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Abstract. For any Gaussian signal and every given sampling fre-
quency we prove an asymptotic property of type Shannon's sampling
theorem, based on normalized cardinal sines, which keeps constant
the sampling frequency. We generalize the Shannon's sampling theo-
rem for a class of non band�limited signals which plays a central role
in the signal theory, the Gaussian map is the unique function which
reachs the minimum of the product of the temporal and frecuential
width. This solve a conjecture stated in [1] and suggested by [3].

1. Introduction and statement of the main result

A key point for people who work on signal theory is the well�known
Shannon�Whittaker�Kotel'nikov's theorem (see for instance [11] or [13])
working for band�limited maps of L2(R) (i.e., for Paley�Wiener signals),
and based on the normalized cardinal sinus map sinc(t) de�ned by

sinc(t) =

1 if t = 0,
sin(πt)

πt
if t 6= 0.

Another main result of the signal processing theory is the Middleton's
sampling theorem for band step functions (see [10]). This result was one
of the �rst modi�cations of the classical Sampling Theorem which only
works for band�limited maps, see [12]. After this starting point many
di�erent extensions and generalizations of this theorem appeared in the
literature trying to obtain approximations of non band�limited signals
(see for instance [4] or [7]). Good surveys on these extensions are [5] or
[13].
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[1] follows the spirit of the previous results in the sense of trying to
obtain approximations of non band�limited signals by using band�limited
ones by means of the increasing of the band size. But its approach
is completely di�erent to the previous ones in the sense that [1] keeps
constant the sampling frequency generalizing in the limit the results of
Marvasti et al. [9] and Agud et al. [2].
In this setting, [1] states the following asymptotic property of type

sampling Shannon's theorem where the convergence of the series is con-
sidered in the Cauchy's principal value.

Property 1. Let f : R → R be a map and τ ∈ R+. We say that f holds

the property P for τ if

(1) f(t) = lim
n→∞

∑
k∈Z

f
1
n

(
k

τ

)
sinc(τt− k)

n

.

[1] proves that every constant signal holds property P for every given
τ ∈ R+ and conjectures that the Gaussian maps, i.e. maps of the form
e−λt2 , λ ∈ R+ hold property P for every given τ ∈ R+. To support the
conjecture [1] proves that the Gaussian map e−t2 holds expression (1) for
the three �rst coe�cients of the power series representation of e−t2 .
Note that the veracity of the conjecture is also suggested by the Boas's

estimation [3]. In [3] is stated that if f has an integrable Fourier trans-
form, the pointwise error between f and its sampling series

∑
f(k)sinc(t−

k) is controlled by
∫
|ξ|> 1

2

∣∣∣f̂(ξ)
∣∣∣ dξ. Since (e−πλt2)

1
n = e−π(t

√
λ
n

)2 its Fourier

trasnform is
√

n
λ
e−π(ξ

√
n
λ

)2 and√
n

λ

∫
|ξ|> 1

2

e−π(ξ
√

n
λ

)2dξ =
∫
|ξ|>
√

n
4λ

e−πξ2

dξ → 0

as n →∞. Thus Boas's estimate proves that the integer samples of the
n�th root of the Gaussian maps converge to the n�th root, in a sense
that is, presumably, consistent with (1).

The aim of this paper is to answer the conjecture in a positive way by
proving that any Gaussian map e−λt2 can be reconstructed as a limit of
band�limited maps obtained from uniformly distributed samples at the
points {k

τ
: k ∈ Z} where τ > 0 through the following formula:

e−λt2 = lim
n→∞

∑
k∈Z

e−λ k2

nτ2 sinc(τt− k)

n

being the convergence uniformly on compact sets. The statement of our
main result is the following:
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Theorem 1. The Gaussian maps hold property P for every given τ ∈
R+.

Note that since any Gaussian map e−λt2 is analytical, for proving The-
orem 1 is enough to show the equality between the coe�cients of the
power series representation of e−λt2 and the coe�cients of the expression

limn→∞

(∑
k∈Z e−λ k2

nτ2 sinc(τt− k)
)n

if such expression de�nes an analyt-

ical map.
We remark that the Gaussian map, which is mathematically impor-

tant in itself, plays an important role in the signal theory because the
Gaussian map is the unique function which reachs the minimum of the
product of the temporal and frecuential width. This minimum is given
by the Uncertainty Principle, see [8]. Therefore, to have recomposition
results for these type of signal is interesting from the point of view of
applications.
The paper is divided into three sections. In Section 2 we introduce

some auxiliary results. The aim of Section 3 is to prove that expres-

sion limn→∞

(∑
k∈Z e−

k2

nτ2 sinc(τt− k)
)n

is convergent and generates an

analytic map. Section 4 is devoted to the proof of Theorem 1.

2. Auxiliary results

In this section we present some auxiliary results which will play a key
role in the proof of Theorem 1.

Lemma 2. For every r ∈ N is held

r∑
j=1

(−1)j

π2j (2r − 2j + 1)!

∑
k∈N

(−1)k+1

k2j
=

−1

2 (2r + 1)!
.

Proof. Let fj(z) =
1

z2j sin (πz)
with z ∈ C and j ∈ N ∪ {0}.

Computing the Laurent series representation of f0(z) is directly obtained
that

(2) Res(f0, 0) =
1

π
.

For the maps fj(z) with j > 0, let Ck the square of vertex
(
k +

1

2

)
(±1± i).

By the Residual Theorem is

(3) 2πi

Res(fj, 0) +
k∑

r=−k

r 6=0

Res(fj, r)

 =
∫

Ck

fj(z)dz.
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With simple calculations is obtained that

(4)
k∑

r=−k

r 6=0

Res(fj, r) =
1

π

k∑
r=−k

r 6=0

(−1)r

r2j
=

2

π

k∑
r=1

(−1)r

r2j
.

Since lim
k→∞

∫
Ck

fj(z)dz = 0, taking limits when k goes to in�nity in ex-

pression (3), is obtained

Res(fj, 0) = −
∑
r∈Z
r 6=0

Res(fj, r).

Therefore, by (2) and introducing (4) into the previous expression we can
writte

(5) Res(fj, 0) =



1

π
if j = 0,

2

π

∑
k∈N

(−1)k+1

k2j
if j > 0.

On the other hand, by the Laurent series representation of the map
1

sin (πz)
around the point z = 0 is

(6)
1

sin (πz)
=

∞∑
p=0

β2p−1 z2p−1

and thus

fj(z) =
1

z2j sin (πz)
=

∞∑
p=0

β2p−1 z2(p−j)−1.

From the previous expression we deduced for every j ≥ 0

(7) β2j−1 = Res(fj, 0).

Moreover, from the power series representation of the map sin (πz), (6)
can be written in the form ∞∑

q=0

(−1)q

(2q + 1)!
(πz)2q+1

 ∞∑
p=0

β2p−1 z2p−1

 = 1

and making equal coe�cients is

r∑
j=0

(−1)r−j

(2r − 2j + 1)!
π2r−2j+1 β2j−1 = 0.
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Now, changing β2j−1 for (7) and separating the term corresponding to
j = 0 we have

1

(2r + 1)!
Res(f0, 0) +

r∑
j=1

(−1)j

π2j (2r − 2j + 1)!
Res(fj, 0) = 0.

Finally, using (5) in the previous equality, the proof is over.

The aim of the next section is to prove, for every τ > 0, that

(8) lim
n→∞

∑
k∈Z

e
−k2

nτ2 sinc(τt− k)

n

exists and de�nes an analytic map. For proving it, we shall use the
following result which is a simpli�ed version of two well�known theorems
on convergence of analytic maps (see [6, p. 241�242]).

Theorem 3. Let A be an open connected set in Cp. Let Φ be a set

of analytic maps from A into a complex Banach space E. Let M be a

oneness set in A. If the following conditions are held:

i) for every compact set L in A there exists mL > 0 such that

‖f(z)‖ ≤ mL for every f ∈ Φ and every z ∈ L,
ii) (fn)n ⊆ Φ pointwise converges in M ,

then (fn)n uniformly converges on compact sets of A to an analytic map.

3. Uniform convergence and analyticity

From now on we use the following notation

(9) g(z, n) =
∑
k∈Z

e
−k2

nτ2 sinc(τz − k).

In this section we shall prove that there exists the pointwise limit of
(g(z, n))n and which it converges to an analytic map. For doing it we
shall prove in the next two propositions that are veri�ed the hypothesis
of Theorem 3 taking:

A = C \ Z
τ

open and connected set on C,

M = A ∩ R oneness set for the analytic maps,

Φ = {(g(z, n))n , n ∈ N} ,

E = C.
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To prove it, we shall use notation from [1, Lemma 6] and [1, Proposition
7]:

(10)

lk(x) =
1− e−k2x

k2x

L(x) =
∑
k∈N

(−1)k+1lk(x).

Proposition 4. For every L compact set of C \ Z
τ

there exists mL > 0

such that | (g(z, n))n | ≤ mL for every z ∈ L and all n ∈ N.

Proof. Let n ∈ N �xed and consider the following complex map

(11) G(z, n) = n (g(z, n)− 1) .

Using the de�nition of g(z, n) given by (9) and
∑
k∈Z

sinc(z − k) = 1 for

every z ∈ C (see [1, Lemma 3]), is

G(z, n) = n

∑
k∈Z

e
−k2

nτ2 sinc(τz − k)− 1


= n

∑
k∈Z

(
e
−k2

nτ2 − 1
)
sinc(τz − k)

= n
∑
k∈N

(
e
−k2

nτ2 − 1
)

(−1)ksin (πτz)

π

(
1

τz − k
+

1

τz + k

)

= −n
2τ z sin (πτz)

π

∑
k∈N

(
1− e

−k2

nτ2

)
(−1)k

(τz)2 − k2
.

Separating the sum into even and odd terms we have

(12) G(z, n) = B(z)a(z, n),

where

(13)

B(z) = −2τ z sin (πτz)

π
,

a(z, n) = n
∑
k∈N

 1− e
−(2k−1)2

nτ2

(2k − 1)2 − (τz)2
− 1− e

−(2k)2

nτ2

(2k)2 − (τz)2

.

Since L is a compact set, there exists a constant βL > 0 such that

(14) |B(z)| ≤ βL

for all z ∈ L.
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For z ∈ C \ Z
τ
, let

Ap(z, n) =
n
(
1− e

−p2

nτ2

)
p2 − (τz)2

.

Note that using notation given by (10)

(15) Ap(z, n) =
1

1− ( τz
p

)2

1− e
−p2

nτ2

p2

n

=
1

1− ( τz
p

)2

1

τ 2
lp

(
1

nτ 2

)
and, by (13), a(z, n) can be written in the form

(16) a(z, n) =
∑
k∈N

(A2k−1(z, n)− A2k(z, n)) .

After some calculations is

(17)

A2k−1(z, n)− A2k(z, n)

=
1

τ 2

[
l2k−1

(
1

nτ 2

)
1

1− ( τz
2k−1

)2
− l2k

(
1

nτ 2

)
1

1− ( τz
2k

)2

]

=
1

τ 2

[
l2k−1

(
1

nτ 2

)(
1

1− ( τz
2k−1

)2
− 1

1− ( τz
2k

)2

)

+
1

1− ( τz
2k

)2

(
l2k−1

(
1

nτ 2

)
− l2k

(
1

nτ 2

))]

=
1

τ 2

[
l2k−1

(
1

nτ 2

)
(τz)2 4k − 1

((2k − 1)2 − (τz)2)((2k)2 − (τz)2)

+
(2k)2

(2k)2 − (τz)2

(
l2k−1

(
1

nτ 2

)
− l2k

(
1

nτ 2

))]
.

Thus, using the triangular inequality in (16)

(18)

|a(z, n)| =

∣∣∣∣∣∣
∑
k∈N

(A2k−1(z, n)− A2k(z, n))

∣∣∣∣∣∣
≤
∑
k∈N

|A2k−1(z, n)− A2k(z, n)|

≤
∑
k∈N

∣∣∣∣∣l2k−1

(
1

nτ 2

)
z2 4k − 1

((2k − 1)2 − (τz)2)((2k)2 − (τz)2)

∣∣∣∣∣
+

1

τ 2

∑
k∈N

∣∣∣∣∣ (2k)2

(2k)2 − (τz)2

(
l2k−1

(
1

nτ 2

)
− l2k

(
1

nτ 2

))∣∣∣∣∣.
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Now, on the one hand since the series

∑
k∈N

4k − 1

|(2k − 1)2 − (τz)2| |(2k)2 − (τz)2|

converges for all z ∈ L it is boundness and since 0 < l2k−1

(
1

nτ 2

)
≤ 1,

we have and upper bound αL for the �rst part of the sum (18) because

(19)

∑
k∈N

∣∣∣∣∣l2k−1

(
1

nτ 2

)
z2 4k − 1

((2k − 1)2 − (τz)2) ((2k)2 − (τz)2)

∣∣∣∣∣
≤
∑
k∈N

|z|2 4k − 1

|(2k − 1)2 − (τz)2| |(2k)2 − (τz)2|
< αL.

On the other hand, since z ∈ L and L is compact, there exists δL > 0
such that for every z ∈ L, |m2 − (τz)2| ≥ δL for all m ∈ N. Since

lim
k→∞

(2k)2

min
z∈L

∣∣∣(2k)2 − (τz)2
∣∣∣ = 1,

by the limit de�nition given ε > 0 there is k0(L) such that for every
k ≥ k0

1− ε <
(2k)2

min
z∈L

∣∣∣(2k)2 − (τz)2
∣∣∣ < 1 + ε.

For k < k0 is

(2k)2

min
z∈L

∣∣∣(2k)2 − (τz)2
∣∣∣ ≤ (2k0)

2

δL

.

Therefore, taking λL = max

{
1 + ε,

(2k0)
2

δL

}
is

∣∣∣∣∣ (2k)2

(2k)2 − (τz)2

∣∣∣∣∣ ≤ (2k)2

min
z∈L

∣∣∣(2k)2 − (τz)2
∣∣∣ ≤ λL

uniformly on k.

From the previous expression using (10) and L(x) ≤ π

2
for x ∈ R+ (see

[1, Proposition 7]), we obtain the boundness of the second part of the
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sum (18) since

(20)

1

τ 2

∑
k∈N

∣∣∣∣∣ (2k)2

(2k)2 − (τz)2

∣∣∣∣∣
∣∣∣∣l2k−1

(
1

nτ 2

)
− l2k

(
1

nτ 2

)∣∣∣∣
≤ λL

τ 2

∑
k∈N

(
l2k−1

(
1

nτ 2

)
− l2k

(
1

nτ 2

))

≤ λL

τ 2
L
(

1

nτ 2

)
≤ λL

τ 2

π

2
.

So, by (19) and (20) we obtain from (18)

|a(z, n)| ≤ αL +
λL

τ 2

π

2
= γL.

From the previous expression and by (14) we have for every z ∈ L

(21) |G(z, n)| = |B(z)| |a(z, n)| ≤ βL γL < ∞.

Now, from the equation (11) the map g(z, n) has the form

(22) g(z, n) = 1 +
G(z, n)

n
.

Thus, using (21) is

|g(z, n)| ≤ 1 +
|G(z, n)|

n
≤ 1 +

βL γL

n
,

and therefore

| (g(z, n))n | ≤
(

1 +
βL γL

n

)n

≤ eβL γL = mL,

ending the proof.

Proposition 5. {(g(z, n))n}n∈N pointwise converges in R.

Proof. Since sinc(k) = δk,0 for all k ∈ Z, then {(g(z, n))n}n∈N converges

in
Z
τ
.

Let x ∈ R \ Z
τ
and G(z, n) be the auxiliar map introduced in the previous

proposition by (11). By (22)

(g(x, n))n =

(
1 +

G(x, n)

n

)n

and consequently

(23) lim
n→∞

(g(x, n))n = e
lim

n→∞
G(x, n)

.
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The previous equality implies that if G(x, n) converges in n to a real
number the proof is over.
By (12) is G(x, n) = B(x) a(x, n), and therefore the convergence of G(x, n)
depends only on the convergence of a(x, n) which by (16) is

a(x, n) =
∑
k∈N

(A2k−1(x, n)− A2k(x, n)) .

As this series veri�es the conditions of the Weierstrass's M�criterion, we
can writte

lim
n→∞

a(x, n) =
∑
k∈N

lim
n→∞

(A2k−1(x, n)− A2k(x, n)) .

Now, using the expression of Ap(x, n) given by (15) and lim
x→0+

lk(x) = 1,

is

lim
n→∞

Ap(x, n) =
1

τ 2

p2

p2 − (τx)2
lim

n→∞
lp

(
1

nτ 2

)
=

1

τ 2

p2

p2 − (τx)2

and so

lim
n→∞

a(x, n) =
1

τ 2

∑
k∈N

(
(2k − 1)2

(2k − 1)2 − (τx)2
− (2k)2

(2k)2 − (τx)2

)

= x2
∑
k∈N

4k − 1

((2k − 1)2 − (τx)2)((2k)2 − (τx)2)

which converges for all x ∈ R \ Z
τ
.

Thus, is proved the existence of lim
n→∞

a(x, n) which implies the existence

of lim
n→∞

G(x, n) and by (21) we know that this limit is �nite. Finally, by

(23) the proof �nishs.

Theorem 6. For every τ > 0, lim
n→∞

∑
k∈Z

e
−k2

nτ2 sinc(τt− k)

n

de�nes an

analytic map.

Proof. The proof is a direct consequence of the application of Theorem
3. The use of such result is possible by Propositions 4 and 5 where state
the validity of the the hypothesis of Theorem 3.

4. Converging to the Gaussian map: Proof of Theorem 1

The aim of this section is to prove our main result Theorem 1 by
showing that the analytic map (8) obtained in the previous section is the
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Gaussian map, i.e., for every t ∈ R is held the following equality

lim
n→∞

∑
k∈Z

e
−k2

nτ2 sinc(τt− k)

n

= e−t2

for every τ > 0.

The methodology that we shall use will be to compute the coe�cients
of the power series representation of (g(x, n))n and to show that their lim-
its are the coe�cients of the power series representation of the Gaussian
map.
We introduce the following notation which will simplify the computa-

tion of the coe�cients of the power series representation in the sequel.

De�nition 7. For every m ∈ N ∪ {0} and n ∈ N we de�ne

Bτ
m =

(−1)m(πτ)2m

(2m + 1)!
;(24)

Cτ
m,n =


1

2
if m = 0,

τ 2m
∑
k∈N

(−1)k+1

k2m
e
−k2

nτ2 if m ≥ 1;
(25)

Dτ
m,n =

m∑
p=0

Bτ
pCτ

m−p,n;(26)

dτ
m,n =


1 if m = 0,

(−1)m

(nτ 2)mm!
−

m−1∑
j=0

dτ
j,n

Bτ
m−j

τ 2(m−j)
if m ≥ 1.

(27)

The following two results on (25) and (26) will be key points for taking
limits on the coe�cients that we shall obtain.

Proposition 8. For every m ∈ N ∪ {0}, Cτ
m,n =

τ 2m dτ
m,n

2
+ o

(
1

n

)
.

Proof. We shall prove

dτ
m,n =

2 Cτ
m,n

τ 2m
+ o

(
1

n

)
.

The previous equality holds for m = 0 since

n (dτ
0,n − 2Cτ

0,n) = n
(
1− 2

1

2

)
= 0.
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Let now m = 1. Using that
∑
k∈N

(−1)k+1

k2
=

π2

12
is

n

(
dτ

1,n −
2Cτ

1,n

τ 2

)
= n

− 1

nτ 2
+

π2

6
− 2

∑
k∈N

(−1)k+1

k2
e
−k2

nτ2


= − 1

τ 2
+ 2n

∑
k∈N

(−1)k+1

k2

(
1− e

−k2

nτ2

)

= − 1

τ 2
+

2

τ 2

∑
k∈N

(−1)k+1lk

(
1

nτ 2

)

= − 1

τ 2
+

2

τ 2
L
(

1

nτ 2

)
.

Therefore, taking limits when n goes to in�nity and using lim
x→0+

L(x) =
1

2
(see [1, Proposition 7]) is

lim
n→∞

n

(
dτ

1,n −
2 Cτ

1,n

τ 2

)
= 0.

Let m be grater or equal than 2 and we assume that for every j ≤ m is

dτ
j,n =

2Cτ
j,n

τ 2j
+ o

(
1

n

)
. Then, using (24) and by the induction hypothesis,

(27) can be written in the form

dτ
m+1,n =

(−1)m+1

nm+1 τ 2m+2 (m + 1)!
−

m∑
j=0

Bτ
m+1−j

τ 2m+2−2j

(
2 Cτ

j,n

τ 2j
+ o

(
1

n

))

=
(−1)m+1

nm+1 τ 2m+2 (m + 1)!

+2(−1)m π2m+2
m∑

j=0

(−1)j Cτ
j,n

(2m− 2j + 3)! (πτ)2j
+ o

(
1

n

)

= 2(−1)m π2m+2
m∑

j=0

(−1)j Cτ
j,n

(2m− 2j + 3)! (πτ)2j
+ o

(
1

n

)
.

Therefore

dτ
m+1,n

2
−

Cτ
m+1,n

τ 2m+2

= (−1)m π2m+2
m∑

j=0

(−1)j Cτ
j,n

(2m− 2j + 3)! (πτ)2j
−

Cτ
m+1,n

τ 2m+2
+ o

(
1

n

)

= (−1)m π2m+2

m+1∑
j=0

(−1)j Cτ
j,n

(2m− 2j + 3)! (πτ)2j

+ o
(

1

n

)
.
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Changing Cτ
j,n by the expression of (25) and using Lemma 2 with r =

m + 1, the previous expression has the form

dτ
m+1,n

2
−

Cτ
m+1,n

τ 2m+2

= (−1)mπ2m+2

 1

2 (2m + 3)!
+

m+1∑
j=1

(−1)j

π2j (2m− 2j + 3)!

∑
k∈N

(−1)k+1

k2j

−
m+1∑
j=1

(−1)j

π2j (2m− 2j + 3)!

∑
k∈N

(−1)k+1

(
1− e

−k2

nτ2

)
k2j

+ o
(

1

n

)

= (−1)m+1π2m+2
m+1∑
j=1

 (−1)j

π2j(2m− 2j + 3)!

∑
k∈N

(−1)k+1

(
1− e

−k2

nτ2

)
k2j


+ o

(
1

n

)
.

Therefore, separating the term j = 1 from the others

(28) n

(
dτ

m+1,n

2
−

Cτ
m+1,n

τ 2m+2

)
= Um+1,n + Vm+1,n + n o

(
1

n

)
.

where

Um+1,n =
(−1)m π2m

(2m + 1)!

∑
k∈N

(−1)k+1

(
1− e

−k2

nτ2

)
k2

n

,

Vm+1,n = (−1)m+1 π2m+2
m+1∑
j=2

(−1)j

π2j (2m− 2j + 3)!

∑
k∈N

(−1)k+1

(
1− e

−k2

nτ2

)
k2j

n

.

We endeavour to prove that the limit when n goes to in�nity of (28) is
equal to zero.
Indeed, by (10) and [1, Proposition 7], is

(29) lim
n→∞

Um+1,n = lim
n→∞

(−1)m π2m

(2m + 1)!

1

τ 2
L
(

1

nτ 2

)
=

(−1)m π2m

2τ 2 (2m + 1)!
.
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On the other hand, by the Weierstrass's M�criterion is

lim
n→∞

Vm+1,n =

= (−1)m+1π2m+2
m+1∑
j=2

(−1)j

π2j(2m− 2j + 3)!

∑
k∈N

lim
n→∞

(−1)k+1

(
1− e

−k2

nτ2

)
k2j

n

= (−1)m+1π2m+2
m+1∑
j=2

(−1)j

π2j(2m− 2j + 3)!

∑
k∈N

(−1)k+1

τ 2k2j−2

=
(−1)mπ2m

τ 2

m∑
j=1

(−1)j

π2j(2m− 2j + 1)!

∑
k∈N

(−1)k+1

k2j

and applying Lemma 2 for r = m is

(30) lim
n→∞

Vm+1,n =
(−1)m+1 π2m

2τ 2 (2m + 1)!
.

So, taking limits when n goes to infnity in (28) and using (29) and (30)
is

lim
n→∞

n

(
dτ

m+1,n

2
−

Cτ
m+1,n

τ 2m+2

)
= 0.

Finally, by the Induction Principle, we conclude that the result works for
every m .

Proposition 9. For every n ∈ N is held

(31) Dτ
m,n =



1

2
if m = 0,

(−1)m

2 nm m!
+ o

(
1

n

)
if m ≥ 1.

Proof. The value
1

2
for m = 0 is directly obtained from the de�nitions

given by (24), (25) and (26) because

Dτ
0,n = Bτ

0 Cτ
0,n =

1

2
.

Let m = 1. In the same way that in the previous case is

Dτ
1,n = Cτ

1,n +
Bτ

1

2
= Cτ

1,n −
(πτ)2

12
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and by Proposition 8 and (27) we conclude that

Dτ
1,n =

τ 2 dτ
1,n

2
− (πτ)2

12
+ o

(
1

n

)
=

τ 2

2

(
− 1

nτ 2
+

π2

6

)
− (πτ)2

12
+ o

(
1

n

)

= − 1

2n
+ o

(
1

n

)
.

Finally, let m ≥ 2. Using the same method as in previous cases is

Dτ
m,n = Cτ

m,n +
m−1∑
p=1

Bτ
p Cτ

m−p,n +
Bτ

m

2

=
τ 2m dτ

m,n

2
+

m−1∑
p=1

Bτ
p

(
τ 2m−2p dτ

m−p,n

2
+ o

(
1

n

))
+

Bτ
m

2
+ o

(
1

n

)

=
τ 2m

2

 (−1)m

nm τ 2m m!
−

m−1∑
j=0

dτ
j,n

Bτ
m−j

τ 2m−2j


+

m−1∑
p=1

Bτ
p

τ 2m−2p dτ
m−p,n

2
+

m−1∑
p=1

Bτ
p o
(

1

n

)
+

Bτ
m

2
+ o

(
1

n

)
.

Now, we separate the term of the sum corresponding to j = 0 and we
make a change in the sum index in p so,

Dτ
m,n =

(−1)m

2 nm m!
− 1

2

m−1∑
j=1

dτ
j,n τ 2j Bτ

m−j

+
m−1∑
p=1

Bτ
p

τ 2m−2p dτ
m−p,n

2
+ o

(
1

n

)

=
(−1)m

2 nm m!
+ o

(
1

n

)
,

ending the proof.

Note 10. We underline that the new expression of Dτ
m,n provides by

Proposition 9 not depend on τ .

The next result will be useful in the proof of Theorem 1.

Lemma 11. Let m, i ∈ N be such that i ≤ m, and let ∆m,i be the set

given by

∆m,i =

{
α = (α1, . . . , αm); αr ∈ N ∪ {0} ,

m∑
r=1

αr = i ,
m∑

r=1

rαr = m

}
.

Then

(i) ∆m,1 = {(0, 0, . . . , 1)} and ∆m,m = {(m, 0, . . . , 0)}.
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(ii) Let i ∈ N be such that 2 ≤ i ≤ m, let α = (αr)
m
r=1 ∈ ∆m,i. If

αr 6= 0 is held

min {rαr − 1, αr} =

rαr − 1 if r = 1,

αr if r ≥ 2.

Proof. Part (i) follows from the solution of the systems which de�ne the
sets ∆m,1 and ∆m,m.
For part (ii), let α = (αr)

m
r=1 ∈ ∆m,i with αr 6= 0. If r = 1 the result is

trivial. Assume r ≥ 2. Since 1 ≤ (r − 1)αr is αr ≤ rαr − 1.
At this point we are ready for proving our main result.

Proof of Theorem 1. The statement that we have to prove is: for every
p > 0 and τ̃ > 0

(32) lim
n→∞

∑
k∈Z

e−p k2

nτ̃2 sinc (sτ̃ − k)

n

= e−ps2

for every s ∈ R. Moreover this convergence is uniformly on compact sets.

Indeed, let τ =
τ̃
√

p
and t = s

√
p, then (32) can be written in the form

lim
n→∞

∑
k∈Z

e
−k2

nτ2 sinc(τt− k)

n

= e−t2 .

Thus, using the notation introduced by (9), we have to prove

(33) lim
n→∞

(g(t, n))n = e−t2

uniformly.
By Theorem 6 we know that lim

n→∞
(g(t, n))n is an analytic function. There-

fore to prove (33) is enough to show that the power series representation
of both maps coincide. Moreover, we note that is enough to prove that

the convergence is held for all t ∈
(
0,

1

τ

)
.

Using (24), (25), (26) and the power series representation of sin (πτt) the
map g(t, n) can be written in the form (see [1, proof of Theorem 2])

g(t, n) = sinc(τt) +
2τt sin πτt

π

∑
k∈N

(−1)k

τ 2t2 − k2
e
−k2

nτ2 = 2
∞∑

m=0

Dτ
m,n t2m.

Therefore

(34) (g(t, n))n = 2n

( ∞∑
m=0

Dτ
m,n t2m

)n

= 2n
∞∑

m=0

Eτ
m,n t2m
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where, considering the sets ∆m,i described by Lemma 11, is
(35)

Eτ
m,n =


(Dτ

0,n)n if m = 0,

m∑
i=1

∑
α∈∆m,i

(Dτ
0,n)n−i n(n− 1) . . . (n− i + 1)

α1! . . . αm!

m∏
j=1

(Dτ
j,n)αj if m ≥ 1.

Therefore our objective is reduced to prove that for every m ≥ 0 is held

(36) lim
n→∞

2nEτ
m,n =

(−1)m

m!
.

For m = 0, the result follows directly by (35) and by the de�nitions (24),
(25) and (26) because
(37)

lim
n→∞

2nEτ
0,n = lim

n→∞
2n(Dτ

0,n)n = lim
n→∞

2n(Bτ
0 Cτ

0,n)n = lim
n→∞

2n 1

2n
= 1.

For m = 1 and m = 2 by Lemma 11 part (i) is

Eτ
1,n = n(Dτ

0,n)n−1 Dτ
1,n,

Eτ
2,n = n(Dτ

0,n)n−1 Dτ
2,n +

n(n− 1)

2
(Dτ

0,n)n−2 (Dτ
1,n)2.

Now, with the two previous expressions and equality (31) is

Eτ
1,n =

n

2n−1

(−1

2n
+ o

(
1

n

))
,

Eτ
2,n =

n

2n−1

(
1

4n2
+ o

(
1

n

))
+

n(n− 1)

2n−1

(−1

2n
+ o

(
1

n

))2

.

Therefore
(38)

lim
n→∞

2nEτ
1,n = lim

n→∞

(
−1 + 2n o

(
1

n

))
= −1

lim
n→∞

2nEτ
2,n = lim

n→∞

[
1

2n
+ 2n o

(
1

n

)
+

n− 1

2n
+ 2n(n− 1) o

(
1

n2

)]
=

1

2
.

Note that the results (37) and (38) coincide with ([1, Theorem 2]).
Let m ≥ 3. First of all we change Dτ

j,n in (35) for the expression (31)
given by Proposition 9 obtaining

Eτ
m,n =

m∑
i=1

∑
α∈∆m,i

1

2n−i

n(n− 1) . . . (n− i + 1)

α1! . . . αm!

m∏
j=1

[
(−1)j

2njj!
+ o

(
1

n

)]αj

.
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Since [
(−1)j

2 nj j!
+ o

(
1

n

)]αj

=
(−1)jαj

njαj (j!)αj 2αj
+ o

(
1

nαj

)
,

using this equality in the previous expression we can writte Eτ
m,n in the

form

Eτ
m,n =

(−1)m

2n

m∑
i=1

∑
α∈∆m,i

n(n− 1) . . . (n− i + 1)

α1! . . . αm!

m∏
j=1

[
1

njαj (j!)αj
+ o

(
1

nαj

)]
.

Spliting the sum into three parts and applying Lemma 11 part (i) for the
terms i = 1 and i = m, is

(39) 2nEτ
m,n = (−1)m

(
Fm,n +

m−1∑
i=2

Gi,m,n + Hm,n

)
,

where

Fm,n =
∑

α∈∆m,1

n

α1! . . . αm!

m∏
j=1

(
1

njαj (j!)αj
+ o

(
1

nαj

))

= n
(

1

nm m!
+ o

(
1

n

))
,

Gi,m,n =
∑

α∈∆m,i

n(n− 1) . . . (n− i + 1)

α1! . . . αm!

m∏
j=1

(
1

njαj (j!)αj
+ o

(
1

nαj

))
,

Hm,n =
∑

α∈∆m,m

n(n− 1) . . . (n−m + 1)

α1! . . . αm!

m∏
j=1

(
1

njαj (j!)αj
+ o

(
1

nαj

))

=
n(n− 1) . . . (n−m + 1)

m!

(
1

nm
+ o

(
1

nm

))
.

Clearly from the previous expressions is

lim
n→∞

Fm,n = 0

and

lim
n→∞

Hm,n =
1

m!
.

For computing the limit of Gi,m,n we split the term j = 1 from the others.
Note that for every j ≥ 2 such that αj = 0, the corresponding factor is
1, and if αj 6= 0, by Lemma 11 (ii), we have

1

njαj (j!)αj
+ o

(
1

nαj

)
= o

(
1

njαj−1

)
+ o

(
1

nαj

)
= o

(
1

nmin{jαj−1,αj}

)
= o

(
1

nαj

)
.
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Thus, Gi,m,n can be written in the form

Gi,m,n =
∑

α∈∆m,i

n(n− 1) . . . (n− i + 1)

α1! . . . αm!

( 1

nα1
+ o

(
1

nα1

)) m∏
j=2

o
(

1

nαj

)
=

∑
α∈∆m,i

n(n− 1) . . . (n− i + 1)

α1! . . . αm![(
1

nα1
+ o

(
1

nα1

))
o

(
1

n
∑m

j=2
αj

)]

=
∑

α∈∆m,i

n(n− 1) . . . (n− i + 1)

α1! . . . αm!

[(
1

nα1
+ o

(
1

nα1

))
o
(

1

ni−α1

)]

=
∑

α∈∆m,i

n(n− 1) . . . (n− i + 1)

α1! . . . αm!
o
(

1

ni

)
,

and therefore

lim
n→∞

Gi,m,n = 0.

So, taking limits when n goes to in�nity in the expression (39), if m ≥ 3
then

(40) lim
n→∞

2nEτ
m,n =

(−1)m

m!
.

Therefore, by the results from (37), (38) and (40), we have obtained that
for every m ≥ 0

lim
n→∞

2nEτ
m,n =

(−1)m

m!
.

So, taking limits in the expression (34) is

lim
n→∞

(g(t, n))n =
∞∑

m=0

(−1)m

m!
t2m.

Note that we have proved the pointwise convergence to the Gaussian map.
The uniform convergence on compact sets is guaranteed by Theorem 3.
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