 

Proof of lemma 6.3. .For A. E: (1..5 ,w), Dx < n < E,_ and x E: (zn (A.), 

z 
1

(!..)) we have that <p(A.,x) < 2<p(A.,z (!..)) (by lemma 5.7). From 
n+ n 

this it is evident that 

As lim YJ (<p(A.,x)}-
1

dx exists, it is obvious that R < m, for, 
Y-m p A 

otherwise we should obtain (by (6.9)) 

~ (<p(A.,x))-
1

dx > ~ (<p(A.,x))-
1

dx > ~ ~:=~+ 1 {n+1)-
1

, 

p ZI>x +1 (/,.) 

which is a contradiction. If c, = ~ (<p(w,x))-
1

dx, we find by au~ 
mation of {6.9) p 

So we have found log(~+2) - log(~+2) < 2C,. But as 1 ~· ~ < ~ 

we have 

log~- log ~<log 3 + log(~+2) - log(~+2). 

So we have log E,_ < log ~ + log 3 + 2C, , and thus 

(A. t w). 
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Proof of lemma 6.4. In fact we shall prove the stronger proposi­

tion that there exists a number M such that ~ - Ex < M for all 

X E: (X, ,111). The proof of the assertions in the lemma then follows 

immediately, since Nx < Ex+M < ... ,and log Nx<log Ex+log(1+ME);
1
). 

' We consider only the first term of R (X, z (X)). For n > Ex, n~ l\ 
n1/ n -1 

(or n <"" ;if Nx = ... ) we have (zn (X)) q ~ t(q+1) Xn, and so 

z (X)- z (X)> - 1- q(q+1 ) (z (X)) 1+2/q>. z (X) n J 
n+1 n n+1 2 x2 n n "" n 8(n+1 (q+1) > 

> zn(X) 16(~+1) • 

1 ( )-1 If we denote 1 + 1b q q+1 by 6, then 6 > 1 and for 

have z 1 (X) > 6z (X) until the process breaks down. 
n+ n 

fGr n > EX but n ~ NX if NX <"" 

n-Ex 

n > Ex we 

So we have 

zn+1 (X) > 6 zEX+1 (X) • (6.10) 

Clearly Ex > 1, for X E: (X5 ,111). We introduce the following abbrevilr 
1/q ( tiona 61 = 6 so~ > 1),o 1 = 2(q+1). a

2 
is defined as follows: 

if 61 ~ e2/e then a
2 

is the largest root of x-
1

log x = t log 61 , 

otherwise a2 = 2. 

Let M
1 

=max {2(log a1 )(log 61 )-
1

, 2, a 2} and M = M
1

+1, then we 

shall prove that for N = Ex+M we have 

M, -1 
61 (Ex+1) a 1 ~ N. (6 .11) 

Once (6.11) will have been proved, we shall have Nx < N since o~ 

wise zN(X) would be defined and both zN(X) < Xq Nq and, in virtue 

of (6.10), 

which is a contradiction. So Nx < Ex+M. 

For the proof of (6.11) we use the following three facts. 

(6 .12) 

(ii) From M1 ~ 2, Ex+1 ~ 2 it follows that M
1

(Ex+1) ~ 

~ M
1

+Ex+1 = N; this implies that log M
1 
~log N- log(EA+1). 

(iii) M;
1 

log M1 ~t log 61 • 
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Combination of (ii) and (iii) gives 

. -1 
M1 (log N - log(Ex +1)) ~ tlog 61 • 

Addition of (6.12) and (6.13) yields 

log a, + log N ~ ~ log 6 1 + log(E1+1), 

(6.13) 

(6.14) 

which is equivalent to (6.11). This completes the proof of lemma 

6.4, so that the proof of lemma 6.1 is now also completed. 

We conclude this Section with a remark about an alternative me~ 

N.G. de Bruijn in his paper [2] used one strong and elegant argu­

ment to obtain the result equivalent to log ~ =log Dx + d(1) 

(X t w) • This argument enables him to a void many of the trouble­

some arguments we needed in Secs.5 and 6. We shall explain how, 

for the case q ~ 1, the procedure can be simplified by a general­

ization of this argument. If n > Dx (we confine ourselves to 

values of A E: (X, ,w)), then z (A) ~ p and therefore 19 (A, z (A)) > 
n n 

>iq x-1(z (1)) 1+1/q >iq (ll-
1 (z (1))

1+1/q, by lemma 5.1. If n>n 
n n -A 

we have z 
1

(1) - z (A) >t (n+1)-1 q 1.1)-
1 (z (1))

1+1/q. For n > D, 
n+ n n "" 

we compare zn(A) with yn defined by 

'1 z (A) Y 1- ,.. = t(n+1 )-1 qw-1 ,..1+1/q 
Dx+1 • D1+1 ' n+ "n "n (n > Dl). 

By induction we can see y ~ z (X) for Dx < n ~ Nx (or ~ < n < ao 
n n 11 if Nx • oo). From this it follows that yn q < A.n for ~ < n ~ NA 

(D, <n<co). Soy 
1

-y <t(n+1)-
1 

q(II-1
Any <l;qy ~iY, 

"' n+ n n n n 

and therefore y 
1 

< l
2 

y • From this we derive y-1 - y-1
1 

= 
n+ n n n+ 

1 ( 1)-1 _, -1 1/q > 1 2 ( 1)-1 -1 -1+1/q> ( 1)-1ll =2 n+ q(ll Yn+1 Yn 2•3 n+ qld Yn n+ "1.o' 

for Dl < n ~ Nl (or < oo if N1 = oo) and some constant C10 > 0. 

For the latter inequality sign it is essential that -1+1/q ~ 0; so 
-1+1/q ' -1+1/q 

Yn ?P • 

Now we can see that Nx <•, since otherwise the inequality 
-1 -1 ( )-1 Yn - 7n+1 > ~ 0 n+1 would hold for all n > n1 and so, as 

lim y-1 = 0, 
n ..... co n 
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which is impossible as the latter seriec diverges. Moreover, from 

-1 NX -1 
YDX+1 > C10 En=DX+1 (n+1) we find immediately that there exists a 

constant C
11 

such that log Nx - log Dx < C
11

, for it is easily seen 

that y~~+ 1 = (z~+ 1 (X) )-
1 ~ p-

1 

7. The integral 6,.,£.el 

In order to complete the pfOOf of the formula 

(X f w), 

we have to prove the following lemma. 

Lemma 7.1. JP (~p(X,x))- 1 dx = 'lt(a(w) b(X))-t + 0(1) (X fIll). (7.2) 
1 

~· If X is close to w, the integrand ( ~p( X,x)) -
1 

has a sharp 

peak at x = c (X). It J = (a., p) is a given interval, with q+1 £ (11 11!) 

then we find (on account of the continuity ot c(X)) a number 

X/;:· [1,w), such that tor XE:(XJ,w) we have c(X)E:(a.,p). Then we 

have tor XE: (XJ' w) 

IJP ~~'<1~x) -t .,<ex) I~ l~a. ~p(:::x) I +liP ~p(~x) I • 
and so we find 

JP C.,O.,x))-1dx = s~ (lp(X,x))-1
dx + d(1) 

1 a. 

This means that the contribution of a fixed. neighbourhood of q+1 i.e 

almost equal to the whole integral when X t w. In a neighbourhood 

of c(X) we approximate the integrand by a function which is sim~ 

(for q•1 it will be the same function as (~p(X,x))- 1 ). This pro­

cedure is known .as Laplace's method (see [1] ch.4). 
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If we take y = x- c(A), then J is transformed into an interval 

containing 0 if A E: (XJ,w); instead of !p(A,x) we obtain 11"' (A,y), 

which can be written in a closed interval, containing zero, as 

~P"'(A,y) = b(A.) + a(X) y 1 + d(A) y' + O(y"), . (7.4) 

where d(A) = i (1-q) q-2 (q+1) 2q A-2q; and the 6-term is also uni­

form in A in a closed neighbourhood of A = w. In view of (7.3) it 

suffices to evaluate for some fixed 6 J6 
(q~"'(A,y) )-

1 
dy for At w. 

-6 1 
On such an interval (-6,6) we shall approximate (f~"'(A,y))- by 

(b(X) + a(A) y
2
)-

1
• Moreover, we take 6 so small, and A6E: (1 ,co) 

so close to w,that for yE: (-6,6) and AE: (A.6 ,w) we have b(X) ~ 1, 

and 

~p"'(X,y) > t(b(A) + a( A) ·y'). (7.5) 

The possibility of such a choice follows from 

J
6 -1 

We shall further evaluate (q~"' (A.,;y)) dy for If e(A.) = 
_6 

= -d(A)(a(X))-
1 = ~ q-

1
(q-1)(q+1)q A-q we have 

l(1+e{X)y)•q~"'(A,y)- (b(A)+ a(A)y2 )1 = o'(b(A)I;yl>+d(;y") (7.6) 

for ;yE: (-6,6) ana XE: (A61 w). Ae y" < (a(lll))-2 (b(X)+ a(X)y'~) 1 , com. 

bination of (7.5) and (7.6) involves that there exist positive con­

stants k, al).d k
2 

such that for yE: (-6, 6) and XE: (X6 ,co) 

I 1 1 + e(X)y 1 b(X) I~ I 
!~"'(A,y) - b(X)+ a(X)yt ~ k1 (b(A) + a(X ;yt)t + k, • 

As J6 
e(A)y (b(A) + a(A)y2 

)-
1

dy = 0, (the intergand is an odd 
_6 

function), and 

J
6 b(A) IYI ( ]"" dy

2 
1 1. 

_
6 

(b(X)+ a(X)yt )2 dy < b A) 
0 

(b(X) + a(X)yt )t = a("I) < ar;;;]• 

we find from (7.7) 

J6 dy f6 dy + o'(1) 
_

6 
q~"'(A,y) • ~ 6 b(A) + a(A)y2 (7.8) 
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Now t (b(A)+ a(A);r2)-
1

dy = r (b(A) + a<A.),-2)-
1

d;r + 6(1) 
-6 ~ 

(Afm) 

and the latter integral equals ~(a(A) b(A))-t. 

As a(A.) -a(~&~) • fq-1 (q+1)q A-q b(A) we have 

K{a(A) b(A))-t = 1t(a(w) b(A))-t + o(1) 

which completes the proof of lemma 7.1. 

Bearing in mind the relation between AN and NA we derive from for­

mula (7.1) that 

b(AN) = a(lll)(~og N)2 + d((lo; N)' ), (N-+ •) 

as A f 01 impli.es t\ ....... 
From the latter formula we derive formula (2.20) without ditficul~. 

So 

8. An inequality due to E.T.Copson 

We write (2.1) in an equivalent form•, taking a• = aP 
n n' 

and p* = p-1 

in (2.1), and then omitting the asterisks we obtain 

... 
Now p > 1, and (8.1) holds for all converge~t series En•

1 
~ ~0, ~ ~ 0, ••• ;unless all the an are zero, there is 

inequalit;r; the constant pP(p-1)-P is best possible. 

(8.1) 

aP with 
n 

strict 

Translating the result ot the previous Sections for finite sec~ 

ot (8.1) we obtain an as;rmptotic formula tor the best possible 

constant in these finite sections. 

43 



If ~(p) is the smallest value of A such that 

N -p ( )P N p 
I:n=1 n a1 + • • • + an ~A I:n=1 an (p > 1). (8.2} 

then we have for AN(p) the formula 

(
..lL )p (...IL)p+1 2Jt' ( 1 ) 

AN(p) = p-1 - p-1 (log N)2 + d (log N)i • (8.3) 

We consider the following inequality due to E.T.Copson (see e.g. 

[8] theorem 331) 

"" ( P P "" nP bp I: 1 b +b ,+ ••• ) .S:.p I: 1 n= n n+ ' n= n 
(p > 1} (8.4) 

which holds for all sequences b
1 

,b
2 

, ••• , with b
1 

~ O, b
2 
~ 0, ••• , 

such that I::=, nP b: converg~st unless all the bn are zero, there 

is strict inequality; the constant pp is best possible. 

Now the inequalities (8.1) and (8.4) are reciprocal in the sense 

that either of them can be derived from the other by applying the 

"converse of Holder' a theorem" (see [8] theorem 15). 

In this Section we shall derive from (8.3) an asymptotic formula 

tor p.N(p), the best possible constant in the finite sections of 

(8.4); i.e. p.N(p) is the smallest value of p., for which 

I!f 
1 

(b + b 
1

+ ••• + bN)p "p.I:N 
1 

np bp (p > 1) (8.5) 
n= n n+ n= n 

for all b
1 
~ 0, ••• , bN ~ 0. 

We shall use a finite version of a well-known device, which is o~ 

used as a proof of the fact that (8.1) and (8.4) are reciprocal. 

-1 
We define c for m=1, ••• ,N; n=1 •••• ,N by c = n if m~ n; m,n m,n 
c = 0 if m > n. We write the double sum F(~.z> = m,n 

I::,n=1 cm,n xm Yn in two different ways obtaining 

iN 1 n-
1

(x
1

+ ••• +x )y = I!f 
1 

x (m-
1

y + ••• +N-1yN). (8.6) 
n= nn m= m m 

We only consider x1 ~ o, .•• ,xN ~0; y1 ~o, •••• yN ~0 and apply 

Holder's inequality to the left-hand side of (8.6). If q is the _, _, 
conjugate of p, i.e. p + q c 1 and therefore q > 1. we find 
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~=1 n-1(x1+ ••• +xn)yn~ o::!=1 n-q(x1+ ••• +xn)q}1/q. { I:==1 ,-:}1/p. 

(8.7) 

Applying (8.2) (written with q instead of p) to the right-hand Qde 

of (8.7) and replacing the left-hand side of (8.7) by the right­

hand side of (8.6) we obtain 

t!=1 xm(m-1ym+• • .+N-1yN)~ {"N(q) ~=1 x~}1/q • {~=1 y~}1/p • 

(8.8) 

which holds for all x
1 

,_ O, ••• ,xN ?O, y
1 
~0, ••• ,yN ~ O. 

Now it can be seen easily that the maximum of the linear form 

t!=1 dm xm under the restrictions ~= 1 x~ = 1, x1 ~ o, ••• ,xN ~0, 

equals cZK 1 dp }
1
/P. This is a consequence of Holder's theorem 

n• n 
but ·we can also prove it by using a Lagrange multiplier. We shall 

. (8 8) . _, -1 apply this result ~ • w~th d = n y + ••• + N yN. As 
n n 

(8.8) holds for all x1 ~o, •.. ,xN 90, y
1 
~o, ... ,yN :ro, we can 

for each y
1 
~o, ••. ,yN ~0 replace the left-hand side by the maxi-

mum it attains on tN 
1 

xq = 1, and still have inequalitv. so 
n= n " 

{ _N ( -1 -1 )p)1/p { ( )1/q {_N _)) 1/p 
L:"~=1 n yn+ ••• +N YN ~ "N q) • L:"n=1 y-n} ' (8.9) 

which holds for all y 
1 
~ 0, ••• ,yN ? 0. 

(n=1, ••• ,N) (8.9) yields 

If we replace y by nb 
n n 

~=1 (bn+ ••• +bN)P~ {"N(q)}p/q ~=1 np b:, 

which holds for all b1 ~ 0, ••• ,bN ? 0. 

Formula (8.10) implies P:N(p) ~ {"N(q) )p/q. 

(8.10) 

In order to prove the opposite inequality, we reverse the argumen~. 

Applying Holder's inequality to the right-hand side of (8.6) we 

obtain 

(8 .11) 

-1 
It we apply (8.5) with n yn = bn (n=1, ••• ,N) to the right-hand 

side of (8.11), we obtain that for all x
1 
~0, ••• ,xN~O, and all 
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(8.12) 

.For each set x
1 
~ o, .••• ,xN :;::. 0 the maximum of F(!.•l) • 

N. -1 ( ) N _p 
• I: 1 n x1 + ••• + x T under the restrictions t 1 ~n E 1 

n= n n n• 

{ N -q( q}1/q 
T 1 ). o, ••• ,TN ~ 0 equals tn•1 n z1 + ••• + xn) • Combina-

tion of this result and (8 .12) gives for all z
1 

:;::, 0, ••• ,zN ). 0 

(8.13) 

So we have proved ~N(p) = {AN(q)}p/q, and we derive an ae7mptotic 

formula for ~N(p) from (8.3). It reads 

2( ) p+1 ) 
~ <P> ~ pp _ ~ p-1 P • e( 1 • 

N (log N) 2 (log N)3 
(8.14) 

If we take p•2 in (8.2) and (8.5) we find in (8.3) and (8.14) 

(8.15) 

( ) N ( -1 -1 )2 N 2 
Aa ~N 2 is the maximum t 1 n 1 + • • • + N 1N if I: 1 1 = 1, 

- n - n it will be seen that ~N(2) is the largest eigenvalue of the N x N 

matriz A of which the element in the ith row and jth column equals 

(ij)-1 I:lllin
1
(i,j) 1 .. {max {i,j))-1• By a method using truncated 

n"' 
integral equations H.S.Wilf [12] obtained for this eigenvalue 

~- 16K 1 (log N)- 2 +~((log log N)•(log N)-'). By means of matrix 

transformations he derived AN(2) = ~N(2). As our d-term is small­

er, our result is slightly better. 
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9. A certain class of iteration problema 

One can rightly wonder in virtue of which properties we came to a 

successful result in the iteration problem belonging to Hard7's 

inequality. In this Section we shall formulate a list of proper­

ties which allow a treatment as in Sees. 2 - ? • This means that we 

shall describe a class of iteration problems, which have almost an 
the properties used in Sees. 2 - ? in common with the Hardy case. 

We divide these properties into three groups T
0 

, T
1 

and T
2 

; T
0 

contains the trivial properties characterizing the situation; T
1 

concerns the behaviour of the iterates for the boundary value of 

the parameter; T
1 

concerns the occurrence of breakdown. It will 

be clear that many of these properties can be replaced by other 

ones; e.g. the fact that in T
0 

the ~n(~,x) are decreasing with 

respect to ~ and that ~ t 111 (the boundary value) can be replaced b;y 

~ (~,x) increasing and ~ ~ (I)• An equivalent alternative of T1 , T1 , 
n 

T
1 

will be given in Sec.11. It should be emphasized that it is 

not our aim to give a set of conditions which are all necessaryftr 

an asymptotic behaviour of the same type as in the Hardy case; e.g. 

many of the strong monotonicity conditions can be omitted, but ~ 

causes a lot of unessential complications in the proofs, and in 

the cases in which we shall apply the results of this Section, 

these conditions are always met. Nor did we take much trouble to 

make the set minimal in the sense that no properties are mentiomd 

that follow from other ones. 

The zn are given as functions of a parameter ~by the procedure 

{
z 1 (~) • 1 (9.1) 

z 1 (~)-z (A.)=~ (~,z (~))-z (~)= -L
1 

('l!(~,z (~))+R (~,z (~})} 
n+ n n n n n+ n n n 

Moreover, there is a breakdown condition L.e. there is a sequence 

of functions {fn(~)}; and roughly speaking, zn is defined only ftr 

those values of A which satisfy z 1 (~) <t 1 (~), ••• ,zn_ 1 (~)<fn_ 1 (~). 

( 1) 

f , ~ , • and R satisfy the following requirements. 
n n n 

fn (~) is continuous and increasing for A.E: ((I),. bl]; for each 

value of A. we have fn(~)- +..,monotonically if n- ... ; there 
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(2) 

(3) 

(4) 

exist constants r and a such that 0 < f (>..) < r n° for 
n 

>..E: [1.111 ,w] • 

~ (>..,x) is for each value of n defined and continuous for 
n 

(>..,x) satisfying >..E: [~ ,w], xE: [1,fn(>..)); it is decreasing 

with respect to>.., increasing with respect to x; ~n(t~~,1) ~ 1 

and 11) (>..,x) ... +m if x t f (>..) for fixed n and >... 
n n 

<p(>..,x) is continuous on D • ( (>..,x) I >..E: [~ ,w], 1 ~ x < -}; 

<p(>..,x) is decreasing with respect to >..; 

a a2 a' a' :;-<p(>.. ,x)= •<>..,x), -II!(>.. ,x) = X(>.. ,x), -<p(X,x), -<p(>..,x) 
uX ax 2 ax' ax' 

exist and are continuous on D; x(>..,x) > 0 on D; 

IP(>..,x) attains one strong minimum b(>..) for x = c(>..); b(>..) 

and o(>..) are continuous on [t~~ 1 ,t~~], b(>..) is decreasing, c(A)is 

increasing; b(t~~) = 0; c(w) > 1. [We use the notation a(X)= 

= tx<>..,o(>..)) .] 

On every compact set G = ((>..,x)I>..E:[w19w], xE:[1,d]} we have 

Rn(>..,x) = n-
1
r(>..,x) + d(n-2) for n ~NG; r(>..,x) is continu­

ous on D and decreasing with respect to >... 

z (t~~) satisfies the inequalities 
n 

z (w) < f (t~~); z (1.11) < c(w) - Pn-1 
n n n 

for all n, whereas P > o, P > r(t~~,c(w)). 

T
1 

There exist p, ~. M, ~, Land L' with p > c(t~~), 0 < ~ < 1, 

( 1) 

(2) 

(3) 

(4) 

M > 0, ~E: [w1 ,w), L > 0, L' > 0 such that the following pro­

positions hold for n > ·M and >..E: (~,w): 

if xE: [~f (>..), f(X)) 
.. n 

J (~P(>..,x))-1dx <•· 
p 

then 0 ~ R (>..,x) 
n 

and •<>..,x) 

then R (>..,x) > L'nx; 
n 

< L <p(>..,x) 

< Ln; 

We define N>.. = max{nlz1(>..)< f 1(>..), z2 (>..)< f
2

(>..), ••• ,zn(>..)< fn(>..)}, 

if this maximum exists, and take Nx = -if it does not. We have 

Nw = -. The question is,how the zn behave with respect to break-
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down. The following theorem supplies the answer. 

Theorem 9.1. If the iteration procedure (9.1) satisfies T
1

, T
1 

and T
2 

then Nx < oo for XE:: C~~~t ,w) and 

log Nx = ~(a(X) b(X))·t + 0(1) (A. f w). 

This theorem can be proved by a series of arguments which are 

analogous to parts of Secs.Z- 7. Only some extra care is needed, 

as R (X,x) may be negative for some X and x and, therefore, z 
1

(A.) 
n n+ 

may be less than z (X). We shall not give the proof here. 
n 

10. Generalizations of Hardy's inequality 

In this Section we consider finite sections of two inequalities 

concerning series with positive terms, both due to Copson (see (6)). 

We shall give an asymptotic formula for ~(p,s) and ~(p,s) if 

N- oo, where ~(p,s) is defined if p ~ s > 1 as the best possible 

constant, such that for all sequences a1 ~o, .•. ,aN ~0 the follo• 

ing inequality hold 

EN n-e(a
1

+ ••• +a )p ~ A.N(p,s) EN 
1 

n-s(n a )P 
n=1 n ~ n• n 

(p ~ s > 1) ( 10.1) 

and ~N(p,s) is defined if p > 1 > s ~ 0, as the best possible con­

stant such that for b1 ~ o, ••• ,bN ~ 0 

I:==1 n-s(bn+ ••• +bN)P' ~(p,s) I:==1 n-s(n bn)P 

(p > 1 > s ~ 0). (10.2) 

One might notice that (10.1) and (10.2) are generalizations of the 

inequalities considered in Sec.8. Formula (10.1) reduces to (8.2) 

if p • s; (10.2) reduces to (8.5) if s = o. 
From Copson 's paper we know that XN(p,s)- pp(s-1 )-P if N-oo, 

p.N(p,s) - pp(1-s)-p if N-•. In this Section we will show that 

(10.1) and (10.2) both give rise to the same iteration problem, 
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which will turn out to be of the type described in the previous 

Section. 

For the determination of hN(p,s) we use a Lagrange multiplier, 

analogous to the discussion in Sec.2. First we would observe that 

( ) ( ) N -s( )P XN p,s is the maximum ofF x1 , ••• ,xN = En=
1 

n x1+ ••• +xn sub-

N -s ( )P ject to the restrictions En=1 n n xn = 1, x
1 

:> O, ••• ,xN :> 0. 

The maximum is attained at a point~= (x
1

, ••• ,xN) for which 

x1 > o, ••• ,xN > 0, which can be proved in the same way as in Sec.~ 

From the homogeneity of degree p of F(x
1

, ••• ,xN) it follows that 

From this it follows that, if 

{
a~ (F(x1 , ••• ,xN>-xr!=1 n -s (nxn )P) = o 

EN n-s(nx )P = 1 
n=1 n 

(k=1, ••• , N), 

(10.3) 

for a set (x1•••••xh,h'), then we have F(x1•••••xN) = X•. So we 

find that hN is the largest value of h for which (10.3) has a 

solution x1, ••• ,xN with x1 > o, ••• ,xN > 0. 

only one solution with x1 > O, ••• ,xN > O. 

be written as 

As before (10.3) has 

The system (10.3) can 

(k=1, ••• , N), 

In analogy with Sec.2 we find that this is equivalent to 

1 ( k )1-s' zk(1-h-1k-1zk1/q)-q 
zk+1 = k+1 + k+1 

(k=1, ••• ,N-1), 

(10.4) 

(10.5) 

To obtain (10.5) we have taken differences in (10.4) and used the 

substitutions (~)- 1 
(x1+ ••• +~) = zk (k=1, ••• ,N); (p-1)-

1 
= q; 

(p-1)-
1

(p-s) = s•. So q and s 1 satisfy the conditions q > 0, 

0 ~ s' < 1. If s' = 0 (which corresponds to s = p), then the sy­

stem (10.5) is the same as (2.9) and (2.10). 
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Now we shall discuss (10.2). We remark that (10.1) and (10.2) are 

~procal in the sense that either of them can be derived from the 

other by the so-called converse of Holder's inequality (see Sec.8~ 

The latter fact has been proved by Hardy in [?]. We shall use the 

finite version of a well-known device in order to apply Holder's 

inequality (see e.g. [1], Sec.8,9); this device can be considered 

a refinement of the one used in Sec.8, its principal tool being a 
p ( ) -1 change of order of summation. With xn =an n=1, ••• ,N , ~N = ~N 

(10.2) gets 

(10.6) 

For any set of positive numbers pkn (1 ~ n ~ k ~ N) we get by 

changing the order of summation and applying Holder's inequality 

(q' = 1-p) 

r.i:=1 xk ~=1 Pkn = I:==1 ~=n xk Pkn ~ 
~N ( 1/p 1/p)P•(~N 1/q')q' 

~ ~n=1 xn + ••• +xN ~k=n Pkn • 

(10.?) 

Theequality sign in (10.7) holds if and only if p~q' is propor­

tional to ~/p and so p~q' = y~/p ~/p (1 ~ n ~ k~ N). This 

implies that ~N in (10.6) is the smallest (and as it will become 

clear the only) value of~ for which y
1

, ••• ,yN' x
1

, ••• ,xN can be 

found satisfying 

{ 

x.q '/p 'lf yq '/p = kp-s 
K n=1 n 

1/p I:_N 1/p 1/q • -s/q • 
Yn 'k=n ~ = ~ n 

(1 ~ n ~ k ~ N). 

Eliminating y1 , ••• ,yN from (10.8) and putting ,:=n ~/p = tn 

(n=1, ••• ,N) we obtain 

{: 
~ -s t-q' -q' ~-s n = (tk- tk+1) n=1 n 

I:N -s -q' -q' Np-s • 
n=1 

n tn = tn 

(k=1, ••• ,N-1) 

Taking differences we get from (10.9) 

(10.8) 

(10.9) 
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-q' 
1J. t1 = (t1 - t2) 

-q' 

-s -q' ( ) -q '~-s ( -q' ( )p-s (10.10) 1J. k tk = tk-tk+1 - tk-1-tk) k-1 

(k=2, ••• ,N-1) 

1J. N-s -q·' 
tN = 

-q' 
tN 

Np-s_ ( )-q'( )p-e tN_1-tN N-1 • 

-1 
We employ the following substitutions tk tk+1 = uk (k=1, ••• ,N-1); 

uN = 0 (an elegant way of formulating this is introducing a new 

variable tN+1 in ~10.9) and taking tN+1 = 0~; 
1

(1-uk)-q' = p.vk 

(k=1, ••• ,N); ~- vk = zk (k=1, ••• ,N); 1J. /q =A; q' = -q, As 

q' < 0, we have q > 0, and to the smallest value of 1J. corresponds 

the largest value of A. Carrying out the substitutions listed 

above we obtain from (10.10) the same process as (10.5) with s in­

stead of s'. So we shall study an iteration process given by 

z1(i..) = 1, zn+1(i..)= n11 + (n:1)1-s zn(AH1-i..-1n-1(zn(X))1/q)-q 

(10.11) 

where 0 ~ s < 1, q > 0. The process breaks down at N if zN(X) ~ 

? i..q ~. but z
1

(;.) < Xq, ••• ,zN_
1

(;.) < i..q(N-1)q, 

We shall show that the process given by ~0.11) is of the type de­

scribed in the previous Section (for a = 0, we know already that it 

is). It then follows that there is exactly one value of X (denoted 

by AN) such that the process breaks down at Nand zN(;.) = i..q ~. 

Moreover, the theory yet developed will give us an asymptotic for­

mula for AN if N--· Let this asymptotic formula be written 

symbolically as 

(10.12) 

then in view of the substitutions made we have for the original 

problems the results that AN(p,s) from (10.1) satisfies 

(10.13) 

and that p.N(p,s) from (10.2) satisfies 

{ ( )}
1/{p-1 ) f ( 1 N) lLN P ,s = As p- , s, • (10.14) 

We shall now show that the process (10.11) satisfies '1'
0

, '1'
1

, '1'
2 
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from Sec.9. To this end we write it in the forms 

z 
1

(A.) =I (A.,z (A.)) 
n+ n n 

and 

z 
1

{1..)-z (A.)= (n+1)- 1 (~p(A.,z (A.))+R (A.,z (A.))), 
n+ n n n n 

where 1 .( n )1-s ( 1 A. -1 -1 1/q)-q 
= n+1 + n+1. x - n x ' 

( 
.. ) ·-1 1+1/q 

= 1 - 1-s x + q A. x , 

ln(A.,x) 

~p(A.,x) 

R (A.,x) 
n 

( ( 1 -1>a<
1 

,-1 -1 1/q,-q 1 -1 ,-1 -1 1.,q1 = nx +n -A n x - -sn -A n qx • 

. . 

The breakdown condition is given by z 'nqA.q so f (A.) = nqA.q. 
. n n 

. 1 1+1/q 
As to T

0 
we take .(1)1 = 1; (I) = ((q+1 )(1-e)-) ; (from the pro-

pe"rties of ~p(A.,x) it foliows that we have to take this value for w 

in order to.get T
0 

satisfied). By straightforward verification ore 

can show tha,t T0 is satisfied. We confine ourselves to the follow­

ing short remarks, ~(A,,x) = -(1-s) + (q+1)A.-
1 

x
1
/q; 

x(A.,x). = (q+1)q:..1A.-1x-1+1/q; a(A.) = fq-1(1-s)1-qA.-q(q+1)q; 

b(A.) = 1- (1-,s)q+1 (q+1)-q-1A.q; c(A.) = (:1-s)q(q+1)-q A.q; 

( . -1 ,-1 ( )2 ( -1 ( a w) = tq (q+1 . 1-s . ; c(w) = 1-s) q+1) > 1; 

r(A.,x), = x(ts(s-1)+qs A.-1x 1/q +tq(q+1) A.-2 x 2/q}i 

r((I) 1 C((I))) = f(q-c) < c(w)-1. The presentation of R (A.,x) on com-
. n 

pact sets G is proved by observing that .n2 R (A.,x) - n r(A.,x) con-. . . . . n 

verges uniformely on G to a continuous function. 

The following lemma proves th.at the process under consideration 

satisfies T1 • 

Lemma 10.1. zn(w) < fn(w),. zn(w) ~ c(w)- n-
1

(c((l))- 1) 

(n=1,2, ••• ). 

Proof. We use induction with respect to n. z
1

(w) = 1 < wq. We 

remark that c(w) < wq ~ f (w). So, if for some n z (w) ~ 
· _

1 
. n . · n 

~ c(lll)- n (c(lll)- 1), then z 
1

(111) is defined and not larger ih3.n 
1 n+ 

tn(w, c(w) - n- (c(lll) - 1)). Thus, we have to prove only that the 

latter quantity is not larger than c(!ll)- (n+1 )-
1 

(c (Ill)- 1 ). Simple 

caJ.cuJ.ation shows that the inequality ln(w, c(w)- n-1 (c(111)- 1)) ~ 
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~ c(w) - (n+1)-
1

(c(w)- 1) is equivalent to 

( -1 ( ( ( -1))1/q(( ( ) -1 ( -1 s/q) 1 - n 1 - c w) ) nc w ) + 1 +n ) ~ 1 • (10.15) 

( 
-1 

In order to prove 10.15) we replace n by x, obtaining a function, 

say g(x), in the left-hand side of (10.15), and we shall show that 

g(x) ~ 1 for 0 ~ x ~ 1. Throughout the rest of this proof we ~ite 

c (Col) = t-1 ; so t(q+1) = 1-s. g(x) = (1- (1-t)x) 1/q(tx + (1+x)s/q). 

As g(O) = 1, it suffices to prove g'(x) ~ 0 for 0 ~ x ~ 1. g'(x)~ 

~ 0 is equivalent to h(x) ~ 0 if 

h(x) = qt- (1-t)t(1+q)x + (1+x)-1+s/q (s-1+t- x(1-t) (s+1)). 

Again h(O) = qt + s-1+t = 0, so it suffices to prove that h'(x)~ 0 

for 0 ~ x ~ 1. Bearing in mind the relation between s, q and t we 

have to prove that (1+x)-2+s/q(-2qs- (1-t)(s+1)sx) ~ (1-t)(1-s)q, 

which is trivial, as the left-hand side is negative, and the right­

hand side is positive. This completes the proof. 

One can show that equality in (10.15) only occurs for n=1, but we 

shall not need this. 

Instead of T
2 

one can prove much stronger propositions but we shall 

not do this. One has to be aware, however, of the freedom of 

choice we have in determining p, t, M, ~.Land L'. First, we 

choose p > c(w) such that for x > p and XE: [1 ,w] r(X,x) > 0, and 

<p(X,x) >tq x-1 
x1+1/q. As R (X,x) > n-1 r(X,x), we haveR (X,x)~ 

n n 
~0, if r(X,x) ~0. Fort we may take any number in (0,1). We 

take t • 2-q. ·If we now denote x 1/q(Xn)-1 by t, we have 

Xx-1- 1/q R (X,x) = t-1 ((1+n-1)s(1-t)-q- 1- sn-1 - qt) = t-1 £(t), 
n 

and since (1+n-
1

)s ~ 1 + sn-1 and (1-t)-q= 1+qt + [(1-t)-q -1- qt] 

we find that t-1 £(t) ~ sq + (1+s) t-
1 

( (1-t)-q- 1- qt). So we find 

that for x < tAq nq we have Xx-1- 1/q R (X,x) ~ 
n 

~max{sq+(1+s) t- 1 ((1-t)-q-1-qt)lo~t~t} =L1 • SoL1 • 

= sq + 2(1+s)(2q- 1 -fq). For p < x < tA qnq we have 0 < R (A ,x) ~ 
n 

~ L1X-
1 

x
1

+
1
/q < 2q-

1
L1 <p(X,x); ~(X,x) < (q+1)t n. In order to 

answer T
2

(2) it suffices to take L =max (2q-
1

L
1

, (q+1)t), and 

n ~ M
0 

where tM; > p. 
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= £(t) and so n·1x·1 R (X,x) > 2<~-1-tq- n·\ which exceeds L' if 
n 

n > ~ for appropriate L' and M1 , This 7ields T
1

(3). In order to 

arrange for T
1 

(1) to be satisfied it is sufficient to take n > M
1

, 

where MJ is chosen such that for n > M
2 

{(n+1)-
1
n)

1
·s+Q. ~ 

~ (1-'t"
1 

Q.)Q. = 2-q. We then have to take M =max {M.,M11M, ). For 

~any number in [1,~) can be used. As q > 1 1 T
1
(4) is satisfied. 

By theorem 9.1 we find for the ~ from problem (10.11) the asymp-

totic formula t 
log~= R:(a(il.) b(il.))- + e'(1) (1.. f w). 

As a(>.)-a{~) •fq-1 (q+1)q(1-s) 1-qA.-q b{il.) we have n:{a(t..) b(il.))-t. 

= n:(a(~) b(>.))-f + o(1) (>. fw) and 1:10 

log N1 = n:(a(w) b(t..))-t + d(1) (>. f Ill). ('ll.16) 

In the same way as in the Hardy case we obtain from formula (10.16) 

the formula for >-j-· So we find for (10.12) 

( 
1 )1+1/q 2 ( 1 )2+1/q 2 ( 1 ) 

I..* .. ~ - - ~ 'It +"" (10 17) 
N 1-s 1-s 1-s (log N)2 v (log NP • • 

For the original ii.N(p,s) from (10.1) we find from (10.17) the 

formula 1 

>.N(p,s)=(~)P- 2 ~;:~~(s~1t+ (lo;

2 

N)f +O'((lo; N)J), (10•18 > 

which is written in the original parameters according to (10.13). 

For the best possible constant ~N(p,s) from (10.2) we find by com­

bining (10.17) and (10.14) the formula 

f..L)p 2(p-1) f..L)P+
1 

n:
2 

( 1 ) 
~N(p,e)=t..1-s - (1-s) \1-s (log N)2 +f!i (log NP • <10•19) 

If we take s=p in (10.18) and s•O in (10.19) we find again the re­

sults of Sec.8, (8.3) and (8.14) respectively. 

One can specialize (10o2) for p=2, in order to obtain a formulator 

the largest eigenvalue of a certain matrix. Doing so, we find that 

the largest eigenvalue >.N of a finite section of N rows and cOlumns 

of the s,mmetrio matrix A with A = (ij)t$-1 Emin(i,j) v·s 
ij v=1 

0 ~ a < 1 satisfies 
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11. An inequality due to K.Knopp 

If one compares N.G. de Bruijn's result (see [2]) for Carleman's 

inequality(quoted as formula (0.6) with formula (2.20), one may 

notice that if p ~ 0 in (2.20) one obtains (0.6) with the exception 

of the 6-term for which we have not proved that it is bounded if 
-1 p p 1/p 

p ~ o. t-!..or~over, it is known that limp~ o[n (a1 + ••• + an)] = 

=<a
1

•••an) /n (see [11], II No.82). In this Section we shall 

study an inequality due to K.Knopp (see [9]) which can be consid­

ered to be the analogue of (2.1) for p < 0. If we use the letter t 

instead of -p, this inequality reads 

(11.1) 

where a1 > 0, a
2 
~ 0, ••• , t > 0 and E==1 an converges; the prime 

in E' means that if one has a1 > O, ••• , '!Jn > O, am+1 = O, am+2 ~ 

~ 0, ••• , one must read ~- 1 instead of E _
1

• The constant 
1/t n- n-

(1+t) is best possible, whereas there is strict inequality. The 

problem to be discussed in this Section is to derive an asymptotic 

formula for XN(t) if N......... Ar.(t) is the best possible constant 

such that for all sequences a1 ~ 0, ••• , aN ~ 0 

E'N ( -1( -t -t))-1/t X ( ) EN a • 
n=1 n a1 + • • • + an ~ N t n=1 n (11.2) 

It will be clear that now the prime means that one must read r:=1 
instead of EN 1 if a1 > O, ••• , a > O, a 1 = O, a 

2 
~ 0, •••• 

• n= m m+ m+ 
aN~ o. We shall characterize XN(t) as the maximum of the function 

( ) 'N ( -1( -t -t))-1/t F' (!:) = F' x1 , ••• ,xN = En=1 "n x 1 + ••• + xn on the com-

N 
pact set Sin RN given by En=1 xn = 1, x1 ~ O, •••• xN ~ 0. 

First we shall make clear that max { F' {!_) I !. E:S} exists and is 

attained at a point x' for which x1 > O, ••• , xN > 0. Let the b's 

denote non-negative numbers, the c's positive numbers. If for~ 

k, 1 ~ k < N, we have bk+1 ~ bk then it is obvious that 

So we have at once that sup (F'(x) I xE:S} .(;.sup (F•(x) I xE:T} where 
-N - - -

Tis the compact set defined by En=1 xn = 1, x1 ~x 2 ~ ••• ~ xN ~ 
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~0. As TCS we see that sup {F'(!.)I ~E:S} =sup {F'(~)I ~E:T}. 

As F'(!.) is continuous on the compact set T, the supremum is a 

111aximum. T* = ((x1 , ••• ,xN)I E!,.1 xn = 1, x 1 ::)x 2 ~ ••• ~xN>O}, so 

T*c T. For each point ·of T\T* we can find a point of T• where the 

value of F' is larger. This follows fro~ the fact that for a point 

(c
1

,c
2

, ••• ,ck,o, ••• ,o)E:T\T* (k < N) we have: 

and 

limY+ 
0 

F'(c1 , ... ,ck_1 ,(1-y)ck,;yck,o, ••• ,O) 

= F'(c1 , ••• ,ck,o, ••• ,o), 

> o. 

So max (F' (!) I ~E: T} is attained at a point of T•. On T* however, 

( ) _N ( -1( -t -t )-1/t 
we have F1 (x1 , ••• ,xN) = F x1, ••• ,xN = ~= 1 n x1 + ••• +xn ) • 

So AN(t) is the maximum of F(x
1

, ••• ,xN) under the restrictions 

~= 1 xn = 1, x1 ) x
2 

). ••• ). xN > o. F(x1 , ••• ,~) is homogeneous 

of degree one in x
1

, ••• ,xN. By the same arguments as used in S!c.2 

we have therefore that AN(t) ia the uniquely determined largest 

value of A far which 

[ N { -1( -t -t)}-1/t _N 
E 

1 
n x

1 
+ ••• +X - A 1:""" 

1 
x ] = 0, 

n= n n= n {~ (k"'1, ••• ,N)., 

t!=1 

(11.3) 

(11.4) 

have a positive solution. If we subsequently take differences, 

omit (11.4) and employ the substitutions 

{ :::.~ -~·:t: ... + x;t) . zk (eo 

(k=1, ••• ,N), 

(11.5) 
O<s<1), 

we obtain in the same way as in Sec.2 that AN is the only value of 

A for which 

1 k ( 1-A-1 -1 -1/s)s 
zk+1 = k+1 + k+1 zk k zk (k=1, ••• ,N-1 ), 

z~s = (AN)-1 
( 11 .6) 

has a solution (1, ••• ,zN). 
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Again, we consider z as functions of X defined by 
n 

z 
1

(X)= _1_
1 

+_!!_
1 

z (X)(1- x-1n-1 (z (X))-1/s)s. 
n+ n+ n+ n n 

(11.?) 

Now z (X) is defined for X> X 1 ; and X is the value of X such 
n n- n 

that zn(X) = n-8 x-s = fn(X). If we write (11.?) in the forms 

and 

z
1

(X) iii 1, 

z1 {X) = 1, 

z 
1

(X) "'~ (X,z (X)) (11.8) 
n+ n n 

z 
1 

(X)-z (X) = (n+1 )-
1 (~P(X,z (X))+ R (X,z (X))) 

n+ n n n n 
(11.9) 

Now (j)(X,x) is a negative concave function if X< (1-s) 1-
1
/s = ~, 

and the maximum of ~P(X,x) tends to zero if Xfw. 

The problem turns out to be analogous to the previous cases, the 

only difference being that in this case {z (X)} decreases to break-
n 

down. We shall list the analogous properties S
0 

, S
1 

, S
2 

of the 

properties T
0

, T
1

, T
2 

from Sec.9. The properties S
0

, &
1

, S
2 

de­

scribe a situation in which the analogy of Secs.2- 7 can be carried 

out with decreasing {z (X)}. 
n 

For an iteration problem, given in the forms (11.8) and (11.9), 

with breakdown functions fn(X), the properties S
1

, S
1 

and S
2 

read. 

so 

(1) 

(2) 
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f (X) is continuous and decreasing for XE:: [~ ,w]; for each A 
n 

we have fn (A) -l 0 if n- oo; there exist constants r > 0 and 

a > 0 such that f (X) >rn-a for XE:: (~ ,w]; 
n 

~n(X,x) is a continuous function on the set in the (X,x)-plane 

((X,x) IA.E::[w1 ,w], xE:: (f (A.),1]); it increases with A. as we-ll 
n 

as with x; ~n(w,1)" 1; there exists an~ such that for 

A.E:: [~ ,w] and n ~ M
0 

limx + tn (A) ~n (X,x) < fn+1 (X); 



(3) <p(A,x) is continuous on D = {(A,x)l AE: [w1 ,wJ, xE:(0,1]}. 

~p(A,x) is increasing with respect to A; 

(4) 

s, 

II ()2 03 Cl' 
ax<p(A ,x)=<ji(A ,x), a Y! <p(A ,x) = x(A ,x), W<p(A ,x), ax' <p(A ,x) 

exist and are continuous on D; x(A,x) < 0 on D; <p(A,x) 

attains one strong maximum b(A) for x = c(A); b(A) and c(A) 

are continuous on [w
1 

,w], b(A) is increasing; c(A) is de­

creasing; b(w) = 0; 0 < c(w) < 1. [We use the notation 

a()..) = ix(A,c(A)).] 

On every compact set G = ((A,x)IAE: [w,,w], xE:[d,1]; d >O} 

we have Rn(A,x) = n-
1
r(A,x) + O(n-2 ) for n ~ NG; r(A,x) is 

continuous on D and increasing with respect to A. 

z (w) satisfies the inequalities 
n 

z (w) > f (w); z (w) > c(w) + ~n- 1 

n n n 

for all n, whereas ~ > 0, ~>-Ji.(w,c(w)). 

S
2 

There exist p, ~. M, ~. Land L' with 0 < p < c(w), ~ > 1, 

M > 0, 11E:[w, ,w), L > 0, 0 < L' < 1 such that the following 

proposi tiona hold for n > M and A E: (}1 ,w). 

( 1 ) 

(2) 

(3) 

(4) 

~ (A, ~f (A))~ ~f 1(A); n n n+ 
~f (A) < p; if xE: [~f (A),p], then L<p(A,x) < R (A,x) ~ 0 

n n n 
and <ji(A,x) < Ln; 

if xE: (f (A), ~f (A)], then R (A,x) <- L'nx; 
n n n 

JP(<p(A,x))-1dx > ~. 
0 

If f\ = max 

then N
111 

= ... 

{ n I z
1 

(A) >· t
1 

(A) , ••• , z 1 (A) > f 
1 

(A) , z (A) > f (A)), 
~ n- n n 

and we can prove the following theorem. 

Theorem 11.1. If an iteration procedure written in the forms 

(11.8) and (11.9), satisfies S
0 

, S
1 

and S
2 

then ~ < .., for 

AE:[w
1

,w) and 

log 1\ n(a(A) b(A))-t + ~(1) (At w). 
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In the present case of Knopp's inequality we take (1) 1 = 1; (I) equals 

(1-s)
1
-

118
; ~, ~· R and f are already given. Moreover, 

n n n 

.(A,x) = -1 + (1-s)A-1x-1/ 8
; X(A,x) = -s-1(1-s)A-1 x-1- 1/s; 

a(A) = - l-s-1(:'1-s)-s As; b(A) = 1- (1-s) 8
-

1 A-s; c(A) = (1-s) 8 A-s; 

~ -1 ( )-1 ( ) ( -2 1-2/s a((l)) =- TS 1-s ; C(Ol) = 1-s; r A,X =-ts 1-s)A X ; 

r((l),c(w)) = - t- a. The verification of S
0 

presents no difficulties; 

S
1 

is a consequence of lemma 11.1 given below; by arguments of 

the same type as in Sec.10 we can prove that S
2 

is satisfied. 

Lemma 11.1. z (w) > n-s 
n 

-s 
!.II z (w) ~ 1- s+ sn-

1 

n 
(n=1,2, ••• ). 

Proof. As w > 1 both inequalities hold for z1(w) = 1. We shall 

proceed by induction with respect to n. First we prove that 

1-s+ sn-1 > Cll-sn- 8 (n=1,2, ••• ). If (1-s)-1
n-

1 is denoted by 11 

then wn(1- a+ sn-
1

)
1
/s > 1 is equivalent to 1 + STJ > Tis• But this 

is proved bY 1 + STJ > (1+TJ)s, (0 < s < 1). 

Suppose we have proved z (w) ~ 1- s + sn-
1 

then it follows that 
n 

z (w) > n-8 w-s, so z 
1

(w) is defined. If we show that z 
1
(w)? 

n 1 n+ n+ 
~ 1- s + s(n+1 )- then the proof by induction can be completed. 

Now z 1 ( w) ;;;,. ~ (w, 1- s + sn-
1

) and we shall prove that 
n+ n 

41 (CII, 1-s+sn-
1

) > 1-s+s(n+1)-1 • But, as 11 = (1-s)-
1 

n-
1 

we 
n 1/ 1 

have to prove that (with t = (1+sTJ) s) t(1- C 11> > 1; and this 

is equivalent to 1+STJ > (1+TJ) 8
• 

As the iteration process (11.7) satisfies S
0

, S
1 

and S
2 

and as 

n(a(A) b(A))-i = n(a(w) b(A))-l- + o(1) (A fw) [notice that 

a(A) - a(w) =- is-1 (1-s)-s As b(A)J, we find by applying theorem 

11.1 

log NA = n(a(w) b(A))-l- + "'(1) (At w). (11.10} 

By simple calculation we obtain from (11.10) a formula for AN 

~ = (1-s) 1- 1/s- 2(1-s)2- 1/s n 2(log N)-2 + d((log N)-3). 

With the original parameter this formula reads 

60 

~(t) = (t+1)1/t_2(t+1)-1+1/t n2(log N)-2 + O((log N)-3 ). 

(11.11) 



We observe that if t is replaced by -p formula (11.11) reads the 

same as (2.20) which is valid for 0 < p < 1. 

The analogues of the formulas (3.?) and (3.9) hold, since it can 

be proved that 

J
z (w) 

1 n (q~(w,x))-dx=logn+d(1) (n .... ..,). 
1 

12. Extensions of Section 11 

In this Section we shall discuss some results which stand in the 

same relation to Sec.11 as the results of Secs.8 and 10 to Sees. 

2 -?. First, we shall derive from the result ( 11.11) the analo­

gous result for the Holder reciprocal of Knopp's inequality. Ther• 

after we shall discuss a pair of reciprocal inequalities which are 

generalizations of Knopp's inequality and its reciprocal. 

It is appropriate to start with a slightly different form of the 

result of the previous Section. If XN(p) is the best possible co~ 

stant such that for all a
1 

> o, ••• ,aN > 0 the inequality 

(12.1) 

holds, whereas p < 0, then XN(p) satisfies 

(12.2) 

If a-t in (11.2) is replaced by a (n=1, ••• ,N) [notice that for 
n n 

attaining the maximum, all a in (11.2) are positive) and t is 
1 n 

replaced by -p- then (11.2) transforms in (12.1) and (11.11) in 

(12.2). 

Starting again from formula (8.6) and writing down the analogues 

for p < 0 (hence 0 < q < 1 as p-
1

+ q-
1= 1) of all the arguments in 

Sec.8 ((12.2) is the analogue of (8.3)) we produce a proof of the 
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formula 

for the best possible constant such that 

for 0 < q < 1 and all z1 ~o, .•• ,zN ~o. 

(O<q<1) 

(12.3) 

(12.4) 

Formula (12.4) is a finite section of a well-known inequality due 

to Copson (see (6], or (8] theorem 344). 

We start the discussion of the second topic of this Section with a 

generalization of this inequality due to Copson. In (6] it is 

proved that for a1 ~ o,a2 ~ o, ••• ' 
"" -a P I: 1 n (n a ) < ... we have 
n= n 

0 < p < 1, s ~ 0 and 

(12.5) 

unless all the an are zero; the constant pP(1-s)-P is the best 

possible. If s = 0 (12.5) reduces to the inequality mentioned 

above. Now we consider ~(p,s), the best possible constant such 

that for all x
1 
~o, ••• ,xN ~0; 0 < p < 1, s ~ 0 

-s( 1/p n x + 
n 

1/p p 
••• + XN ) • (12.6) 

Writing down the analogues for 0 < p < 1 (hence q = 1-p > 0) or the 

arguments in Sec.10, starting from the analogue of formula (10.7) 

we obtain the system 

{ 

z
1 

• 1, 1 ( k )1-s z.(1-'-1k-1zk-1/q)q, ( 
~+1::: k+1 + k+1 .It 1\. k=1, ••• ,N-1) 

1/q = A.N, 
ZN 

(12.7) 

and if AN• the value of A. for which (12.7) has a solution, satisfi$ 

an asymptotic formula (if N- ... ) written symbolically as 

Ai{ = Asf(q, s., N), 

then ~(p,s) satisfies 

( ( )) 1/(1-p) - ( ) 
~ p,s - Asf 1-p, s, N • 

62 

(12.8) 

(12.9) 



With the experience of Sec.10, we expect that an inequality can be 

formulated, finite sections of which, by direct use of the method 

of the Lagrange multiplier, give rise to an iteration problem, 

which is identical to (12.7). Moreover, this inequality has to be 

a generalization of (11.1) and reciprocal to (12.5). We start with 

the finite series problem, formulating the infinite inequality 

afterwards. So we consider the following generalization of (12.1); 

(we again take -p = t as parameter, the condition imposed on s will 

later appear to be in accordance with the analogy) 

_N -s( )-t ~ ( ) _N -s( )-t 
~= 1 n a1 + ••• +an ~ "N t,s ~= 1 n n an , (12.10) 

a 1 > o, ••• ,aN > 0; t > o, s ~ -t. For s = -t = p (12.10) reduces 

to (12.1). Using Lagrange multiplier theory to calculate A.N(t,s) 

just as before, we find that ~(t,s) is the only value of A. for 

which there exist positive x
1

, ••• ,xN with 

~{ -(t+1)k-(s+t) -(t+1)(k 1)-(s+t). _ k-s( )-(t+1) 
" ~ -xk+1 + 'j- x1+. • .+~ • 

, x-N(t+1) N-(s+t) -s( )-(t+1) 
"' = N x1 + ••• + xN , 

(k=1, ••• ,N-1) 

_N -s( )-t 
~~= 1 n n xn = 1. 

The reduction of this system does not differ from previous cases so 

we only mention the substitutions used, omitting all calculations. 

Byzk=k-
1 x;1

<x
1

+ ••• +~) (k=1, ••• ,N); q=(t+1)-
1 

(soO< 

< q < 1); and s' = (t+s)(t+1)-
1 

(so s' ~ 0), we again obtain 

(12.7) with s' instead of s. So ~(t,s) from (12.10) satisfies 

(12.11) 

We would observe that (12.10) is_a finite section of the inequality 

"" -s( )-t ( )t -t "" -s( )-t tn=1 n a1 + ••• +an ~ 1-s t I:n=1 n nan , (12.12) 

which holds for a
1 

> O,a
2 

> O, ••• ; t > O, s ~ -t; 

I:==1 n-s(n an)-t < ~. The proof of this inequality follows from 

our asymptotic considerations; as in the previous cases there is 

strict inequality (cf.Sec.3). 
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In order to obtain an explicit expression for formula (12.8) by 

applying theorem 11.1, we would prove that the iteration procedure 

( )
1-s I q 

z 
1

<>-)= _!_
1

+ n
1 

z (X)(1-X-1n-1 (z (X))-1 q) , 
n+ n+ n+ n n 

(12.13) 

satisfies S
0 

, S1 and S
2

• As this proof does not differ essential­

ly from previous cases in Secs.10 and 11, we shall omit it, giving 

only some calculations. If we write (12.13) in the form (11.9) we 

find q>(X,x) = 1- (1-a)x- qX-1 x 1- 1/q and 

Rn(X,x)= nx{(1+n-1)5 (1-X-1n-1x-1/q)q- 1- sn-1+ x-1n-\ x-1/q). 

Moreover, we have 

f (X) = n-q x-q; Ill= {{1-s)(1-q)-1)-1+1/q; 
n 

a(X) = - t q-1 {1-q)-q{1-s)q+1 Xq; a(w) = - t q-1 (1-q)-1 (1-s) 2f 
b(X) = 1- (1-a)1-q(1-q)q-1 X-q; c(X) = {1-q)q(1-s)-q x-q; 

r(X,x) = tx { s(a-1)- 2sqX-1 :x:-1/q + q(q-1)>.-2 x-2/q); 

c(lll) = (1-q)(1-a)-1 ; r(lll,c(Cil)) = -t(q+s). 

For {12.8) we find by theorem 11.1 

X• = (1-a)-
1
+

1
/q _ (1-a)-3+

1
/q 2'1t2 

( ) 

N 1-q 1-q (1-q) (log NP + d {lo~ NP • 

For the original problems, discussed in this Section, we find from 

this result the asymptoti.c formulas wanted. 

For ~N(p,s) from {12.6) we have by application of (12.9) 

{ ) (1-s)P (1-s)P-
1 

.!=E. ~ eli( 1 \ 
~N p,s = p - p 1-s (log N)2 + (log N)'1 • 

For XN{t,s) from (12.10) we obtain by (12.11) 

x { (1-s)t (1-s )t-
1 

t+1 2w 0( 1 ) 
N t,s) = -r- - -r- 1-s (log N)2 + \(log N)J • 

If we take s = 0 and s = -t respectively these formulas agree with 

the results already known for the inequalities (12.4) and (12.1). 
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13. Instability 

A11 iteration problems we have st11died, can be obtained by a choice 

of the parameters s and q in the following problem 

1 { n )
1
-s (1 ,-1 -1 -1/q)-q 

z1 = 1 • zn+1 = n+1 + n+1 zn -~ n zn ' 

with breakdown functions A q n q. With s = 0 and q > 0 this problem 

becomes the one arising from Hardy's inequality. The generaliza· 

tion considered in Sec.10 had 0 ~ s < 1, q > 0. The problem of 

Sec.11 had s = 0, -1 < q < 0; in the generalization of this problem 

in Sec.12 we had s < O, -1 < q < 0. 

In his book [1], N.G. de Bruijn discusses an inequality due to 

Copson, which gives rise to an iteration problem, which can be 

written in the form given above, with the parameter values s = f, 
q = -i (see [1] Sec.8.9 and Sec.8.10). The behaviour with respect 

to breakdown is then different from the cases studied so far in 

this thdsis. N.G. de Bruijn discovered a remarkable discontinuity 

in the asymptotic behaviour of the zn's. We shall discuss an 

example which shows the same behaviour. This example has s < 0, 

q > 0, but it can be shown that for 1 < q < 0, and s < 0, one can 

find equivalent examples. 

The behaviour, we shall observe is related to example 2 of Sec.1, 

as the preceding cases are to example 1 of that Section. Most of 

the proofs will be omitted as they are more or less analogous to 

previous cases or to arguments in N.G. de Bruijn's discussion in 

[1] (Sec.8.10). Writing t = -s we have the iteration process 

z
1

(A) = 1, z 
1

(t.)= ...L
1 

+ (~ 1 )
1

+\ (t.)(1-A-1n-1 (z (A)) 1/q)-'\ 
n+ n+ n+ n n 

(13.1) 

with breakdown at N if zn(A) < Aqnq for n < N, and zN(A) ~ Aq~. 

The value of A such that zN(A.) = Aq~ is deno.ted by AN(q,t). That 

AN(q,t) is uniquely determined is proved in the same way as in 

Secs.2 and 9. If we write z (A,q,t) to express the functionality 
n 

with respect to q and t then we see that for fixed !. and q, 

z (A,q,t), when defined, is a decreasing function oft. As 
n 

zn¢q+1) 1+1/q,q,O) is defined for all n, we have zn«q+1) 1
+

1/q,q,t)< 

<~for t > 0 and all nand this implies An(q,t) < (q+1) 1+1/q for 
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all n. lim A (q,t) exists, aa {A (q,t)} ia a bounded incre~ 
n-oo n n 1 1; 

sequence; we denote this limit by ~(q,t). ~(q,t) ~ (q+1) + q 

In the same way as in Sec.10 we now have that for a > p > 1 and 

a 1 ~ 0, at ~ 0, ••• 

N -s( )P , ( 1 a-p) r.N -a( )P 
~=1 n ·a1 + • • • + an ""N p-1' p-1 n=1 n n an 

andforp>1, a<Oandb1 ~O,bt ~0, ••• 

Thus we are speaking about the inequalities concerning aeries with 

non-negative terms (ct. Copson [6]) 

'"' -a ( )P ( 1 s-p) '"' -a ( )P 
r.n=1 n a1 + • • • +an ~~ p-1' p-1 r.n=1 n n an (13.2) 

(s > p > 1), 
and 

I::=1 n-s(bn+bn+1+ ••• )P ~ (~(p-1, -s))p-1 r.:=1 n-a(n bn)P 

(p > 1, S < 0). (13.3) 

If we write (13.1) in the usual form 

we denote by w(q,t) --in accordance with our previous notations-­

the value of A for which the strongly convex function ~(A,x) = 
= 1- (1+t)x+ qA-

1 
x

1
+

1
/q ha~ a minimum equal to zero. It is found 

that w(q,t) = ((t+1)-1 (q+1)) 1+1/q. 

Without proof we mention the following results: 

Lemma 13.1. If q ia fixed, then ~(q,t) is a decreasing function 

of t. 

Lemma 13.2. 

Lemma 13.3. 

The process (13.1) satisfies T (see Sec.9). 
2 

~(q,t) ~ w(q,t) for each positive t and q. 

A discontinuity of the type N.G. de Bruijn discovered occurs only 

if ~(q,t) > w(q,t). 

In order to give a clearer description of the different behaviour 

we take t = q and study the best possible constant ~ of the in­

equality 
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(p > 1). (13.4) 

From the above discussion we know that 1 < ~ ~ (q+1) 1+1/q, and ~at 

for ;., ~ ~ the iteration process 

1+q I 
z

1
(X}: 1, z 

1
(X)= __1_

1 
+(_!!_

1
) z (X)(1-X-1n-\z (X)) 1 q)-q 

n+ n+ n+ n n 
(13.5) 

does not break down. Moreover, from lemma (13.2) we know that 

~ ~ w(q,q) and as w(q,q) = 1 we have ~ > w(q,q). Writing (13.5) in 

the usual form we have q>(X,x) = 1- (1+q)x + qX - 1 x 1+1/q. If X > 1, 

q>(X,1) < 0, whereas x(X,x) = (Xq)-1(q+1 )x-
1
+Vq is still positive if 

x > 0; so q>(X,x) is still convex. As q>(X,OJ = 1, and q>(X,x) .... +m 

if x-oo, we have that q>(X,x) has two zeros s(X) and t(X) with 

0 < s(X) < 1 < t(X) < ~. We observe that if 1 < X1 < X2 then 

s(X 1 ) > e(X
2

) and t(X 1 ) < t(X 2 ). The discontinuity announced 

above is given by the following results, 

I. If i.. > ~. then lim z (X) = s(X), 
n-+oo n 

II. for X= ~we have lim z (~) = t(~). 
n-oo n 

The effect II is called instability. 

We can give the proof in the following steps: 

(lemma 13.8) 

(lemma 13.9) 

Lemma 13.4. If z (X) ~t(i..) for some value of m and X> 1, then 
m 

Lemma 13.5. 

Lemma 13.6. 

Lemma 13.7. 

Lemma 13.8. 

Lemma 13.9. 

A. < ~ • 
If X~~' then lim inf z (X) ~ s(X), 

n-- n 

It lim inf z (X) = s(X) for X ~ ~. then 
n-ao n 

lim z (X) = s(X). 
n-oo n 

The sequence {z (X)} has for X~~. no accumulation 
n 

_point in (s(X), t(X)). 

If X>~ then lim z (X) = e(X). 
n~oo n 

lim z (~) = t(~). 
n-ao n 

Extending the analogy with the results of Sec.9, we can determine 

a number p (sufficiently exceeding t(~)), and define 

DX =max {nl zn(X) < p}. 

As before Nx denotes the breakdown-index. The number p can be 
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chosen in such a wa7 that we can proye 

There is another remarkable difference between the preaent problem 

and the problems discussed in the preyious Sectiou • When, in the 

preyious Sections, we coneidered infinite 

strict inequalit7. We shall show that in 

a sequence x
1 

,x
2 

, • • • such that 1::.
1 

n -
1 

series, we had alwa7s 

the present case we haye 

zP conyergee and 
n 

Remembering some results in Sec.3, we shall show that for the se­

quence x
1
,x,, ••• aetermined as follows 

the series I:• 
1 

n-1 zP conYerges. 
n= n 

are uniquel7 determined b7 (13.6). 

(n•1 ,2, ••• ), (13.6) 

We obserYe that the x, ,x
2

, ••• 

As lim z (q) • t(11) > 1, we 
Jl-+OD n 

ma7 determine a. and 

implies zn('~) >a.. 

M such that a.> 1, M ~ 2, and that n ~M 
-1 -1 ( ) Now n xn x1 + ••• + xn > a. tor n ~ M, and 

thus 

All (1+a.-
1
v-

1
) < ((v-1)-

1
v} 

1
/a. t we find n:~ (1+a.-1v-1 ) < 

< ((~1)- 1 (n-2)) 1 /a. and, therefore, xn <A n-1+1/a. tor all nand 

aome appropriately chosen positiYe constant A. As -1+1/a. < 0, 
... -1 'D 

I:n•1 n ~ conYerges. 

We conclude this Section with some remarks about arbitrar7 yaluea 

ot q, and t. So from now on we haye no longer t • q. 

First, we remark that it T~(q,t) • ~(q,t) we can proYe in the same 

wa7 as in lellllll8. 13.2, ••• , 13.7 that lim z Ct.) "' c(•), and A > 
n-• n 

> 111 impliea lim z (A} = a <A). In this case, boweyer, there is 
n-... n 

no diacontinuit7 ae s('l) .. t('l) o:: c(~). 
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Lemma 13.11. If t ~ q then 

Lemma 13.12. It t ). q, then T}(q,t) > w(q,t) and "- > T} impliea 

limn_.., zn(A) = s(A), whereas li.mn-ao zn(T}) • t(T}). 

In Sees .1 • 12 we developed a method bf which under certain con• 

ditions the influence of Rn(A,x) can be neglected. One of the co~ 

ditions was T}(q,t) = w(q,t). It will be clear that if T}(q,t) > 
> w(q,t) no such method exists as the R (A,x) plar an essential 

n 
part in that case. 

We have proved that fort ).q we have T}(q,t) > "'(q,t), but from 

lemma 13.1 it follows that then also for some t < q we have 

T}(q,t) > w(q,t). As for such t we have "'(q,t) > 1, the phenomenon 

is much more complicated, as we can not longer see from ~(A,x) 

alone, whether it occurs or not. 

For the cases that ~(q,t) > w(q,t), we have no explicit formula for 

T}(q,t); one can, however, make numerical estimates 'for each value 

of q and t, but we shall not do so. 
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Appendix 

For iteration problems satisfying the requirements of theorem 1.2, 

two different types of convergent solutions are possible. In ex­

ample 1 of Sec.1 the type of solution depends on the value of a 

continuous parameter. In this appendix we intend to throw some 

more light on this phenomenon by another typical example to be dis­

cussed in detail. In fact, we shall have sequences {z } depending 
n 

on a continuous parameter x, with z = 6(n-
1

) at a certain point 
1 n 

x = c, z = O((log n)- ) for all values x in an open interval 
n 

having c as left end point. We shall find an asymptotic expres-

sion for zn which holds uniformly for x in a right neighbourhood 

of c, [c,c+h). By this it will become clearer how the two types 

of convergent solutions of the iteration problem are related. As 

in Sec.2 comparison of the recurrence relation with a differential 

equation will suggest the desired asymptotic formula (see (6)). 

(1) We consider a sequence {z } satisfying 
n 

(A.1) 

The {z } depend on a parameter x which runs through [0,1] (there­
n 

fore we sometimes write z (x)), In order to avoid difficulties 
n 

arising from non-monotonicity in the beginning of the iteration, 

we start from z
100

, and we prescribe its value by requiring z,ot = x. 

The number 100 is certainly large enough. It is easy to see that 

z (x ) ..,. -"" for n-oo if z (x ) .S, 0 for some m and x
0

• Moreover, if 
n o m o 

z > b > 0 for 
n 

all n, then r."" ( z 
1

- z ) diverges, hence a contra-
v•,oo V+ v 

diction. So there are only two possibilities z .... - or z -0. If 
-1 n -2 n 

limn-"" zn = 0, then either zn = (log n) + 6( (log n) ) or zn = 

= n-1(1 + o(1)) if n-..,, (by theorem 1.2 applied for the sequence 

{-zn}). 

(2) We shall first prove that there exists a number c (O < c < 1) 

with z (x)- 0 for xE: [c,1] and z (x)- -co for xE: [O,c). 
n n 

1 By induction we can prove z (1) ~ 2n- To this end we remark ~t 
n 1 

z,00 (1) = 1, and that dzn+1/dzn = 1- 2znn- > 0 for n ~ 100 and 

< 1 So, 2n-1 ~ z ~ 1 implies 2(n+1)-1 < 2n- 1 -4n-~-n- 2 ~z 1<1. zn " • , n ' , n+ 
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Moreover, z (x) increases with x 
n 

for xE: [0, 1] and n ~ 100, since 

z
1
m increases and dzn+1/dzn > 0. If x is the root of z (x) = 0, 

n n 
then x

1
" = 0; xn < 1 for all n; and 

z (x ) - n-
1

z 2 (x ) - n-2 = -n-2 < 0. 

xn < xn+1 , since zn+1 (xn) = 

n n n n 
Therefore, lim x exists; 

n- n 
lim x = c say; and 

n-- n 
0 < c ~ 1 (we even have proved 0 < c ~ 

~ 1/50). It is easy to see that the number c has the desired pro-

perties. 

(3) We can prove that z (x) = (log n)-
1 

+ O((iog n)-2 ) for 
n 1 2 

xE: (c,1], and that zn(c) = n- + 6(n- ). 

It an (x) is defined by nzn = an, then we have s
100 

= 100x and 

s 
1

- s = n-
1

(s -1-n-
1
(s2 +1)-n-2a--2 ). We know already that 

n+ n n n n 
s (x)- -""for xE: [O,c); a (1) ~ 2; and s (x) "' o(n) (n- ... ) for 

n n n 
xE: [c,1]. In the same way as for example 1 of Sec.1, we can prove 

that xE:(c,1] implies s (x)-+ooand hence z (x) =(log n)-
1 

+ 
n n 

+ 6((log n)-2 ), and that s (c) t 1 and z (c) = n-
1 

+ O(n-2 ). 
n n 

(4) We denote (log n)(z (x) log 
n 

n - 1) by t (x) • Then we already 
n 

know that t (c)-_.., if n- ao' and 
n 

t = 6(1) for xE: (c,1]. Straight­
n 

forward evaluation yields for tn = d(1) 

-2 )2 *( -2 -1 { -2 2 t 
1
-t = -n (log n + o n ) - n log n) t , 

M n n 

so lim t (x) exists for xE:(c,1]; we denote this limit by t(x). 
n-ao n 

We shall now prove that t{x) < 0 in a right neighbourhood of c. 

As c ~ 1/50, we have c < {log 100)-
1

• If we restrict ourselves to 

values of x in (c, (l.og 100)-
1
), then we have z

100 
< (l.og 100)-

1
• 

For xE: (c, (l.og 100)-
1

) the assumption t(x) ~ 0 leads to a contra­

diction, since t(x) ~ 0 implies that N = max { n I t < 0} exists 
n 

and exceeds 99; but for n > N we then have 

n ( ) n -1 ( 2 -1 ) 
"' Ev.,N Z.,+1-zv + zN < zN - Ev=N+1 " z.,+v < 

< (l.og N)-
1 

- E:=N+
1 

(v-
1

{log v)-
2 

+ v-
2
). 

(Notice that t < 0 means z < (l.og n)-
1

). As 
n n 
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- (log(n+1))-
1 

- (n+1)-
1 

and (log N)-
1 

- (log(N+1))-
1 

- (N+1)-
1 < 0 for N )-100, we have 

zn+1 < 0 for sufficiently large n, which is impossible for xE:(c, 11 

( } ( 
-1 

5 We shall prove that c < x
1 

< x
2 

< log 100) implies -• < 

< t(x1 ) < t(x
2

) < 0. Let each of the sequences {zn) and {z~) 

satisfy (A.1) for n )-100, whence zn- 0, z~- 0 for n-oo, zn < 
·c >-1 < >-1 < log n , z~ < log n for n ~ m ~ 100. Moreover, assume 

z
100 

< z;
00

; (in our above notation we may also write zn = zn(z
100

), 

z' = z (z
1
' ) ). If o = z'- z then it follows from (A.1) that 

n n oo n n n 
0 

1 
= (1-a. }0 with a. = n-1 (z 1 + z }. As the z 's are strictly 

n+ n n n n n n 
monotonic functions of the initial value z 1 ~, we have Om= 

-1 
= zm(z;

00
) - zm(z100 ) > o. For n > m we then have Om On+1 = 

n ( ) -1 ( )-1 -1 = n 1-a. • and as a. < 2v log v this implies 0 6 1 > 
v~ v v m ~ 

> nn (1-2v-1 (log v )-1 ) > C(log n)-2 (•) for an appropriate posi­
v=m 

tive c. So (log n) (z' log n - 1) - (log n) (z log n- 1) > C6 , and 
n n m 

this proves the strict monotonicity of t(x) on (c, (log 100)-1). 

We make the trivial remark that solutions of (A.1) which differ 

asymptotically, have different values of z
100

• 

(6} Comparison with a differential equation. If z -o then 
n 

zn+1 - zn -a, and it will be reasonable to compare the difference 

equation (A.1} with the differential equation 

where z is regarded as a function of the continuous variable n. If 

we take w = z-
1 

as the dependent and x = n-
1 

as the independent 

variable, then this differential equation is transformed into 

I 
2 -1 

dw dx + w + x = 0, 

(•} nn (1-2v-1 (log v}-1 } = exp{ I:n log(1-2v-1 (logv )-
1

)} > 
v~ v-

>exp{-l::=m 2v-
1

(log v}-
1
-2(1-(1/50Hlog 100) 1 )- 2 ~

00
=• v-

2
(log y}-'1> 

>exp{-2/m:1 x-
1

(log x)-
1

dx + c1) = exp{ c2- 2 log log n). 
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a so-called "special Riccati equation". Applying the usual device 
-1 

for this type of equation, i.e. substituting w = Y' y , we obtain 

xy" + y = 0. It should be kept in mind that we are :interested in 

the behaviour of the solutions for x .... 0 only. In a neighbourhood 

of x = 0, the solutions of xy" + y = 0 can be written as 

y(x) = (c
1 

+ c
2 

log x)(x + ••• ) + c
2

(-1 +Ox+ ••• ). 

It follows that 

(c
1 

+ c
2 

log x)(1 + ••• ) 
w(x) = (c

1 
+ c

2 
log x)(x + ••• ) + c (-1 +Ox+ ••• ) • 

2 

Since it is only the ratio of c
1 

and c
2 

that is significant, we 
-1 

put c = -c
2

c1 • 

(1-clog x)(1+ ••• )-c(1+ ••• ) 
w = x ( 1 - c log x) ( 1 + ••• ) - c( -1 + Ox + ••• } = 

( 1 + clog n )( 1 + ••• ) - & ( 1 + ••• ) 
= -1 ( -1 n (1+clog n)(1+ ••• ) + c 1-0n + ... ) 

If & = 0 we have w(n) = n + ~(1) and z(n) = n-
1 

+ 6(n-2
). For 

-1 
small I cl an approximation of w is (n+ en log n)(1 + en+ c log n) • 

First, we observe that for & < 0 we have w-~ for some finile vawe 

of n. This can be regarded as an analogue of the situation that 

the discrete sequence {zn} produces negative values of zn from a 

certain value of n onward. 

We shall direct our attention to & ~ 0 only. 
-1 1 -1 

As z = w we can approximate z(n) by n- + &(1 + c log n) • We 

shall show that these expressions are good approximations of solu­

tions of (A.1), uniformly in & for c in some :interval 0 ~ & " &
0 

• 

(7) ( -1 ( -1 Let v c) = n + c 1 + & log n) and 
n 

v 
1

(c) - v (c) + n-1 (v (c)) 2 + n-2 = b (c). 
n+ n n n 

We shall derive some estimates for bn(c) which hold uniformly inc. 

If &(1 + c log n)-
1 

= e {c) then 
n 

e 
1

Cc) = e (c) (Ce (c)) log (1+n-1
) + 1)-

1
• 

n+ n n 
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Now we have, if n ~ 100 

<2n-3+e (2n-2 +n-1e -e log(1+n-1 )+e2 (log(1+n-1 ))2 ) < 
n n n n 

<2n-3+en (2n-2 +(3/2)n-2e!)< 2n-3 +4n-
2
en < n -

2
(4c+1/50). 

( -1 2 -1 
Moreover, bn c)> 0 for c ~0, since n en> en+1en log(1+n ). 

(8) In v (c) + p (c) is a solution of (A.1) then 
n n 

-1 -1 2 
P - p + 2n p v + n p = -b • 

n+1 n n n n n 
(A.2) 

We shall show that there exist solutions {p } of (A.2) which are 
n 

O((n log n)-
1

) uniformly in c in a right neighbourhood of 0. We 

now use some Banach space terminology. Let X be the space of all 

sequences~·= {x
180 

,x
1
m , ••• } with xn = O(n-

1
). If we define a rmm 

by llxU =sup( nix II n=100,101, ••• }, then X becomes a real Banach 
- n 

space. We shall only consider values of c with c ~ 1/5. Then we 

have 2v < f (n ~ 100). (A further restriction on c will be made 
n 

below.) We shall show that for c ~ 1/5 Pn+1 - Pn + 2n -
1
Pn v n (c)= 

= -n -
1 

a has a solution ;e,E: X if a E: X. If we consider qn+1- Pn + 
-1 n -1 -

+ 2n pnvn = -n an' or 

( -1 )-1 ( -1 ) 
p = 1 - 2n v n a + q 1 • 

n n n n+ 

we see that this formula defines a mapping of X x X into X; we 

denote this mapping by ;e. = A(!_, 9.) • We shall prove that if !. E: X, 

and if ;e,(~) is defined by 

( ( )) "'co { v (1-2k-1vk)-1} -1 
;e.~ n = Pn = ""v=n nk=n " av• 

I\=n (1-2k-1vk)-1 ~ I\=n (1- fk-1) -1 ~ vt (n-1 )-t 

we have lp I~ (n-1)-i- llall r."" v-1- < 2(n-1)-
1

11all < Jn-
1 

llall. 
n - ll=n 
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So p = d(n -
1

) and ;e,E: X. Moreover, it is clear that 
n 

( -1 )-1 ( -1 ) pn = 1- 2n v n a + p 1 • 
n n n+ 

Let B be the mapping of X into X defined b7 (B(r) )· 
- n 

over, we put b = n-
1

d , whence d - {d } E: X for all 

= r 2
• More­

n 

n n - n 
c in [0,1/5]. 

We now have to study the mapping A* of X x X into X defined by 

We must show that there exists a ;e,E:X with E.= A*(;e,,;e,). It will 

then be clear that {p} is a solution of (A.2), since E. = A(~,;e,) 
-1 n_1 -1 

means p = (1- 2n v ) (n x + p 
1

) and therefore, with x = 
n n n n+ 

= ~ + B(;e,), it means, 

Defining .! = T(::) by 

we have .! = A(~+ B(::),§.), and we must prove the existence of an 

element ;e,E:X with E.= T(;e,). 

To this end we use a theorem which is an extension of Banach's 

theorem on the fixed point of a contraction operator. With the 

notations 

S(!.o,p) = {!,1 !,E:X, II!,-~ II< p} 

s<~,p) ={!,I !,E:X, 11!.-~11 ~ p} 

this theorem is as follows (see [10], Aap.I, §.7). 

Theorem. If X is a Banach apace and T is a mapping of X into X 

satisfying 

(A.4) 

with 

then 

a fixed a < 1 for x, vE: S(x , p), and it 
- "- -o 

II~ - S(~) II < (1-a)p, 

the operator T has exactly one fixed point in S(x ,p). 
-o 
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We shall apply this theorem with ~ = Q• We have 

IIT(Q)II =sup {ni(T(Q))nl l n ~100} = 

.., < " < -1 >-1> I 1 =sup {ni!v=n nk=n 1-2k. vk b" n ~ 100 ~ 

~sup {n(n-1)-t(I::=n"-!)(4c+1/50) I n ~100}" (8£+2/50)•100/99. 

We restrict ourselves to values of ~ which are so small that 

(8c+2/50)•100/99 < 1/21. In order to apply the above theorem we 

further must show that the operator T given by (A.3) satisfies a 

condition of the form (A.4) on a sphere around Q· In fact 

liT(~) - T(z)li <til~ - zll if ~' zE: S(O, 1/10). This can be seen as 

follows 

I (T(x)- T(v)) I = I! co {n"k (1-2k-
1
vk)-

1
} v-11 x2 - ;r.21 < 

- "" n v =n =n --v v 

< (n-1)-t I::=n v-t I~ - :Vvl O~l+ly"l) ~ 

( -1 I -1 I ., I "'(2/5) n-1) sup {vl:xy- :Vvl v~n}<tn sup{v ~- Yv v ~n}. 

Hence liT(~)- T(z)ll = sup{ni(T(x)-T(_z))nl) n ~100) < 

<tsup( nlxn- ynl In ~100} =til.!- zll. We notice that, With 

tx = t, p = 1/10, IIT(O)II < 1/21 < (1-tx)p. By use of the theorem we 

have the existence o; a solution {p } of (A.2) with lp I ~ n-
1
/10 

n · n 

for all considered values of c. 

A simple observation suffices to obtain the desired result. As 

p = d(n-1 ), v = d((log n)-1
) and b = d(n-2 (log n)-1 ) hold uni-

n n n 

formly in c, we have p 
1

- p ,. d(n - 2 (log n)-
1

) and hence pn = 
-1 -1 n+ n 

= d(n (log n) ) uniformly in c: in an interval 0 ~ c ~ c
0 

( c
1 
> 0). 

(9) Our solution vn(~) + pn(c) of (A.1) satisfies 

lim (logn)((v (c) +p (c))logn~1) 
n-.., n n 

-1 = -c 

(or -oo if c = O). We have already observed (see (5)) that if ( zn) 

and (z'} are solutions of (A.1) (for n ~ 100) with z- 0, z•-o 
n n n ' 

then 

lim (log n)( (z -z 1 ) log n -1) = 0, 
n- oo n n 

if and only if z
1011 

= z~. Roughly speaking, this means that all 

solutions of (A.1) for which lim . (log n)(z logn-1) is large 
n-ao n 
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negative, can be written as v (c) + p (c). It is now also clear 
n n 

that t(x) attains all values in an interval (--,~). 

Thus, for those values of x for which t(x) < -c;
1

, [i.e. the valooe 

of x in (c, v
1
ee (c

0
) + p

110 
(c

0
) )] we have 

z (x) = v (- (t(x))-1) + p (- (t(x))-
1
), 

n n n 

(notice the uniqueness of ~(c)). 

We further observe that t(x) is continuous in a right neighbourhood 

of c (e.g. (c, v
100 

( c
0 

) + p
100 

( c
0 

) ) ) , since it is monotonic and at­

tains all values in an interval (-~,~). Moreover, t(x)~ -~, if 

X~ Co 

So we have the following picture of the solutions of (A.1). There 

exists an h > 0 and a continuous increasing function c(x) on 

[c, c+h), such that c(c) = 0 (hence c(x) > 0 for x >c), and such 

that 

z (x) = 1 + c(x) + di( 1 ) 
n n 1 + (c(x))log n n log n • 

(A.5) 

uniformly in xE:: [ c, c+h). 

This result indicates, how the two types of 

of (A.1) are related. As a matter of fact, 

z (c) = n-
1

(1 + o(1)), whereas for x > c we 
n 

= (log n)-1 + d((log n)-
2
). 

converging solutions 

for z (c) (A.5) yields 
n 

obtain z (x) = 
n 
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A list of asymptotic formulas proved in this thesis 

This list contains only results concerning inequalities. 

References to the literature (given by means ot [ ]) relate to the 

corresponding infinite inequalities. Sees. are Sections of this 

thesis. In all cases a
1 
~ o, ••• ,aN ~ 0. 

(1) ~= 1 { n-
1

(a;+ ••• + a~)}1/p ~ A.N(p) ~= 1 an (O<p <1) 

A.N(p) = (1-p)-1/p_ (1-p)-1- 1/p 21t2 (log N)-2 +d((log N)-3). 

[8] theorem 326; Seca.2- 7. Equivalent to a special case ot 

(3). 

(p > 1) 

p p+1 2 -2 .J -3 
A.N(p) = P - (p-1)p 2lt (log N) + o((log N) ). 

[8] theorem 331; Sec.8. Special case of (4). 

(p ~a> 1) 

[6]; Sec.10. Equivalent to (1) if p= a. 

(4) ~= 1 n-
8

(an+ ••• +aN)P~A.N(p,s) ~= 1 n-
8

(nan)p (p>1>s~O) 

~(p,s) = ( 1!s t- ~t~~ ( ~ r+
1 

(lo~1t~)2 + d((lo~ N)Jj • 

[6]; Sec.10. Identical to (2) it s=O. 
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(p > O) 

(9]; Sec.11. For the meaning of the prime see Sec.11. 

Equivalent to a special case of (8). 

(O<p<1) 

(6], or (8] theorem 344; Sec.12. Equivalent to a special 

case of (?). 

(O < p < 1, 

s~ 0) 

x < > (1-s'f (1-s'f-1 1=E. 2fil "( 1 ) 
N p,s = p - p 1-s (log N)t + (log N)' • 

(6]; Sec.12. Equivalent to (6) if' s=O • 

... N -s( )-P ( ) N -s( )-P ( 
(8) "'n=1 n a1 + ••• +an ~ >..N p,s I:n=1 n n an p > 0, 

s~ -p) 

>..N(p,s) = (1p-s\P _ (1p-s \P-1 E.:!:.! 2;Jr.2 d( 1 ) 
1 1 1-s (log N)l + (log N)J • 

Sec.12. Equivalent to (5) if s = -p. 
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Samenvatting 

In dit proefschrift wordt voor een aantal ongelijkheden tussen 

eindige reeksen met positieve termen onderzooht, wat het asympto­

tische gedrag is van de in die ongelijkheden voorkomende constan­

tan, indian het aantal termen van de reeks naar oneindig nadert. 

In 9 1 wordt oon tweetal algemene stellingen over iteratieprocessen 

bewezen en met voorbeelden toegelicht. 

Daarna begint in B 2 de tot in alle details uttgevoerde bepaling 

van een asymptotische formule voor de best mogelijke constante die 

optreedt in een eindige versie van de ongelijkheid van Hardy. ~or 

een vaste waarde van p in (0,1) trachten we een formula te vinden 

voor A.N(p) ale N ...... , waarbij A.N(p) het kleinste getal is zodat voor 

alle a
1 
~ O, ••• ,aN ~ 0 geldt 

a • 
n 

InS 2 wordt aangetoond dat de vraag naar A.N(p) gelijkwaarWgis met 

een vraag over een iteratieproces. De bestudering van dit itera­

tieproces in de §§ 3 t/m 7 geeft ons, behalve enige nevenresulta­

ten in § 3, de gewenste asymptotische formule voor A.N(p): 

De gevolgde methode is in wezen die van N.G. de Bruijn's [2] arti­

kel over de ongelijkheid van Carleman. 

In § 8 wordt het eindige analogon van een bekende kunstgreep uit 

de theorie der reeksen aangewend om uit het bovenstaande resultaat 

een soortgelijke formule af te leiden voor de constante in een 

eindige versie van een ongelijkheid van Copson. Ale neve~taat 

vinden we tevens een formule voor de grootste eigenwaarden van 

eindige deelmatrices van een zekere oneindige matrix. 

Een klasse van iteratieproblemen, die een aoortgelijke behandeling 

toelaten als in het geval van de ongelijkheid van Hardy, wordt be­

schreven in e 9. 

De §§ 10, 11 en 12 zijn gewijd aan ongelijkheden die aanleiding 

geven tot eoortgelijke iteratieproblemen, waarbij in § 10 direct 

bet resultaat van§ 9 wordt toegepast, terwijl we in de§§ 11 en12 
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gebruik maken van een alternatieve vorm die in § 11 geformuleerd 

wordt. 

In de laatste paragraaf worden ongelijkheden besproken, die bij 

eerste beschouwing analoog schijnen te zijn aan de voorgaande ge­

vallen, maar die toch een geheel ander gedrag vertonen. 

Een opmerkelijke eigenschap van iteratieprocessen, die in § 1 reeds 

naar voren komt, maar voor de gegeven beschouwingen over reeksen 

van weinig belang is, wordt in het aanhangsel door een uitgewerkt 

voorbeeld geillustreerd. 
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S T E L L I N G E N 

I 

Z~ A een Banach algebra met eenheideelement; a en b onderling ver­

wisselbare elementen van A; bm = 0; zij de complexe functie f locaal 

analytisch in een omgeving van het spectrum van a; zlj F de ''Principal 

extension" van f; F de "principal extension" van f(n). Dan is 
n 

F(a+b) = tJ~- 1 (nl)-1 F (a) bn. 
n=o n 

Litteratuur. E.Hille, R.S.Philips, 
Functional analysis and semigroups, 

blz. 164 e.v. 

II 

Bekend is dat in een ring de verzameling W der wortelgrootheden be­

vat is in de verzameling J der eigenlijk nilpotente elementen. Jkan 

wezenlijk grater zijn dan W, zelfs in een commutatieve ~h algebra 

met eenheidselement. 

Litteratuur. B.L.van der Waerden, 
Algebra II, blz. 143. 
M.A.Naimark, Normed Rings, blz. 162. 

III 

Verscheidene stellingen over lineaire functionalen op een Riesz 

ruimte kunnen gegeneraliseerd worden tot stellingen over lineaire 

afbeeldingen van een Riesz ruimte in een complete Riesz ruimte. 

Litteratuur. N.Bourbaki, Elements de 
Mathematique, Livre VI Integration, 
Chap.II, S.2. 

IV 

Het door Coxeter geuite vermoeden over afhankelijkheid in Artin's 



axioma 1 s van de affiene meetkunde ia juist, mite het goed geinterpr~ 

teerd wordt. 

Litteratuur. H.S.M.Coxeter, 
Introduction to geometry, blz. 191. 
E.Artin, Geometric Algebra, blz.51 e.vo 

v 

In een Banach algebra met eenheidselement zij M(O) de aanduiding voor 

de verzameling der elementen waarvan het spectrum in de open deelve~ 

zameling 0 van het complexe vlak ligt. Indien M(O) aamenhangend is, 

dan is 0 samenhangend. 

VI 

Zij A een commutatieve B•-algebra met eenheidselement; C het com­

plexe vlak. Indien er een niet lege open deelverzameling 0 van C 

bestaat, z6 dat M(O) relatief compact in A is, dan is A volledig iao­

morf met een eindig dimenaionale algebra tn. 

VII 

Zij A een Banach algebra met eenheidaelement; C het complexe vlak; 

zij F de verzameling van de complex-waardige functies, f, gedefi­

nieerd op open deelverzamelingen van C x A, waarvoor f((;,a) locaal 

analytisch en f(~,z) locaal constant is (a,~ vast, (;, z variabel); 

zij e de deelverzameling van C xA beataande uit punten (~,a) waarvoor 

a tot het spectrum van a behoort, de zgn. spectrale graph. Dan is de 

natuurlijke afbeelding van de ruimte van de kiemen van functies van F 

in de punten van e op de ruimte van de analytische kiemen in C 

continu. Ret ie te verwachten dat deze afbeelding een bruikbaar hulp­

middel zal zijn in de functietheorie in Banach algebra's. 

VIII 

In wiakundige uiteenzettingen worden lacunae vaak overbrugd door zeg&­

wijzen ala: "men ziet zonder veel moeite dat ••• "; "het is onmid-



dellijk duidelijk dat ·•·"· Het is mogelijk een genormaliseerde 

lijst op te stellen, die in de behoefte aan dergelijke uitdrukkingen 

voorziet. Beperking van de gebruikte uitdrukkingswijzen tot een 

dergelijke lijst zou de leesbaarheid van wiakundige gesehriften ten 

goede komen. 

IX 

De laatste jaren is op versehillende wijzen een grootheid "studie­

rendement" gedefinieerd en gemeten. Uit individuele, kwalitatieve 

gegevens is waaraehijnlijk informatie te verkrijgen die voor onder­

wijsverbetering waardevoller is. 

X 

Om de toekomstige ingenieura vertrouwd te maken met de maatschappe­

lijke verantwoordelijkheid die zij zullen dragen, is het nuttig hen 

tijdens hun studie te confronteren met de geschiedenis van de tech­

niek en de invloed daarvan op de samenleving. 


