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Abstract

In this work we numerically study the diffusive limit of run &tumble kinetic models for cell motion
due to chemotaxis by means of asymptotic preserving schemes. It is well-known that the diffusive limit
of these models leads to the classical Patlak-Keller-Segelmacroscopic model for chemotaxis. We will
show that the proposed scheme is able to accurately approximate the solutions before blow-up time for
small parameter. Moreover, the numerical results indicatethat the global solutions of the kinetic models
stabilize for long times to steady states for all the analyzed parameter range. We also generalize these
asymptotic preserving schemes to two dimensional kinetic models in the radial case. The blow-up of
solutions is numerically investigated in all these cases.

1 Introduction

Chemotaxis is one of the basic mechanisms of cell motility due to chemical interaction. Cells are attracted
by the concentration of certain chemical substance, calledchemoattractant, and they direct their movement
toward the regions of highest concentration. Typically, this phenomenon have been described based on
macroscopic systems of equations describing the evolutionof the cell density and the chemoattractant in
time. These systems of drift-diffusion type are the well-know classical (Patlak)-Keller-Segel models [30, 25,
26]. Another point of view was introduced by a mesoscopic description of these phenomena bridging from
stochastic interacting particle systems to macroscopic equations. This middle ground consists in describing
the movement of cells by a “run & tumble” process [27, 29]. Thecells move along a straight line in the
running phase and make reorientation as a reaction to the surrounding chemicals during the tumbling phase.
This is the typical behavior that has been observed in experiments. The resulting nondimensionalized kinetic
equation, with parabolic rescaling, reads

ε
∂ f
∂ t

+v·∇x f =
1
ε

∫

V

(
Tε f ′−T∗ε f

)
dv′ (1.1)

Here f = fε(t,x,v) is the density of cells at positionx∈RN, moving with velocityv∈V ⊂ RN. S= Sε(t,x)
is the density of chemoattractant, whose governing equation will be described later.Tε = Tε [S](t,x,v,v′) is
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the turning kernel operator. We use the abbreviationf ′ = f (t,x,v′), T∗ε [S](t,x,v,v
′) = Tε [S](t,x,v′,v). ε is

the ratio of the mean running length between jumps to the typical observation length scale. For simplicity
we omit the dependence onε in notations (exceptTε , whereε explicitly enters into the expression.) We refer
to [11] for the details on the rescaling. The chemoattractant S is typically given by the Poisson equation

−∆S= ρ whereρ = ρε(t,x) =
∫

V
fε(t,x,v)dv is the macroscopic density of cells. (1.2)

Here, we assume that the time scale of relaxation for the chemoattractant is much smaller that the one for the
cell density. Although this is the most standard way of introducing the coupling with the chemoattractant,
some authors have proposed to use some generalized models for any dimension where the chemoattractant
S is given by

S=− 1
Nπ

log|x| ∗ρ . (1.3)

Note that in two dimensional case, (1.3) is exactly (1.2).
Starting with the kinetic equation (1.1), one can (at lease formally) derive the macroscopic limit as

ε → 0,
∂tρ = ∇x · (D∇xρ− χρ∇xS) . (1.4)

The details will be described in Section 3. Coupling with (1.2), one obtains the already mentioned Patlak-
Keller-Segel system [30, 25, 26] for chemotaxis. We refer tothe reviews [17, 31] and the references therein
for mathematical results on this system. The behavior of thesolution is quite different depending on the
dimension. In the 1D case, the global solution exists for allinitial condition. In the 2D case, there exists
a critical massMc determined by the coefficients [13, 6]. The global solution exists if the initial total mass
satisfiesM <Mc (subcritical case) and its long time asymptotics are given by self-similar profiles, otherwise
the solution blows up in infinite (critical caseM = Mc [5]) or finite time (supercritical caseM > Mc [14]).
The critical case has infinitely many stationary states, each of them having their own basin of attraction [4]
depending on the tail of the distribution at infinity. In the 3D case, the relevant quantity ensuring global
existence is theL3/2 norm of the initial density, see [12], together with some condition involving the second
moment of the solution.

Similarly, starting with (1.1)-(1.3), one derives the modified Keller-Segel model (1.4)-(1.3) studied in
[8], asε→ 0. For the modified system, the existence of critical mass is extended to the 1D and 3D cases. It
is given by

Mc =
2N2πD

χ
.

A very interesting consequence is that even in one dimension, this system blows-up over this critical mass.
This makes possible to numerically analyse this highly subtle phenomena. This modified Keller-Segel sys-
tem was numerically solved in [3] by using optimal transportation ideas and the scheme proven to be con-
vergent in the subcritical case.

Alt in [1, 2] derived (1.4) from a transport equation similarto (1.1) via a stochastic model. Later the
kinetic system (1.1)-(1.2) was formulated in [27]. Othmer and Hillen in [16, 28] studied the formal diffusion
limit of this system by moment expansions. In [11] Chalub et al. proved that, in three dimensions with
suitable assumptions on the turning kernelTε , the solution to the kinetic system (1.1)-(1.2) globally exists
for any initial total mass. Moreover, they gave a rigorous proof of the convergence to the macroscopic limit
for all time invervals of existence of the limiting Keller-Segel system. In the following work [18, 19] the
results are extended to more general cases.

2



The first task of this work is to design an Asymptotic-Preserving (AP) method for the kinetic system
(1.1)-(1.3) in the one dimensional case. The “Asymptotic Preserving” scheme, introduced by [20], is a
suitable numerical method for the kinetic equation in such away that lettingε → 0 with the mesh size and
time step fixed, the scheme becomes a scheme for the limiting system. In this case, this means asε→ 0, the
moments of the solution to the kinetic system (1.1)-(1.3) solve the modified Keller-Segel system (1.4)-(1.3)
automatically. We refer to [21] and the references therein for a detailed review on AP scheme.

As mentioned above, the solution to the modified Keller-Segel system (1.4)-(1.3) over the critical mass
blows up in finite timet∗. But the global solution to the kinetic system (1.1)-(1.3) exists. An attractive
idea is that, the solution of the kinetic system aftert∗ might be a good candidate to describe the behavior of
solution to the Keller-Segel system after blow-up. There are other mechanisms of regularizing the Patlak-
Keller-Segel system after blow-up by saturating the effectof the chemoattractant, introducing volume effects
or cross-diffusion in the macroscopic system, see [10] for adiscussion. However, to regularize it by the
kinetic system is more appealing since the kinetic system isdirectly derived from interacting particle systems
models.

Bournaveas and Calvez [7] studied the kinetic system (1.1)-(1.2) with the local turning kernelTε defined
below in (2.6). They showed that, in the two dimensional spherically symmetric coordinate, the solution
exists below a critical massmc and blows up over a critical massMc. Two questions remains unsolved. First,
the large-time behavior of the solutions for subcritical cases is not clear yet. Second, the two thresholds
do not match, i.e.mc < Mc. Moreover, the appearance of blow-up in the one dimensionalcase has not
been clarified yet, see [32]. The second aim of this work is to investigate these questions through numerical
simulation.

The outline of the paper is as follows. In section 2 the kinetic models we will work on are described.
Section 3 gives the macroscopic limit of each model. Section4 describes the AP schemes for these models.
Finally, in section 5 we present the simulation experimentswith our schemes and draw some conclusions.

2 The kinetic models

In this section we briefly describe the kinetic models we usedin our simulations. The chemoattractantS is
always given by the log kernel convolution (1.3).

The turning kernelTε in the kinetic equation (1.1) needs to be specified. The turning kernel,Tε =
Tε [S](t,x,v,v′) ≥ 0, measures the probability of velocity jump of cells fromv′ to v. To derive the Keller-
Segel equation (1.4) asε → 0, one has to incorporate bothO(1) andO(ε) scale intoTε . In the following
work, we considerTε in the form

Tε [S](t,x,v,v
′) = F(v)+ εT1+O(ε2).

HereF(v) ≥ 0 gives the equilibrium of velocity distribution when thereis no directional preference. It is
natural to assume 




∫

V
F(v)dv= 1

F(v) = F(|v|)
. (2.1)

T1 characterizes the directional preference. We can assumeT1 ≥ 0 since we are considering the reaction of
cells to chemoattractant. The cells have a larger probability to jump to a preferred direction.
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2.1 1D nonlocal Model

Now we employ the nonlinear kernel introduced in [11],

Tε = Tε [S](t,x,v,v
′) = α+ψ(S(t,x),S(t,x+ εv))+α−ψ(S(t,x),S(t,x− εv′)).

The first term means the cell decides a new direction to move based on the detection of current environ-
ment and probable new location, while the second term gives the influence of past memory on the choice of
the new direction. For simplicity we neglect the second term. We takeα+ = 1, α− = 0, and we consider

ψ(S, S̃) = F(v)+ (S̃−S)+. (2.2)

AgainF = F(|v|) is the equilibrium function satisfying (2.1). For simplicity we introduce the notation

δ εS(x,v) = (S(x+ εv)−S(x))+ .

Note thatδ εS= O(ε). Then the kinetic equation (1.1) reads

ε
∂ f
∂ t

+v
∂ f
∂x

=
1
ε

(
(F(v)+δ εS(x,v))ρ−

(
1+

∫
δ εS(x,v′)dv′

)
f

)
. (2.3)

wherex∈Ω = [−xmax,xmax], v∈V = [−vmax,vmax], |V|= Vol(V). We impose the initial conditions,

f (0,x,v,) = f I (x,v)≥ 0, (2.4a)

S(0,x) = SI (x)≥ 0, (2.4b)

and reflection boundary condition forf , Neumann boundary condition forS,

f (t,±xmax,v) = f (t,±xmax,−v) , (2.5a)

∂xS|x=±xmax = 0. (2.5b)

Equations (2.3)-(1.3) gives the nonlocal model in one dimension. The global solution exists, regardless of
the total mass.

2.2 1D local Model

In this section we summarize a turning kernel introduced by Bournaveas and Calvez [7]. Let

Tε = Tε [S](t,x,v,v
′) = F(v)+ ε (v·∇S(x))+ , (2.6)

whereF = F(|v|) is the equilibrium function satisfying (2.1). Then the kinetic equation (1.1) in one dimen-
sion reads

ε
∂ f
∂ t

+v
∂ f
∂x

=
1
ε
((

F(v)+ ε (v·∇S)+
)

ρ− (1+c1ε |∇S|) f
)
, (2.7)

with c1 =
∫

V
(v·∇S/ |∇S|)+ dv=

1
2

∫

V
|v| dv. The same initial conditions (2.4a) (2.4b), and boundary con-

ditions (2.5a), (2.5b) are applied.

Remark 2.1. If we expand the kernel (2.2) T= T0+εT1+O
(
ε2
)
, and drop the terms higher than first order,

we get exactly the kernel (2.6).
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2.3 2D local Model

Plug the local kernel (2.6) into the kinetic equation (1.1) in 2D, one obtains,
{

ε∂t f +v·∇x f =
1
ε
(ρF(v)− fε + ερ(v·∇S)+− εc2|∇S| f ) , v∈V = B(0,vmax), x∈ R2

−∇2S= ρ
(2.8)

with c2 =
∫
V (v·∇S/ |∇S|)+ dv. The equilibriumF(v) satisfies (2.1).

Now we assume the initial dataf I is spherically symmetric:f I(Θx,Θv) = f I (x,v), for any rotationΘ.
Then the solutionf to (2.8) remains spherically symmetric. Denote

r = |x| ∈ [0,∞), ω = |v| ∈ [0,vmax), θ = cos−1 x·v
rω
∈ [0,π].

Then f is a function ofr, ω , θ andt. Let

h(t, r,ω ,θ) = r f (t,x|(r,0),v|(ω cosθ ,ω sinθ )) = r f (t,x|(r cosθ ,r sinθ ),v|(ω ,0)),

ρ̃(t, r) = rρ(t, r).

Then the density is given by

ρ̃(t, r) = rρ(t, r) = r
∫

V
f (t, |x| = r,v)dv= 2

∫∫

0≤ω≤vmax,0≤θ≤π
ωhdθ dω ,

and the total mass is

M = 2π
∫ ∞

0
ρ̃(t, r)dr = 4π

∫∫∫

0≤ω≤vmax,0≤θ≤π,0≤r
ωhdθ dω dr.

Then equation (2.8) can be rewritten as




∂th+
ω
ε

(
∂r (cosθh)−∂θ

(
sinθ

r
h

))
=

1
ε2(ρ̃F(ω)−h)+

1
ε
(ωρ̃(cosθ∂rS)+−c2|∂rS|h) ,

−∂r (r∂rS) = ρ̃,
(2.9)

where

c2 = 2
∫ π

0

∫ vmax

0
ω2(cosθ∂rS/ |∂rS|)+ dω dθ =

∫ π

0

∫ vmax

0
ω2 |cosθ | dω dθ =

2v3
max

3
,

andF(ω) satisfies,

2π
∫ vmax

0
ωF(ω)dω = 1.

From the second equation of (2.9),∂rScan be computed by

∂rS=−1
r

∫ r

0
ρ̃ dr.

We impose the boundary conditions,

h(0,ω ,θ) = h(0,ω ,π−θ),
∂rh(rmax,ω ,θ) = 0.

It has been shown that the solution blows up in finite time in [7] for M large enough while existing globally
for small enough mass.
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3 The macroscopic limits

3.1 1D model: local and nonlocal

The local kinetic model (2.7) and the nonlocal kinetic model(2.3) give the same asymptotic limit asε → 0.
We apply the Hilbert expansion into (2.7) and (2.3), and match terms of the same order inε . The classical

Keller-Segel system can be derived forρ(t,x) =
∫

V
f (t,x,v)dv,

∂tρ = ∂x (D∂xρ− χρ∂xS) (3.1)

where

D =

∫

V
|v|2F(v)dv, and χ =

1
2

∫

V
|v|2 dv. (3.2)

We refer to [11] for the details. Besides, by taking the moments of the kinetic equation (1.1), one has

∂tρ +∇x ·
(

1
ε

∫

V
v f dv

)
= 0.

Compare with (3.1), one has

D∂xρ− χρ∂xS=−1
ε

∫

V
v f dv.

While the reflection boundary condition (2.5a) leads to
∫

V
v f dv= 0, at x=±xmax.

One arrives at the general boundary condition (for mass preservation) for Keller-Segel model

D∂xρ− χρ∂xS= 0, at x=±xmax.

Furthermore, the Neumann boundary condition forρ is derived under the condition (2.5b).

3.2 2D spherical symmetric local model

For the reduced spherical symmetric kinetic system (2.9), one can derive the similar asymptotic limit forρ̃
asε → 0,

∂t ρ̃ = ∂r

(
Dr∂r

ρ̃
r
− χρ̃∂rS

)
(3.3)

with
−∂r (r∂rS) = ρ̃

wherer ∈ [0, rmax] with

D = 2
∫ π

0

∫ vmax

0
ω3 cos2θF(ω)dω dθ = π

∫ vmax

0
ω3F(ω)dω

and

χ =
∫ π

0

∫ vmax

0
ω3 cos2θ dω dθ =

πv4
max

8
.

The Neumann boundary condition is derived,

∂rS= 0, at r = 0, rmax,

∂r
ρ̃
r
= 0, at r = rmax.
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4 The Numerical Scheme

In this section we present the numerical method for the kinetic system (2.3)-(2.5b) by the even and odd
parity formalism, which has been successfully applied to the diffusive limit of linear transport equations in
[24].

4.1 Odd and Even Parity

We introduce the operator

R[ f ](x,v) =
1
2
( f (x,v)+ f (x,−v)) ,

J[ f ](x,v) =
1
2ε

( f (x,v)− f (x,−v)) .

The new functionsR[ f ] andJ[ f ] are defined inΩ×V+×R+, whereV+ = {v∈V|v≥ 0}. Then we take

r(x,v) = R[ f ] =
1
2
( f (x,v)+ f (x,−v)) , j(x,v) = J[ f ] =

1
2ε

( f (x,v)− f (x,−v)) .

We can recoverf from r and j,

f (x,v) =

{
r(x,v)+ ε j(x,v), if v≥ 0,
r(x,−v)− ε j(x,−v), if v< 0.

4.1.1 1D nonlocal model

Now we describe the odd and even decomposition for the nonlocal model. Sincef (x,−v) satisfies

ε
∂ f (x,−v)

∂ t
−v

∂ f (x,−v)
∂x

=
1
ε

(
(F(v)+δ εS(x,−v))ρ−

(
1+

∫
δ εS(x,v′)dv′

)
f (x,−v)

)
,

we obtain,

∂tr +v∂x j =
1
ε2 ((F(v)+R[δ εS])ρ− (1+< δ εS>) r) ,

∂t j +
1
ε2v∂xr =

1
ε2 (J[δ

εS]ρ− (1+< δ εS>) j) ,

where< δ εS>=
∫

δ εS(x,v′)dv′, and

ρ =

∫

V
f dv=

∫

V+
( f (x,v)+ f (x,−v))) dv= 2

∫

V+
r(x,v)dv. (4.1)

We assumeε ≤ 1, then we can rewrite the equations forr and j as,

∂tr +v∂x j =
1
ε2 ((F(v)+R[δ εS])ρ− (1+ < δ εS>) r) ,

∂t j +v∂xr =
1
ε2 (J[δ

εS]ρ− (1+< δ εS>) j)+

(
1− 1

ε2

)
v∂xr.

(4.2)

Let us finish with the boundary conditions for new variablesr and j. From the reflection boundary
condition (2.5a) and the definition ofr and j, we can easily get the boundary condition forj,

j(t,xb,v) =
1
2ε

( f (t,xb,v)− f (t,xb,−v)) = 0. (4.3)
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wherexb =±xmax. Then plug this into the second equation of (4.2), we derive ,

v∂xr|x=xb = J[δ εS]ρ |x=xb =
1
2ε

(δ εS(xb,v)−δ εS(xb,−v))ρ .

Now from the Neumann boundary condition (2.5b), we haveS(xb + εv) = S(xb− εv), i.e. δ εS(xb,v) =
δ εS(xb,−v). So the boundary condition forr is

∂xr|x=xb = 0. (4.4)

Now, we can propose an asymptotic preserving method for the one dimensional nonlocal model. The
idea can be applied to the other models straightforwardly.

As ε approaches 0, we can derive the Keller-Segel equation (1.4)asymptotically from the kinetic equa-
tion (2.3). So a natural requirement is the numerical methodfor (2.3) should discretize its macroscopic limit
asε → 0. We give an AP method following [23].

We can employ an operator splitting method on (4.2). First the (stiff) source part is solved by the implicit
Euler method,

∂tr =
1
ε2 ((F(v)+R[δ εS])ρ− (1+< δ εS>) r) ,

∂t j =
1
ε2 (J[δ

εS]ρ− (1+< δ εS>) j)+

(
1− 1

ε2

)
v∂xr.

(4.5)

Then the transport part can be solved by an explicit method (e.g. upwind scheme),

∂t r +v∂x j = 0,

∂t j +v∂xr = 0.
(4.6)

We can check that the method described above is AP easily. Asε→ 0 the leading term inε of (4.5) gives,

r =
F(v)+R[δ εS]
1+< δ εS>

ρ = ρF(v)+O(ε),

j =
J[δ εS]ρ−v∂xr
1+ < δ εS>

= v

(
1
2

∂xSρ−∂xr

)
+O(ε).

Plug into the first equation of (4.6) and integrate overV+, we get exactly the Keller-Segel equation (1.4)
with D andχ given by (3.2).

4.1.2 1D local model

For the one dimensional local model, we obtain,

∂t r +v∂x j =
1
ε2

((
F(v)+

ε
2
|v∂xS|

)
ρ− (1+c1ε |∂xS|)r

)
,

∂t j +
1
ε2v∂xr =

1
ε2

(
1
2

v∂xSρ− (1+c1ε |∂xS|) j

)
.

The remaining work is similar to the nonlocal model. The boundary conditions for for new variablesr and
j are also given by (4.4) and (4.3). The AP scheme can be designed similarly.
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4.1.3 2D spherical symmetric local model

Denote

R=
1
2
(h(r,ω ,θ)+h(r,ω ,π −θ)), J =

1
2ε

(h(r,ω ,θ)−h(r,ω ,π −θ)).

RandJ are functions defined on[0, rmax]× [0,vmax]× [0,π]. Then we can write the equations forRandJ,

∂tR+ω
(

∂r(cosθJ)−∂θ

(
sinθ

r
J

))
=

1
ε2 (ρ̃F−R)+

1
ε

(
1
2

ωρ̃ cosθ |∂rS|−c2|∂rS|R
)
,

∂tJ+
ω
ε2

(
∂r(cosθR)−∂θ

(
sinθ

r
R

))
=− 1

ε2J+
1
ε

(
1
2ε

ωρ̃ cosθ∂rS−c2|∂rS|J
)
.

Now we split this into two steps. First the collision step canbe solved implicitly,

∂tR=
1
ε2 (ρ̃F−R)+

1
ε

(
1
2

ωρ̃ cosθ |∂rS|−c2|∂rS|R
)
,

∂tJ =− 1
ε2J+

1
ε

(
1
2ε

ωρ̃ cosθ∂rS−c2|∂rS|J
)
+

(
1− 1

ε2

)
ω
(

∂r(cosθR)−∂θ

(
sinθ

r
R

))
.

Then the transport part can be solved explicitly,

∂tR+ω
(

∂r(cosθJ)−∂θ

(
sinθ

r
J

))
= 0,

∂tJ+ω
(

∂r(cosθR)−∂θ

(
sinθ

r
R

))
= 0.

(4.7)

One can show̃ρ solves the macroscopic limit (3.3) asε → 0.

4.2 Time and space discretization

4.2.1 1D system: nonlocal and local

In this section we give full discretization for the 1D nonlocal kinetic system. The discretization for the 1D
local system is similar. First we solve (4.5) by implicit Euler method,

r∗− rn

∆t
=

1
ε2 ((F(v)+R[δ εS∗])ρ∗− (1+< δ εS∗ >)r∗) ,

j∗− jn

∆t
=

1
ε2 (J[δ

εS∗]ρ∗− (1+< δ εS∗ >) j∗)+
(

1− 1
ε2

)
v∂ (c)

x r∗.

wherern and jn are the numerical solutions ofr and j at timetn. ∂ (c)
x is the central difference discretization

of ∂x. And a linear interpolation is used to getS(x+ εv) andS(x− εv). < δ εS> is evaluated by applying
the trapezoidal rule on the interpolated value.

If we integrate (4.5) overV+, we can get∂tρ = 0. So

ρ∗ = ρn, S∗ = Sn.
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Thereforer∗ and j∗ can be solvedexplicitly,

r∗ =
ε2rn+∆t(F(v)+R[δ εSn])ρn

ε2+∆t(1+< δ εSn >)
,

j∗ =
ε2 jn+∆t

(
J[δ εSn]ρn+(ε2−1)v∂ (c)

x r∗
)

ε2+∆t(1+< δ εSn >)
.

Then we apply a first-order upwind scheme on (4.6) to getrn+1, jn+1,

rn+1
i − rn

i

∆t
+

v
2∆x

( j i+1− j i−1) =
v

2∆x
(r i+1−2r i + r i−1) ,

jn+1
i − jni

∆t
+

v
2∆x

(r i+1− r i−1) =
v

2∆x
( j i+1−2 j i + j i−1) .

As ε → 0, a simple computation shows that this scheme leads to (after integration overV+),

ρn+1−ρn

∆t
= ∂ (c)

x

(
D∂ (c)

x ρn− χρn∂ (c)
x Sn

)
+∆xC(V)∂ (c)

xx ρn.

with D and χ given by (3.2),ρ given by (4.1). Here∂ (c)
xx is the general three-point central difference of

∂xx. C(V) is a constant which only depends on the velocity spaceV. In the case ofV = [−vmax,vmax],
C(V) = vmax/4.

4.2.2 2D spherical symmetric local model

We describe a first order discretization for the transport part (4.7) of spherical symmetric system. By intro-
ducing

P(x,v) =
1
2
(R(x,v)+J(x,v)), Q(x,v) =

1
2
(R(x,v)−J(x,v)),

one obtains

∂tP+ω
(

∂r(cosθP)−∂θ

(
sinθ

r
P

))
= 0,

∂tQ−ω
(

∂r(cosθQ)−∂θ

(
sinθ

r
Q

))
= 0.

We take the grid points at

r i = (i− 1
2
)∆r, i = 1, . . . ,N,

θ j = ( j− 1
2
)∆θ , j = 1, . . . ,M.

The grid points and the characteristic lines are shown in Figure 1. We can define the flux at each interface
according to the “upwind” value along the characteristic direction. An analogous idea was successfully used
in the case of numerical simulation of the Boltzmann-Poisson system for semiconductors in [9]. Here we
give the detailed discretization forP. The discretization forQ is similar. For eachω ,

Pn+1
i, j −Pn

i, j

∆t
+ω

(
Fn

i+1/2, j −Fn
i−1/2, j

∆r
+

Gn
i, j+1/2−Gn

i, j−1/2

∆θ

)
= 0,
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Figure 1: Illustration of grid points and characteristic lines onr−θ plane.

where

Fn
i+1/2, j =

{
(cosθ j)P

n
i, j , if j ≤M/2,

(cosθ j)P
n
i+1, j , if j ≥M/2+1,

Gn
i, j+1/2 =−

sin(θ j +∆θ/2)
r i

Pn
i, j =−

sin( j∆θ)
r i

Pn
i, j ,

with boundary
Fn

1/2, j = Fn
1/2,M− j = (cosθM− j)P

n
1,M− j , if j ≤M/2.

4.3 Adaptive grids for solutions with blowup

Now let us consider the case that the initial total mass is large. It has been shown that the solutions to
the 2D spherical symmetric kinetic model (2.9) blow up in finite time. While for the one dimensional
kinetic local model (2.7), although the strict analysis is lacking [32], the numerical results strongly suggest
that the solutions also blow up. In these cases, the convergence of the schemes described above would
be questionable when simulations are performed on the fixed grids. See section for the verification of
convergence order.

Noting that in the blowup case, the magnitude of∇xS grows up dramatically as time evolves, which
actually characterizes another scale for the kinetic equation. To capture this scale, one has to take∆x∼

1
max|∇xS| . Hence the adaptive grids are needed. In numerical simulation, we double the grid points once
||∇xS||∞ is doubled. More exactly, we apply the following algorithm.

Algorithm 4.1. (Adaptive grids)

s= ||∇xS0||∞
if ||∇xSn||∞ ≥ 2s then

s← ||∇xSn||∞.

11



Double the grids, half the time step size∆t.
Derive fn on the finer grids by interpolation and continue the time evolution.

end if

This simple idea works well when checking the blowup property and determining the blowup time.
A nonuniform refinement might be more efficient in this problem since the mass is concentrated at some
separated points. However this is beyond the scope of this work and is left for future study.

4.4 A second order scheme for 1D model

One can derive a second order scheme without much difficulty for the 1D (local or nonlocal) kinetic model.
First the Strang splitting is applied. One solves the stiff source part (4.5) over a time step∆t

2 , then solves the
transport part (4.6) over∆t, then solves the stiff source part (4.5) over another∆t

2 .
Here we describe the second order scheme for the nonlocal model in detail. It can be applied to the local

model without any difficulty. The stiff part (4.5) can be solved exactly in time. Noting that the cell density
ρ and the chemical concentrationSare not changed in this step. Let

λ = e−
∆t(1+<δ ε Sn>)

2ε2 ,

then after a time step∆t/2,

r∗ = λ rn+(1−λ )
F(v)+R[δ εSn]

1+< δ εSn >
ρn,

j∗ = λ jn+(1−λ )
J[δ εSn]

1+ < δ εSn >
ρn+v∂ (c)

x r̃ ,

with

r̃ =

(
1− 1

ε2

)(
∆t
2

λ rn+
F(v)+R[δ εSn]

1+< δ εSn >
ρn
(

ε2(1−λ )
(1+ < δ εSn >)

− ∆t
2

λ
))

.

Here the computation ofδ εSn is described in Section 4.6.∂ (c)
x is a central difference inx direction.

Next a second-order TVD scheme is needed to solve the transport part over a time step∆t,

r∗∗i − r∗i
∆t

+
v

2∆x

(
j∗i+1− j∗i−1

)
=

v
2∆x

(
r∗i+1−2r∗i + r∗i−1

)
− v

4

(
1− v∆t

∆x

)(
σ+

i −σ+
i−1+σ−i+1−σ−i

)
,

j∗∗1i − j∗i
∆t

+
v

2∆x

(
r∗i+1− r∗i−1

)
=

v
2∆x

(
j∗i+1−2 j∗i + j∗i−1

)
− v

4

(
1− v∆t

∆x

)(
σ+

i −σ+
i−1−σ−i+1+σ−i

)
,

where

σ±i =
1

∆x
minmod

(
r∗i+1± j∗i+1− r∗i ∓ j∗i , r∗i ± j∗i − r∗i−1∓ j∗i−1

)
.

Finally we can update the densityρ∗∗ from r∗∗ andS∗∗ is obtained. Then the stiff part is solved over another
∆t/2.

4.5 The convolution

Finally, we apply the FFT algorithm on the computation of convolution (1.3) to getS. The singularity of
log|x| atx= 0 makes the direct numerical integral difficult, see [8]. Noting that log|x| belongs toL1, we can
avoid this problem by taking Fourier transform first. In the numerical simulation, we will always makef to
be compactly supported in the computational region. It is not a problem about the periodicity of boundary
condition by extending the solution to zero in a larger interval and by computing the Fourier transform there.
In this way we avoid any kind of aliasing.
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4.6 The computation ofδ εS

To obtain a higher accuracy in computingδ εS in (2.1), a high order interpolation is needed to compute
S(x+ εv). Here we apply the FFT based interpolation,

S(x j + εv) =
1
N ∑

k

Ŝke
−ik(xj+εv) =

1
N ∑

k

(
Ŝke
−ikεv

)
e−ikxj ,

whereŜ is the discrete Fourier transform ofSon gridsx j .

5 Numerical results

5.1 1D Nonlocal Model

The first simulations are devoted to the one dimensional nonlocal model described in section 2.1.
The following simulations are set onx ∈ Ω = [−1,1], v ∈ V = [−1,1]. We takeNv = 64, which can

provide good enough accuracy for numerical simulations. The constant function inV is chosen as the
equilibrium

F(v) =
1
|V|1V .

In this setting, the critical mass of blow up for the limitingKeller-Segel system is

Mc = 2π.

The initial conditions in the simulation are always given by,

ρ I (x) =Ce−80x2
, f I

ε (x,v) = ρ I(x)F(v), (5.1)

whereC=C(M) is a constant determined by the total massM.
As predicted in [11], in the supercritical caseM > Mc, the solutions to the kinetic system converge to

that of the Keller-Segel system only in finite time (before blow up time). After that, the asymptotic limit
is not valid anymore. To capture the behavior of solutions tothe kinetic system after that time, one has to
resolve the small scaleε . Therefore in the simulation, we need∆x= O(ε). While in the subcritical case, as
will be shown in the following sections, the asymptotic limit seems to be valid over any time period. One
can take∆x independent ofε , as in a typical AP scheme [21].

As for the time step length∆t, the simulation results suggest that, for the sake of stability, one needs
∆t = ε∆x/(2vmax) for long time simulation in the supercritical case. While inthe subcritical caseM < Mc,
asε→ 0, the diffusive nature of the Keller-Segel system requires∆t = ∆x2/2. A general choice of∆t would
be

∆t = max

{
ε∆x

2vmax
,

∆x2

2

}
.

5.1.1 Convergence order of numerical scheme

In this section we test the convergence order of numerical scheme described in Section 4.4. We check the
following error,

e∆x( f ) =
|| f∆x(t)− f2∆x(t)||1
|| f2∆x(0)||1

. (5.2)
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Figure 2: 1D nonlocal model. The convergence order of schemedescribed in Section 4.4, for differentε .
Left: M = 4π > Mc, t = 0.0025< tb; Right: M = π < Mc, t = 0.025.

This can be considered as an estimation of the relative errorin l1 norm, wherefh is the numerical solution
computed from a grid of size∆x= xmax−xmin

Nx
. The numerical scheme is said to bek-th order ife∆x ≤C∆xk.

The computations are performed withNx = 100,200,400,800,1600,1600,∆t = ∆x2

2 .
Figure 2 (a) shows the convergence results att = 0.0025 for differentε , with initial data given by (5.1)

and total massM = 4π > Mc. The solution to the Keller-Segel system with total mass 4π blows up at
tb ≈ 0.0039 (see next section). The scheme shows second order convergence (inl1 norm) for supercritical
mass before blow up time.

Figure 2 (b) shows the convergence results att = 0.025 for differentε , with initial data given by (5.1)
and subcritical massM = π < Mc. The second order convergence (inl1 norm) is observed for allε .

In conclusion, our scheme has second order convergence, uniformly in ε . This is a common result for
AP scheme, see [15].

The above simulations are performed with the transport equation (4.6) solved by a Lax-Wendroff method.
The use of the second order TVD method described in Section 4.4 shows a lower, but still uniform conver-
gence inε .

5.1.2 Global existence and finite time blow up

Following the proof in [11], one can show that the solution tothe kinetic system (2.3)-(2.5b) is bounded on
[0,T], for any timeT. However, the Patlak-Keller-Segel system (1.4) can present a blow-up phenomenon in
finite time, see [8].

Now we take the initial data (5.1) with supercritical massM = 4π > Mc = 2π. The blowup timetb ≈
0.0039 from the numerical simulation.

Figure 3 shows the global boundedness of kinetic system for different ε and the finite time blowup for
the corresponding Keller-Segel model, by drawing the time evolution of the maximum value ofρε andρ .

5.1.3 AP property: Convergence inε at a finite time interval

As mentioned before, it has been shown in [11] that the solution of the kinetic system can converge to that
of the Patlak-Keller-Segel system weakly in a finite time interval [0, t∗] with t∗ small enough. Here we
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Figure 3: 1D nonlocal model. Time evolution of kinetic system and Keller-Segel model for supercritical
massM = 4π.

numerically check this convergence. We use the same grid size ∆x= 1
2000 for differentε in this subsection.

In this section, we use the notationsρε and fε to for the solutions to the kinetic system, whileρ0 for the
Keller-Segel model.

The supercritical case is studied first. We take initial data(5.1) with M = 4π. Figure 4 shows the
convergence offε → ρ0F asε → 0 at timet = 0.002< tb, wheretb ≈ 0.0039 is the blow up time of the

limiting Keller-Segel model. Figure 4(a) sketches the shape ofρε(x) =
∫

V
f (x,v)dv. Asε→ 0, ρε (solutions

to kinetic system) approach toρ0, the solution of the limiting Keller-Segel system. Figure 4(b) shows that
the convergence order offε → ρεF is almost first order (around 0.85) in l2 norm.

For a subcritical case, the initial data are taken to be (5.1)with M = π. After a relatively long time
t = 0.01, we obtain the very similar results. See figure 5. Now we have first order convergence inε , in l2

norm.

5.1.4 The stationary solution of kinetic system

In this subsection we will study the solution of kinetic system with large initial massM = 4π at a relatively
long time t = 0.1. After a long time, the solution stabilizes toward a stationary state. This has not been
proved nor intuitively discussed in the literature. Figure6 shows the functionερε(εx) at time t = 0.1.
Figure 7 shows the functionf (εx,v)

ρ(εx) as a function ofv at differentx. These two figures suggest the stationary
state satisfies

f ε
∞(x,v) =

1
ε

ρ̃∞(
x
ε
)F̃∞(

x
ε
,v). (5.3)

for some functions̃ρ∞(x) andF̃∞(x,v). Therefore, let us consider the ansatz

f̃ (t,x,v) = ε fε(t,εx,v)

ρ̃(t,x) = ερε(t,εx)

S̃(t,x) = − 1
π

log|x| ∗ρ = Sε(εx)+Cε
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Figure 4: 1D nonlocal model. The solutions of kinetic systemand Keller-Segel system at timet = 0.002,
before blow up time. The super-critical massM = 4π is used. The left figure showsρε (for differentε) and
ρ . The right figure gives the convergence order of|| fε(x,v)−ρε (x)F(v)||2.
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Figure 6: 1D nonlocal model. The functionερε(εx) for differentε . For supercritical massM = 4π at time
t = 0.1≫ tb.

whereCε =
M
π logε , with M the total mass. The rescaled variables satisfy the following equations

ε2∂ f̃
∂ t

+v
∂ f̃
∂x

=
(
F(v)+δ S̃(x,v)

)
ρ̃−

(
1+

∫
δ S̃(x,v′)dv′

)
f̃

S̃=− 1
π

log|x| ∗ ρ̃

wheret > 0, x ∈ Ωε = [− xmax
ε , xmax

ε ], v ∈ V = [−vmax,vmax]. As t → ∞, ∂ f̃
∂ t → 0, we have the stationary

solution f ε
∞ should solve

v
∂ f ε

∞
∂x

=
(
F(v)+δ S̃∞(x,v)

)
ρ̃∞−

(
1+

∫
δ S̃∞(x,v

′)dv′
)

f̃ (5.4)

whereS̃∞ is obtained fromρ̃∞. ClearlyF̃(x,v) satisfies
∫

V
F̃(x,v)dv= 1 and

∫

V
vF̃(x,v)dv= 0.

The second identity can be derived by integrating (5.4) overvelocity space. These two identities are also
verified numerically.ρ̃(x) = ερ(εx) is shown in Figure 6. Some snapshots ofF̃(x,v) are shown in Figure 7.

5.1.5 The interaction between several peaks

It has been shown the interaction between several peaks for the modified Keller-Segel system (1.4) in [3] by
means of optimal transportation methods. Here we will checkthis interaction for the kinetic system.

Case I: Two symmetric peaks, without enough mass in each peak.- The initial condition is taken as
the sum of two gaussian-like peaks,

f I
ε (x,v) =C

(
1
2

e−80(x−0.3)2
+

1
2

e−80(x+0.3)2
)

F(v) (5.5)
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Figure 9: 1D nonlocal model. The attraction between peaks.ε = 0.05. The total mass is 5π. The critical
mass is 2π. Nx= 400.

with a suitable constantC such that the total mass is 3π. We takeε = 0.1. Figure 8 shows the time evolution
of ρε (left) and||ρε ||∞ (right). The solution starts with diffusion separately, and then the peaks merge. At
beginning there is no enough mass in either peak to concentrate (3π

2 < Mc = 2π). But after they merge, the
total mass in the new peak is large enough to form an aggregation.

Case II: Two symmetric peaks, with enough mass in each peak.-We take the same initial setting
(5.5), with a different constantC such that the total mass is 5π. Now the mass in each peak is large enough
to concentrate (5π

2 > Mc = 2π). In Figure 9, we can see two distinguished different phasesduring the time
evolution. The first phase consists in the appearance of a metastable state where the concentration in each
peak is formed but slowly moving toward each other. Then the two peaks merge, which increases the total
mass into the final larger peak. It continues to aggregate themass around it and finally reaches the stationary
state.

Case III: Two asymmetric peaks, with enough mass in each peak.- We take a nonsymmetric initial
setting

f I
ε (x,v) =C

(
2.2e−80(x−0.3)2

+2.8e−80(x+0.3)2
)

F(v)

with a suitable constantC such that the total mass is 5π. The mass in each peak is still large enough to
concentrate and we see that the mass tends to concentrate around the center of mass located this time much
closer to the first peak due to asymmetry in Figure 10.
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Figure 10: 1D nonlocal model. The attraction between peaks.ε = 0.05. The total mass is 5π with 2.2π near
x= 0.3, 2.8π nearx=−0.3. The critical mass is 2π. Nx= 400.
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Figure 11: 1D nonlocal model. The interaction between five peaks. ε = 0.05. The total mass is 11π. The
critical mass is 2π. Nx= 400.

Case IV: Five unsymmetric peaks, with total massM > 5Mc.- We take a nonsymmetric initial setting,
with five different peaks,

f I
ε (x,v) =C

5

∑
j=1

w je
−160(x−cj )

2

with w= [0.5,1.2,0.8,0.6,1], c= [0.4,−0.2,−0.6,0,0.2]. Here we pick up a suitable constantC such that
the total mass is 11π. Now, we observe in Figure 11 the complicated dynamics of merging between the
different peaks before forming the final peak at the center ofmass and converging toward the stationary
state.

5.2 The 1D local model: blow up in finite time

We numerically check the open problem of the blow up propertyof the solution to the one dimensional
kinetic local model (2.7). As mentioned before, a theoretical prediction on this blow up is still lacking, see
[32]. We consider the initial data given by (5.1). The critical mass for corresponding Keller-Segel model is
again

Mc = 2π.

For the super-critical case, we take total massM = 5π.
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Figure 12: 1D local model. The convergence order of the solutions to (2.7) at different time.ε = 0.4. The
total mass is 5π > Mc.

5.2.1 The problem in the convergence with fixed grids

In this testε = 0.4. Different grid sizes inx are used. The number of grid points in each of the simulations
areNx = 250,500,1000,2000,4000,8000 respectively and the time step sizes are taken as∆t = ε∆x/vmax.
We still consider the convergence order defined as in (5.2).

Figure 12 shows the convergence order inL1 norm at different timesτk = ktmax/20, where 1≤ k≤ 20.
The solutions show a first order convergence whent < 0.12, then the convergence order decreases as time
evolves. Aftert > 0.16 a negative convergence order is seen, which means the scheme is not convergent after
that time. One cannot improve these convergence orders by using a finer grid. Figure 12 strongly suggests
that the blowup happens in the solution during 0.12< t < 0.16. Next we investigate this time period by
using the adaptive grids proposed in section 4.3.

5.2.2 The convergence with adaptive grids

Now we use the adaptive grids proposed in section 4.3. We start the simulation with different grid sizes
Nx = 500,1000,2000,4000. Figure 13 shows the time evolution of||ρ ||∞. A nice convergence toward some
density blow-up is observed.

5.2.3 The convergence asε → 0

Next we study the convergence asε → 0. We apply the adaptive grids described above and takeNx = 1000
at beginning. We take total mass to beM = 5π >Mc. Since the solutions to kinetic equations also blow up in
finite time, they converge to the solution of Keller-Segel system in a totally different way. Figure 14 shows
the time evolution of||ρ ||∞ of kinetic equations with differentε , as well as that Keller-Segel system. The
way of asymptotic convergence is totally different with Figure 3, where the solutions of kinetic equations
are globally bounded.
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Figure 13: 1D local model. The time evolution of||ρ ||∞ by using adaptive grids, with different initial grids.
The circles shows the time steps when the grids are doubled.ε = 0.4. The total mass is 5π > Mc.
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Figure 15: 1D local model. The time evolution ofρ̃ for the subcritical massM = π < Mc. Nx = 2000.
ε = 0.2.

5.2.4 Subcritical case: long time behavior

Now we check the long time behavior of subcritical case. Let us remark that in the case of the limiting
Keller-Segel model, it is known that the long time asymptotics should be given by a self-similar solution
whose profile is dictated by a stationary scaled problem, see[3] for instance. We now check this point for
the 1D local kinetic model by taking as total massM = π. The simulation is performed onx∈ [−10,10].
A fixed grid with Nx = 2000 is used, withε = 0.2. We consider the same change of variables as for the
Keller-Segel model,

R(t) =
√

1+2t, y=
x

R(t)
, τ = logR(t),

ρ(t,x) =
1

R(t)
ρ̃(τ ,y). (5.6)

Hereρ is the density we computed from numerical simulation.
Figure 15(a) shows the time (τ) evolution ofρ̃ until time τ = 1.5 (t = 10) as a function ofy. It strongly

suggests that̃ρ is approaching some stationary state. We denote it byρ̃∞. In Figure 15(b) we show the time
evolution of the relative error||ρ̃(τ ,y)− ρ̃∞||1, with ρ̃∞ approximated through (5.6) at timeτ = 10. Clearly
the solutions are approaching the stationary state, in other words,

∣∣∣
∣∣∣ρ(t,x)− 1

R(t)
ρ̃∞

(
x

R(t)

)∣∣∣
∣∣∣
1
→ 0, ast→ ∞.

5.3 The 2D local model: solution behavior between theoretical thresholds

In the final simulation we test the 2D local model. As shown in [7], the solution blows up with total mass
larger than the critical mass

Mc =
32π
|V| = 32,
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where|V|= πω2
max= π. And the global solution exists with the total mass lower than the other threshold,

mc =
0.806π
|V| = 0.806.

Besides, as mentioned in the introduction, the critical mass for the corresponding Keller-Segel model (3.3)
is

MKS=
8πD

χ
= 16.

The gap between the two estimatesMc andmc should be much smaller as observed from our numerical
simulation. It is difficult to ascertain based on numerical simulations if the kinetic system show a clear
dichotomy as in the Keller-Segel system.

We takermax= 2, ωmax= 1, with the equilibrium given by

F(ω) =
1

2π
∫ ωmax

0 ω dω
=

1
π
.

The grid points in each directions areNr = 1000,Nω = 32,Nθ = 32. The initial data are taken as

ρ̃ I(r) =Cre−15r2
, hI (r,ω ,θ) = ρ̃ I(r)F(ω),

whereC=C(M) is a constant determined by the total massM.
Figure 16 shows the time evolution of||ρ ||∞/M, for different total massesM. We takeε = 1. It suggests

that the global solutions exists forM ≤ 17, which is much bigger than the theoretical thresholdsmc. While
for massM ≥ 25, the solution blows up, even if the total mass belongs to the range of masses in which there
are no theoretical results [7]. Let us comment that||ρ ||∞ has a upper bound due to the limitation of grid size.
When we use a finer grid, this upper bound would be larger.

Finally we compute the convergence of the solutions to the kinetic system as∆r→ 0, with different total
massesM. As shown in Figure 17, the numerical scheme shows a fist orderconvergence forM ≤ 15 (note
that the critical mass of the Keller-Segel model isMKS= 16). While forM ≥ 25, the numerical solutions do
not convergence, which suggests that the solutions blow up.
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