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In thiswork, approximations to the solutions of singularly perturbed second-order linear delay di	erential equations are studied.We

rstly use two-term Taylor series expansion for the delayed convection term and obtain a singularly perturbed ordinary di	erential
equation (ODE). Later, an e�cient and simple asymptoticmethod so called Successive Complementary ExpansionMethod (SCEM)
is employed to obtain a uniformly valid approximation to this corresponding singularly perturbed ODE. As the 
nal step, we
employ a numerical procedure to solve the resulting equations that come from SCEM procedure. In order to show e�ciency of this
numerical-asymptotic hybrid method, we compare the results with exact solutions if possible; if not we compare with the results
that are obtained by other reported methods.

1. Introduction

Almost all physical phenomena in nature are modelled using
di	erential equations, and singularly perturbed problems are
vital class of these kinds of problems. In general, a singular
perturbation problem is de
ned as a di	erential equation
that is controlled by a positive small parameter 0 < � ≪ 1
that exists as multiplier to the highest derivative term in the
di	erential equation. As � tends to zero, the solution of
problem exhibits interesting behaviors (rapid changes) since
the order of the equation reduces. �e region where these
rapid changes occur is called inner region and the region
in which the solution changes mildly is called outer region.
As mentioned in [1, 2], these kinds of problems arise in
almost all applied natural sciences. Some of these can be given
as mechanical and electrical systems, celestial mechanics,
�uid and solid mechanics, electromagnetics, particle and
quantum physics, chemical and biochemical reactions, and
economics and 
nancial mathematics. Various methods are
employed to solve singular perturbation problems analyt-
ically, numerically, or asymptotically such as the method
of matched asymptotic expansions (MMAE), the method
of multiple scales, the method of WKB approximation,
Poincaré-Lindstedt method and periodic averaging method.

Rigorous analysis and applications of these methods can be
found in [3–8].

Modelling automatic systems o�en involve the idea of
control because feedback is necessary in order to maintain
a stable state. But much of this feedback require a 
nite
time to sense information and react to it. A general way for
describing this process is to formulate a delay di	erential
equation (di	erence-di	erential equation). Delay di	erential
equations (DDE) are widely used for modelling problems
in population dynamics, nonlinear optics, �uid mechan-
ics, mechanical engineering, evolutionary biology, and even
modelling of HIV infection and human pupil-light re�ex.
One can refer to [10–14] for general theory and applications
of DDEs.

In this paper, we study an important class of delay di	er-
ential equations: singularly perturbed linear delay di	erential
equations. A singularly perturbed delay di	erential equation
is a di	erential equation inwhich the highest-order derivative
is multiplied by a positive small � parameter and involving at
least one delay term. We restrict our attention to singularly
perturbed second-order ordinary delay di	erential equations
that contains the delay in convection term. Various methods
have been used to solve singularly perturbed DDEs such as

nite di	erence methods [9, 15, 16], 
nite element methods
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[17, 18], homotopy perturbationmethod [19, 20], reproducing
kernel method [21, 22], spline collocation methods [23, 24],
and asymptotic approaches [25, 26]. We use an asymptotic-
numerical hybrid method in order to 
nd uniformly valid
approximations to singularly perturbed ODEs. At the 
rst
step, two-term Taylor series expansion is used to vanish
delayed term. Secondly, to obtain a uniformly valid approxi-
mation an e�cient and easily applicable asymptotic method
so called Successive Complementary Expansion Method
(SCEM) that was introduced in [27] is employed. Finally, a
numerical approach is used to solve resulting equations that
come from SCEM process.

2. Description of the Method

In this section, we 
rst give a short overview of asymptotic
approximations and then explain Successive Complementary
Expansion Method by which we obtain highly accurate
approximations to solutions of singularly perturbed linear
DDEs.

Consider two continuous functions of real numbers �(�)
and ℎ(�) that depend on a positive small parameter �; then
�(�) = �(ℎ(�)) for � → 0 if there exist positive constants �
and �0 such that � ∈ (0, �0] with |�(�)| ⩽ �|ℎ(�)| for � → 0,
and �(�) = �(ℎ(�)) for � → 0 if lim�→0(�(�)/ℎ(�)) = 0. Let
� be a set of real functions that depend on �, strictly positive
and continuous in (0, �0], such that lim�→0(�) exists and
1(�)2(�) ∈ � for each 1(�), 2(�) ∈ �. A function �(�)
that satis
es these conditions is called order function. Given
two functions �(�, �) and ��(�, �) de
ned in a domain Ω
are asymptotically identical to order (�) if their di	erence
is asymptotically smaller than (�), where (�) is an order
function; that is,

� (�, �) − �� (�, �) = � ( (�)) , (1)

where � is a positive small parameter arising from the
physical problem under consideration. �e function ��(�, �)
is named as asymptotic approximation of the function �(�, �).
Asymptotic approximations in general form are de
ned by

�� (�, �) =
�

∑
�=1

� (�) �� (�, �) , (2)

where �+1(�) = �(�(�)), as � → 0. Under these conditions,
the approximation (2) is named as generalized asymptotic
expansion. If the expansion (2) is written in the form of

�� (�, �) = �0� =
�

∑
�=1

(0)� (�) �(0)� (�) , (3)

then it is called regular asymptotic expansionwhere the special
operator �0 is outer expansion operator of a given order (�).
�us, �−�0� = �((�)). Formore detailed information about
the asymptotic approximations, we refer the interested reader
to [3–8, 28, 29].

Interesting behaviors occur when the function �(�, �) is
not regular in Ω so (2) or (3) is valid only in a restricted
region Ω0 ∈ Ω, called the outer region. We introduce an

inner domain which can be formally denoted as Ω1 = Ω − Ω0
and corresponding inner layer variable, located near the point
� = �0, as � = (� − �0)/�(�), with �(�) being the order
of thickness of the boundary layer (the region in which the
rapid changes-behaviors occur). If a regular expansion can be
constructed in Ω1, one can write down the approximation as

�� (�, �) = �1� =
�

∑
�=1

(1)� (�) �(1)� (�) , (4)

where the inner expansion operator �1, de
ned in Ω1, is of
the same order (�) as the outer expansion operator �0; that
is, � − �1� = �((�)). �us,

�� = �0� + �1� − �1�0� (5)

is clearly uniformly valid approximation (UVA) [28–30].
Now let us consider second-order singularly perturbed

DDE in its general form (delay in the convection term):

���� (�) + � (�) �� (� − ) + � (�) � (�) = � (�) , (6)

where 0 < � ≪ 1 small parameter and 0 < � < 1. Boundary
and interval conditions are given as

� (�) = � (�) , −  ≤ � ≤ 0, � (1) = �, (7)

where�(�), �(�), �(�), and �(�) are smooth functions, � ∈ R,
and  is delay term.

As � tends to zero, the order of the di	erential equation
reduces and so a layer occurs in the solution.�e sign of �(�)
on the interval [0, 1] determines the type of the layer. If the
sign changes on the interval, interior layer behavior occurs
in the solution. If the sign of �(�) does not change, there are
two possibilities: if �(�) < 0 on [0, 1], then a boundary layer
occurs at the right end (near the point � = 1) and if �(�) > 0
on [0, 1], then a boundary layer occurs at the le� end (near
the point � = 0).

Using Taylor series expansion we linearize the convection
term; that is, ��(� − ) = ��(�) − ���(�) and substituting it
into (6) one can reach

(� − � (�)) ��� (�) + � (�) �� (�) + � (�) � (�) = � (�) . (8)

Letting  = ��, where � ∈ R

� (1 − �� (�)) ��� (�) + � (�) �� (�) + � (�) � (�)
= � (�)

(9)

is found and it is clear that (9) is a singularly perturbed ordi-
nary di	erential equation for � → 0 with the same bound-
ary and interval conditions as given by (7). SCEM procedure
is applicable at this stage.

�e uniformly valid SCEM approximation is in the
regular form given by

�scem

� (�, �, �) =
�

∑
�=1

� (�) [�� (�) + Ψ� (�)] , (10)

where {�(�)} is an asymptotic sequence and functions
Ψ�(�) are the complementary functions that depend on �.
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If the functions ��(�) and Ψ�(�) depend also on �, the
uniformly valid SCEM approximation is called generalized
SCEM approximation and given by

�scem

�� (�, �, �) =
�

∑
�=1

� (�) [�� (�, �) + Ψ� (�, �)] . (11)

If only one-term SCEM approximation is desired, then one
seeks a uniformly valid SCEM approximation in the form of

�scem

1 (�, �, �) = �1 (�, �) + Ψ1 (�, �) . (12)

To improve the accuracy of approximation, (12) can be
iterated using (11). It means that successive complementary
termswill be added to the approximation. To this end, second
SCEM approximation will be in the form of

�scem

2 (�, �, �) = �1 (�, �) + Ψ1 (�, �)
+ � (�2 (�, �) + Ψ2 (�, �)) .

(13)

In this work, we seek an approximation in our calculations in
the form of (13).

Now, let us assume that problem (9) has a le� boundary
layer (near the point � = 0) and let �out(�) be asymptotic
approximation to the outer solution and let Ψ(�) be the
complementary solution, where � = �/� is boundary layer
(stretching) variable. If approximations

�out (�, �) = �1 (�) + ��2 (�) + �2�3 (�) + ⋅ ⋅ ⋅ ,
Ψ (�, �) = Ψ1 (�, �) + �Ψ2 (�, �) + �2Ψ3 (�, �) + ⋅ ⋅ ⋅

(14)

are substituted into (9) and if each term is balanced with
respect to the powers of � (we balance just the terms �(1) and
�(�)),

� (�) ��1 (�, �) + � (�) �1 (�, �) = � (�) ,
�1 (1, �) = �,

���1 (�, �) + � (�) ��2 (�, �) + � (�) �2 (�, �) = 0,
�2 (1, �) = 0

(15)

are found. If the same procedure is applied for equations that
involve complementary functions

Ψ��1 (�, �) + � (�) Ψ�1 (�, �) = � (�) (16)

with the boundary conditions

Ψ1 (0, �) = � (0) − �,

Ψ1 ( 1
� , �) = 0,

Ψ��2 (�, �) − �
� � (�) Ψ��1 (�, �) + � (�) Ψ�2 (�, �)

+ � (�) Ψ1 (�, �) = 0

(17)

with the boundary conditions

Ψ1 (0, �) = −�2 (0, �) ,

Ψ1 ( 1
� , �) = 0

(18)

being obtained and so (13) gives uniformly valid second
SCEM approximation.

3. Illustrative Examples

3.1. Le� Boundary Layer Problem. Consider singularly per-
turbed DDE that exhibits a boundary layer at the le� end of
the interval:

���� (�) + �� (� − ) − � (�) = 0, 0 ≤ � ≤ 1, (19)

with the boundary conditions �(0) = 1 and �(1) = 1. �e
exact solution of this problem is given by �(�) = ((1 −
#	2)#	1
 + (#	1 − 1)#	2
)/(#	1 − #	2), where $1,2 = (−1 ±
√1 + 4(� − ))/2(� − ). As the 
rst step, we use two-term
Taylor expansion for ��(� − ) = ��(�) − ���(�). If we
substitute it into (19), the problem turns into

(� − ) ��� (�) + �� (�) − � (�) = 0, 0 ≤ � ≤ 1. (20)

In order to obtain a uniformly valid approximation (UVA),
we 
rst seek an outer solution which is valid far from the
boundary layer (the boundary layer is near the point� = 0 for
this problem) and then using SCEM we add complementary
solution to it. Later, using the same idea, we will get more
accurate approximations.

Outer Region Solutions. Let us take & = � − , assuming that
 depends on �, and adopt a solution for the outer region in
the form of �out(�) = �1(�, &)+&�2(�, &). Equation (20) turns
into

& (���1 (�, &) + &���2 (�, &)) + (��1 (�, &) + &��2 (�, &))
− (� (�, &) + &�2 (�, &)) = 0

(21)

and balancing the terms of the order �(1) and �(&), we
reach the equations

��1 (�, &) − �1 (�, &) = 0, �1 (1, &) = 1,
���1 (�, &) + ��2 (�, &) − �2 (�, &) = 0, �2 (1, &) = 0.

(22)

One can easily 
nd the exact solutions of these equations as

�1 (�, &) = #
−1,
�2 (�, &) = #
−1 (1 − �) .

(23)

It means that the outer solution is of the form

�out (�, &) = #
−1 + &#
−1 (� − 1) . (24)
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Complementary Solutions. Now applying the stretching trans-
formation� = �/& and adopting the complementary solution
as Ψ(�, &) = Ψ1(�, &) + &Ψ2(�, &), one can reach

Ψ��1 (�) + &Ψ��2 (�, &) + Ψ�1 (�, &) + &Ψ�2 (�, &)
− &Ψ1 (�, &) − &2Ψ2 (�, &) = 0.

(25)

Balancing the terms of the order �(1) and �(&), we obtain
Ψ��1 (�, &) + Ψ�1 (�, &) = 0,

Ψ1 (0, &) = 1, Ψ1 ( 1
& , &) = 0,

(26)

Ψ��2 (�, &) + Ψ�2 (�, &) − Ψ1 (�, &) = 0,

Ψ2 (0, &) = −#−1, Ψ2 ( 1
& , &) = 0.

(27)

Here we are able to solve Ψ1(�, &) and Ψ2(�, &) exactly, but
in many cases to obtain analytical solution to Ψ1(�, &) and
Ψ2(�, &) is really tedious process, even for many problems it
is impossible. �e solutions may be given as

Ψ1 (�, &) = # − 1
# (1 − #−1/�) (#−
 − #−1/�) (28)

and Ψ2(�, &) is given as the solution of (27). Since we
solve (27) numerically (MATLAB bvp4c routine) and the
others using an asymptotic scheme, our present method is
a hybrid method. As a result, we obtain 
rst two SCEM
approximations to problem (19) as follows:

�scem

1 (�, �, &) = #
−1 + # − 1
# (1 − #−1/�) (#−
 − #−1/�) ,

�scem

2 (�, �, &) = �scem

1 (�, �, &)
+ & [#
−1 (1 − �) + Ψ2 (�, &)] .

(29)

3.2. Right Boundary Layer Problem. Consider singularly per-
turbed DDE that exhibits a boundary layer at the right end of
the interval

���� (�) − �� (� − ) + � (�) = 0, (30)

with the boundary and interval conditions

� (�) = 1, −  ≤ � ≤ 0,
� (1) = −1. (31)

Using two-termTaylor expansion for the convection term, we
reach ��(� − ) = ��(�) − ���(�) and applying it to (30) one
can obtain

(� + ) ��� (�) − �� (�) + � (�) = 0, 0 ≤ � ≤ 1 (32)

with the boundary conditions �(0) = 1 and �(1) = −1.
In order to obtain a uniformly valid approximation, we


rst seek an outer solution which is valid for far from the

boundary layer (the boundary layer is near the point� = 1 for
this problem) and then using SCEM we add complementary
solution to it. Later, using the same idea, we will get more
accurate approximations.

Outer Region Solutions. Let us take & = � +  assuming that 
depends on � and adopt an approximation for the outer region
in the form of �out(�) = �1(�, &) + &�2(�, &). Equation (32)
turns into

& (���1 (�, &) + &���2 (�, &)) − (��1 (�, &) + &��2 (�, &))
+ (� (�, &) + &�2 (�, &)) = 0;

(33)

balancing the terms of the order�(1) and �(&), we reach the
equations

��1 (�, &) − �1 (�, &) = 0, �1 (0, &) = 1,
���1 (�, &) − ��2 (�, &) + �2 (�, &) = 0, �2 (0, &) = 0.

(34)

One can easily 
nd the exact solutions of these equations as

�1 (�, &) = #
,
�2 (�, &) = #
�.

(35)

It means that the outer solution is of the form

�out (�, &) = #
 + &#
�. (36)

Complementary Solutions. Now applying the stretching trans-
formation � = (� − 1)/& and adopting the complementary
solution as Ψ(�, &) = Ψ1(�, &) + &Ψ2(�, &) one can reach

Ψ��1 (�) + &Ψ��2 (�, &) − Ψ�1 (�, &) − &Ψ�2 (�, &)
+ &Ψ1 (�, &) − &2Ψ2 (�, &) = 0.

(37)

Balancing the terms of the order �(1) and �(&) we obtain
Ψ��1 (�, &) − Ψ�1 (�, &) = 0,

Ψ1 (− 1
& , &) = 0, Ψ1 (0, &) = −1 − #,

(38)

Ψ��2 (�, &) − Ψ�2 (�, &) + Ψ1 (�, &) = 0,

Ψ2 (− 1
& , &) = 0, Ψ2 (0, &) = −1 − #.

(39)

�e solutions are given as

Ψ1 (�, &) = # + 1
#−1/� (#
 − 1) − # − 1 (40)

and Ψ2(�, &) is given as the solution of (39). �us, we reach
uniformly valid SCEM approximations as

�scem

1 (�, �, &) = #
 + # + 1
#−1/� (#
 − 1) − # − 1,

�scem

2 (�, �, &) = �scem

1 (�, �, &) + & [#
� + Ψ2 (�, &)] .
(41)
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Table 1: Results of le� layer problem for � = 10−3 and  = 0.5�.
� �

exact
�scem

1
6666�exac� − �scem

1
6666 �scem

2
6666�exact

− �scem

2
6666 Method [9]

0.0000 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000
0.0010 0.4538692 0.45379572 7.3488# − 05 0.4538692 9.2048# − 09 0.3171426
0.0020 0.3803509 0.38019363 1.5732# − 04 0.3803510 9.4728# − 08 0.3603879
0.0030 0.3707303 0.37055161 1.7865# − 04 0.3707303 1.2683# − 07 0.3666117
0.0040 0.3697488 0.36956596 1.8289# − 04 0.3697489 1.3552# − 07 0.3678324
0.0050 0.3699358 0.36975214 1.8364# − 04 0.3699359 1.3753# − 07 0.3683816
0.0100 0.3717605 0.37157669 1.8379# − 04 0.3717606 1.3821# − 07 0.3708603
0.0150 0.3736230 0.37343923 1.8378# − 04 0.3736231 1.3848# − 07 0.3733556
0.0200 0.3754949 0.37531110 1.8376# − 04 0.3754950 1.3869# − 07 0.3758674
0.1000 0.4067525 0.40656966 1.8281# − 04 0.4067526 1.4163# − 07 0.4071563
0.2000 0.4495085 0.44932896 1.7958# − 04 0.4495086 1.4362# − 07 0.4499552
0.4000 0.5489761 0.54881164 1.6450# − 04 0.5489762 1.3978# − 07 0.5495225
0.6000 0.6704540 0.67032005 1.3394# − 04 0.6704541 1.2051# − 07 0.6711221
0.8000 0.8188125 0.81873075 8.1795# − 05 0.8188126 7.7685# − 08 0.8196300
0.9000 0.9048826 0.90483742 4.5197# − 05 0.9048826 4.4056# − 08 0.9057869
1.0000 1.0000000 1.0000000 0.0000000 0.0000000 0.0000000 1.0000000

Table 2: Results of le� layer problem for � = 10−4 and  = 0.5�.
� Exact �scem

1
6666�exact

− �scem

1
6666 �scem

2
6666�exact

− �scem

2
6666 Method [9]

0.0000 1.0000000 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000
0.0001 0.4534718 0.4534644 7.3497# − 06 0.4534717 1.7565# − 10 0.3181581
0.0002 0.3795465 0.3795307 1.5740# − 05 0.3795464 1.1979# − 09 0.3612116
0.0003 0.3695746 0.3695566 1.7877# − 05 0.3695745 1.2808# − 09 0.3670360
0.0004 0.3682570 0.3682386 1.8301# − 05 0.3682569 1.3520# − 09 0.3678237
0.0005 0.3681105 0.3680921 1.8377# − 05 0.3681105 1.3718# − 09 0.3679338
0.0010 0.3682659 0.3682475 1.8392# − 05 0.3682658 1.3794# − 09 0.3682020
0.0015 0.3684501 0.3684316 1.8392# − 05 0.3684500 1.3806# − 09 0.3684702
0.0020 0.3686343 0.3686159 1.8392# − 05 0.3686343 1.3794# − 09 0.3687384
0.1000 0.4065880 0.4065696 1.8294# − 05 0.4065879 1.4170# − 09 0.4066914
0.2000 0.4493469 0.4493289 1.7971# − 05 0.4493469 1.4373# − 09 0.4494485
0.4000 0.5488281 0.5488116 1.6462# − 05 0.5488281 1.3990# − 09 0.5489215
0.6000 0.6703334 0.6703200 1.3405# − 05 0.6703334 1.2061# − 09 0.6704094
0.8000 0.8187389 0.8187307 8.1865# − 06 0.8187389 7.7755# − 10 0.8187855
0.9000 0.9048420 0.9048374 4.5237# − 06 0.9048419 4.4095# − 10 0.9048674
1.0000 1.0000000 1.0000000 0.0000000 1.0000000 0.0000000 1.0000000

4. Conclusion

In this paper, singularly perturbed second-order linear delay
di	erential equations that have a delay in the convection
term are considered. Firstly, the delayed terms are linearized
using two-term Taylor series expansion. Later, an e�cient
asymptotic method so called Successive Complementary
Expansion Method (SCEM) is employed so as to obtain a
uniformly valid approximation scheme. At the last stage,
the equations that come from the SCEM process are solved
by a numerical procedure and so the present method is an

asymptotic-numerical hybrid method. �e method is easily
applicable since it does not require any matching principle
in contrast to the well-known method matched asymptotic
expansions (MMAE). Highly accurate approximations are
obtained in only few iterations and moreover boundary con-
ditions are not satis
ed asymptotically, but exactly. In Tables
1 and 2, exact solution, present method approximations, and
approximations that are obtained by the method given in [9]
are compared and to show the e�ciency of present method,
results are supported by Figures 1, 3, and 4. In Figures 2
and 5, the delay e	ects are compared and since the right
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Table 3: Results of right layer problem for � = 10−3 and  = 0.5�.
� �scem

1 �scem

2
6666�scem

2 − �scem

1
6666 Numerical method

0.0000 1.0000000 1.0000000 0.0000000 1.0000000
0.1000 1.1051709 1.1052261 5.5258# − 05 1.1052262
0.2000 1.2214027 1.2215248 1.2214# − 04 1.2215250
0.4000 1.4918246 1.4921230 2.9836# − 04 1.4921233
0.6000 1.8221188 1.8226654 5.4663# − 04 1.8226660
0.8000 2.2255409 2.2264311 8.9021# − 04 2.2264322
0.9000 2.4596031 2.4607099 0.0011068 2.4607112
0.9980 2.6447479 2.6460768 0.0013288 2.6458021
0.9985 2.5290851 2.5303725 0.0012873 2.5299480
0.9990 2.2123501 2.2135226 0.00117247 2.2128733
0.9995 1.3490435 1.3499013 8.5777# − 04 1.3488799
0.9996 1.0464630 1.0472103 7.4736# − 04 1.0456402
0.9997 0.6768301 0.6774425 6.1241# − 04 0.6780147
0.9998 0.2252993 0.2257469 4.4754# − 04 0.2279200
0.9999 −0.3262616 −0.3260155 2.4612# − 04 −0.3247246
1.0000 −1.0000000 −1.0000000 0.0000000 −1.0000000

Exact solution
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Figure 1: Le� layer problem for � = 0.01 and  = 0.1�.
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Figure 2: Delay e	ect on le� layer problem for � = 0.01,  = 0.01�,
and  = 0.9�.

layer problem does not have an exact solution, the 
rst two
SCEM approximations are compared in Table 3. As a result,

y
 (
x

)

Exact

SCEM1

SCEM2

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

x

Figure 3: Le� layer problem for � = 0.001 and  = 0.9�.
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Figure 4: Absolute errors in SCEM approximations for le� layer
problem.

the present method is a simple and very e�cient technique
for solving singularly perturbed linear DDEs.
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Figure 5: Delay e	ect on right layer problem for � = 0.01,  = 0.5�,
and  = 2�.

Competing Interests

�e author declares that there is no con�ict of interests.

Acknowledgments

�e author would like to express his sincere thanks to his
master thesis advisors Dr. A. Eryılmaz and Dr. M. T. Atay for
their valuable comments and suggestions.

References

[1] M. Kumar, “Methods for solving singular perturbation problem
sarising in science and engineering,” Mathematical and Com-
puter Modelling, vol. 54, no. 1, pp. 556–575, 2011.

[2] K. K. Sharma, P. Rai, and K. C. Patidar, “A review on singularly
perturbed di	erential equations with turning points and inte-
rior layers,”Applied Mathematics and Computation, vol. 219, no.
22, pp. 10575–10609, 2013.

[3] A. H. Nayfeh, Perturbation Methods, John Wiley & Sons, 2008.

[4] E. J. Hinch, Perturbation Methods, Cambridge Texts in Applied
Mathematics, Cambridge University Press, Cambridge, UK,
1991.

[5] J. A. Murdock, Perturbations: 
eory and Methods, vol. 27 of
Classics in Applied Mathematics, SIAM, Philadelphia, Pa, USA,
1999.

[6] E. M. de Jager and J. F. Furu, 
e 
eory of Singular Perturba-
tions, vol. 42, Elsevier, 1996.

[7] P. A. Lagerstrom, Matched asymptotic expansions, vol. 76 of
Applied Mathematical Sciences, Springer New York, 1988.

[8] J. K. Kevorkian and J. D. Cole, Multiple Scale and Singular
Perturbation Methods, vol. 114, Springer Science & Business
Media, Berlin, Germany, 2012.

[9] F. Gemechis and Y. N. Reddy, “Terminal boundary-value
technique for solving singularly perturbed delay di	erential
equations,” Journal of Taibah University for Sciences, vol. 8, no.
3, pp. 289–300, 2014.

[10] T. Erneux,Applied Delay Di�erential Equations, vol. 3 of Surveys
and Tutorials in the Applied Mathematical Sciences, Springer,
New York, NY, USA, 2009.

[11] E. Pinney, Ordinary Di�erence-Di�erential Equations, Univer-
sity of California Press, 1958.

[12] R. D. Driver, Ordinary and Delay Di�erential Equations, vol. 20
of Applied Mathematics, Springer, Berlin, Germany, 1977.

[13] R. E. Bellman and K. L. Cooke, Di�erential-Di�erence Equa-
tions, Academic Press, New York, NY, USA, 1963.

[14] J. K. Hale, Functional Di�erential Equations, Springer, New
York, NY, USA, 1971.

[15] M. K. Kadalbajoo and K. K. Sharma, “A numerical method
based on 
nite di	erence for boundary value problems for sin-
gularly perturbed delay di	erential equations,” Applied Mathe-
matics and Computation, vol. 197, no. 2, pp. 692–707, 2008.

[16] R. Nageshwar Rao and P. Pramod Chakravarthy, “A 
nite dif-
ference method for singularly perturbed di	erential-di	erence
equations with layer and oscillatory behavior,” Applied Mathe-
matical Modelling, vol. 37, no. 8, pp. 5743–5755, 2013.

[17] S. Nicaise and C. Xenophontos, “Robust approximation of
singularly perturbed delay di	erential equations by the hp

nite element method,” Computational Methods in Applied
Mathematics, vol. 13, no. 1, pp. 21–37, 2013.

[18] H. Zarin, “On discontinuous Galerkin 
nite element method
for singularly perturbed delay di	erential equations,” Applied
Mathematics Letters. An International Journal of Rapid Publica-
tion, vol. 38, pp. 27–32, 2014.

[19] F. Shakeri and M. Dehghan, “Solution of delay di	erential
equations via a homotopy perturbation method,”Mathematical
and Computer Modelling, vol. 48, no. 3-4, pp. 486–498, 2008.

[20] Q. Wang and F. Fu, “Solving delay di	erential equations with
homotopy analysis method,” Communications in Computer and
Information Science, vol. 97, no. 1, pp. 144–153, 2010.

[21] A. Akgul and A. Kiliman, “Solving delay di	erential equations
by an accuratemethodwith interpolation,”Abstract andApplied
Analysis, vol. 2015, Article ID 676939, 7 pages, 2015.

[22] F. Z. Geng, S. P. Qian, and M. G. Cui, “Improved reproducing
kernel method for singularly perturbed di	erential-di	erence
equations with boundary layer behavior,” Applied Mathematics
and Computation, vol. 252, pp. 58–63, 2015.

[23] M. K. Kadalbajoo and D. Kumar, “Fitted mesh B-spline collo-
cation method for singularly perturbed di	erential–di	erence
equations with small delay,” Applied Mathematics and Compu-
tation, vol. 204, no. 1, pp. 90–98, 2008.

[24] H. M. El-Hawary and S. M. Mahmoud, “Spline collocation
methods for solving delay-di	erential equations,” Applied
Mathematics and Computation, vol. 146, no. 2-3, pp. 359–372,
2003.

[25] C. G. Lange and R.M.Miura, “Singular perturbation analysis of
boundary value problems for di	erential-di	erence equations.
v. small shi�s with layer behavior,” SIAM Journal on Applied
Mathematics, vol. 54, no. 54, pp. 249–272, 1994.

[26] C. G. Lange and R.M.Miura, “Singular perturbation analysis of
boundary-value problems for di	erential-di	erence equations.
VI. Small shi�s with rapid oscillations,” SIAM Journal on
Applied Mathematics, vol. 54, no. 1, pp. 273–283, 1994.

[27] J. Mauss and J. Cousteix, “Uniformly valid approximation
for singular perturbation problems and matching principle,”
Comptes Rendus -Mecanique, vol. 330, no. 10, pp. 697–702, 2002.

[28] W. Eckhaus, Asymptotic Analysis of Singular Perturbations, vol.
9 of Studies inMathematics and Its Applications, North-Holland,
Amsterdam, �e Netherlands, 1979.

[29] J. Cousteix and J. Mauss, Asymptotic Analysis and Boundary
Layers, Scienti
c Computation, Springer, Berlin, Germany,
2007.



8 International Journal of Di	erential Equations

[30] S. Cengizci, M. T. Atay, and A. Eryılmaz, “A uniformly valid
approximation algorithm for nonlinear ordinary singular per-
turbation problems with boundary layer solutions,” Springer-
Plus, vol. 5, no. 1, article no. 280, 2016.



Submit your manuscripts at

https://www.hindawi.com

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Problems 
in Engineering

Hindawi Publishing Corporation
http://www.hindawi.com

Differential Equations
International Journal of

Volume 2014

Applied Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Probability and Statistics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Mathematical Physics
Advances in

Complex Analysis
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Optimization
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Combinatorics
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Operations Research
Advances in

Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Function Spaces

Abstract and 
Applied Analysis
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

International 
Journal of 
Mathematics and 
Mathematical 
Sciences

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Algebra

Discrete Dynamics in 
Nature and Society

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Decision Sciences
Advances in

Discrete Mathematics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014 Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Stochastic Analysis
International Journal of


