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Abstract

In this work we numerically study the diffusive limit of run &amble kinetic models for cell motion
due to chemotaxis by means of asymptotic preserving schdiissvell-known that the diffusive limit
of these models leads to the classical Patlak-Keller-Segeloscopic model for chemotaxis. We will
show that the proposed scheme is able to accurately appateitme solutions before blow-up time for
small parameter. Moreover, the numerical results indidwethe global solutions of the kinetic models
stabilize for long times to steady states for all the analyzarameter range. We also generalize these
asymptotic preserving schemes to two dimensional kinetidets in the radial case. The blow-up of
solutions is numerically investigated in all these cases.

1 Introduction

Chemotaxis is one of the basic mechanisms of cell motility sluchemical interaction. Cells are attracted
by the concentration of certain chemical substance, calednoattractant, and they direct their movement
toward the regions of highest concentration. Typicallys fphenomenon have been described based on
macroscopic systems of equations describing the evolatidhe cell density and the chemoattractant in
time. These systems of drift-diffusion type are the welbkrclassical (Patlak)-Keller-Segel models [30, 25,
26]. Another point of view was introduced by a mesoscopicdpson of these phenomena bridging from
stochastic interacting particle systems to macroscopiatmns. This middle ground consists in describing
the movement of cells by a “run & tumble” process [27, 29]. Te#ls move along a straight line in the
running phase and make reorientation as a reaction to theusuling chemicals during the tumbling phase.
This is the typical behavior that has been observed in exygentis. The resulting nondimensionalized kinetic
equation, with parabolic rescaling, reads

e%w.mxf :%/V(Tgf’—Ts*f)d\/ (1.2)
Here f = f¢(t,x,V) is the density of cells at positione RN, moving with velocityv € V ¢ RN. S= S:(t,x)
is the density of chemoattractant, whose governing equatith be described laterT, = T;[J(t,x,v,V) is



the turning kernel operator. We use the abbreviafios: f(t,x,V), T [S(t,x,v,V) = T¢[J(t,x,V,V). € is
the ratio of the mean running length between jumps to the&ymibservation length scale. For simplicity
we omit the dependence @rin notations (except,, wheres explicitly enters into the expression.) We refer
to [11] for the details on the rescaling. The chemoattrackas typically given by the Poisson equation

—AS=p wherep = pg(t,X) :/ fe(t,x,v)dv is the macroscopic density of cells. (1.2)
v

Here, we assume that the time scale of relaxation for the oh#gractant is much smaller that the one for the
cell density. Although this is the most standard way of idtrcing the coupling with the chemoattractant,
some authors have proposed to use some generalized maodais/fdimension where the chemoattractant
Sis given by

S= —%TIogM*p. (1.3)

Note that in two dimensional case, (1.3) is exactly (1.2).
Starting with the kinetic equation (1.1), one can (at leasenélly) derive the macroscopic limit as
e —0,
dp = Dx'(DDxp_XprS)~ (1.4)

The details will be described in Section 3. Coupling witi2jlone obtains the already mentioned Patlak-
Keller-Segel system [30, 25, 26] for chemotaxis. We refahworeviews [17, 31] and the references therein
for mathematical results on this system. The behavior ofstiiation is quite different depending on the
dimension. In the 1D case, the global solution exists foirgtial condition. In the 2D case, there exists
a critical masdV; determined by the coefficients [13, 6]. The global solutigists if the initial total mass
satisfiedVl < M (subcritical case) and its long time asymptotics are giwesdf-similar profiles, otherwise
the solution blows up in infinite (critical ca®d = M. [5]) or finite time (supercritical caskl > M. [14]).
The critical case has infinitely many stationary statesh efi¢hem having their own basin of attraction [4]
depending on the tail of the distribution at infinity. In thB 8ase, the relevant quantity ensuring global
existence is the®2 norm of the initial density, see [12], together with someditian involving the second
moment of the solution.

Similarly, starting with (1.1)-(1.3), one derives the mitetl Keller-Segel model (1.4)-(1.3) studied in
[8], as€ — 0. For the modified system, the existence of critical massteneled to the 1D and 3D cases. It
is given by
B 2N?mD

X

A very interesting consequence is that even in one dimen#isystem blows-up over this critical mass.
This makes possible to numerically analyse this highlylsytttenomena. This modified Keller-Segel sys-
tem was numerically solved in [3] by using optimal transption ideas and the scheme proven to be con-
vergent in the subcritical case.

Alt in [1, 2] derived (1.4) from a transport equation simitar(1.1) via a stochastic model. Later the
kinetic system (1.1)-(1.2) was formulated in [27]. Othmed &lillen in [16, 28] studied the formal diffusion
limit of this system by moment expansions. In [11] Chalubletm@oved that, in three dimensions with
suitable assumptions on the turning kerfiglthe solution to the kinetic system (1.1)-(1.2) globallyséx
for any initial total mass. Moreover, they gave a rigorousgbiof the convergence to the macroscopic limit
for all time invervals of existence of the limiting Kellere§el system. In the following work [18, 19] the
results are extended to more general cases.
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The first task of this work is to design an Asymptotic-Preser(AP) method for the kinetic system
(1.1)-(1.3) in the one dimensional case. The “Asymptotieserving” scheme, introduced by [20], is a
suitable numerical method for the kinetic equation in su@rag that lettinge — 0 with the mesh size and
time step fixed, the scheme becomes a scheme for the limitgigra. In this case, this meanseas: 0, the
moments of the solution to the kinetic system (1.1)-(1.3esthe modified Keller-Segel system (1.4)-(1.3)
automatically. We refer to [21] and the references thereirafdetailed review on AP scheme.

As mentioned above, the solution to the modified Keller-Ssggtem (1.4)-(1.3) over the critical mass
blows up in finite timet*. But the global solution to the kinetic system (1.1)-(1.3}sts. An attractive
idea is that, the solution of the kinetic system aftemight be a good candidate to describe the behavior of
solution to the Keller-Segel system after blow-up. Theeea@her mechanisms of regularizing the Patlak-
Keller-Segel system after blow-up by saturating the eféétthe chemoattractant, introducing volume effects
or cross-diffusion in the macroscopic system, see [10] fdisaussion. However, to regularize it by the
kinetic system is more appealing since the kinetic systatiréstly derived from interacting particle systems
models.

Bournaveas and Calvez [7] studied the kinetic system ((IL.B)-with the local turning kerndi; defined
below in (2.6). They showed that, in the two dimensional sighy symmetric coordinate, the solution
exists below a critical mass; and blows up over a critical mab4. Two questions remains unsolved. First,
the large-time behavior of the solutions for subcriticadesiis not clear yet. Second, the two thresholds
do not match, i.e.m; < M¢. Moreover, the appearance of blow-up in the one dimensicas¢ has not
been clarified yet, see [32]. The second aim of this work istestigate these questions through numerical
simulation.

The outline of the paper is as follows. In section 2 the kinatiodels we will work on are described.
Section 3 gives the macroscopic limit of each model. Sectidescribes the AP schemes for these models.
Finally, in section 5 we present the simulation experimevits our schemes and draw some conclusions.

2 The kinetic models

In this section we briefly describe the kinetic models we useslr simulations. The chemoattractaits
always given by the log kernel convolution (1.3).

The turning kernell; in the kinetic equation (1.1) needs to be specified. The rigrikiernel, Ty =
Te[3(t,x,v,V) > 0, measures the probability of velocity jump of cells frafto v. To derive the Keller-
Segel equation (1.4) as— 0, one has to incorporate bo®(1) andO(¢) scale intoT. In the following
work, we considefl; in the form

Te[S(t,x,wV) = F(v) + €T1+O(?).

HereF(v) > 0 gives the equilibrium of velocity distribution when thaseno directional preference. It is

natural to assume
/ F(vyidv=1
v . (2.1)
F(v

) =F(v)
T, characterizes the directional preference. We can as3ume) since we are considering the reaction of
cells to chemoattractant. The cells have a larger prolabdijump to a preferred direction.



2.1 1D nonlocal Model

Now we employ the nonlinear kernel introduced in [11],

Te = Te[F(t,x,v,V) = o P(S(t,X), S(t, X+ €V)) + a_ P(S(t,x), S(t,x— eV)).

The first term means the cell decides a new direction to mosedan the detection of current environ-
ment and probable new location, while the second term ghegfluence of past memory on the choice of
the new direction. For simplicity we neglect the second téie takea, = 1, a_ = 0, and we consider

WSS =FV)+(5-9.. (2.2)
AgainF = F(]v|) is the equilibrium function satisfying (2.1). For simpticiwe introduce the notation
5 S(x,v) = (S(x+&v) — S(x))., .
Note thatd*S= O(¢g). Then the kinetic equation (1.1) reads

of of 1 ¢ c
TR v ((F(V)+5 S(x,v))p — <1+/6 S(x,\/)d\/) f) : (2.3)
wherex € Q = [—Xmax Xmax}» V € V = [—Vmax Vmax» |V| = Vol (V). We impose the initial conditions,
f(0xv) = f' (xv) >0, (2.4a)
S(0,x) =S (x) >0, (2.4b)

and reflection boundary condition féf Neumann boundary condition f&

f (t, £Xmax, V) = T (t, £Xmax, —V) (2.5a)
de|X:j:xmaX - O (25b)
Equations (2.3)-(1.3) gives the nonlocal model in one dsi@n The global solution exists, regardless of
the total mass.
2.2 1D local Model

In this section we summarize a turning kernel introduced byrBaveas and Calvez [7]. Let
Te =Te[S(t,xv,V) = F(v)+&(v-0S(x) ., (2.6)

whereF = F(]v|) is the equilibrium function satisfying (2.1). Then the Kioeequation (1.1) in one dimen-
sion reads

of  of 1
_E((F(v)+£(v-DS)+)p—(l+cls\DS|)f), (2.7)

with ¢; = / (v-Os/|0s), dv= %/ |v| dv. The same initial conditions (2.4a) (2.4b), and boundary- con
\Y \%

ditions (2.5a), (2.5b) are applied.

Remark 2.1. If we expand the kernel (2.2)F To+€T1 4+ O (52), and drop the terms higher than first order,
we get exactly the kernel (2.6).



2.3 2D local Model
Plug the local kernel (2.6) into the kinetic equation (12D, one obtains,
{ o f+v-Oxf = %(pF(v) —fe+ep(v-09); — €cp|0Sf), veEV =B(0,Vmax), X € R? 2.8)
—’S=p

with c; = [, (v-0S/|0F)), dv. The equilibriumF (v) satisfies (2.1).
Now we assume the initial datd is spherically symmetricf' (@x,0v) = f'(x,v), for any rotation®.
Then the solutiorf to (2.8) remains spherically symmetric. Denote

r=I|x/ €[0,0), w=|v|€[0,Vma), 6= cosfl%/ € [0, 1.
Thenf is a function ofr, w, 6 andt. Let
h(t,r,w,0) =rf(t,X0),Vl(wcoss.wsing)) = I'f (t,;X|(rcoso,r sing)s Vi (w.0))s
Blt.r) =rp(t.r).

Then the density is given by

Bt,r) =rp(t,r) = r/ F(t, X = r,v)dv = 2// whdf dw,
\Y 0<W<Vmax0<0<mT

and the total mass is

Then equation (2.8) can be rewritten as

{ ath+% (d, (cosBh) — dg (ﬁh)) = i(EJF((Jo) —h)+ % (wp(cosBa S)+ — 2|0 Sh), 2.9)

g2
—dr (rdrs) = ﬁ,

where

T [ Vmax T Vmax 23
Co= 2/ / w?(c0s80,S/|0:S)), dwdd = / / w?|cosh| dwdd = %X,
Jo Jo 0 Jo

andF (w) satisfies,
Vmax
277/ wF (w)dw = 1.
0

From the second equation of (2.9)Scan be computed by

r
rJo

We impose the boundary conditions,
h(0,w, 8) = h(0,w, T— 0),
dr h(rma)(7 w7 9) = 0

It has been shown that the solution blows up in finite time jrf¢¥ M large enough while existing globally
for small enough mass.



3 The macroscopic limits

3.1 1D model: local and nonlocal

The local kinetic model (2.7) and the nonlocal kinetic ma@eB) give the same asymptotic limit as— O.
We apply the Hilbert expansion into (2.7) and (2.3), and imé&ecms of the same order &1 The classical

Keller-Segel system can be derived fit, x) = / f(t,x,v)dv,
v

Ap = x(Ddp — XPkS) (3.1)
where 1
D— / VPF()dv,  and  x=— —/ Iv/2a. 3.2)
v 2N
We refer to [11] for the details. Besides, by taking the motmefithe kinetic equation (1.1), one has

1
ap + Oy <E/vadv> —o0.

Dﬁxp—xdeS:—}/vfdv.
EJv

While the reflection boundary condition (2.5a) leads to

Compare with (3.1), one has

/vfdv: 0, atx= *Xmax
\Y%

One arrives at the general boundary condition (for masspraton) for Keller-Segel model
Doxp — xpokS=0, atX= tXmax

Furthermore, the Neumann boundary conditiondas derived under the condition (2.5b).

3.2 2D spherical symmetric local model

For the reduced spherical symmetric kinetic system (2183, @an derive the similar asymptotic limit for
ase — 0,

&p =0 (Drarg _Xﬁdrs) (3.3)
with
—dr (I‘(?rS) = ij

wherer € [0, rmax With

Vmax

T Vmax
D= 2/ / w>cos OF (w) dwdd = n/ w*F (w) dw
o Jo 0
and
T rVmax
X :/ / 3oL 0dwde =
o Jo
The Neumann boundary condition is derived,
0:S=0, atr = 0,rmax,

nvﬁnax
—8 .

5r$ =0, atr = rmax



4 The Numerical Scheme

In this section we present the numerical method for the kirststem (2.3)-(2.5b) by the even and odd
parity formalism, which has been successfully applied &diffusive limit of linear transport equations in
[24].

4.1 0Odd and Even Parity

We introduce the operator

Rf](x,v) = = (f(x,v) + f(x,—V)),

- Nl

J[f](x,v) = % (f(x,v) — f(x,—V)).

The new function®R[f] andJ[f] are defined i2 x V* x R, , whereV* = {ve V|v > 0}. Then we take

1 i 1
(V) = RIf] = S(F00V) + e =v), J0ev) =[] = == (FOev) = f(x =),
We can recovef fromr andj,
_fr(xv)+gj(x,v), if v>0,
f(x,v)_{ r(x,—v) —&j(x,—v), if v<O.
4.1.1 1D nonlocal model

Now we describe the odd and even decomposition for the nahinodel. Sincef (x, —v) satisfies

Saf(x,— ) _Vﬁf(X,—V) _ % ((F(v)+658(x,—V))p— <1+/5es(x,\/)d\/> f(x,—V)) ,

ot ox
we obtain,
A evdi = S((FO)+RES)p— (14 < 8S>)r),
dtj+£—12v0xr _ S—lz(J[(SsSp—(1+<6£S>)j),
where< 8¢S>= [d*S(x,V)dV, and
p:/vfdv:/w(f(x,v)Jrf(x,—v))) dv=2 rxv)dv 4.1)

We assume < 1, then we can rewrite the equations fand | as,

A +v3,j = 5 ((F() +RI°S) p— (14 < 5°S>)r),
(4.2)
O j +Vokr = 5_12 (J[O*Fp — (14 < 3*S>) j) + <1— é) Voyr.

Let us finish with the boundary conditions for new variabteand j. From the reflection boundary
condition (2.5a) and the definition ofand j, we can easily get the boundary condition for

j(t,%,V) = 2—18 (f(t,%p,V) — f(t,%p,—V)) =0. (4.3)



wherex, = £Xmax. Then plug this into the second equation of (4.2), we derive ,

1
VO [x=x, = I[3°SPlxxy = 52 (6750, V) — 8° (%6, =)

Now from the Neumann boundary condition (2.5b), we h&pe, + £v) = S(X, — €Vv), i.e. d*S(xp,V) =
0¢S(xp, —V). So the boundary condition foris

Now, we can propose an asymptotic preserving method for tleedonensional nonlocal model. The
idea can be applied to the other models straightforwardly.

As ¢ approaches 0, we can derive the Keller-Segel equation &sythptotically from the kinetic equa-
tion (2.3). So a natural requirement is the numerical metho¢R.3) should discretize its macroscopic limit
ase — 0. We give an AP method following [23].

We can employ an operator splitting method on (4.2). Fies(#tiff) source part is solved by the implicit
Euler method,

1
ar = 5 (F(V+RE°S)p— (1+ < 8°S>)r),
o1 e 1 (4.5)
o= 2 (J[6°Fp — (14+ < 6°S>) j) + (1 ?> VO
Then the transport part can be solved by an explicit methad (gwind scheme),
oxj =0
dtr + V XJ I (46)

We can check that the method described above is AP easily.-A® the leading term i of (4.5) gives,

~ Fv+R%§
. J[o*Sp—-vor (1
= i e =[50 o) ot

Plug into the first equation of (4.6) and integrate over, we get exactly the Keller-Segel equation (1.4)
with D and x given by (3.2).

4.1.2 1D local model

For the one dimensional local model, we obtain,

1
ar+vad = 5 ((FW+5M38) p— (1+celad)r).
1 11 |

G+ ZVoxr = ;<§vﬁx8p—(1+cle\dx54)1>-

The remaining work is similar to the nonlocal model. The tany conditions for for new variablesand
j are also given by (4.4) and (4.3). The AP scheme can be desggmdarly.



4.1.3 2D spherical symmetric local model
Denote

R= :—ZL(h(r, w,0)+h(r,w, m—0)), J= 2—1g(h(r, w,0) —h(r,w,m—0)).

RandJ are functions defined o, rmax] x [0,Vmax x [0, 1. Then we can write the equations feandJ,

R+ w (o”',(coseJ) —0p <$J>> = 8—12([)F -R) +% <%wﬁcosedrs4 —cz|o”'rS|R> ,

w sinf 1 1/1
AJ+ = <(9r(c056R) —dg (TR>> = —?J +2 <2—8w900590r5— Cz|0r5|~]> :

Now we split this into two steps. First the collision step t@nsolved implicitly,

1 . 1/1 .
dR= = (PF —R+ = <§wp0059|0r31 —Cz\drﬂR)

1

1/1 . 1 sin@
&d = —?J+ s (EwpcosedrS— cz\é'rS|J> + (1— ?> W (d,(cosGR) —0p (TR>> .

Then the transport part can be solved explicitly,
AR+ (ar (cos8J) — dg <ﬁa> >

PRI <0r(cosE)R) 09 (Si”9R>>

r

07
4.7)
0.

One can shovp solves the macroscopic limit (3.3) as— 0.

4.2 Time and space discretization
4.2.1 1D system: nonlocal and local

In this section we give full discretization for the 1D nordb&inetic system. The discretization for the 1D
local system is similar. First we solve (4.5) by implicit Eumethod,

* N

ol = S (FW) +RES])p (14 < 5°S >)r).

P L giers)pr— (1 < 655 )+ (1- = ) valor
At g2 p : g2 ) %

wherer" and j" are the numerical solutions ofand j at timet,,. ax<°> is the central difference discretization

of d«. And a linear interpolation is used to g&ix+ ev) andS(x— ev). < 6*S> is evaluated by applying
the trapezoidal rule on the interpolated value.
If we integrate (4.5) ove¥ *, we can getp = 0. So

p*=p" S =9



Thereforer* and j* can be solve@xplicitly,
. €M+ Mt(F(v) + R[OS p"
T2 M1t <69 >)
(90" + (62— vgr)
a 2+ Mt(1+ < 359 >)

Then we apply a first-order upwind scheme on (4.6) torget, j",

pl

i v . Vv

T oax (Jiv1— Ji-1) = Ax (Fig1—2ri+ri-1),
[Ha LY Vo o
ITI‘FE(rwl—rifl):E((le—zli‘ﬂi—l)-

As ¢ — 0, a simple computation shows that this scheme leads ta (afegration oveV ™),

n+1_ An
% — o (Dax<c>p” — Xp”ax“@) +AXC(V) A p".
with D and x given by (3.2),p given by (4.1). Here?)&:) is the general three-point central difference of
Oxx- C(V) is a constant which only depends on the velocity spaceln the case oV = [—Vmax, Vmax],

4.2.2 2D spherical symmetric local model

We describe a first order discretization for the transport @a7) of spherical symmetric system. By intro-
ducing

POY) = 2RV HIXV),  QxY) = 3 (ROGY) ~I(xV)),
one obtains .
0P+ w (d(cos@P) —0g <ﬁP>> =0,
GQ—w <0r(coseQ) —0p <¥Q>> =0.

We take the grid points at
ri:(i—%)Ar, i=1,...

1 :

The grid points and the characteristic lines are shown infeidg. We can define the flux at each interface
according to the “upwind” value along the characteristiection. An analogous idea was successfully used
in the case of numerical simulation of the Boltzmann-Paissgstem for semiconductors in [9]. Here we
give the detailed discretization f& The discretization fo) is similar. For eacluw,

PR, o vz —Rlazs |, Gliae—Cliae) _ g
At Ar 16 ’

10
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Figure 1: lllustration of grid points and characteristites onr — 6 plane.

where
en (cos8))RT, if j<M/2,
Y2 (cosByPLyj, if j>M/2+1,
n sin(6; +A8/2) _, sin(jAd) _,
12 = _r—iPi,j = —Tpi,j,

with boundary

4.3 Adaptive grids for solutions with blowup

Now let us consider the case that the initial total mass gelart has been shown that the solutions to
the 2D spherical symmetric kinetic model (2.9) blow up inténiime. While for the one dimensional
kinetic local model (2.7), although the strict analysisaisking [32], the numerical results strongly suggest
that the solutions also blow up. In these cases, the conveegef the schemes described above would
be guestionable when simulations are performed on the fixield.g See section for the verification of
convergence order.

Noting that in the blowup case, the magnitude[@fs grows up dramatically as time evolves, which
actually characterizes another scale for the kinetic éguatTo capture this scale, one has to tdke~
m. Hence the adaptive grids are needed. In numerical sironlatve double the grid points once

||0xS | is doubled. More exactly, we apply the following algorithm.

Algorithm 4.1. (Adaptive grids)

s= [|0xSo| e
if [|OxShlle > 2sthen
S+ ||OxSh] oo

11



Double the grids, half the time step sixe
Derive f" on the finer grids by interpolation and continue the time etioh.
end if
This simple idea works well when checking the blowup propemd determining the blowup time.
A nonuniform refinement might be more efficient in this prableince the mass is concentrated at some
separated points. However this is beyond the scope of thik ara is left for future study.

4.4 A second order scheme for 1D model

One can derive a second order scheme without much difficaftshe 1D (local or nonlocal) kinetic model.
First the Strang splitting is applied. One solves the stitfrse part (4.5) over a time st%‘-), then solves the
transport part (4.6) oveit, then solves the stiff source part (4.5) over anol%er
Here we describe the second order scheme for the nonlocadlnmodktail. It can be applied to the local
model without any difficulty. The stiff part (4.5) can be sedivexactly in time. Noting that the cell density
p and the chemical concentrati@are not changed in this step. Let
At(1+<5597>)

A=e 262

then after a time stefit/2,

a1y FWERES]

1+ < 659 > "
. . J[55S ©«
* n _ n
=20+ /\)71+<5851>p + Vo, ¥,
e () + RG*S 2(1- )
o (. 1\ /DAt . FW+R G €2(1- M
r_<1 £2><2)\r i< P ((1+<5SS‘>) 2)\>>’

Here the computation a¥¢S" is described in Section 4.@)§°) is a central difference ir direction.
Next a second-order TVD scheme is needed to solve the trensgo over a time steft,
—r¥

ri* Vo, . v o, s v VAL _ _
: At : +E((Ji+1_1i—l) :E((ri+l_2ri +ri—1)—z<1—§) (0" —gli+05,-07),

Pkl ]
=1 v o, . Vo, e ek \Y VAL _ _
T T oy (T —riie) = 55 (i =20 + i) — 7 (1— K) (6" -0y =0 +07),
where
O = E(m'”m()d(rwlilm—ri Fih nEi T
Finally we can update the densjy* from r** andS™ is obtained. Then the stiff part is solved over another
At/2.

4.5 The convolution

Finally, we apply the FFT algorithm on the computation ofvamntion (1.3) to getS. The singularity of
log|x| atx = 0 makes the direct numerical integral difficult, see [8]. iNgtthat logx| belongs td_!, we can
avoid this problem by taking Fourier transform first. In thewerical simulation, we will always makieto

be compactly supported in the computational region. It isenproblem about the periodicity of boundary
condition by extending the solution to zero in a larger wva¢and by computing the Fourier transform there.
In this way we avoid any kind of aliasing.

12



4.6 The computation ofd¢S

To obtain a higher accuracy in computidgSin (2.1), a high order interpolation is needed to compute
S(x+ ev). Here we apply the FFT based interpolation,

, L kixrey _ L (@ aikev) aoiky
S(xj+sv)_NZSke _NZ<S(6 )e ,
whereSis the discrete Fourier transform sfon gridsx;.

5 Numerical results

5.1 1D Nonlocal Model

The first simulations are devoted to the one dimensionalaoahimodel described in section 2.1.

The following simulations are set one Q = [-1,1], ve V = [-1,1]. We takeN, = 64, which can
provide good enough accuracy for numerical simulationse ¢bnstant function itV is chosen as the
equilibrium

1
F(V) = —1\/.
V]

In this setting, the critical mass of blow up for the limitikgller-Segel system is
M¢ = 2.
The initial conditions in the simulation are always given by
P =Ce®  fl(xV)=p'(WF(V) (5.1)

whereC = C(M) is a constant determined by the total miks

As predicted in [11], in the supercritical cabke> M, the solutions to the kinetic system converge to
that of the Keller-Segel system only in finite time (beforevblup time). After that, the asymptotic limit
is not valid anymore. To capture the behavior of solutionth®kinetic system after that time, one has to
resolve the small scale Therefore in the simulation, we neéa = O(¢g). While in the subcritical case, as
will be shown in the following sections, the asymptotic lirseems to be valid over any time period. One
can takeAx independent of, as in a typical AP scheme [21].

As for the time step lengtiAt, the simulation results suggest that, for the sake of #gbilne needs
At = eAX/(2vmax) for long time simulation in the supercritical case. Whilethie subcritical cas®l < Mg,
ase — 0, the diffusive nature of the Keller-Segel system requities Ax?/2. A general choice afit would
be

NG
At = max{ —} .

QVmax’ 2

5.1.1 Convergence order of numerical scheme

In this section we test the convergence order of numeridarae described in Section 4.4. We check the

following error,

() = faax(®) [l
enx(f) = IfomOlL (5.2)
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Figure 2: 1D nonlocal model. The convergence order of schéeseribed in Section 4.4, for differeat
Left: M =4m> M, t = 0.0025< tp; Right: M = m< M¢, t = 0.025.

This can be considered as an estimation of the relative #ridrnorm, wheref;, is the numerical solution
computed from a grid of sizAx = W The numerical scheme is said to k¢h order ifey, < CAXK.

The computations are performed whk = 100,200 400,800,160Q 1600,At = ATXZ.

Figure 2 (a) shows the convergence results-a0.0025 for differente, with initial data given by (5.1)
and total masM = 4 > M.. The solution to the Keller-Segel system with total massbfbws up at
tp ~ 0.0039 (see next section). The scheme shows second ordergenee (inl* norm) for supercritical
mass before blow up time.

Figure 2 (b) shows the convergence results-at0.025 for differente, with initial data given by (5.1)
and subcritical massl = 1< Mc. The second order convergence Imorm) is observed for ak.

In conclusion, our scheme has second order convergendermalyi in €. This is a common result for
AP scheme, see [15].

The above simulations are performed with the transporttemué4.6) solved by a Lax-Wendroff method.
The use of the second order TVD method described in Sectibahaws a lower, but still uniform conver-
gence ine.

5.1.2 Global existence and finite time blow up

Following the proof in [11], one can show that the solutioritte kinetic system (2.3)-(2.5b) is bounded on
[0,T], for any timeT. However, the Patlak-Keller-Segel system (1.4) can pteséfow-up phenomenon in
finite time, see [8].

Now we take the initial data (5.1) with supercritical m&ds= 41 > M. = 2. The blowup time, ~
0.0039 from the numerical simulation.

Figure 3 shows the global boundedness of kinetic systemifiereht € and the finite time blowup for
the corresponding Keller-Segel model, by drawing the tinagion of the maximum value gb. andp.

5.1.3 AP property: Convergence inc at a finite time interval

As mentioned before, it has been shown in [11] that the swiudif the kinetic system can converge to that
of the Patlak-Keller-Segel system weakly in a finite timesiaal [0,t*] with t* small enough. Here we

14
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Figure 3: 1D nonlocal model. Time evolution of kinetic systand Keller-Segel model for supercritical
massM = 4rr.

numerically check this convergence. We use the same ged\siz %oo for different in this subsection.
In this section, we use the notatiopsand f. to for the solutions to the kinetic system, whigfor the
Keller-Segel model.
The supercritical case is studied first. We take initial d&td) with M = 4. Figure 4 shows the

convergence of, — poF ase — 0 at timet = 0.002 < t,, wheret, ~ 0.0039 is the blow up time of the
limiting Keller-Segel model. Figure 4(a) sketches the shafip; (x) :/ f(x,v)dv. Ase — 0, pg (solutions

to kinetic system) approach m, the solution of the limiting KeIIer—é/egeI system. Figu@yshows that
the convergence order &f — p.F is almost first order (around®6) in1? norm.

For a subcritical case, the initial data are taken to be (wit) M = 1. After a relatively long time
t = 0.01, we obtain the very similar results. See figure 5. Now wesHast order convergence & in 12
norm.

5.1.4 The stationary solution of kinetic system

In this subsection we will study the solution of kinetic gmstwith large initial masM = 4t at a relatively
long timet = 0.1. After a long time, the solution stabilizes toward a staiy state. This has not been
proved nor intuitively discussed in the literature. Fig@reshows the functiorep.(ex) at timet = 0.1.
Figure 7'sh'ows the functio (‘(E:;(‘)’) as a function ofs at differentx. These two figures suggest the stationary
state satisfies

fE(X,V) = —Pea( ) Foo

: gjv). (5.3)

for some functionge (x) andF.(x,v). Therefore, let us consider the ansatz

1. X .~ X
€

fit,x,v) = efe(t,ex,v)
ﬁ(t,X) = gpS (t7 EX)
~ 1
Stx) = ——log|x*p=S(ex)+Ce

15
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Figure 4: 1D nonlocal model. The solutions of kinetic systemd Keller-Segel system at tinte= 0.002,
before blow up time. The super-critical mads= 4rris used. The left figure shows (for differente) and
p. The right figure gives the convergence ordef| &f(x,v) — ps (X)F (V)||2.
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Figure 5: 1D nonlocal model. The solutions of kinetic systana Keller-Segel system at tinte= 0.01,
before blow up time. The super-critical mads= 4rris used. The left figure shows (for different¢) and
p. The right figure gives the convergence ordef| &f(x,v) — ps (X)F (V)||2.
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Figure 6: 1D nonlocal model. The functi@p, (ex) for differente. For supercritical madsl = 4T at time
t=01>t,
whereC, = % log e, with M the total mass. The rescaled variables satisfy the follgwuations
,0f  of ~ 3 ~ "
e 5 Vo = (F(V)+68(xv)) - 1+/6S(x,\/)d\/ f
~ 1 ~
S= —I—Tlog]x\ * P

of

wheret > 0, x € Q = [ Xmax], v € V = [—Vipax,Vmax]. ASt — 0, 5= — 0, we have the stationary
solution f€ should solve
afe . 5 . .
VEE = (F(V) + 88.(x.V)) B — 1+/5S,o(x,\/)d\/ f (5.4)

whereS, is obtained fromp,,. ClearlyF (x,v) satisfies
/ F(x,v)dv=1 and / VF (x,v)dv = 0.
Vv Vv

The second identity can be derived by integrating (5.4) eedwcity space. These two identities are also
verified numericallyp(x) = ep(€x) is shown in Figure 6. Some snapshot$-¢%, v) are shown in Figure 7.

5.1.5 The interaction between several peaks

It has been shown the interaction between several peaksdonodified Keller-Segel system (1.4) in [3] by
means of optimal transportation methods. Here we will chbiskinteraction for the kinetic system.

Case I: Two symmetric peaks, without enough mass in each peakTlhe initial condition is taken as
the sum of two gaussian-like peaks,

fl(x,v) =C (% g 80(x-03)7 %eso(x+°~3>2> F(v) (5.5)
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Figure 7: 1D nonlocal model. The snapshots of the statios&teF (x,v) = Hexv) at certain locations.

o . p(ex)
For supercritical magel = 4rrat timet = 0.1 > ty,.
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Figure 8: 1D nonlocal model. The attraction between peaks.0.1. The total mass is/8 The critical
mass is 2r. Nx= 400.
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Figure 9: 1D nonlocal model. The attraction between peaks.0.05. The total mass istb The critical
mass is 2r. Nx= 400.

with a suitable consta@ such that the total mass ist3We takes = 0.1. Figure 8 shows the time evolution
of pg (left) and||p¢||- (right). The solution starts with diffusion separatelydahen the peaks merge. At
beginning there is no enough mass in either peak to cond:er@z’h< M. = 2m). But after they merge, the
total mass in the new peak is large enough to form an aggoggati

Case II: Two symmetric peaks, with enough mass in each peak\We take the same initial setting
(5.5), with a different constar@ such that the total mass istoNow the mass in each peak is large enough
to concentrate%J > Mc = 2m). In Figure 9, we can see two distinguished different phasesg the time
evolution. The first phase consists in the appearance of astabte state where the concentration in each
peak is formed but slowly moving toward each other. Thenwepeaks merge, which increases the total
mass into the final larger peak. It continues to aggregatemtss around it and finally reaches the stationary
state.

Case lll: Two asymmetric peaks, with enough mass in each peakWe take a nonsymmetric initial
setting
fe(x,v) =C <2.2e*80(><*0-3)2 + 2.8e78o(x+0.3)2) Ev)

with a suitable constar@ such that the total mass ig1t5 The mass in each peak is still large enough to
concentrate and we see that the mass tends to concentratel éin@ center of mass located this time much
closer to the first peak due to asymmetry in Figure 10.

19



llell,,

300

0 005 01 015 02 025 03 0.35 0 0.1 0.2 0.3 0.4
time time

Figure 10: 1D nonlocal model. The attraction between pesaks0.05. The total mass istbwith 2.2rT near
X = 0.3, 28mnearx = —0.3. The critical mass is’2 Nx= 400.
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Figure 11: 1D nonlocal model. The interaction between fivekpes = 0.05. The total mass is Il The
critical mass is Z. Nx= 400.

Case IV: Five unsymmetric peaks, with total massvl > 5M..- We take a nonsymmetric initial setting,
with five different peaks,

5
flx,v) =C S w;e 160x-c))*
£ gl J

with w=[0.5,1.2,0.8,0.6,1], c = [0.4,—0.2,—0.6,0,0.2]. Here we pick up a suitable constahsuch that
the total mass is It Now, we observe in Figure 11 the complicated dynamics ofgingrbetween the
different peaks before forming the final peak at the centana$s and converging toward the stationary
state.

5.2 The 1D local model: blow up in finite time

We numerically check the open problem of the blow up propeftshe solution to the one dimensional
kinetic local model (2.7). As mentioned before, a theoettmediction on this blow up is still lacking, see
[32]. We consider the initial data given by (5.1). The caticnass for corresponding Keller-Segel model is
again

M = 21

For the super-critical case, we take total mislss: 57t.
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Figure 12: 1D local model. The convergence order of the mwistto (2.7) at different times = 0.4. The
total mass is & > M.

5.2.1 The problem in the convergence with fixed grids

In this teste = 0.4. Different grid sizes irx are used. The number of grid points in each of the simulations
areNy = 250,500,100Q 2000 400Q 8000 respectively and the time step sizes are takekt aseAX/Vmax-
We sitill consider the convergence order defined as in (5.2).

Figure 12 shows the convergence ordeLtmorm at different timesy = ktnax/20, where 1< k < 20.
The solutions show a first order convergence when0.12, then the convergence order decreases as time
evolves. Aftert > 0.16 a negative convergence order is seen, which means thesdheot convergent after
that time. One cannot improve these convergence ordersihy adiner grid. Figure 12 strongly suggests
that the blowup happens in the solution during2<t < 0.16. Next we investigate this time period by
using the adaptive grids proposed in section 4.3.

5.2.2 The convergence with adaptive grids

Now we use the adaptive grids proposed in section 4.3. Wethgsimulation with different grid sizes
Nx = 500 1000 2000 4000. Figure 13 shows the time evolution|@||... A nice convergence toward some
density blow-up is observed.

5.2.3 The convergence as— 0

Next we study the convergence as» 0. We apply the adaptive grids described above andthke 1000

at beginning. We take total mass toMe= 51 > M. Since the solutions to kinetic equations also blow up in
finite time, they converge to the solution of Keller-Segedtsyn in a totally different way. Figure 14 shows

the time evolution of|p||. of kinetic equations with different, as well as that Keller-Segel system. The
way of asymptotic convergence is totally different with &g 3, where the solutions of kinetic equations
are globally bounded.
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Figure 13: 1D local model. The time evolution ||| by using adaptive grids, with different initial grids.
The circles shows the time steps when the grids are doubled).4. The total mass is’5> Mc.
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Figure 14: 1D local model. The time evolution ||| by using adaptive grids, with differest The total
mass is B > Mc. Initially Ny = 1000.

22



20

154 35

0 05 1 15
T

(@) A(1,y). (0) [1B(T,Y) = Peol[1-

Figure 15: 1D local model. The time evolution pffor the subcritical masM = m < Mc. Ny = 2000.
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5.2.4 Subcritical case: long time behavior

Now we check the long time behavior of subcritical case. letemark that in the case of the limiting
Keller-Segel model, it is known that the long time asymput®tshould be given by a self-similar solution
whose profile is dictated by a stationary scaled problem[3der instance. We now check this point for
the 1D local kinetic model by taking as total mads= rr. The simulation is performed one [—10,10].

A fixed grid with Ny = 2000 is used, witle = 0.2. We consider the same change of variables as for the

Keller-Segel model,

Rt =VITR, y= %, 7 = logR(t),

1.
p(t,x) = @p(r,y) (5.6)
Herep is the density we computed from numerical simulation.

Figure 15(a) shows the time)evolution ofp until time T = 1.5 (t = 10) as a function of. It strongly
suggests thab is approaching some stationary state. We denote gi.hyin Figure 15(b) we show the time
evolution of the relative errdtp(1,y) — Pw||1, With P approximated through (5.6) at tinte= 10. Clearly
the solutions are approaching the stationary state, irr etbeds,

Hp(t,x) - %ﬁm (%) Hl — 0, ast— .

5.3 The 2D local model: solution behavior between theoretat thresholds

In the final simulation we test the 2D local model. As showni fhe solution blows up with total mass
larger than the critical mass
32

M. = 227 —
WV

32,
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where|V| = mw? ., = 1. And the global solution exists with the total mass lowenttize other threshold,
_0.806r
V]

Besides, as mentioned in the introduction, the criticalsriasthe corresponding Keller-Segel model (3.3)
is

= 0.806

Mys = —— = 16.

The gap between the two estimatds and m. should be much smaller as observed from our numerical
simulation. It is difficult to ascertain based on numeridatidations if the kinetic system show a clear
dichotomy as in the Keller-Segel system.

We taker max = 2, Wmax = 1, with the equilibrium given by

_ 11
S 2m P dw T

F(w)
The grid points in each directions axg = 1000,N,, = 32,Ng = 32. The initial data are taken as
pl(n=cre™™ H(rwo)=p1F(w),

whereC = C(M) is a constant determined by the total miks

Figure 16 shows the time evolution {9 || /M, for different total masselgl. We takes = 1. It suggests
that the global solutions exists f < 17, which is much bigger than the theoretical threshatdsWhile
for massM > 25, the solution blows up, even if the total mass belongsdaahge of masses in which there
are no theoretical results [7]. Let us comment th@alt.. has a upper bound due to the limitation of grid size.
When we use a finer grid, this upper bound would be larger.

Finally we compute the convergence of the solutions to thetld system aAr — 0, with different total
massedM. As shown in Figure 17, the numerical scheme shows a fist aa®rergence foM < 15 (note
that the critical mass of the Keller-Segel moddligs = 16). While forM > 25, the numerical solutions do
not convergence, which suggests that the solutions blow up.
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