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1. Introduction. The study of the asymptotic properties of stochastic processes

has a long history. Such researches were developed from those of the asymptotic

behavior of the first n of a sequence of independent random variables, namely,

the so-called law of the iterated logarithm. A. Kolmogoroff proposed the final

form of the very theory which is stated, without proof, in P. Levy's book [4]. W.

Feller [3] gave its complete proof. The final result on the Brownian motion corre-

sponding to Feller's for the case of the partial sums of independent random

variables were led by T. Sirao and T. Nisida [9]. Their result is stated below. We

introduce the following notation. Let M¿ ={</>; <f> is a positive, nondecreasing, real

function on [a, oo)}. Let {/?(;); 0<r<oo} a Brownian motion on a probability

measure space (Q, B, P). We put t>(0 = £(£(ß(02))1,2 = f1/2.

Theorem A.

Pithere is a t0io>) such that |£(r)| S vit)<f>it) for all t > t0iw)) = 1 or 0,

according as, for some a > 0,

F il/t)<pit)expi-U2(t))dt,       </>eMa\
Ja

converges or diverges, respectively.

It will be possible to generalize in several ways Theorem A which is true for the

Brownian motion. In this paper, by use of the method of T. Sirao [8], we will give

some results on a generalization of Theorem A.

2. Results. Let{x(/), — oo < / < oo} be a real, separable, measurable Gaussian

process defined on a probability measure space (Q, êS, P). Without loss of generality,

we may assume that £(x(?)) = 0. We put rit, í) = £(x(í)x(í)) and Eix\t)) = v2it).

In the following, we will assume that r(r, s) is continuous with respect to / and s

and vit) is positive. And we put pit, ,s) = r(r, s)/ivit)vis)).

In the following, we, will obtain some results on the asymptotic behavior of the

process x(/) as / tends to infinity. To state the results, we introduce the following

conditions.

Received by the editors April 1, 1969.

(') Some results of this paper were previously announced in H. Watanabe [11], and an

error found later in them which is corrected in this paper.
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(A.l) There are positive constants 8l5 C». and Tx such that there holds

P(t,t + h) > l-Cxh\

for all n in (0, 8X) and all r>Fi for some a with 0<<x = 2.

(A.F) There are positive constants C2, F2 and 17 (0<r.< 1) such that

p(t, t+h) = max (l-C2ha, v)

for all / > F2 for some a with 0 < a = 2.

(A.2) The limit

lim p(r, r + i)-s = 0,
S-* CO

converges uniformly with respect to t.

Theorem 1. Suppose that condition (A.l) is satisfied. If<j>(t)e M„+ and

r</>(t)2'"''exp(-ick2(t))dt<œ,
Ja

for some a>0, then we have

F(3/0(co), x(0 = v(t)4>(t)foraim t0(m)) = 1.

Theorem 2. Suppose that condition (A.F) and (A.2) are satisfied. If </>(t) e Ma+

anc/

P ¿(i)2"1""1 exp (~\<p2(t)) dt = 00

/or jome a > 0, inen we nafe

P(x(t) > v(t)9(t) i.o.) = I,

where i.o. means infinitely often.

Combining Theorems 1 and 2, we can easily show the following theorem.

Theorem 3. Assume that conditions (A.l), (A.F) and (A.2) are satisfied at the

same time for some a. Let </>(t) e M0+ for some a. Then

P(St0(w), x(t) S v(t)<f>(t)for all t £ t0(co)) = 1 or 0,

according as the integral,

fcKO2'«-1 exp (--£#(/)) A
Ja

converges or diverges.

Corollary 1. Under the same conditions in Theorem 3, we have, for every e>0,

P(3t0(m),x(t)úv(t)(2logt + (2/a+l+E)loglogt)112 for all t>t0(w))=l. More-

over, we have for any e^.0,

P(x(t) > v(t)(2log t + (2/a+l -e) log log 01'2 i-o.) = 1.
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From Corollary 1, assuming condition (A.l), it follows that, for every e>0,

£(3í0(tü), x(0 < K0((2 log 01,a + 0/« + 1/2+*) log log f/(2 log i)1/2)

for all / > /0(aj)) = 1.

Under the condition (A.l), the path functions x(/) are almost certainly every-

where continuous. Then, for every fixed f>0, the quantity

. . xiu)
r¡it) = max —r^

OSuSf i\u)

will have a definite meaning. Given any positive, monotone, nondecreasing con-

tinuous function ¿it) for large t, there is a t0iaj) such that x(i)<KO0(O for all

t^t0, if and only if there is a t0iw) such that tj(í)¿^(/) for all rä/0. Hence, assuming

condition (A.l), for every £>0,

Pi3t0i<o),r¡it) á ^logO^ + O/a+l^ + ^loglogí/^log,)1'2

( ' ' for all/ ä íoM) = I-

H. Cramer [2] and M. G. Sur [7] have obtained the results corresponding to

(2.1) in the case of a = 2 when x(f) is stationary.

In this case, assuming conditions (A.l), (A.l') and (A.2) and denoting

£(x(/)x(0))/(u(0))2 by pit), it follows that

(B.l) 3a 2 ä a > 0, lim sup r°(l -pit)) < oo,
(-.00

(B.2) lim pit)t = 0.
Í-.0O

Therefore the assumptions of Theorem 5.4 of J. Pickands III [6] are satisfied. Hence

£(7?(/)-(21og/)1,2^0(i->co)) = 1.

They are interested in the function </>y and <f>2 such that it holds

£(3/0H, Ut) = I«) = W), for all t ä í0(co)) = 1.

We have only proposed some criteria concerning as </>¿i-)- Also, we remark that

M. Nisio [5] proved under the weaker condition than (A.l), (A.l') and (A.2) that

'(ft^ip-1)-1-

And also, we can easily show that the stationary Gaussian process with pit)

= £(x(í)*(0)) = exp(-|í|a) (0<«^2) satisfies the conditions (A.l), (A.l') and

(A.2).
The proof of Theorems 1 and 2 will be carried out in the similar way to [8] and

[10] and given in §§3 and 4, respectively.

Next, we will deal with another class of Gaussian processes including the Brown-

ian motion. We introduce, here, the following conditions.
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(C.l) There are such positive constants 82, C3 and F3 as rendering the following

valid

p(t,t+h)> i-c3(h/ty,

for all l and h such that 0<(h/t)< 82 and t>T3 for some a with 0<a^2.

(C.F) There are positive constants 83, C4 and F4 such that

P(t.t + h) á l-C4(n/0",

for all t and n such that 0<(h/t)<83 and ?>F4, and for all t and s such that

(h/t)>83 and i>F4, p(t, r + n)<l-C48§, for some a with 0<a^2.

(C.2) The limit

lim p(t, ts) log s = 0,
S-» CO

converges uniformly with respect to /.

Theorem 4. Suppose that condition (C.l) is satisfied. If</>(t) e M£ and

^ - ¿(t)21"-1 exp (-■|02(i)) i/r < oo,
Ja     '

for some a>0, then we have

P(3t0(w),x(t) < v(t)cb(t),fiorallt > *„(«,)) = 1.

Theorem 5. Suppose that (C.F) and (C.2) are satisfied. If </>(t) e Ma+ and

£° j m*1"-1 exp (-Wit)) dt = co,

for some a > 0, then we have

P(x(t) > v(t)</j(t) i.o.) = 1.

Combination of Theorems 4 and 5 will lead to the following theorem and

corollaries.

Theorem 6. Assume that conditions (C.l), (C.F) and (C.2) are satisfied at the

same time for some a. Let cb(t) e Ma+ for some a. Then

P(3t0(w), x(t) á v(t)4>(t)for all t ä t0(w)) = 1 or 0,

according as the integral

r \x(tfia-1 t%^(-^(t))dt

converges or diverges.

Corollary I. Under the same conditions as in Theorem 6, for every e > 0, we

have

P(3t0(co), x(t) = v(t)(2 log(2)/ + (2/«+ 1 +e) log(3)t)112   for all I 2: r0(a.)) = 1.

Moreover, for any c = 0, we have

P(x(t) > v(t)(2log(2)t + (2/a+l-e)logi3)tyl2i.O.) =  1.
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The proof of Theorems 4 and 5 will be carried out directly by the minor change

of the proof of Theorems 1 and 2, namely, by putting tp¡k = 2v + 2pkl\\ogp\xla in

Eip; k) = {yitv.k)>4>itp¡l)} which is used in the proof of Theorems 1 and 2.

Here, we make an important remark: the conditions (C.1)~(C2) can be deduced

by the time change s = el from the conditions (A.1)~(A.2) and conversely. There-

fore, by the time change, Theorems 4, 5 and 6 can be deduced from Theorems

1, 2 and 3 and conversely.

Some applications of Theorem 6 will be given in the following. Let Bit) be a

one dimensional Brownian motion on (-oo, oo). We can easily show that it satisfies

the conditions (C.1)~(C2). Therefore, Theorem 6 contains as a special case

Theorem A. Furthermore, we consider the process X={xit) = \tüBiu) du,

-oo<?<co}. Then the process X is a Gaussian process with £(x(i)) = 0. Suppose

that 0<5</, then, we have rit, s) = Eixit)xis)) = s2t/2-s3/6. Furthermore, if

0<r<i + «,

*■<+»>-<»— m (H-
Hence, there is positive constant 8 such that there holds

l-MA/O2 < p(t,t+h) < i-iih/t)2,

for all / and h such that 0<h/t< 8. Therefore, from this and (2.2), we can show that

the conditions (C.l) and (CT) hold for the process X. Next,

1+|(£-1)
(s3)1

pit, ts) log s =       23\1;2    log s -> 0   is -> CO),

which justifies the condition (C.2). Accordingly, Theorem 6 is applicable to the

present case.

Theorem 7. Let Bit) be the Brownian motion. Let </>(f) e M¿, for some a>0.

Then,

£(3£0M, J*J B(u) du ̂  (Cy2¿iT)fior all T > T0ico)\ = 1 or 0,

according as the integral

[
\expi-W(t))dt

converges or diverges.

Corollary 1. For every e > 0,

/T3\ 1/2

£(3£0(a,), J"  Biu) du ú (y)     (2 Iog(2)£+2 log(3) T + • • • (2+e) log(n) Tf'2

for all T > £0(ct))) = 1.
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While for any e ä 0,

p(jT B(u)du> (Ç)12(2 1og(2)F+2 1og(3)F+---(2-£)log<n)F)1'2/.o.) =   1.

Corollary 2.

F(limsup[JjF.(U)c/W/(|F3log(2)F)1'2] = l) = 1.

3. Proof of Theorem 1.

Lemma 3.1. If Theorem 1 is true under the additional condition that for large t,

(log ty ¿ m á (3 log o1'2,

it is true without the additional condition.

Proof. The proof of Lemma 3.1 is similar to Lemma 1 in T. Sirao [8]. Therefore,

we will give only its sketch.

Assume that the statement of Theorem 1 is true for arbitrary </> such that

(3.1) P ¿(O2'""1 exp (--^(O) dt < oo    for some a > 0,
Ja

and

(3.2) (log f)1,a â </>(() Ú (3 log i)1'2

for large t.

Given any <f>(t) satisfying only (3.1), the set {t; </>(t)<(log t)112} is bounded. For,

if it is not, there are an infinite set {tn} such that </>(tn) < (log tn)lt2. Then we can easily

show that

r^(08",-1exp(-^2(0)Aa (^TT^-)1'2 dogr,,)1'«-1'2-*oo       (n^oo),

which contradicts to (3.1).

Now put <£(/) = min (max (</>(t), (log t)112), (3 log f)1'2). Then,

$(t) = min (<h(t), (3 log r)1'2)

for large t. Hence

P ^(O2'"-1 exp (-W(O) dt < oo.

By definition, (log t)ll2^$(t)^(3 log t)112. Thus, Theorem 1 is valid for $(t), that

is to say,

P(3t0(w), x(t) Ú v(t)$(t), for all t ^ t0(co)) = 1.

Recalling that $(t) á </>(t) for large t, we have the conclusion of Lemma 3.1.
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By Lemma 3.1, it is sufficient to show Theorem 1, under the hypothesis (3.1)

and (3.2). In the following, we put yit) = xit)/vit).

Lemma 3.2. Let </>(') satisfy (3.1) and let £(/?; k) = {yitpk)><f>itpk)},  where

tP.,=P + k/[ilogPy'a], ip=l,...,k = 0,l,2,..., [(log/;)1'«]). Then,

oo    [(lOÉTP)1'«]

(3.3) 2    2   P^P'k» <œ-
p = l       k = 0

Proof. Since

e-"2'2 du è- e-*2'2   for any x > 0,

we have for any p0,

oo      [(logp)l'«] , CO      [(log?)1'"] i

2      2    rWp-'M^ññttl      2     777-jexp(-^2(/p,,)) = ^.
P = Po     k = 0 y"1'      p = Po      k = Q     TVv.k)

By use of the monotonicity of </>(■), we have

A ú O)"1'2  2 (log^'«^exp(-Wa(/»)) = £.

Since (log/?)1'2 g (f>ip) for large />, if we take sufficiently large p0, we obtain

£^(2tt)-1'2 2 ^r-'expi-W2^))
P = Po

^ (277)-1'2 ["¿(/^'«^expí—W2(0)A < oo,
Jpo

which concludes the proof.

Let £ be any positive constant. Let c be a real number which makes eqc an

integer for any positive integer q. Let tPik,„.m = tp.k + m/ie'":[ilogp)lla]) and let

F,.m(p;k) = y(tP.k.Q,m) ^ ¿(,   )+_m'2 2""'

where the integers w range from 0 to eqc.

Let Um" o F,.m(/»; k) = Fqip; k) and let U"-o f,0>; £) = -F(/>; *)• Then, we have,

for almost all j( •, w),

F(p\k) = \yitP,k+s/[ilogPr°}) § ^+^7)|2"dforsome0 S'il},

since almost all path functions j(i, to) are continuous.

Lemma 3.3.
oo    tdOgp)!'«]

2   2
P = l       fc=0

"+  mug vj-'  j

2     2    P(F(P\k))< +CO.
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Before proving this lemma, we will use it to carry out the proof of Theorem 1.

By use of the Borel-Cantelli theorem, it follows that

p(3p0,vp ï/>„oiVîSi,iâVH [(log Pyi«iy(tP,k+s/Wog p)lltt])

By the monotonicity of <f>, we find

p(lT0(co),y(T) á <p(T) + ^r) | 2-«*, for all F ä T0(co)j = 1.

Let ch(t) = <t>(t)-3L'l</>, where L'=L 2,% 2~ai. Then, for sufficiently large t, it

holds that

(a log/)1'2 ^ -ft/) â (31og01/2

with some 0<a< 1, and

^¿(t)21"-1 exp (-W(0) dt < oo.

Since we can repeat the similar discussion for this c5, we can obtain that

F(3F0(cc), >>(F) á ch(T) + 2L'/cl(T) for all F > T0(œ)) = 1.

Since <}>(T) + 2L'/çl(T)<<l>(T) for sufficiently large F, we have the conclusion of

Theorem 1.

Proof of Lemma 3.3. In the following, we will sometimes denote simply Fq%m

Fq and Fin place of Fq¡m(p; k), Fq(p; k) and F(p; k) respectively. Since the relation

F,,», n Fq = Fq^x, we have

P(Fq)=P(Fq_x)+P(F'q-x^Fq)

áP(F,_x)+2 W-in F,.«)
m = 0

for any integer mi with 0 = mxue^  1)c, where F' means the complementary set

of F.

Lemma 3.4. If we take mx satisfying the relation \me~qc — m1e~'-'1~i'":\ <e'<-q'1)c

there exists a positive constant CB independent of p, k and q such that

P(Fq-x,minFq,m) á C8e-2<*P(E(p;k)).
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Proof of Lemma 2.4. From the definition of set £,_,„, we can write

Q = £(£^-!.min£,,m)

= p(y(h.<c.q-i,n) â -rK^H-rj-Vf 2_a'>
\ n'p.fc) ¡to

y(tP,k,Q,m) > Wp.*)—Trr^ 2 2~ai)-
9(tp,k) ¡tí,        /

Now, let X and T be two independent random variables obeying the Gaussian

distribution with the mean zero and variance 1, and let pmi,m be the correlation

coefficient between y(tp.k.q-y.mi) and y(tp.k.q,m). Then

Q = p(i\-Pami,m)liaY+Pmi,mX è (<P+i2L/<p) 2 2~"i]j,X^ (t+i2L/<p) 22""))

á p(x ä ^ + (2L/<¿) 2 2—*V (1-P2mi.m)m Y

á ^ + (2L/^)'2 2-ai)-pmi,m^ + (2£/^) 2o2_<ri))

= f^ ^ + (2L/^)2 2-^

x£(t> -(l-^,J-1'2(l-i»Bl,J^ + (2LM)'|V«i)

+ (l-p2,1.m)-1,V.m(2Z./^)2-^-1>j,

where <f> = <f>itpk). By use of assumption (A.l), for large p,

/|w1/e(,'-1)c-m/egc|\g

*>»,.». =   c^   [(log,)!/«]   ;

ä l-C5/((log/>)^-1)a),

where C5 is an absolute positive constant. Taking account of this estimate and (3.2),

-d-fí1,J-"2(l-f.1,Íí+(2íw|2-«') > -C6,

where C6 is a positive constant independent of p and q. Also, for a convenient

positive constant C7,

(1-PÍ

^     2L    i /gy

Now, we select c such that C7(e74)a(9-1)>2C6 for all q>2 and (ec/4)> 1. Then we

have

ß ^ PiX ä <¿)£(T ä (C^Xé^)«-1*'2)

, £(£(„; *))0»- C7(eC/42)(,-1W2 exp (-^g)^*).
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Since

the above expression is smaller than the following quantity, C8e~2QCP(E(p; k)),

where C8 is an absolute constant independent ofp and q. This concludes the proof.

From Lemma 3.4, it follows that

P(Fq) = P(Fq_x) + Cae-^P(E(p; k))

g CB2e-icP(E(P;k)).
i = 0

When q -> oo,

CO

P(F(p;k)) S C8 2 e'icP(E(p;k)) = ConstantxP(E(p; k)).
¡ = 0

Hence, for sufficiently large /5,

°0      [(logp)1'»] oo     [(logp)1'»]

2     2    F(F(^;Â:)) g Constant x  2     2    piEÍP'k^
p=î>      k = 0 p = 0      Jc = 0

which is convergent by Lemma 3.2. This concludes the proof of Lemma 3.3.

4. Proof of Theorem 2.

Lemma 4.1. If Theorem 2 is true under the additional assumption that for large t,

(log ty>2 S <f>(t) ¿ (3 log i)1'2,

it is true without the additional assumption.

Proof. The proof of Lemma 4.1 is similar to Lemma 1 in T. Sirao [8]. We

assume that Theorem 2 is true under the additional assumption. Let </>(t) be an

arbitrary function with J°° </>(t)2la-1 exp (~W(t)) dt = oo. Let

$(t) = min (max (çk(t), (log f))1'2, (3 log t)1'2).

Suppose that there exists an infinite sequence {tn} such that </>(tn) < (log tn)112 and

rn~>oo (n^oo). Then, j™ $(t)2la~l exp ( — Wit)) dt = cc, because in this case

<£((„) = (log tn)112 and therefore,

P ¿(i)2'""1 exp (-WU)) dttV" ÄO3'"-1 exp (-Wit)) dt
Jtx J ti

^  (tn-tx^Q21"-1 exp(-W(tn))

= ^(logrn)>'«-i<*.

Next, suppose that </>(t) > (log t)112 for large t. In this case,

min (#0, (3 log i)1'2) = fa).
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Therefore, for all large t,

ch(t)2"-'exp(-wity) = kty-^xpi-wit)).
Hence,

J" ç?(/)2'-1 exp (-Wit)) dt = oo.

Furthermore,

(log ty> ú to ú (3 log ty>2.

Consequently, by assumption of Lemma 4.1,

F(3{Fn(a,)}, Tx < T2 < ■ ■ ■ < Tn -> co (n -> oo), y(Tn) > $(Tn)) = 1.

But, by Theorem 1, clearly,

F((3 log F»1'2) > y(Tn(oAyin > 3n0H) = 1.

Therefore,

F((3 log Tny* > $(Tn), Vn > 3n0H) = 1.

Hence,

P($(Tn) = max (ç4(Fn), (log Tnya) > </>(Tn),\/n > 3n0(o>)) . 1.

Thus

PiyiTn) > <f>iTn), Vn > 3n0(cu))= 1,

which concludes the proof.

As in §2, we consider the family of events E(p; k), where p ranges over the

positive integers and integer k ranges over 0 = k^[(logp)lla]. We enumerate

events E(p;k) such that n<n' if and only if /J + £/[(log/>)1,a]<// + A:7[(log/?')1,a]

if we put En = E(p; k) and En=E(p'; k'). Then, the proof of Theorem 2 is carried

out by proving the following sequence of lemmas. For, then, by Chung-Erdös

[1] we can see that P(En i.o.) = 1.

Lemma 4.2. Z"=i F(Fn)=+oo.

Lemma 4.3. For any pair of(n, h) with n^/i, there exist c(h)>0 and H(n, h)>n

such that for any m ä H(n, h)

P(Em [£;n£¡tln£;t2n-..n E'n) ^ c(h)P(Em).

Lemma 4.4. There exist two absolute constants Kx and K2 with the following

property: to each En there corresponds a set of events Env F„2,..., F„s belonging to

{En} such that

2 P(En n Eni) < KxP(En)
i = i

and that for any other Em than Eni(l^i^s) which stands after En in the sequence

(viz. m>n) the inequality

P(En n Em) è K2P(En)P(Em)

holds.
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Proof of Lemma 4.2. Since £(£„) = £(£(/?; k)), it is sufficient to show that

oo     1ÜOKP)1'«]

2     2   P(E(p;k)) = cc,
P = Po     k = 0

for some pQ. The left hand side of the above equality is greater than

=°    [(logp)1'"] 1

2      2     2-1(2-)-1'2 -r¿-. exp (-W(tp,J) ■ R,

because J" e_u2/2 du^il/2x)e'x2/2 (x^l). By the monotonicity of the function

l/<f>ix) exp ( — \4>2(x)) of x for large x,

£ ^ 2-1(2-)-1'2 2  [(l°g/Or"¿(^exp(-WV+l))

= (log°^l))1/g jL 2-K2-)-1'2  2 *(/> +1)2'""1 exp (-W2(p+ 1))

S Constantx f"    -¿iO2'""1 exp (-^2(t)) dt,
Jpo + 1

which concludes the proof.

Proof of Lemma 4.3. The proof is similar to the discussion in pp. 146-148 of

T. Sirao [8]. Therefore, we will give only an outline of it. Let

£n(a) = {w; <pitp.k) Ú y(tP.k) Ú <f>(t„.k) + a}.

Then, for large n,

£(£n) ä £(£n(a)) ä ¿£(£n)(l-2exp [-a</>itp.k)}).

Therefore, given a pair of (n, h), we can take a>0 such that

(4.1) P(Fm(a)) ^ iP(Em)       for all m ^ n

and

£((Q (£>£(«))) £ ¿/»(f) 2?,),

where £„(a) = {a> ;>>('?,*)+# = 0}- Hence, we have

(4.2) £(£m | £¿ n £¿ + x n • • • n £¿) ä ¿£ (£m(a) | Ô (£/ n £,(a))).

Let

Pi.» = pCK/'i+Mflogp,)1'«]),   Xpm + U[(logpm)1/a]))

and /)m = max{|pim|; O^/gn—nt}. Then by condition (A.2), we can see that for

large m,

P"1'2 ^ 4(log^B)1'2 ^ <pipm + kJ[ilogPm)^])

and lim^a, pm = 0.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



1970] ASYMPTOTIC PROPERTY OF GAUSSIAN PROCESSES 245

Now, let Xi=y(Pi + ki/[(logpi)lla]). Let Ai = [-a,çk(pi + ki/[logpi]lla)) for i = 0,

1,2,..., n-h. Let Ym=y(pm + km/[(logpmyia]) and Bn = [</>(pm + kJ[(logpmy'a]),

<f>(pm + km/[(logpm)lla]) + a), where m = n+l, n + 2,.... Then, the following lemma

is available (Lemma 4 in T. Sirao [8]).

Lemma 4.5. Let {Xlt X2,..., Xn, Ym, m = l, 2,...} be a sequence of standard

Gaussian random variables and pi-m = E(XX Fm), 0 = iúk and m ^ 1. We assume that

pm = max{|pi>m|; O^/^iJ-^O as m -> oo and At (i=l, 2,..., k) are boundedBorel

sets. Then, for any sequence of Borel sets Bm<^[ — p~c, p~c] with c< 1, we have

P(YmeBm\XieAi,i = 0,1,2,...,k)

P(YmeBm) ^'        ^^°°F

Proof. We will give only its sketch. Denoting by Px the probability law of

{Xx, X2,..., XA and by pm(Xx, X2,..., Xn) the conditional expectation of Ym for

given values of Xx, X2,..., Xn, respectively, we have

P(XxeAx,i= 1,2,..., YmeBm)

= Lr  Lx„ {Lm(27r(l-v2)1'2)eXP (W) <*-**> *» ■ • -,*n))2) dz)
■Px(dxx,...,dxn)

• • • j o n      9Um exp (-\z2 + 6) dz\px(dxx,..., dxn),

where

0 =  -{y2z2-2z/>m(Xi, . . .,Xn)+p2m(Xx, ..., Xn)}/(2(1 -y2))

and y2 = E(p%(Xx,..., Xn)). From the assumptions of the lemma, we can easily

infer that y2 and pm tend to zero uniformly with respect to xlt ■ ■., xn and z as m

tends to infinity, giving the conclusion of the lemma.

Thus we have

(4.3) p(Fm(a) | H (El n Et(a)) ^ ^P(Fn(a))).

By combining (4.1), (4.2), and (4.3), we obtain

P(Em | E'K n F; + 1 n • ■ • n F¿) ä F(Fm)/12   for large m,

which concludes the proof.

Proof of Lemma 4.4. In the following, if En = E(p ; k) and En. = E(p' ; k'), we

put tp.k = tn and rp.,k. = in- Let An={ri ; P(tn, tn) < (<t>(tn)<f>(tn.)) ~x} for each fixed n.

Let us take an arbitrary n' in /!„. Then

P(En n Fn.) = F(j(rn) ^ ¿(O, >>(/,) = M,.))

= Constant xP(En)P(En).

In fact, if we denote, by X and Y two independent standard Gaussian random

variables, we can write

P(En n £„.) = 7>(JT ̂  ¿(fn.), pX+(l -p2)1'2F ^ #,„)),

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



246 HISAO WATANABE [March

where p = p(rn, tn). In case of p^O, we have

£(£n n En) á P(X £ <pitn), Y ^ 0(O/(1 -P2)1/2)

S PiX = <Ktn))P(Y £ ¿(r„))

= £(£n.)£(£n).

Next, we consider the case of 0<p^ l/i<f>itn)<f>itn)). At first, we divide it into three

parts as follows

£(£n n En) = Pi<pitn) ú yitn) S m*-), Win) ê y(tn) ^ <p(Q)

+Pmn) S yitn), 2<f-itn) ¿ X'.))

+ £(2^(ín.)   ú yitn), <t>«n)  Í y(tn)  ^  2</>itn)).

On the first term of the right hand side, we have

Pi<pitn)  fí yitn)  Ú  m«), <p(tn)  ^ y(tn)  i  2<l>(tn))

= P(#rB.) ÚXÍ 2<f>itn),<pitn) ú PX+il-p2Y12 Y = 2</>itn))

ú P(4>(tn) ^Xú 2<pitn),i<Pitn)-2p<pitn))/il-p2y12 í Y)

á Pi</>itn) ú X)Pii<pitn)-2/<pitn)) ú Y)

¿ Constant x£(<¿0V) ^ X)Pi<pitn) ú Y),

since

lim Pi</>itn)-2/<f>itn) ú Y)/Pi<pitn) ú Y) = e2.
n-* oo

On the second term (also on the third term), we can see that

Piyitn)^<pitn),yitn) = 2cpitn))

è Piyitn) > 2</>itn-)) è Constant x l/¿(,n.) exp (-2<¿2(,n.))

^ Constant x £(£„)£(£„.).

Next, we consider the case of n' $ An. Then, we have, for sufficiently large n,

(4.4) tn. < tn + K log tn,

where K is an absolute constant. For, from the definition, for large n,

(4.5) p(,n, tn) =
1        ^ C9

<t>(tn)<p(tn)  =  (log tn log tn.)lla

where C9 is an absolute positive constant. Taking account of the condition (A.2),

we can write

(4.6) Pitn,tn)  Ú  eitn,tn)/\tn,-tn\,

where e(fn, ?„•)-> 0 (| in — /n-1 —> 0). Otherwise, suppose that there is an infinite

sequence {nj} such that tn; > tn¡ + K log tnp we have, by (4.5) and (4.6),

£ logfn, (tn-tn)

Cs log tn¡ log (íní + £log tn) = C9 (log tni log tn)il2 = n'"" ^
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from which as j tends to infinity we have the contradiction 0<C9K^0, which

concludes (4.4).

Therefore, we can write such as A'n = {Eni; i= 1, 2,..., s}. If n¡ e A'n,

P(En n En) = P(y(tn) ^ </>(tn),y(tn) 2= <f>(Q)

f£ P(y(tn) ä </>(tn), y(tn¡) ï <f>(tn))       for large n,

because </>(tA = (¡>(tnt). The last quantity is expressed by the following integral

i       r r     / (x2-2ftx>-+/)\ . ,

where </> = çb(tn) and px = p(tn, tni). Rotating the axes by it/4, we obtain

P(F  nFÏ<           l            P      P'21'2"   exn (    d-ft)^ + (l+ft)j2\   .    ,
PiEn n Fni) ^ 277(,_p2)1/2 J2l/2^ J_(xal^ exp ^-^-^-j cfyc/x

<(»-"2P exp(-^Wx
^(2/(1+0!))      * \        Z/

,(2.)-^-^)-exp(-^2,2)exp(-Ç)

= 2P^W * ^))(^)1,2exp (-¿^p*a)

= 2F(FJexp(-i(l-ft2¥2(0).

Therefore,

2 F(Fn n £„,) = Constant x 2 exp (-d(l-P2)</>2(tn)),

where c7 is an absolute positive constant.

In order to prove Lemma 4.4, it is sufficient to show that 2?=i exp ( — d(l — pf)</>2)

is bounded with respect to p. For this purpose, we shall divide it into two parts and

write

2 exp(-d(i-pf)çk2(tn))=2w exp (-¿0-p2¥2(O)+2<2) exp (-¿(i-ftVW),

where 2(1> stands for the summation over i such that pt^(l— (log tn)~112)112 and

2<2> stands for the remainder of 2-

By the definition of 2<2) and (3.2), we have, for large n,

(l-ftVW^ (login)1'2-

Since the number of n¡ in 2<2) does not exceed 2.K(log tn)lla + 1 for large p,

2<2> exp (-d(l-p2W(tn)) ï 2<2) exp (-¿(log tny2)

Ú 2K(logtny^ exp(-d(logtny2)

which is bounded with respect to p, giving the desired result.
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Next, we shall prove that 2(1) exp ( — d(\ ~p2)<P2(tT)) is bounded with respect to

n. For n¡, which is added to 2(1), we have

1   - (login)"1'2 i  P2(tn,tn).

By assumption of Theorem 2, there is a S>0 such that if \tn. — tn\<8, then

pitn, tn)úr¡. Therefore, |rn— in| < S for large p. Hence, we find

Í-Oogrj-1'2^ l-Ca|r„.-rÄ|«,

from which follows that p'úp+l for large p. Thus, we can show that for an

appropriate positive constant D

il-pf)^ £(¿*/(log ip+l)))   or    £(A:7(log p)),

where different i corresponds to different k. Since </>itn) > (log p)112 for large p, we

have that

CO

2(1>exp(-a,(l-pí2)í¿2(?n)) <  2 exp (-Constant x/c") < +co,
k = 0

which concludes the proof of Theorem 2.
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