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Abstract—Co-array-based Direction of Arrival (DoA) estima-
tion using Sparse Linear Arrays (SLAs) has recently gained con-
siderable interest in array processing thanks to its capability of
providing enhanced degrees of freedom. Although the literature
presents a variety of estimators in this context, none of them are
proven to be statistically efficient. This work introduces a novel
estimator for the co-array-based DoA estimation employing the
Weighted Least Squares (WLS) method. An analytical expression
for the large sample performance of the proposed estimator
is derived. Then, an optimal weighting is obtained so that
the asymptotic performance of the proposed WLS estimator
coincides with the Cramér-Rao Bound (CRB), thereby ensuring
asymptotic statistical efficiency of resulting WLS estimator. This
implies that the proposed WLS estimator has a significantly
better performance compared to existing methods. Numerical
simulations are provided to validate the analytical derivations
and corroborate the improved performance.

Index Terms—Sparse linear arrays, direction of arrival (DoA)
estimation, weighted least squares estimator, Cramér-Rao bound
(CRB), performance analysis, asymptotically statistically efficient
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I. INTRODUCTION

The problem of Direction of Arrival (DoA) estimation is of

central importance in the field of array processing with many

applications in radar, sonar, and wireless communications [2]–

[4]. Estimating DoAs using Uniform Linear Arrays (ULAs) is

well investigated in the literature; a number of algorithms such

as Maximum Likelihood (ML) estimation, MUSIC, ESPRIT

and subspace fitting have been presented and their performance

thoroughly analyzed [5]–[8]. However, it is widely known that

ULAs are not capable of identifying more sources than the

number of physical elements in the array [3], [7].

To transcend this limitation, exploitation of Sparse Linear

Arrays (SLAs) with particular geometries, such as Minimum

Redundancy Arrays (MRAs) [9], co-prime arrays [10] and

nested arrays [11] has been proposed. These architectures can

dramatically boost the degrees of freedom of the array for

uncorrelated source signals such that a significantly larger
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number of sources than the number of physical elements

in the array can be identified. In addition, the enhanced

degrees of freedom provided by these SLAs can improve

the resolution performance appreciably compared to ULAs

[11]. These features have spurred further research on DoA

estimation using SLAs in recent years. A detailed study on

DoA estimation via SLAs through an analysis of the Cramér-

Rao Bound (CRB) has been conducted in [12]. The findings

in [12] provide valuable insights into the performance limits

of DoA estimation via SLAs and are useful for benchmarking.

Further, a number of DoA estimators based on the difference

co-array of SLAs have been proposed in the literature. In

general, existing co-array-based estimators can be classified

under two main groups: 1) Sparsity-Based Methods (SBMs);

2) Augmented Covariance-Based Methods (ACBMs).

SBMs first discretize the angular domain into a grid and

then estimate DoAs by imposing sparsity constraints on source

profiles and exploiting the compressive sensing recovery tech-

niques [13]–[16]. Such estimators are susceptible to grid

mismatch leading to significant performance degradation when

DoAs do not lie on the predefined grid [17]. To alleviate this

problem, the authors in [18] include a first order approximation

of grid mismatch in the model through Taylor series expansion

and then estimate DoAs and mismatch variables jointly. Al-

though the algorithm proposed in [18] shows an improvement

over that of conventional sparsity-based methods, it is still

restricted by higher-order mismatch terms. The shortcoming

of discretization approach is overcome by a grid-less sparsity-

based algorithm in [19]. This algorithm, named as Sparse and

Parametric Approach (SPA), employs the covariance fitting

criteria and semidefinite programming. Although SPA does not

suffer from grid mismatch, its asymptotic performance (for the

large number of snapshots) is not guaranteed to achieve the

CRB.

In the second approach, DoAs are estimated by applying

conventional subspace methods such as MUSIC, ESPRIT on

an Augmented Sample Covariance Matrix (ASCM) obtained

from the original sample covariance matrix by exploiting the

difference co-array structure [11], [20], [21]. Two different

ways of constructing the ASCM are given in the literature,

namely, 1) the direct augmentation approach [22]; 2) spatial

smoothing approach [11]. Both approaches span identical

subspaces resulting in the same estimation performance, but

the former is computationally efficient. A main drawback of

this family of algorithms is the need for prior knowledge on

the exact number of sources, which may not be available

in practice. On the contrary, SBMs need information on an
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upper bound on the number of sources. The performance

of such estimators, called Co-Array-Based MUSIC (CAB-

MUSIC) and Co-Array-Based ESPRIT (CAB-ESPRIT), has

been rigorously analyzed in [20] and [21], respectively. An

existence of a considerable gap between their performance and

the CRB is revealed when the number of sources is greater

than one. Further, CAB-MUSIC and CAB-ESPRIT suffer from

an inherent performance loss when applied to SLAs with holes

in their difference co-arrays, such as co-prime arrays, since

they discard the information contained in the non-contiguous

segment of the difference co-array. To avoid this performance

loss, array interpolation-based algorithms has been used for

co-prime arrays in [23]–[25] where a convex optimization

problem is formulated to recover the covariance matrix of a

virtual ULA interpolated from the co-prime array. The per-

formance of interpolation-based algorithms has been analyzed

in [26]. In addition, the authors of this paper have recently

proposed a least squares estimator capable of exploiting the

information contained in the non-contiguous ULA segment of

the difference co-array [27]. Although the proposed estimators

in [23], [24], [27] succeed in dealing with the performance loss

due to omission of the non-contiguous segment of difference

co-array, they are still unable to achieve the CRB performance.

It is known that the covariance matrix of uncorrelated

signals received by a linear array is structured, e.g, Hermitian

Toeplitz for ULA [28]. The structure in the covariance matrix

is shown to be highly beneficial in obtaining an enhanced

covariance matrix estimate compared to the conventional sam-

ple covariance matrix [28]. This, in turn, could yield better

DoA estimates through an application of MUSIC. While the

discussions in [28] are restricted to ULAs, the approach can

be straightforwardly used for SLAs to obtain an enhanced

covariance matrix estimate and subsequently construct the

ASCM. The performance of such an estimator, which we call

it Structured CAB-MUSIC (SCAB-MUSIC), has been never

investigated in the literature for SLAs. However, our results

for this method, reported in the ensuing Section V, reveal that

SCAB-MUSIC does not attain the CRB.

The performance gap between the estimators available in the

literature and the CRB motivates the current work on designing

an asymptotically statistically efficient estimator for co-array-

based DoA estimation via SLAs. To close this gap, in this

paper, we propose a Weighted Least Squares (WLS) approach

to DoA estimation using SLAs. We analytically prove that the

proposed approach can yield an estimator that asymptotically

achieves the corresponding CRB for any SLA configuration.

As a consequence, the resulting WLS estimator exhibits en-

hanced performance compared to the existing algorithms in

the literature. Accordingly, the contributions of the paper are

described as follows:

• For any given feasible weighting matrix, we formulate

the WLS approach towards estimating the DoAs and the

ancillary variables − source powers and noise variance.

• We first provide a consistent estimate of the noise vari-

ance which is applicable to the difference co-array model.

Making use of this consistent noise variance estimate,

we derive WLS estimates of the signal powers and

concentrate the WLS objective on the DoAs.

• The proposed estimator is the minimizer of the aforemen-

tioned concentrated WLS objective. Key attributes of this

WLS estimator are studied for any feasible weighting ma-

trix by proving consistency, asymptotic unbiasedness and

then deriving a closed-form expression for the asymptotic

covariance matrix of DoA estimation errors.

• Considering the earlier asymptotic unbiasedness of the

proposed WLS estimator and noting that the covariance

matrix of any unbiased estimator is lower bounded by the

CRB, the optimal weighting matrix should be the one that

renders the resulting covariance matrix of DoA estimation

errors and CRB identical. To derive this optimal weight-

ing matrix, we reformulate the CRB expression given in

[12] in a form suitable for establishing equality of the

CRB and the covariance matrix of DoA estimation errors.

• The new expression for the CRB is exploited to an-

alytically obtain the optimal weighting that results in

the equivalence of the asymptotic performance of the

proposed WLS estimator and the CRB.

• With the framework to obtain asymptotically efficient

WLS estimate provided, we now consider the key aspect

of implementing the minimization of the WLS objective

that leads to the proposed WLS estimate. This, typically

needs computationally complex minimization of a mul-

timodal objective function. The quality of the solutions

of the iterative algorithms used for minimizing such

multimodal functions highly depends on the initialization

such that the global minima potentially achieved in case

a very good initial point, which is close enough to the

global minima, is available. This motivates us to introduce

two efficient algorithms for solving the optimization

problem. The first algorithm is applicable to SLAs with

hole-free co-arrays, such as MRA and nested arrays. This

method recasts the optimization problem as a quadratic

optimization problem followed by rooting a polynomial

function. This leads to a significant reduction in computa-

tions, rendering the complexity of the proposed estimator

comparable to that of the other techniques such as CAB-

MUSIC, CAB-ESPIRIT and SCAB-MUSIC while the

WLS estimator enjoys a better performance compared to

them. The second algorithm can be used for SLAs with

holes in their co-arrays such as co-prime arrays. This al-

gorithm recasts the optimization problem as a polynomial

optimization problem followed by rooting a polynomial

function where the global minima of the introduced

polynomial optimization problem is guaranteed to be

attained by using Lasserre’s Semidefinite Programming

(SDP) relaxation given in [29].

• Further, we validate the analytical derivations through

numerical simulations and compare the performance of

the proposed WLS estimator with those proposed in

the literature. Numerical results confirm asymptotic ef-

ficiency of the proposed WLS estimator and illustrate

its superior performance in terms of estimation accuracy

and resolution compared to the existing estimators in the

literature.

Organization: Section II describes the co-array system
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model. In Section III, the proposed WLS framework is

presented and the form of the WLS estimates of DoAs is

derived. The performance of the proposed WLS estimator is

analytically evaluated and its asymptotic statistical efficiency

is proved in Section IV. The simulation results and related

discussions are included in Section V. Finally, Section VI

concludes the paper.

Notation: Vectors and matrices are referred to by lower-

and upper-case bold-face, respectively. The superscripts ∗, T ,

H denote the conjugate, transpose and Hermitian (conjugate

transpose) operations, respectively. ‖a‖2 stands for the ℓ2-

norm of a. [A]i,j and [a]i indicate the (i, j)th and ith entry

of A and a, respectively. Â and â denote the estimate of

A and a, respectively. (a1, a2, · · · , an) is an n-tuple with

elements of a1, a2, · · · , an. |A| represents the cardinality of

the set A. diag(a) is a diagonal matrix whose diagonal

entries are equal to the elements of a. The M × M identity

matrix is denoted by IM . The real and image part of a are

denoted by Re{a} and Im{a}, respectively. E{.} stands for

the statistical expectation. δ[.] is Kroneckers delta. ⊗ and ⊙
represent Kronecker and Khatri-Rao products, respectively.

tr(A), rank(A) and vec (A) =
[
aT1 aT2 · · · aTn

]T
denote

the trace, rank and vectorization operations, respectively. A†

and Π⊥
A indicate the pseudoinverse and the projection matrix

onto the null space of the full column rank matrix AH ,

respectively. R(A),N (A), respectively, represent the range

and null spaces of A.

II. CO-ARRAY SYSTEM MODEL

We consider an SLA with M elements located at positions(
m1

λ
2 , m2

λ
2 , · · · ,mM

λ
2

)
with mi ∈ M. Here M is a set of

integers with cardinality |M| = M , and λ represents the wave-

length of the incoming signals. It is assumed K narrowband

signals with distinct DoAs θ =
[
θ1 θ2 · · · θK

]T
impinge

on the SLA from far field. Accordingly, the vector of signals

received by the SLA at time instance t can be modeled as

y(t) = A(θ)x(t) + n(t) ∈ C
M×1, t = 1, · · · , N, (1)

where x(t) ∈ CK×1 denotes the vector of source sig-

nals, n(t) ∈ CM×1 is additive noise, and A(θ) =[
a (θ1) , a (θ2) , · · · a (θK)

]
∈ CM×K represents the

SLA steering matrix where

a(θi) =
[
ejπ sin θim1 ejπ sin θim2 · · · ejπ sin θimM

]T
, (2)

is the SLA manifold vector for the ith signal. Further, the

following assumptions are made on source signals and noise:

A1 The noise vector follows a zero-mean circular com-

plex Gaussian distribution with the covariance matrix,

E{n(t)nH(t)} = σ2IM .

A2 The source signal vector is modeled as a zero-mean

circular complex Gaussian random vector with covari-

ance matrix E{x(t)xH(t)} = diag(p) where p =[
p1, p2, · · · pK

]T ∈ R
K×1
>0 (i. e., pl > 0 ∀l).

A3 Source and noise vectors are mutually independent.

A4 There is no temporal correlation between the snapshots,

i.e., E{n(t1)nH(t2)} = E{x(t1)xH(t2)} = 0 when t1 6=
t2 and 0 is an all zero matrix of appropriate dimensions.

−9 −8 −7 −6 −5 −4 −3 −2 0−1 1 2 3 4 5 6 7 8 9

(a)

(b)

The contiguous ULA segment

λ
2

Fig. 1. Array geometry of a co-prime array with M = 6 elements: (a)
physical array with M = {0, 2, 3, 4, 6, 9}; (b) difference co-array with D =
{0, 1, 2, 3, 4, 5, 6, 7, 9} and v = 8.

Based on the above assumptions, the covariance matrix of the

received signals, i.e., R = E{y(t)yH(t)}, is given by

R = A(θ)diag(p)AH(θ) + σ2IM ∈ C
M×M . (3)

Following [11], [12], [20], the difference co-array model of

the SLA is obtained by vectorizing the covariance matrix in

(3), which results in

r
.
= vec(R) = (A∗(θ)⊙A(θ))p+ σ2vec(IM ),

= JAd(θ)p+ σ2Jg ∈ C
M2×1, (4)

where Ad(θ) ∈ C(2D−1)×K corresponds to the steering

matrix of the difference co-array whose elements are located

at (−ℓD−1
λ
2 , · · · , 0, · · · , ℓD−1

λ
2 ) with ℓi ∈ D = {|mp −

mq|
∣∣mp,mq ∈ M} and D = |D|. Further, g ∈ {0, 1}(2D−1)×1

is a column vector with [g]i = δ[i − D], and the selection

matrix J is represented as follows

Definition 1. The binary matrix J ∈ {0, 1}M2×(2D−1) is

defined as [12]

J =
[
vec(LT

D−1) · · · vec(L0) · · · vec(LD−1),
]
, (5)

where [Ln]p,q =

{
1, if mp −mq = ℓn,
0, otherwise,

with 1 ≤ p, q ≤ M

and 0 ≤ n ≤ D − 1.

The difference co-array model in (4) can be perceived to

be the response of a virtual array whose steering matrix is

given by Ad(θ) to the parameter vector with signal powers

p in presence of the noise vector σ2vec(IM ). This virtual

array includes a contiguous ULA segment around the origin

with the size of 2v − 1 where v is the largest integer such

that {0, 1, · · · , v − 1} ⊆ D. An illustrative example of an

SLA, the corresponding difference co-array and its contiguous

ULA segment is provided in Fig. 1. It has been shown in

[10]–[12] that the size of the contiguous ULA segment of the

difference co-array plays a crucial role in the number of iden-

tifiable sources such that K distinct sources are identifiable

if K ≤ v − 1. Hence, in case the SLA is designed properly

such that v > M , we are able to identify more sources than

the number of physical elements in the SLA, exploiting the

source signal covariance matrix structure efficiently.

III. CO-ARRAY-BASED WLS ESTIMATOR

The problem under consideration is the estimation of the

unknown parameters in (4) − DoAs, signal powers and the

noise variance − using array observations, i.e., {y(t)}Nt=1.

Of these, the DoAs are of primary interest and the other

parameters are of subordinate interest. However, the estimation

of the secondary parameters is essential for accurate DoA
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estimation. In what follows, we first propose a heuristic, but,

consistent estimate of the noise variance. We then derive the

WLS estimates of DoAs and source signal powers exploiting

the proposed consistent estimate of the noise variance.

A. Estimation of the Noise Variance

Let R̂ denote the sample covariance matrix, defined as

R̂ =
1

N

N∑

t=1

y(t)yH(t) ∈ C
M×M , (6)

and r̂ = vec(R̂) denote its vectorized form. In addition, let

R̂v be the augmented sample covariance matrix, which is

constructed as follows [22]

R̂v =
[
TvJ

†r̂ Tv−1J
†r̂ · · · T1J

†r̂
]
∈ C

v×v, (7)

where Ti is a selection matrix defined as

Ti =
[
0v×(i+D−v−1) Iv 0v×(D−i)

]
∈ {0, 1}v×(2D−1), (8)

Then, we are able to obtain a consistent estimate of the noise

variance, as stated in the following lemma.

Lemma 1. If K ≤ v − 1, a consistent estimate of the noise

variance is given by

σ̂2 =
vecH(ÛnÛ

H
n )TJ†r̂

v −K
, (9)

where Ûn represents the eigenvectors of the augmented sam-

ple covariance matrix R̂v corresponding to its v−K smallest

eigenvalues and T =
[
TT

v TT
v−1 · · · TT

1

]T ∈ Cv2×(2D−1).

Proof. See Appendix A

Remark 1 (Efficiency of the Noise Estimate). It can be

demonstrated that σ̂2, while being consistent, is not statisti-

cally efficient, meaning that
E{(σ̂2−σ2)2}
CRB(σ2) > 1 where CRB(σ2)

represents the CRB of σ2. We will not dwell on this further

since estimation of σ2 is not the main aim here. A consistent

estimate of σ2 suffices for our purpose.

Remark 2. Employing Lemma 7 in Appendix G, it can

easily be shown that σ̂2
∗

= σ̂2, implying that σ̂2 is real-

valued. It is not, however, guaranteed to be positive for a

small number of snapshots. Nonetheless, considering the fact

that σ̂2 is a consistent estimate of σ2 > 0 ensures that σ̂2

is positive when the number of snapshots is adequately large.

As a consequence, the asymptotic performance of the DoA

estimator, which will be introduced in the next subsection,

will not be affected.

B. WLS Estimates of DoAs

To estimate source DoAs from (4), it is possible to formulate

the co-array-based LS estimates of θ, p as
[
θ̂ls

p̂ls

]
= argmin

θ,p

‖r̂− JAd(θ)p− σ̂2vec(IM )‖22. (10)

However, our investigations, presented in [27], indicate that the

LS estimates of DoAs do not show a significant performance

improvement in terms of MSE compared to the existing

algorithms. Thus it would be useful to introduce a weighting

in the above criterion to achieve better performance. Hence,

we propose the following WLS estimator instead
[
θ̂wls

p̂wls

]
= argmin

θ,p

∥∥∥W 1
2

(
r̂− JAd(θ)p− σ̂2vec(IM )

)∥∥∥
2

2
. (11)

where W is a positive definite weighting matrix. The weight-

ing matrix W should be determined to minimize the MSE

of DoA estimates. For the time being, we defer problem of

finding the optimal weighting matrix until Section IV-B and

proceed with the derivation of the WLS estimator for DoAs.

Inserting (9) into (11) and performing certain standard

algebraic manipulations leads to
[
θ̂wls

p̂wls

]
= argmin

θ,p

‖W 1
2 (Q̂r̂− JAd(θ)p)‖22, where (12)

Q̂
.
= IM2 − vec(IM )vecH(ÛnÛ

H
n )TJ†

v −K
. (13)

Solving (12) with respect to p yields

p̂wls =
(
W

1
2JAd(θ)

)†
W

1
2 Q̂r̂. (14)

Remark 3 (Consistency of Signal Power Estimates). Based

on (48) and (47) in Appendix B, it is readily deduced that

p̂wls is a consistent estimator of p iff W
1
2JAd(θ) has full

column rank. Clearly, W is positive definite by definition

and it was shown in [12] that J has full column rank. These

imply that p̂wls is consistent iff Ad(θ) has full column rank.

Following the same approach used in the proof of Lemma 3 in

Appendix B, it can be shown that Ad(θ) has full column rank

if K ≤ 2v−1. This condition is weaker than the identifiability

condition, i.e., K ≤ v − 1, given in the literature [10]–[12].

Hence, the consistency of p̂wls is guaranteed in practice.

Remark 4. Making use of Lemma 8 in Appendix G, it can be

shown that p̂wls is a real number, i.e., p̂∗
wls = p̂wls. Hence,

the same considerations mentioned in Remarks 2 for σ̂2 are

applicable to p̂wls as well.

Finally, inserting (14) into (12), concentrates the WLS

objective on DoAs and the WLS estimator of θ follows as

θ̂wls = argmin
θ

‖Π⊥
W

1
2 JAd(θ)

W
1
2 Q̂r̂‖22. (15)

In general, the above problem can be solved iteratively by

using either gradient descent or Newton’s methods [30].

The gradient and Hessian of the objective function, needed

for implementing the aforementioned methods, are given in

Appendix C. However, finding the global minimum in (15)

through these algorithms is not guaranteed due to multimodal-

ity of the objective function. The quality of the solution

is susceptible to the initial point with the global minima

potentially achieved in case a very good initial point, which

is close enough to the global minima, is available. This

motivates us to introduce two efficient algorithms for solving

the optimization problem (15), which are presented in next.

The first algorithm is applicable to SLAs with hole-free co-

arrays, such as MRA and nested arrays, while the second one

can be used for SLAs with holes in their co-arrays such as

co-prime arrays.
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Remark 5. We should remark that the proposed estimator,

like ACBMs, requires uncorrelated sources and the exact

knowledge of their number.

C. WLS Implementation for SLAs With Hole-Free Co-arrays

When the SLA has no holes in its difference co-array, it

is possible to recast (15) as a quadratic optimization problem

followed by rooting a polynomial through reparameterization

of the objective function. The main idea is similar to the

technique used in [31], [32]. Indeed, for such kind of SLAs,

the objective function in (15) can be reparameterized in terms

of the coefficient of the following polynomial

f(z) =
∑K

n=0 γK−nz
n = γ0

∏K
k=1(zk − ejπ sin θk). (16)

To show that, let define

ΓH
Ad

=




γK · · · γ1 γ0 0 · · · 0
0 γK · · · γ1 γ0 · · · 0
...

. . .
. . .

. . .
. . .

...

0 · · · 0 γK · · · γ1 γ0


 ∈ C(2D−1−K)×(2D−1), (17)

and J⊥∈RM2×(M2−2D+1) be obtained from QR-factorization

of J as J =
[
J‖ J⊥

] [
ΛT 0T

]T
. It is readily confirmed

that
[
J⊥ J†HΓAd

]H
JAd(θ) = 0 due to the Vadermonde

structure of Ad(θ) for the aforementioned SLAs. This implies

that the columns of Γ
.
=

[
J⊥ J†HΓAd

]
span the null space

of AH
d (θ)JH . Hence, considering the fact that Π⊥

W
1
2 JAd(θ)

=

Π
W

− 1
2 Γ

[33], the objective in (15) can be rewritten as

r̂HQ̂HΓ(ΓHW−1Γ)−1ΓHQ̂r̂. (18)

Minimization of (18) with respect to the free parameters in

Γ leads to the estimates of γ0, γ1, · · · , γK from which the

WLS etimates of DoAs can be obtained through finding the

roots of the polynomial (16). However, the reparameterized

optimization problem is still complicated due to multimodality

of the objective function and, moreover, the constraint on

γ0, γ1, · · · , γK arising from the fact that the roots of the

polynomial (16) should lie on the unit circle.

The multimodal objective function (18) can be relaxed

through replacing (ΓHW−1Γ)−1 with its consistent estimate.

This relaxation does not affect the asymptotic behavior of

the objective function [5], [31], [32], [34], but converts the

objective function to a quadratic function with respect to

γ0, γ1, · · · , γK . A consistent estimate of (ΓHW−1Γ)−1 can

be obtained in two ways: 1) making use of CAB-MUSIC or

CAB-ESPIRIT to derive an initial consistent estimate of θ;

2) through minimizing ‖ΓHQ̂r̂‖2 = ‖ΓH
Ad

J†Q̂r̂‖2 with respect

to γ0, γ1, · · · , γK . Following the same arguments provided

in Appendix B and the fact that there is a one-to-one map-

ping from θ to γ0, γ1, · · · , γK [31], it can easily be shown

that minimizing ‖ΓH
Ad

J†Q̂r̂‖2 with respect to γ0, γ1, · · · , γK
gives consistent estimates of γ0, γ1, · · · , γK . Once consistent

estimates of γ0, γ1, · · · , γK are given, an initial consistent

estimates of θ can be obtained by solving the polynomial

equation (16).

In addition, we need to ensure that the roots of the polyno-

mial lie on the unit circle. Following the methodology in [31],

[32], this is addressed by imposing the conjugate symmetric

constraint, i.e., γn = γ∗
K−n for n = 0, 1, · · · ,K. While this

constraint is only necessary, following [31], this relaxation

tends to be tight in the asymptotic regimes. Further, to avoid

γi = 0, ∀i, an additional constraint is required. Herein, we

employ the linear constraints, i.e., Re{γ0} = 1 or Im{γ0} = 1
[31], [32] for simplicity.

Accordingly, the proposed procedure for estimating θ can

be summarized as follows:

1) Compute a consistent estimate of θ by using CAB-

MUSIC, CAB-ESPRIT or minimizing the quadratic func-

tion ‖ΓH
Ad

J†Q̂r̂‖.

2) Based on the initial consistent estimate of θ and the

sample covarince matrix, i.e., R̂, calculate a consistent

estimate of (ΓHW−1Γ)−1.

3) Minimize the quadratic criterion

r̂HQ̂HΓ(Γ̂HŴ−1Γ̂)−1ΓHQ̂r̂. (19)

with respect to γ0, · · · , γK considering the conjugate

symmetric constraint, i.e., γn=γ∗
K−n for n=0, · · · ,K,

besides the linear constraints Re{γ0}=1 or Im{γ0}=1.

4) Obtain the WLS estimate of θ by rooting f(z) in (16).

D. WLS Implementation for SLAs With Holes in Co-arrays

For these SLAs, it is possible to recast (15) as a polyno-

mial optimization problem followed by rooting f(z) given

in (16). This can be done, similar to Section III-C, through

reparameterization of (15) in terms of the coefficients of f(z),
i.e., γ0, γ1, · · · , γK , by finding a set of bases spanning the

null space of AH
d (θ)JH . Then, the introduced polynomial

optimization problem can be globally solved by using the

algorithm proposed in [29].

Let define Γ̃Ad
=

[
Γ̃ ∆1 ∆2

]
∈ C(2D−1)×(2D−1−K) such

that the matrices Γ̃ ∈ C(2D−1)×(2v−1−K), ∆1 ∈
C(2D−1)×(D−v) and ∆2 ∈ C(2D−1)×(D−v) are given by

Γ̃H =




0 · · · 0 γK · · · γ1 γ0 0 · · · 0 0 · · · 0
0 · · · 0 0 γK · · · γ1 γ0 · · · 0 0 · · · 0
...

. . .
...

. . .
. . .

. . .
. . .

. . .
... 0

. . . 0
0 · · · 0 0 · · · 0 γK · · · γ1 γ0 0 · · · 0


 , (20)

∆H
1 =




δ1K · · · δ11 δ10 0 · · · 0 0 · · · 0
0 δ2K · · · δ21 δ20 · · · 0 0 · · · 0
...

. . .
. . .

. . .
. . .

...
...

. . .
...

0 · · · 0 δD−v
K · · · δD−v

1 δD−v
0 0 · · · 0


 , (21)

∆H
2 =




0 · · · 0 δ1K · · · δ11 δ10 0 · · · 0
0 · · · 0 0 δ2K · · · δ21 δ20 · · · 0
...

. . .
...

...
. . .

. . .
. . .

. . .
...

0 · · · 0 0 · · · 0 δD−v
K · · · δD−v

1 δD−v
0


 , (22)

where γ0, · · · , γK are the coefficients of f(z) given in (16)

and δi0, · · · , δiK are the coefficients of the following polyno-

mial

qi(z) =

K∑

n=0

δiK−nz
ℓ
ai
n = f(z)gi(z) (23)

with ain = D − 1 − K − i + n for i ∈ {1, · · · , D − v}
and gi(z) =

∑
K

n=0 δi
K−n

z
ℓ
ai
n

f(z) . From (16), it is observed that

f(ejπ sin θk) = 0 for k ∈ {1, · · · ,K}, which in turn implies

that qi(e
jπ sin θk) = 0 for k ∈ {1, · · · ,K}. Hence, it is easily

checked that
[
J⊥ J†HΓAd

]H
JAd(θ) = 0, indicating that
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the columns of Γ
.
=

[
J⊥ J†HΓAd

]
span the null space of

AH
d (θ)JH . Hence, considering Π⊥

W
1
2 JAd(θ)

= Π
W

− 1
2 Γ̃

[33], the

objective in (15) can be rewritten as

r̂HQ̂H Γ̃(Γ̃HW−1Γ̃)−1Γ̃HQ̂r̂. (24)

Here the minimization should be done with respect to the

free parameters in Γ̃, i.e., γ0, · · · , γK and δi0, · · · , δiK ∀i from

which the WLS etimates of DoAs can be obtained through

finding the roots of the polynomial (16). Akin to Section III-C,

(24) can be relaxed through replacing (Γ̃HW−1Γ̃)−1 with its

consistent estimate without affecting the asymptotic behav-

ior of the objective function [5], [31], [32], [34]. However,

the reparameterized optimization problem is still complicated

despite this relaxation due to the existing constraints on

γ0, · · · , γK and δi0, · · · , δiK ∀i. It can be further simplified if

the parameters δi0, · · · , δiK ∀i are somehow expressed in terms

of γ0, · · · , γK . This parametrizes the optimization problem

only in terms of the desired parameters, i.e., γ0, · · · , γK and

thereby eliminates the constraints corresponding to δi0, · · · , δiK
∀i. Towards this, in what follows, we use the fact that the

remainder hi(z) generated by division of qi(z) by f(z) is

zero according to (23).

Let ñ be an integer such that ℓai

ñ

< K and ℓai

ñ+1
≥ K. It

is then possible to rewrite qi(z) as qi(z) =
∑ñ

n=0 δ
i
K−nz

ai

n +∑K
n=ñ+1 δ

i
K−nz

ai

n . Making use of polynomial long division

and after some tedious calculations, the remainder hi(z)
resulting from division of qi(z) by f(z) takes the form

hi(z) =

K−1∑

n=0

ciK−1−nz
n, where (25)

ciK−1−n =

{
δiK−n − ãn(γ0, · · · , γK , δiK−ñ−1, · · · , δi0) if n ∈ S

ān(γ0, · · · , γK , δiK−ñ−1, · · · , δi0) if n /∈ S

(26)

with S = {ℓai

0
, · · · , ℓai

ñ

}, ãn(.) and ān(.) being linear func-

tions of δiK−ñ−1, · · · , δi0 for n = 0, · · · ,K − 1 whose coef-

ficients are obtained during long division. hi(z) is identically

zero ∀i if and only if cin = 0 ∀n, i. Letting cin’s equal to

zero for each i results in K linear equations with respect to

δiK , · · · , δi0. Considering the fact that δi0 can be chosen arbitrar-

ily, the solution of these K linear equations provides us with

the values of δiK , · · · , δi1 based on γ0, · · · , γK and δi0. Through

an appropriate choice of δi0, the parameters δiK , · · · , δi1 can be

expressed as polynomial functions of γ0, · · · , γK . Hence, Γ̃

is parameterized only in terms of the coefficients γ0, · · · , γK .

Consequently, the optimization problem (23) is converted

to a polynomial optimization with respect to γ0, γ1, · · · , γK .

Similar to Section III-C, conjugate symmetry constraint is

imposed on {γi} towards ensuring roots of f(z) on the unit

circle. Then, the resulting polynomial optimization can be

solved by using the Lasserre’s SDP relaxation given in [29].

It is proved in [29] that the Lasserre’s SDP relaxation attains

the global minima of the polynomial optimization if the order

of relaxation is big enough. However, evidently, this solution

exhibits higher complexity than the descent algorithms men-

tioned earlier due to the nature of operations and increased

number of variables.

Accordingly, the proposed procedure for estimating θ can

be summarized as follows:

1) Compute a consistent estimate of θ by using CAB-

MUSIC, CAB-ESPRIT.

2) Based on the initial consistent estimate of θ and the

sample covariance matrix, i.e., R̂, calculate a consistent

estimate of (ΓHW−1Γ)−1.

3) Compute the coefficients cin’s ∀i, n, using polynomial

long division.

4) Let cin’s equal to zero for each i and solve the K resulting

linear equations with respect to δiK , · · · , δi0. This step

gives us the values of δiK , · · · , δi1 based on γ0, · · · , γK
and δi0.

5) Choose the free variable δi0 such that δi0, δiK , · · · , δi0 are

obtained as polynomial functions of γ0, · · · , γK .

6) Find the minima of the following polynomial criterion

r̂HQ̂H Γ̃( ˆ̃ΓHŴ−1 ˆ̃Γ)−1Γ̃HQ̂r̂. (27)

with respect to γ0, · · · , γK considering the conjugate

symmetric constraint and the linear constraints Re{γ0} =
1 or Im{γ0} = 1 by using the Lasserre’s SDP relaxation.

7) Obtain the WLS estimate of θ by rooting f(z) in (16).

IV. ASYMPTOTIC PERFORMANCE ANALYSIS

The asymptotic behavior of the proposed WLS estimator

for a large number of samples is analyzed in this section and

its asymptotic statistical efficiency when an optimal weighting

matrix being selected is shown.

A. Asymptotic Performance

In this subsection, we analyze the key attributes of the

proposed WLS estimator including consistency, bias and esti-

mation errors for an arbitrary weighting matrix. Asymptotics

are resorted to yield tractable analytical results. We start with

proving the consistency of the DoA estimates provided by the

proposed WLS estimator.

Theorem 1. θ̂wls is a consistent estimate of θ if K ≤ v − 1.

Proof. See Appendix B

Remark 6 (Unbiasedness). It readily follows from Theorem

1 that θ̂wls is asymptotically unbiased as well.

Remark 7. Note that the sufficient condition for the con-

sistency of θ̂wls, i.e., K ≤ v − 1, given in Theorem 1, is

equivalent to the sufficient condition for source identifiability

given in [10]–[12].

The consistency of θ̂wls can be utilized to obtain the

covariance matrix of DoA estimation errors through a Taylor

series expansion approach when N → ∞. This is detailed in

the following theorem.

Theorem 2. Let KM denote the commutation matrix defined

according to Definition 2 in Appendix G. If K ≤ v − 1 and

KMW = W∗KM , the asymptotic (N → ∞) covariance

matrix of the WLS estimator θ̂wls is given by (28), shown
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Cwls = E

{
(θ̂wls − θ)(θ̂wls − θ)H

}
= 1

π2N
diag−1(p)

(
ΩHW

1
2Π⊥

W
1
2 JAd(θ)

W
1
2Ω

)−1

×
(
ΩHW

1
2Π⊥

W
1
2 JAd(θ)

W
1
2QM2QHW

1
2Π⊥

W
1
2 JAd(θ)

W
1
2Ω

)(
ΩHW

1
2Π⊥

W
1
2 JAd(θ)

W
1
2Ω

)−1

diag−1(p), (28)

at the top of the next page, where

Q
.
= IM2 − vec(IM )bH

v −K
, (29)

b
.
= J†HTHvec

(
UnU

H
n

)
, (30)

M2 = RT ⊗R, (31)

Ω
.
= Jdiag (d)Ad(θ)Φ(θ), (32)

with d =
[
−ℓD−1 · · · ℓ0 · · · ℓD−1

]T
, Un being given

in Appendix A, and Φ(θ) = diag(
[
cos θ1 · · · cos θK

]T
).

Proof. See Appendix C

Remark 8. In Theorem 2, it is assumed that KMW =
W∗KM because it simplifies the expression for the covariance

matrix of DoA estimation errors. Further, it is shown in

Appendix E (See Lemma 9) that the optimal weighting matrix,

to be introduced later in Theorem 4, fulfills the constraint.

Thus the constraint is not restrictive. However, it is fairly

straightforward to also obtain the covariance matrix of θ̂wls

for the weighting matrices not satisfying the aforementioned

constraint by exploiting the derivations given in Appendix C.

B. Optimal Weighting Matrix and Achieving CRB

The results presented in Section IV-A are valid for an

arbitrary weighting matrix. However, it is of interest to find an

optimal weighting matrix providing the best DoA estimation

performance in terms of MSE. In this regard, we resort to

the fact that Cwls, given in Theorem 2, is lower bounded by

the CRB. Thus, a good way of finding the optimal weighting

matrix is to seek a weighting matrix rendering Cwls to be

identical to the CRB. Accordingly, in what follows, we first

reformulate the CRB expression given in [12] in a form

suitable for establishing equality of Cwls and the CRB in

Theorem 3. Then, we show in Theorem 4 that there is a

weighting matrix enabling Cwls to coincide with the CRB.

Theorem 3. The CRB expression given in [12, Eq. (49)] can

be reformulated as the following form

CRB(θ) =
(
diag(p)ΩHF

(
FHHF

)−1
FHΩdiag(p)

)−1

, (33)

where F ∈ CM2×(M2−K) is any matrix whose columns span

the null space of AH
d (θ)JH and

H =QM2QH +
M2bbHM2

bHM2b
. (34)

Proof. See Appendix D

Theorem 4. If the weighting matrix is selected as follows

Wopt =
(
Π⊥

JAd(θ)
SΠ⊥

JAd(θ)
+ JAd(θ)A

H
d (θ)JT

)−1
, (35)

where

S =QM2QH + bbH , (36)

then we have Cwls = CRB(θ).

Proof. See Appendix E

Remark 9. We note that the optimal weighting matrix given

in Theorem 4 depends on the true value of the parameters.

However, in practice, it can be replaced with a consistent

estimate without affecting the asymptotic performance of the

WLS estimator [5], [31], [32], [34]. To this end, we can

first use any other consistent estimator like CAB-MUSIC

or CAB-ESPRIT to obtain an initial estimate of θ. Then,

we compute a consistent estimate of the optimal weighting

matrix based on the initial estimate of θ and the sample

covariance matrix R̂. Finally, we use the WLS estimator given

in (15) to derive asymptotically statistically efficient estimates

of DoAs. This procedure may be iterated with Wopt and

θ alternatively estimated. This may enhance the estimation

accuracy especially at low snapshots.

We are also required to make sure that the optimal weighting

matrix is positive definite, and moreover, its estimate, obtained

using the approach explained in Remark 9, is always nonsin-

gular regardless of the available number of snapshots. The

following Lemma addresses this concern.

Lemma 2. Wopt is positive definite and its estimate, obtained

through either CAB-MUSIC or CAB-ESPRIT, is nonsingular

regardless of the available number of snapshots.

Proof. See Appendix F

V. SIMULATION RESULTS

In this section, we provide some numerical results to vali-

date the analytical results obtained in Section III as well as to

assess the performance of the proposed estimator. Further, we

compare the performance of the WLS estimator proposed in

this paper with that of CAB-MUSIC [11], [20], CAB-ESPRIT

[21], SPA [19] and SCAB-MUSIC [28]; and we will show

that the WLS estimator yields better performance in terms of

resolution, estimation accuracy and statistical efficiency.

A. General Set-up

In all experiments, each simulated point has been computed

by 5000 Monte Carlo repetitions. In addition, it is assumed that

the K independent sources are located at {−60◦ + 120◦(k −
1)/(K − 1)|k = 0, 1, · · · ,K − 1}. All sources have equal

powers, i.e., pk = p ∀k, and the SNR is defined as 10 log p
σ2 .

Throughout this section, we use three different types of SLAs

with M = 6 physical elements and the following geometries:

Mnested : {1, 2, 3, 4, 8, 12} , (37)

Mco-prime : {0, 2, 3, 4, 6, 9} , (38)

MMRA : {0, 1, 6, 9, 11, 13} . (39)
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Fig. 2. RMSE in degree for θ2 versus the number of snapshots for a nested array with M = 6 elements and configuration given in (37), SNR = 3 dB, and:
(a) K = 4 < M ; (b) K = 7 > M .
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Fig. 3. RMSE in degree for θ2 versus SNR for a nested array with M = 6 elements and configuration given in (37), N = 500, and: (a) K = 4 < M ; (b)
K = 7 > M .

These SLAs generate the difference co-arrays as:

Dnested : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} , (40)

Dco-prime : {0, 1, 2, 3, 4, 5, 6, 7, 9} , (41)

DMRA : {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13} . (42)

The optimization problem (15) for MRAs and nested arrays

is solved through the algorithm described in Section III-C; and

for co-prime arrays it is solved by using the algorithm given in

Section III-D. In both cases, CAB-ESPRIT is used to derive

a consistent estimate of (ΓHW−1Γ)−1. Further, we take the

grid from −90◦ to 90◦ with step size 0.001◦ to implement

CAB-MUSIC and SCAB-MUSIC. Moreover, all estimators

but SPA need an exact knowledge of the exact number of

sources. Hence, for a fair comparison, SPA is also assumed to

know the exact number of sources in all simulations. For this

end, it is implemented by applying MUSIC on the augmented

covaraince matrix estimate obtained from the SPA algorithm.

B. MSE vs. the Number of Snapshots

Fig. 2 depicts the Root-Mean-Squares-Error (RMSE) for

θ2 in degree versus the number of snapshots for the nested

array in (37). The SNR is assumed to be 3 dB. In addition,

noting M = 6, two different scenarios are considered: (a)

K = 4 < M , and (b) K = 7 > M . Fig. 2 illustrates a

close agreement between the RMSE of the proposed WLS

estimator and the CRB when about 70 or more snapshots

are available, indicating asymptotic statistical efficiency of

the WLS estimator. Further, a considerable gap is observed

between the performance of CAB-MUSIC (CAB-ESPRIT)

and that of the WLS estimator (the CRB). For instance, at

N = 400, Figs 3a and 3b show a performance gain of roughly

2.6 dB and 2 dB, respectively, in terms of the RMSE when

the WLS estimator is used. It is also observed that SCAB-

MUSIC and SPA outperform CAB-MUSIC CAB-ESPRIT, but

their performance is inferior to that of the WLS estimator and

they are unable to attain the CRB.

Fig. 2 also shows that when a small number of snapshots

is available, for example less than 70, all estimators are

confronted with substantial performance degradation. Perfor-

mance loss of the subspace methods, i.e., CAB-MUSIC, CAB-

ESPRIT and SCAB-MUSIC, is justified by the subspace swap

arising from the inaccurate estimate of the resulting augmented
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covariance matrix is this case. Further, the underlying reasons

for performance degradation of the WLS estimator in such a

regime are twofold. Firstly, as mentioned in Remarks 1 and 4,

the estimates of σ2 and p are not precise and might even

yield negative values in this case. Consequently, the value

of Q̂r̂ significantly deviates from its asymptotic value, i.e.,

JAd(θ)p, which, in turn, causes the minimizer of (15) to

diverge from the true value of θ. Secondly, there exists a poor

estimate of the optimal weighting matrix, i.e., Wopt. This has

a detrimental effect on the performance of the WLS estimator.

However, it is seen that the proposed WLS estimator still has

superior performance compared to the other estimators even

in low snapshot paradigm.

C. MSE vs. SNR

Fig. 3 shows the RMSE for θ2 in degree versus SNR for

the same setup used for Fig. 2. The number of snapshots is

considered to be N = 500. It is seen in Figs. 3a and Fig. 3b

that the RMSE of the WLS estimator perfectly matches the

CRB for the considered range of SNR as a consequence of its

asymptotic statistical efficiency. However, the other estimators

are not capable of attaining the CRB.

Fig. 3a demonstrates that for K = 4 < M the RMSEs

of the WLS estimator and SPA, like the CRB, tend to decay

to zero as SNR increases while the RMSEs of CAB-MUSIC,

CAB-ESPRIT and SCAB-MUSIC tend to get saturated at the

high SNR regime. For instance, the RMSEs of CAB-MUSIC

and CAB-ESPRIT get saturated at SNR around 5 dB. The

underlying cause for this saturation behavior of CAB-MUSIC

and CAB-ESPRIT was already explained in [20, Corollary

2] and [21], respectively, through an analysis of their MSE

expressions. This saturation behaviour of CAB-MUSIC, CAB-

ESPRIT and SCAB-MUSIC renders them highly inefficient as

SNR increases while the WLS estimator remains statistically

efficient for the considered range of SNR.

Fig. 3b shows that when K = 7 < M , the RMSEs of all the

estimators as well as the CRB get saturated at the high SNR

regime. The saturation point for the WLS estimator, SPA and

the CRB is at the SNR around 15 dB while for CAB-MUSIC,

CAB-ESPRIT and SCAB-MUSIC it happens at the SNR

around 10 dB. Nonetheless, the WLS estimator still pefroms

better than all the other estimators under this condition. For

example, at SNR = 15, the performance gains of about 2.2 dB

and 1.3 dB are attained in terms of RMSE compared to CAB-

MUSIC (CAB-ESPRIT) and SCAB-MUSIC, respectively.

D. Impact of Different SLA Configurations

In Fig. 4, we plot the RMSE for θ2 in degree versus

SNR for different types of SLAs given in (37)-(39). The

rest of parameters are equal to those in Fig. 3. It is readily

observed that there is a good agreement between the RMSE

of the WLS estimator and the CRB regardless of the array

geometry. These simulations corroborate the analytical results

where the asymptotic equality of the CRB and the MSE

of the WLS estimator is shown considering a generic SLA.

Another observation is that amongst these three SLAs, MRA

is endowed with the least RMSE followed by the nested and

co-prime arrays, respectively. This follows from the distinction

between the size of their corresponding difference co-array in

comparison to each other. The difference co-arrays for these

SLAs are given in (40)-(42). Indeed, the array with a bigger

difference co-array size brings about the lower RMSE.

E. Resolution Probability

Figs. 5 and 6 depict the probability of resolution versus SNR

for the proposed WLS estimator, CAB-MUSIC, CAB-ESPRIT,

SCAB-MUSIC and SPA. The co-prime and nested arrays

with the configurations given in (38) and (37) are considered

in Figs. 5 and 6, respectively. The number of snapshots is

considered to be N = 500. In addition, we consider two

sources with equal powers, located at θ1 = 20◦ − ∆θ
2 and

θ2 = 20◦+∆θ
2 with: (a) ∆θ = 1◦, and (b) ∆θ = 2◦. We define

the two sources as being resolvable if max
i ∈ {1, 2}

|θ̂i−θi| < ∆θ
2 [35].

Figs. 5 and 6 demonstrate that the WLS estimator has the best

resolution performance amongst all the estimators while the

SPA resolution performance is inferior to that of all the other

ones. Furthermore, CAB-MUSIC and CAB-ESPRIT perform

almost equivalently and SCAB-MUIC performs slightly better

than them. When ∆θ = 1◦, all the estimators but the WLS

are unable to resolve the sources with a probability of 1 even

at SNR = 17 dB while the WLS estimator could achieve

a resolution probability of 1 at SNR = 13 dB. In case ∆θ
is increased to 2◦, the WLS achieves SNR gains of 3 dB

and 6 dB compared to SCAB-MUSIC, to attain a resolution

probability of 1, when co-prime and nested arrays are used

respectively. A comparison of Figs. 5 and 6 indicates that the

probability of resolution for the WLS, CAB-MUSIC and CAB-

ESPRIT increases when the co-prime array is replaced with

the nested array. This can be justified comparing the aperture

size of the co-prime and nested arrays. Indeed, the nested array

enjoys a bigger aperture compared to the co-prime array; thus

it is expected to demonstrate a better probability of resolution.

However, it is observed that the resolution probabilities of

SCAB-MUSIC and SAP decline as the nested array is used

instead of the co-prime array. This behavior arises from the

structure exhibited by the covarinace matrix in co-prime arrays

compared to that of nested arrays. Hence, SCAB-MUSIC and

SAP, utilizing a structured estimate of the covariance matrix,

are capable of providing a better estimate of the covariance

matrix when the co-prime array is used. This naturally leads

to a better covaraince matrix estimate and hence better DoA

estimates.

VI. CONCLUSION

In this paper, a novel WLS estimator for the co-array-based

DoA estimation via SLAs was proposed and its performance

is thoroughly analyzed. It was shown that the proposed WLS

estimator provides consistent estimates of DoAs of identifiable

sources for any SLAs. Further, an asymptotic closed-form

expression for the resulting covariance matrix of DoA esti-

mation errors was derived and it was analytically proved that

it asymptotically coincides with the CRB in case the optimal

weighting matrix is selected. This implies that the proposed

WLS estimator is asymptotically statistically efficient. It thus

closes an important gap in the co-array-based DoA estimation.

Simulation results demonstrated superior performance of the
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Fig. 4. RMSE in degree for θ2 versus SNR for SLAs with M = 6 elements and different configurations, N = 500, and: (a) K = 4 < M ; (b) K = 7 > M .
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Fig. 5. Probability of resolution versus SNR for a co-prime array with M = 6 elements and configuration given in (38), N = 500, and: (a) ∆θ = 1◦; (b)
∆θ = 2◦.
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Fig. 6. Probability of resolution versus SNR for a nested array with M = 6 elements and configuration given in (37), N = 500, and: (a) ∆θ = 1◦; (b)
∆θ = 2◦.

proposed WLS estimator compared to the existing algorithms

in the literature in terms of estimation accuracy and resolution.

APPENDIX A

PROOF OF LEMMA 1

It is well-known that the sample covariance R̂ is a consistent

estimate of R under the current assumption [36], implying that
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limN→∞ r̂ = r. As a consequence, considering (7), we obtain

lim
N→∞

R̂v =
[
TvJ

†r Tv−1J
†r · · · T1J

†r
]
. (43)

On the other hand, it has been proved in [22] that

lim
N→∞

R̂v = Av(θ)diag(p)A
H
v (θ) + σ2Iv

.
= Rv, (44)

where the matrix Rv ∈ Cv×v has the same structure as the

covariance matrix of signals received by a contiguous ULA

whose elements are located at
(
0, λ

2 , λ, · · · , (v − 1)λ2
)

and

Av(θ) ∈ Cv×K is its corresponding steering matrix. Therefore,

in case K ≤ v − 1, exploiting the eigendecomposition, it

is possible for (44) to be expressed as Rv = UsΛsU
H
s +

σ2UnU
H
n , where Us and Un represent the eigenvectors of Rv

corresponding to its K largest and v−K smallest eigenvalues,

respectively. From (44), R̂v can be deemed to be a perturbed

version of Rv . Therefore, we have

lim
N→∞

ÛnÛ
H
n = UnU

H
n . (45)

Eventually, making use of (43), (44), (45) and the fact that

UH
n Av(θ) = 0, we obtain

limN→∞ σ̂2 =
vecH(UnU

H

n
)TJ†r

v−K

=
vecH(UnU

H

n
)vec(

[
TvJ

†r Tv−1J
†r · · · T1J

†r
]
)

v−K

=
σ2tr(UH

n
Un)

v−K
= σ2. (46)

APPENDIX B

PROOF OF THEOREM 1

Let define L(θ, r̂, Q̂) = ‖Π⊥
W

1
2 JAd(θ)

W
1
2 Q̂r̂‖22, L̃(θ) =

limN→∞ L(θ, r̂, Q̂) and use θ0 to distinguish the actual DoA

vector from a generic vector θ. Since the derivatives of Ad(θ)
with respect to θ are bounded, L(θ, r̂, Q̂) converges uniformly

to L̃(θ) as N → ∞ [34]. Thus, θ̂wls also converges to the

minimizing argument of L̃(θ) as N → ∞.

It readily follows from (45) that limN→∞ Q̂ = Q. In

addition, from (46) and (4)

Qr = JAd(θ0)p (47)

is readily checked. Hence, considering the fact that

limN→∞ r̂ = r and making use of continuous differentiability

of L(θ, r̂, Q̂), we obtain

L̃(θ) = L(θ, lim
N→∞

r̂, lim
N→∞

Q̂) = ‖Π⊥
W

1
2 JAd(θ)

W
1
2JAd(θ0)p‖22. (48)

It is evident from (48) that L̃(θ0) = 0 and L̃(θ) ≥ 0, implying

L̃(θ) has a global minima at θ0. Consequently, consistency

of θ̂wls follows if θ0 is the unique solution to L̃(θ) = 0 with

respect to θ. According to (48), L̃(θ) is equal to zero if and

only if

Π⊥
W

1
2 JAd(θ)

W
1
2JAd(θ0)p = 0. (49)

In what follows, we employ the method of proof by contra-

diction to complete the proof. Let assume that θ1 is a solution

to (49) but θ1 6= θ0. This means that θ1 could differ from θ0

at q DoAs where 1 ≤ q ≤ K. Substituting θ1 into (49) yields

Π⊥
W

1
2 JAd(θ1)

W
1
2JAd(θ

′

0)p
′

= 0. (50)

where θ
′

0 ∈ Cq×1 consists of those elements of θ0 which are

not shared with θ1, and Ad(θ
′

0) ∈ Cq×1 and p
′ ∈ Cq×1 are

the corresponding blocks of Ad(θ0) and p. The expression on

the left side of the above equation can be rewritten as follows

W
1
2J

[
Ad(θ

′

0) Ad(θ1)
]
[

IK

−
(
W

1
2JAd(θ1)

)†
W

1
2JAd(θ

′

0)

]
p

′

︸ ︷︷ ︸
ℵ

. (51)

Since the weighting matrix W is positive definite by definition

and J a is full column rank matrix [12], it is concluded that

(49) is zero if and only if the term ℵ in (51) is zero.

Lemma 3.
[
Ad(θ

′

0) Ad(θ1)
]
has full column rank if K≤ v−1.

Proof. Let Aϑ(θ) ∈ C(2v−1)×K denote the steering matrix

corresponding to the contiguous ULA segment of the

difference co-array. Since
[
Aϑ(θ

′

0) Aϑ(θ1)
]

is a sub-

matrix of
[
Ad(θ

′

0) Ad(θ1)
]
, it is sufficient to show

that
[
Aϑ(θ

′

0) Aϑ(θ1)
]

is full column rank instead of[
Ad(θ

′

0) Ad(θ1)
]
.

It is possible to decompose
[
Aϑ(θ

′

0) Aϑ(θ1)
]

as follows




1 · · · 1 1 · · · 1
α1 · · · αq β1 · · · βK

...
. . .

...
...

. . .
...

α
2(v−1)
1 · · · α

2(v−1)
q β

2(v−1)
1 · · · β

2(v−1)
K




×diag(
[
α1−v
1 · · · α1−v

q β1−v
1 · · · β1−v

K

]
). (52)

where αi = ejπ sin[θ
′

0]i and βi = ejπ sin[θ1]i . The second

matrix in (52) is a (K + q)× (K + q) diagonal matrix and

thus full rank. However, the first one is a (2v − 1)× (K + q)

Vandermonde matrix which has full column rank for distinct

DoAs iff K + q ≤ 2v − 1. This condition is fulfilled for

all admissible q iff K ≤ v − 1. Hence, it follows that[
Aϑ(θ

′

0) Aϑ(θ1)
]

and, in turn,
[
Ad(θ

′

0) Ad(θ1)
]

have full

column rank if K ≤ v − 1.

According to Lemma 3, on condition that K ≤ v − 1, the

term ℵ in (51) is equal to zero iff
[

IK

−
(
W

1
2JAd(θ̃)

)†
W

1
2JAd(θ0)

]
p

′

= 0, (53)

implying that p
′

= 0, which is in contradiction with the

definition of p given in A2. Therefore, it is concluded that

θ0 has to be the unique solution to L̃(θ) = 0 with respect to

θ if K ≤ v − 1, which indicates the consistency of θ̂wls. �

APPENDIX C

PROOF OF THEOREM 2

The proof is composed of four steps. First, a closed-form

error expression for the DoA estimates is given through

a Taylor series expansion method. The given closed-form

expression involves the gradient and Hessian of L(θ, r̂, Q̂).

Hence, the corresponding gradient and Hessian is computed at

the second and third steps, respectively. Finally, the covariance

matrix of DoA estimation errors is obtained by combining the

net results of preceding steps.
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A. Closed-form expression for DoA estimation errors

From (15), we know that θ̂wls is a critical point of L(θ, r̂, Q̂),

thus we have ∇θL(θ̂wls, r̂, Q̂) = 0 where ∇θL(θ, r̂, Q̂) denotes

the gradient of L(θ, r̂, Q̂) with respect to θ. ∇θL(θ, r̂, Q̂) is a

real-valued1 function on RK , thereby applying Taylor theorem

[37, Ch. 6, Theorem 12] around the true value of θ yields

∇θL(θ, r̂, Q̂) +∇2
θ
L(θ, r̂, Q̂)(θ̂wls − θ)

+
(
IK ⊗ (θ̂wls − θ)T

)
H(θ∗, r̂, Q̂)(θ̂wls − θ) = 0, (54)

where ∇2
θ
L(θ, r̂, Q̂) denotes the Hessian matrix of L(θ, r̂, Q̂)

with respect to θ, the matrix H(θ∗, r̂, Q̂) is given in [37, Ch. 6,

Definition 2], and θ
∗ = θ(1− t) + tθ̂wls for some t ∈ (0, 1).

From (54), we have

θ̂wls − θ = −
(
∇2

θ
L(θ, r̂, Q̂) +

~︷ ︸︸ ︷(
IK ⊗ (θ̂wls − θ)T

)
H(θ∗, r̂, Q̂)

)−1

×∇θL(θ, r̂, Q̂). (55)

Noting that ÛnÛ
H
n = UnU

H
n + O( 1√

N
) [38], it is readily

concluded that Q̂ = Q+O( 1√
N
) for large N . Consequently,

considering the fact that r̂ = r+O( 1√
N
) for large N [38], [39]

and making use of continuous differentiability of L(θ, r̂, Q̂),

it can readily be shown that ∇2
θ
L(θ, r̂, Q̂) = ∇2

θ
L(θ, r,Q)+

O( 1√
N
) and H(θ∗, r̂, Q̂) = H(θ∗, r,Q) + O( 1√

N
) for large

N . On the other hand, since θ̂wls is a consistent estimate

of θ according to Theorem 1, there exists a > 0 such that

θ̂wls − θ = O( 1
Na ) for large N . Hence, it follows that the

Hessian term in (55) converges to a constant value as N → ∞
while the term ~ converges to zero as N → ∞. Therefor, it is

possible to neglect the term ~ compared to the Hessian term

in (55) in the asymptotic regime (N → ∞), leading to

θ̂wls − θ ≃ −
(
∇2

θ
L(θ, r,Q)

)−1 ∇θL(θ, r̂, Q̂). (56)

B. Derivation of ∇θL(θ, r̂, Q̂)

Taking derivative of L(θ, r̂, Q̂) with respect to θ and exploit-

ing the following expression for the derivative of projection

matrix Π⊥
W

1
2 JAd(θ)

[40]

∂Π⊥

W

1
2 JAd(θ)

∂θk
= −(W

1
2JAd(θ))

†H(J∂Ad(θ)
∂θk

)HW
1
2Π⊥

W
1
2 JAd(θ)

−Π⊥
W

1
2 JAd(θ)

W
1
2J

∂Ad(θ)
∂θk

(W
1
2JAd(θ))

†, (57)

we get

∂L(θ,r̂,Q̂)
∂θk

= −2Re{r̂HQ̂HW
1
2 (W

1
2JAd(θ))

†H

×(J∂Ad(θ)
∂θk

)HW
1
2Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂}. (58)

Making use of Lemma 8 in Appendix G, it can be readily

shown that the term inside the Re{.} operator is real-valued in

case KMW = W∗KM . Hence, considering (14), (58) can be

written as follows

∂L(θ,r̂,Q̂)
∂θk

= −2p̂H
ls (J

∂Ad(θ)
∂θk

)HW
1
2Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂ (59)

= −j2π[p̂H
ls ]k cos θka

H
d (θk)diag(d)J

HW
1
2Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂,

1The fact that ∇θL(θ, r̂, Q̂) is a real-valued function will be shown later
in (58)

where

ad(θk)=
[
e−jπ sin θkℓD−1 · · · 1 · · · ejπ sin θkℓD−1

]T
. (60)

From (59) and using limN→∞ p̂ls = p and limN→∞ Q̂ = Q,

the gradient of L(θ, r̂, Q̂) with respect to θ is given by

∇θL(θ, r̂, Q̂) (61)

≃ −j2πdiag(p)Φ(θ)AH
d (θ)diag(d)JHW

1
2Π⊥

W
1
2 JAd(θ)

W
1
2Qr̂.

where Φ(θ) = diag(
[
cos θ1 · · · cos θK

]T
).

C. Derivation of ∇2
θ
L(θ, r,Q)

Taking the derivative of (58) with respect to θl and making

use of (57) and the following expression for the derivative of

(W
1
2JAd(θ))

†H

∂(W
1
2 JAd(θ))

†H

∂θl
= Π⊥

W
1
2 JAd(θ)

W
1
2J

∂Ad(θ)
∂θl

(AH
d (θ)JHWJAd(θ))

−1

−(W
1
2JAd(θ))

†H(J∂Ad(θ)
∂θl

)HW
1
2 (W

1
2JAd(θ))

†H , (62)

leads to (63), which is shown at the top of this page. Given

the fact that L̃(θ0) = 0, it is possible to neglect the first four

terms on the right had side of (63) compared to the last term

as N → ∞. Thus, by replacing (W
1
2JAd(θ))

†W
1
2 Q̂r̂ from

(14), we have

∂2L(θ,r̂,Q̂)
∂θl∂θk

≃ −2π2[p̂H
ls ]k cos θka

H
d (θk)diag(d)J

HW
1
2Π⊥

W
1
2 JAd(θ)

W
1
2

×Jdiag(d)ad(θl) cos θl[p̂ls]l. (64)

Based on (64) and considering limN→∞ p̂ls = p and

limN→∞ Q̂ = Q, the Hessian matrix of L(θ, r̂, Q̂) with respect

to θ is obtained as follows

limN→∞ ∇2
θ
L(θ, r̂, Q̂) = ∇2

θ
L(θ, r,Q) (65)

≃ −2π2diag(p)Φ(θ)AH
d (θ)diag(d)JHW

1
2Π⊥

W
1
2 JAd(θ)

W
1
2

×Jdiag(d)Ad(θ)Φ(θ)diag(p).

D. Calculation of the error covariance matrix

Combining (56), (61) and (65), it is possible to derive an

asymptotic (N → ∞) expression for the covariance matrix of

θ̂wls given at the bottom of this page. It is shown in [41] that

E{r̂r̂H} = rrH +
1

N

(
RT ⊗R

)
. (67)

Inserting (67) into (66) and exploiting (47) gives (28).

APPENDIX D

PROOF OF THEOREM 3

Before proceeding to the main proof, let us first introduce

the following preliminary lemmas.

Lemma 4. The vector b belongs to the range space of the

matrix F, i.e., b ∈ R(F).

Proof. Recall Av(θ) from Appendix A, which is defined as

the steering matrix of a ULA whose elements are located at(
0, λ

2 , λ, · · · , (v − 1)λ2
)
. It is observe that there is a selection

matrix Z ∈ {0, 1}K2×K such that

A∗
v(θ)⊙Av(θ) = (A∗

v(θ)⊗Av(θ))Z. (68)
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∂2L(θ,r̂,Q̂)
∂θl∂θk

= −2r̂HQ̂HW
1
2Π⊥

W
1
2 JAd(θ)

W
1
2J

∂Ad(θ)
∂θl

(AH
d (θ)JHWJAd(θ))

−1(J∂Ad(θ)
∂θk

)HW
1
2Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂

+2r̂HQ̂HW
1
2 (W

1
2JAd(θ))

†H(J∂Ad(θ)
∂θl

)HW
1
2 (W

1
2JAd(θ))

†H(J∂Ad(θ)
∂θk

)HW
1
2Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂

−2r̂HQ̂HW
1
2 (W

1
2JAd(θ))

†H(J∂2Ad(θ)
∂θl∂θk

)HW
1
2Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂

+2r̂HQ̂HW
1
2 (W

1
2JAd(θ))

†H(J∂Ad(θ)
∂θk

)HW
1
2 (W

1
2JAd(θ))

†H(J∂Ad(θ)
∂θl

)HW
1
2Π⊥

W
1
2 JAd(θ)

W
1
2 Q̂r̂

+2r̂HQ̂HW
1
2 (W

1
2JAd(θ))

†H(J∂Ad(θ)
∂θk

)HW
1
2Π⊥

W
1
2 JAd(θ)

W
1
2J

∂Ad(θ)
∂θl

(W
1
2JAd(θ))

†Q̂r̂. (63)

Using (115), (68) and the fact that AH
v (θ)Un = 0 leads to

bHJAd(θ) = vecH(AH
v (θ)UnU

H
n Av(θ))Z = 0. (69)

(69) shows that b belongs to the null space of AH
d (θ)JH . We

know N (AH
d (θ)JH) = R(F). This concludes the proof.

Lemma 5. The vector b belongs to the null space of the matrix

ΩH .
= ΦH(θ)AH

d (θ)diag(d)JH , i.e., b ∈ N (ΩH).

Proof. Let av(θk)
.
=

[
1 ejπ sin θk · · · ejπ sin θk(v−1)

]T
de-

note the kth column of Av(θ) and v
.
=

[
0 1 · · · v − 1

]T
.

Exploiting (60) and (115), we can show that

Tdiag(d)Ad(θ)Φ(θ) (70)

=
−j

π

[
∂Tad(θ1)

∂θ1

∂Tad(θ2)
∂θ2

· · · ∂Tad(θK)
∂θK

]

=
−j

π

[
∂a∗

v
(θ1)⊗av(θ1)

∂θ1

∂a∗
v
(θ2)⊗av(θ2)

∂θ2
· · · ∂a∗

v
(θK)⊗av(θK)

∂θK

]

=
−j

π
(diag(v)A∗

v(θ)⊙Av(θ) +A∗
v(θ)⊙diag(v)Av(θ))Φ(θ).

Exploiting (68), (70) and the fact that AH
v (θ)Un = 0 gives

bHΩ =
1

jπ

(
vecH(AH

v (θ)UnU
H
n diag(v)Av(θ))ZΦ(θ) (71)

+ vecH(AH
v (θ)diag(v)UnU

H
n Av(θ))ZΦ(θ)

)
= 0.

This completes the proof.

Now, let define Ψ
.
=

[
JAd(θ) vec(IM )

]
, the CRB ex-

pression given in [12, Theorem 2] can then be rewritten as

follows

CRB−1(θ) =
1

π2N
diag(p)ΩHM−1Π⊥

M−1Ψ
M−1Ωdiag(p).(72)

Based on the projection decomposition theorem [33], we have

Π⊥
M−1Ψ

= Π⊥
M−1JAd(θ)

−ΠΠ⊥
M

−1
JAd(θ)

M−1vec(IM )

= ΠMF −ΠΠMFM−1vec(IM ), (73)

where the last equality is obtained by using the fact that

Π⊥
M−1JAd(θ)

= ΠMF [33]. Substituting (73) into (72) yields

CRB−1(θ) =
1

π2N
diag(p)ΩHF

[
(FHM2F)−1 (74)

− (FHM2F)−1FHvec(IM )vecH(IM )F(FHM2F)−1

vecH(IM )F(FHM2F)−1FHvec(IM )

]
FHΩdiag(p).

Let decompose the vector vec(IM ) as a sum of two vectors

h‖ and h⊥ where

h‖
.
= vec(IM )− (v −K)M2b

bHM2b
, (75)

h⊥
.
=

(v −K)M2b

bHM2b
. (76)

It follows from (30), (89) and the definitions of h‖ and h⊥,

given above, that

hH
⊥M−2h‖ =

(v −K)bHvec(IM )

bHM2b
− (v −K)2bHM2b

(bHM2b)2

=
(v −K)vecH(UnU

H
n )Tg

bHM2b
− (v −K)2

bHM2b

=
(v −K)vecH(UnU

H
n )vec(Iv)

bHM2b
− (v −K)2

bHM2b
= 0. (77)

Accordingly and making use of the fact that Π⊥
M−1JAd(θ)

=
ΠMF, we obtain

vecH(IM )F(FHM2F)−1FHvec(IM )

= vecH(IM )M−1Π⊥
M−1JAd(θ)

M−1vec(IM )

= vecH(IM )M−2vec(IM )− hH
‖ M−1ΠM−1JAd(θ)M

−1h‖

− hH
⊥M−1(M−1JAd(θ))

†HAd(θ)
HJHM−2h⊥

− hH
‖ M−1(M−1JAd(θ))

†HAd(θ)
HJHM−2h⊥

− hH
⊥M−2JAd(θ)(M

−1JAd(θ))
†M−1h⊥. (78)

From the definition of h⊥ in (76) and Lemma 4, we have

AH
d (θ)JHM−2h⊥ =

(v −K)AH
d (θ)JHb

bHM2b
= 0. (79)

Inserting (79) into (78) leads the last three terms in (78) to

vanish. Then, exploiting Π⊥
M−1JAd(θ)

= ΠMF once again yields

vecH(IM )F(FHM2F)−1FHvec(IM ) (80)

= vecH(IM )M−2vec(IM )− hH
‖ M−1Π⊥

MFM
−1h‖.

Given vec(IM ) = h‖ + h⊥ and from (77), it is observed that

vecH(IM )M−2vec(IM ) = hH
‖ M−2h‖ + hH

⊥M−2h⊥. (81)

E

{
(θ̂wls − θ)(θ̂wls − θ)H

}
≃ E

{
(∇2

θ
L(θ0, r̂, Q̂))−1∇θL(θ0, r̂, Q̂)(∇θL(θ0, r̂, Q̂))H(∇2

θ
L(θ0, r̂, Q̂))−1

}

= 1
π2 (diag(p)Φ

H(θ)AH
d (θ)diag(d)JHW

1
2Π⊥

W
1
2 JAd(θ)

W
1
2Jdiag(d)Ad(θ)Φ(θ)diag(p))−1

×diag(p)ΦH(θ)AH
d (θ)diag(d)JHW

1
2Π⊥

W
1
2 JAd(θ)

W
1
2QE{r̂r̂H}QHW

1
2Π⊥

W
1
2 JAd(θ)

W
1
2Jdiag(d)Ad(θ)Φ(θ)diag(p)

×(diag(p)ΦH(θ)AH
d (θ)diag(d)JHW

1
2Π⊥

W
1
2 JAd(θ)

W
1
2Jdiag(d)Ad(θ)Φ(θ)diag(p))−1. (66)
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Inserting (81) into (80) leads to

vecH(IM )F(FHM2F)−1FHvec(IM )

=
(v −K)2

bHM2b
+ hH

‖ F(FHM2F)−1FHh‖. (82)

Further, making use of (79) and Lemma 5, we can show that

ΩHF(FHM2F)−1FHh⊥ = ΩHM−1Π⊥
M−1JAd(θ)

M−1h⊥

= ΩHM−2h⊥

−ΩHM−1(M−1JAd(θ))
†HAd(θ)

HJHM−2h⊥

=
(v −K)ΩHb

bHM2b
= 0. (83)

Substituting (80) and (83) into (74) gives

CRB−1(θ) =
1

π2N
diag(p)ΩHF

[
(FHM2F)−1

−
(FHM2F)−1FHh‖h

H
‖ F(FHM2F)−1

(v−K)2

bHM2b
+ hH

‖ F(FHM2F)−1FHh‖

]
FHΩdiag(p)

=
1

π2N
diag(p)ΩHF (84)

×
(
FH

(
M2 +

bHM2b

(v −K)2
h‖h

H
‖

)
F

)−1

FHΩdiag(p),

where the last equality is obtained by using the matrix inver-

sion lemma [40]. Now, given the definition of h‖ in (75), it

is possible to show that

M2+
bHM2b

(v −K)2
h‖h

H
‖ = QM2Q+

M2bbHM2

bHM2b
. (85)

Inserting (85) into (84) completes the proof.

APPENDIX E

PROOF OF THEOREM 4

The proof is compromised of two steps. The first step

involves simplification of the covariance matrix of DoA es-

timation errors through inserting the optimal weighting matrix

given in Theorem 4 into (28). At the second step, we simplify

the CRB expression given in Theorem 3 through doing some

algebraic manipulations and show that the CRB coincides with

the simplified covariance matrix of DoA estimation errors

given in the first step.

A. Simplification of the errors covariance matrix

Considering the expression for Wopt from Theorem 4 and

exploiting FHJAd(θ) = 0 and Π⊥
W

1
2
optJAd(θ)

= Π
W

− 1
2

opt F
results in

W
1
2
optΠ

⊥
W

1
2
optJAd(θ)

W
1
2
opt = F(FHSF)−1FH . (86)

Let now introduce the following Lemma, whereby we can

proceed further with simplification of (86).

Lemma 6. The matrix QM2QH ∈ CM2×M2

can be decom-

posed as VVH , where VH ∈ CM2×M2

is a singular matrix

with rank M2 − 1 whose null space is spanned by b.

Proof. For any given matrices B and C, it is known that

rank(B−C) ≥ |rank(B)− rank(C)| [40]. Hence, recalling

the definition of Q in (29) , we have

rank(Q) ≥ M2 − 1. (87)

On the other hand, given (30), we obtain

bHQ = bH − vecH
(
UnU

H
n

)
Tg

v −K
bH . (88)

Let g′ ∈ {0, 1}(2v−1)×1 be a column vector with [g′]i = δ[i−
v]. Utilizing (116), (114) and [12, Corollary 3], we observe

Tg = T′g′ = vec(Iv). (89)

where T′ ∈ {0, 1}v2×2v−1 is defined in (114) in Appendix G.

Inserting (89) into (88) gives

bHQ = bH − tr(UnU
H
n )

v −K
bH = bH − bH = 0. (90)

which implies that

rank(Q) ≤ M2 − 1. (91)

Comparing (87) and (91) concludes that rank(Q) = M2 − 1.

The fact rank(Q) = M2 − 1 implies that the dimension of

the null space of QH is equal to 1. In addition, it follows from

(88) that b ∈ N (QH). This means that the vector b spans the

null space of QH .

Let now define the matrix V = QM. Since R is positive

definite, the matrix M =
(
RT ⊗R

) 1
2 is also positive definite,

implying that R(V) = R(Q). Hence, VH is also a matrix of

rank M2−1 whose null space is spanned by the vector b.

It follows from Lemma 4 and Lemma 6 that N (VH) ⊂
R(F) and, in turn, N (FH) ⊂ R(V). This implies that a K-

dimensional subspace of R(V) is a spanning set for the null

space of FH . Hence, making use of Lemma 6 and recalling

the definition of S in (36) result in

FHSF = FHΠFVVHΠFF+ FHbbHF

= FH
[
V̄ b

] [V̄H

bH

]
F, (92)

where V̄ = UvΛv ∈ CM2×(M2−K−1) with Uv ∈
CM2×(M2−K−1) being comprised of left-singular vectors of

ΠFV and the diagonal matrix Λv ∈ C(M2−K−1)×(M2−K−1)

its corresponding singular values, meaning that

R(V̄) ⊂ R(F), (93)

R(V̄) ⊂ R(V), (94)

rank(V̄) = M2 −K − 1. (95)

It follows from (94) and Lemma 6 that b /∈ R(V̄). From (95)

and the fact that b /∈ R(V̄), it can be deduced that

rank(
[
V̄ b

]
) = M2 −K = rank(F). (96)

Comparing (93), (95) and (96) proves that R(
[
V̄ b

]
) =

R(F). Hence, there is a full rank matrix X ∈
C(M2−K)×(M2−K) such that

[
V̄ b

]
= FX. (97)

Inserting (92) and (97) into (86) yields

W
1
2
optΠ

⊥
W

1
2
optJAd(θ)

W
1
2
opt = F†HX−HX−1F† = (FX)†H(FX)†

=
[
V̄†H b†H] [V̄†

b†

]
. (98)
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Considering (98), Lemma 5 and R(b†H) = R(b) gives

ΩHW
1
2
optΠ

⊥
W

1
2
optJAd(θ)

W
1
2
opt = ΩH

[
V̄†H 0

] [V̄†

b†

]

= ΩH(V̄V̄H)†. (99)

Moreover, given (92) and using Π⊥
W

1
2
optJAd(θ)

= Π
W

− 1
2

opt F
, we have

Π⊥
W

1
2
optJAd(θ)

W
1
2
optQM2QHW

1
2
optΠ

⊥
W

1
2
optJAd(θ)

=W
− 1

2
optF(F

HW−1
optF)

−1FHV̄V̄HF(FHW−1
optF)

−1FHW
− 1

2
opt

= Π⊥
W

1
2
optJAd(θ)

W
1
2
optV̄V̄HW

1
2
optΠ

⊥
W

1
2
optJAd(θ)

. (100)

Eventually, substituting (99) and (100) into (28), we find

Cwls =
1

π2N
diag−1(p)

(
ΩH(V̄V̄H)†Ω

)−1 ×
(
ΩH(V̄V̄H)†V̄V̄H(V̄V̄H)†Ω

) (
ΩH(V̄V̄H)†Ω

)−1
diag−1(p)

=
1

π2N

(
diag(p)ΩH(V̄V̄H)†Ωdiag(p)

)−1
(101)

B. Simplification of the CRB expression

Now, we will show that the CRB expression given in

Lemma 3 is also reduced to (101). Let decompose the vector
M2b√
bHM2b

as a sum of two vectors q‖ and q⊥ where

q‖ =

√
bHM2b

‖b‖2 b, q⊥ =
M2b√
bHM2b

−
√
bHM2b

‖b‖2 b.

(102)

It is observed that q‖ is a scaled version of b and that bHq⊥ =
0. Hence, recalling (34) and taking account of (92), we have

FHHF = FHVVF+ FH(q‖ + q⊥)(q‖ + q⊥)
HF

= FH
[
V̄ q‖ + q̄⊥

] [ V̄H

qH
‖ + q̄H

⊥

]
F, (103)

where q̄⊥ = ΠFq⊥. By definition, it is evident that q̄⊥ ∈
R(F) and bH q̄⊥ = 0, meaning that q̄⊥ ∈ R(V̄). In

addition, since b /∈ R(V̄), q‖ /∈ R(V̄) in turn. In con-

sequence, considering (93) and (95), it can be inferred that

R(
[
V̄ q‖ + q̄⊥

]
) = R(F) implying that there is a full rank

matrix D ∈ C(M2−K)×(M2−K) such that
[
V̄ q‖ + q̄⊥

]
= FD. (104)

By inserting (104) into (103) and doing some calculations

similar to (98), we obtain

F(FHHF)−1FH =
[
V̄ q‖ + q̄⊥

]†H
[

V̄H

qH
‖ + q̄H

⊥

]†
. (105)

Since
[
V̄ q‖ + q̄⊥

]
is a full column rank matrix, its pseu-

doinverse by definition can be computed as

[
V̄ q‖ + q̄⊥

]†
=

[
V̄V̄H V̄H q̄⊥
q̄H
⊥ V̄ ‖q‖‖2 + ‖q̄⊥‖2

]−1[
V̄H

qH
‖ + q̄H

⊥

]
=


V̄

† +
V̄†q̄⊥q̄H

⊥ΠV̄−V̄†q̄⊥(qH

‖ +q̄H

⊥ )

‖q‖‖2+‖q̄⊥‖2−q̄H

⊥ΠV̄q̄⊥

−q̄H

⊥ΠV̄+qH

‖ +q̄H

⊥

‖q‖‖2+‖q̄⊥‖2−q̄H

⊥ΠV̄q̄⊥


=


V̄

† − V̄†q̄⊥qH

‖

‖q‖‖2

q
†
‖


 ,

(106)

where that last equality is obtained by exploiting the fact that

q̄⊥ belongs to the range space of V̄. Now, inserting (105) and

(106) into the CRB expression given in (33) gives

CRB(θ)= (diag(p)ΩH
[
V̄†H − q‖q̄

H

⊥V̄†H

‖q‖‖2 q
†H
‖

]

×

V̄

† − V̄†q̄⊥qH

‖

‖q‖‖2

q
†
‖


Ωdiag(p))−1

=
1

π2N

(
diag(p)ΩH(V̄V̄H)†Ωdiag(p)

)−1
,

(107)

where the last equality is obtained by using Lemma 5 and the

fact that q‖ is a scaled version of b.

Eventually, comparing (101) into (107) concludes the proof.

APPENDIX F

PROOF OF LEMMA 2

We first prove positive definiteness of Wopt. It follows from

(92) to (97) in Appendix E-A that

Π⊥
JAd(θ)

SΠ⊥
JAd(θ)

= ΠFSΠF = FXXHFH . (108)

Consequently, we have

W−1
opt =

[
FX JAd(θ)

] [
FX JAd(θ)

]H
. (109)

The matrices FX ∈ CM2×(M2−K) and JAd(θ) ∈ CM2×K

are full column rank by definition. Further, it is easily

checked that FX and JAd(θ) are orthogonal subspaces, i.e.,

XHFHJAd(θ) = 0. Hence,
[
FX JAd(θ)

]
∈ CM2×M2

is

full rank. This implies that Wopt is also full rank and thereby

positive definite.

Now we show that the estimate of Wopt, obtained from

either CAB-MUSIC or CAB-ESPRIT, is always positive def-

inite regardless of the available number of snapshots. Let

assume that an arbitrary number of snapshots is available and

Ŝ = Q̂M̂2Q̂H + b̂b̂H denotes the estimate of S, obtained

based on the sample covarinace matrix. Further, let θ̂ be an

estimate of θ given by CAB-MUSIC or CAB-ESPRIT and F̂

is the estimate of F obtained from θ̂. Following similar kind

of arguments and derivations provided from Lemma 6 to (97)

in Appendix E-A, it can readily be shown that

Π⊥
JAd(θ̂)

ŜΠ⊥
JAd(θ̂)

= Π
F̂
ŜΠ

F̂
= F̂X̂X̂HF̂H , (110)

where X̂ ∈ C(M2−K)×(M2−K) is a full rank matrix. Hence,

using (110), we observe that

Ŵ−1
opt =

[
F̂X̂ JAd(θ̂)

] [
F̂X̂ JAd(θ̂)

]H
. (111)

Once again, we note that F̂X̂ ∈ CM2×(M2−K) and JAd(θ̂) ∈
CM2×K are full column rank by definition, and moreover,

they span orthogonal subspaces. Hence,
[
F̂X̂ JAd(θ̂)

]
∈

CM2×M2

and in turn Ŵopt is full rank.
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APPENDIX G

COMMUTATION MATRIX AND SOME RELEVANT LEMMAS

Definition 2. Let B be any matrix in Rp×p. Then, there exists

a permutation matrix Kp ∈ {0, 1}p2×p2

such that vec (BT ) =
Kpvec (B). This matrix, called the commutation matrix, is an

involutory and symmetric matrix, i.e., Kp = KT
p = K−1

p [37].

Lemma 7. KMJ†HTHKv = J†HTH where KM ∈
{0, 1}M2×M2

and Kv ∈ {0, 1}v2×v2

are commutation

matrices defined according to Definition 2.

Proof. It has been proved in [12] that J has orthogonal

columns. Further, recalling the definition of J given in Defi-

nition 1, since ‖vec(LT
i )‖2 = ‖vec(Li)‖2 for 0 < n < D− 1, it

is readily confirmed that

(JHJ)−1 = diag(
[

1
‖vec(LD−1)‖2 · · · 1

‖vec(L0)‖2 · · · 1
‖vec(LD−1)‖2

]T
).(112)

Recalling Aϑ and Av in the proof of Lemmas 1 and 3, and

based on [12, Appendix B], it is straightforward to show that

A∗
v(θ)⊙Av(θ) = T′Aϑ(θ), (113)

where T′ ∈ {0, 1}v2×2v−1 can be defined like J as

T′ =
[
vec(GT

v−1) · · · vec(G0) · · · vec(Gv−1)
]
, (114)

where [Gn]p,q =

{

1, if p− q = n,

0, otherwise.
. On the other hand,

comparing the vectorized form of (43) and (44) gives

TAd(θ) = A∗
v(θ)⊙Av(θ). (115)

Making use of (113), (115) and the fact that Aϑ(θ) =[
0(2v−1)×(D−v) I2v−1 0(2v−1)×(D−v)

]
Ad(θ) results in

T =
[
0v2×(D−v) T′ 0v2×(D−v)

]
. (116)

Combining (5), (112), (114) and (116) gives

KMJ†HTHKv = J†HTH = vec(L0)vec
T (G0)

‖vec(L0)‖2 (117)

+
∑v−1

i=1
vec(Li)vec

T (Gi)+vec(LT

i
)vecT (GT

i
)

‖vec(Li)‖2 .

Lemma 8. Let KM ∈ {0, 1}M2×M2

be the commutation ma-

trix as defined according to Definition 2 and KMW =
W∗KM . Then, it follows that

a) Q̂∗r̂∗ = KMQ̂r̂,

b) r̂T Q̂TKM = r̂HQ̂H ,

c) (J∂Ad(θ)
∂θk

)T = (J∂Ad(θ)
∂θk

)HKM ,

d) KMW
1
2∗(W

1
2JAd(θ))

†T = W
1
2 (W

1
2JAd(θ))

†H ,

e) KMW
1
2∗Π⊥∗

W
1
2 JAd(θ)

W
1
2∗KM = W

1
2Π⊥

W
1
2 JAd(θ)

W
1
2 .

Proof. The proof of each item is given in the following:

a) and b): Since R̂ is Hermitian [36], it readily follows that

r̂∗ = KM r̂. Hence, recalling (13) and making use of Lemma

7 and the fact that ÛnÛ
H
n is Hermitian, we obtain

Q̂∗r̂∗= KM

(
r̂− vec(IM )vecH(ÛnÛ

H

n
)KvTJ†KM r̂

v−K

)
= KMQ̂r̂. (118)

Further, transposing (118) results in item b).

c): Let a ∈ CK×1 be an arbitrary vector. From (4), we find

KMJAd(θ)a= vec
(
A∗(θ)diag (a)AT (θ)

)
= (JAd(θ))

∗
a. (119)

Since a is an arbitrary vector, it can be concluded that

KMJAd(θ) = (JAd(θ))
∗
. (120)

Eventually, replacing both side of (120) with their conjugate

transposes and taking derivative with respect to θk gives c).

d): Using (120) and KMW = W∗KM , it is observed that

KMW
1
2 (W

1
2JAd(θ))

†H = (121)

W∗ (JAd(θ))
∗ (

(JAd(θ))
HWJAd(θ)

)−1
= W

1
2∗(W

1
2JAd(θ))

†T .

Multiplying both sides of (121) by KM leads to d).

e) and f): Making use of (120), transpose of (121) and the

fact that W = KMW∗KM , we get

W
1
2Π⊥

W
1
2 JAd(θ)

W
1
2 = (122)

KMW∗KM −KMW∗(JAd(θ))
∗(W

1
2JAd(θ))

†∗W
1
2∗KM

= KMW
1
2∗Π⊥∗

W
1
2 JAd(θ)

W
1
2∗KM .

Lemma 9. KMWopt = W∗
optKM

Proof. Since KM is involutory and symmetric, to prove the

lemma, we can equivalently show that KMW∗
optKM = Wopt.

From (120), it is readily observed that

KMΠ⊥∗
JAd(θ)

= Π⊥
JAd(θ)

. (123)

Now, it follows from (120) and (123) that

KMW∗
optKM = (124)

(
Π⊥

JAd(θ)
KMS∗KMΠ⊥

JAd(θ)
+ JAd(θ)A

H
d (θ)JT

)−1
.

In consequence, KMW∗
optKM = Wopt iff KMS∗KM = S. Ex-

ploiting Lemma 7 and recalling (30), we find

KMb∗= KMJ†HTHKvvec
(
UnU

H
n

)
= b. (125)

Further, recalling (29) and using transpose of (125), we have

KMQ∗ = KM − KMvec(IM )bT

v−K
= QKM (126)

Now recalling (36) and making use of (125) and (126) gives

KMS∗KM= KMQ∗M2∗QTKM +KMb∗bTKM

= QKMM2∗KMQH + bbH = S, (127)

where the last equality is obtained by using the fact that

KMM2∗KM = KM(R⊗RT )KM = RT ⊗R = M2.
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