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Abstract—In this work we address the problem of optimal
estimating the position of each agent in a network from relative
noisy vectorial distances with its neighbors. Although the problem
can be cast as a standard least-squares problem, the main
challenge is to devise scalable algorithms that allow each agent to
estimate its own position by means of only local communication
and bounded complexity, independently of the network size
and topology. We propose a consensus-based algorithm with
the use of local memory variables which allows asynchronous
implementation, has guaranteed exponential convergence to the
optimal solution under mild deterministic and randomised com-
munication protocols, and requires minimal packet transmission.
In the randomized scenario we then study the rate of convergence
in expectation of the estimation error and we argue that it can be
used to obtain upper and lower bound for the rate of converge in
mean square. In particular, we show that for regular graphs the
convergence rate in expectation is reduced by a factor N , which
is the number of nodes, which is the same asymptotic degradation
of memory-less asynchronous consensus algorithms. Additionally,
we show that the asynchronous implementation is also robust to
delays and communication failures. We finally complement the
analytical results with some numerical simulations comparing
the proposed strategy with other algorithms which have been
recently proposed in the literature.

Index Terms—Wireless sensor networks, distributed localiza-
tion algorithms, consensus algorithms

I. INTRODUCTION

The proliferation of relatively inexpensive devices capa-
ble of communicating, computing, sensing, interacting with
the environment and storing information is promising an
unprecedented number of novel applications throughout the
cooperation of these devices toward a common goal. These
applications include swarm robotics, wireless sensor networks,
smart energy grids, smart traffic networks, and smart camera
networks. These applications also pose new challenges, of
which scalability is one of the major ones. Scalability is in-
tended as the ability for an application to continue functioning
without any dramatic performance degradation even if the
number of devices involved keep increasing. In particular, an
application is scalable if it is not necessary to increase HW
resources or to adopt a more complex SW algorithms in each
device even if the total number of devices increases.

In this work we address the problem of designing algorithms
that are capable to reconstruct the optimal estimate of the
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location of a device from noisy relative measurements from
its neighbors in a connected network. In particular, we want to
design distributed algorithms that allow each device to recon-
struct its own position only from exchanging information with
its neighbors, regardless of the size of the network. Moreover,
these algorithms must be scalable, i.e. their computational
complexity, bandwidth and memory requirements should be
independent of the network size. Finally, the estimate provided
should asymptotically converge to solution of a centralized
optimization problem.

Distributed optimization has being attracting ever growing
attention in the past years since many problems in large scale
network have been cast as convex optimization problem. In
particular, the problem at hand in this work can be cast as the
following unconstrained optimization problem:

min
x1,...,xN

|E|∑
(i,j)∈E

fij(xi − xj) (1)

where xi ∈ R`, E represents all the pair of nodes for
which are available relative measurements and fij are convex
functions. Many problems can be written in this framework
such as sensor localization [1], [2], sensor calibration [3],
clock synchronization [4] and camera localization [5], [6]. For
example, in the context of localization from vectorial relative
distances in a plane, the cost function fij are given by:

fij(xi − xj) = ‖xi − xj − zij‖2

where zij ∈ R` is the noisy measurement of the relative
(vector) distance of node i from node j. As a consequence,
the optimization problem in Eqn. (1) becomes a distributed
least-square problem. Several scalable distributed solutions to
this problem are already available in the literature. In [1], [2]
the authors propose a distributed Jacobi solution based on
a synchronous implementation, which was later extended to
account for asynchronous communication and packet losses
[7]. Differently, in [3] a broadcast consensus-based algo-
rithm, which is suitable for asynchronous implementation,
is proposed but the local estimates do not converge and
exhibits an oscillatory behaviour around the optimal value.
A similar approach has been proposed in [8], [9] where the
local ergodic average of the gossip asynchronous algorithm
is proved to converge to the optimal value as 1/k, where k
is the number of iterations. An alternative approach based
on the Kaczmarz method for the solution of general linear
systems has been suggested in [10], however a practical
asynchronous implementation for distributed localization from
relative measurements which satisfies the specific edge and
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node activation probabilities dictated by the algorithm, is not
given, moreover, no robustness analysis in terms of delays is
provided. Finally, in [11] the authors propose an asynchronous
strategy based on local greedy minimization which requires
a substantial coordination and a large number of exchanged
messages.

The main contribution of this work is to propose a novel
asynchronous algorithm whose main idea consists in casting
the estimation problem as a consensus problem under some
suitable changes of coordinates, and then to add some extra
memory variables at each node to keep track of the estimated
location of its neighbors, i.e. the nodes from which they
collected the relative distance measurements. Estimates of
these local variables eventually converge to the estimates
of the neighbors, thus guaranteeing the convergence of the
whole algorithm, at the price of some delay. This strategy
has several relevant advantages, namely (i) is scalable, (ii)
has proven exponential rate of convergence under mild as-
sumptions, (iii) is robust to packet losses and delays, and (iv)
requires the transmission of a single communication packet
per each iteration. This last feature is particularly relevant
for Wireless Sensor Networks (WSNs) applications since
agents have limited energy budget and communication is more
expensive than computation from an energy point of view.
We also study the performance of the proposed algorithm in
terms of the convergence rate. This task is particularly chal-
lenging since the proposed algorithm turns out to be a higher
order consensus algorithm, for which little analytic tools are
available. In fact, the few works available in the literature
which address the rate of convergence of randomized higher
order consensus algorithms are limited to the convergence in
expectation [12]. In this work, we exactly compute the rate of
convergence in expectation of our algorithm for regular graphs,
and through extensive numerical simulations we conjecture
that it also provides upper bound for rate of convergence in
mean square. Moreover, we show that, asymptotically, such
rate of convergence in expectation is reduced by a factor
N , where N is the number of nodes, which is the same of
standard memoryless asynchronous consensus algorithms, thus
implying that asymptotically in N the reduction of rate of
convergence due to memory is negligible.

We also prove the convergence of the proposed algorithm
when bounded delays and packet losses are present, thus
making it particularly suitable for applications using lossy
wireless communication. We finally complement the theoreti-
cal results with some numerical simulations which show that
the proposed algorithm has a performance in terms of rate
of convergence per iteration which is slightly slower than
the fastest algorithms available in the literature. However, it
greatly outperforms them if rate of convergence is computed
in terms of number of exchanged messages, i.e, the estimation
error obtained by sending a fixed number of packets is much
lower for our proposed algorithm than the other algorithms
available in the literature.

The paper is organized as follows. In Section II we formu-
late the problem we aim at solving. In Section III we introduce
the synchronous consensus-based algorithm (denoted as s-
CL). In Section IV we propose a more realistic asynchronous

implementation of the s-CL algorithm (denoted as a-CL). In
Section V we establish the convergence of the a-CL algorithm
and we provide some bounds on the rate of convergence in
mean-square. In Section VI we show that the a-CL algorithm
is robust to delays and communication failures. In Section
VII we provide some numerical results comparing the a-CL
algorithm to other strategies recently proposed in the literature.
Finally in Section VIII we gather our conclusions.

A. Mathematical preliminaries
Before proceeding, we collect some useful definitions and

notations. In this paper, G = (V, E) denotes an directed graph
where V = {1, ..., N} is the set of vertices and E is the set
of directed edges, i.e., a subset of V × V . More precisely the
edge (i, j) is incident on node i and node j and is assumed
to be directed away from i and directed toward j. The graph
G is said to be bidirected if (i, j) ∈ E implies (j, i) ∈ E .

Given a directed graph G = (V, E), a directed path in G
consists of a sequence of vertices (i1, i2, . . . , ir) such that
(ij , ij + 1) ∈ E for every j ∈ {1, . . . , r − 1}. An undirected
path in G consists of a sequence of vertices (i1, i2, . . . , ir)
such that either (ij , ij+1) ∈ E or (ij+1, ij) ∈ E for every
j ∈ {1, . . . , r − 1}1. The directed graph G is said to be
strongly connected (resp. weakly connected) if for any pair
of vertices (i, j) there exists a directed path (resp. undirected
path) connecting i to j. Given the directed graph G, the
set of neighbors of node i, denoted by Ni, is given by
Ni = {j ∈ V | (i, j) ∈ E}. A directed graph is said to be
regular if all the nodes have the same number of neighbors.

Given a directed graph G = (V, E) with |E| = M let the
incidence matrix A ∈ RM×N of G be defined as A = [aei],
where aei = 1,−1, 0, if edge e is incident on node i and
directed away from it, is incident on node i and directed toward
it, or is not incident on node i, respectively.

Let 1N be the N -dimensional column vector with all
components equal to one. If there is no risk of confusion we
will drop the subscript N . Given a matrix B with B† we
denote its pseudo-inverse. Given a vector v with vT we denote
its transpose. A matrix P ∈ RN×N is said to be stochastic if
all its elements are nonnegative and P1 = 1. Moreover it is
said to be doubly stochastic if it is stochastic and, additionally,
1TP = 1T . A stocastic matrix P is primitive if it has only
one eigenvalue equal to 1 and all the other eigenvalues are
strictly inside the unitary circle. With the simbol ρess(P ) we
denote the essential spectral radius of P (see [13]), namely,
the second largest, in absolute value eigenvalue of P .

The symbol E denotes the expectation operator. Given
two functions f, g : N 7−→ R, we say that f ∈ o(g) if
limn→∞

f(n)
g(n) = 0.

II. PROBLEM FORMULATION

The problem we deal with is that of estimating N variables
x1, . . . , xN from noisy measurements of the form

zij := xi − xj + nij , i, j ∈ {1, . . . , N}, (2)

1Basically, an undirected path is a path from a node to another node that
does not respect the orientation of the edges.
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where nij is zero-mean measurement noise. Though the vari-
ables are often vector-valued, for simplicity, in this paper
we assume that xi ∈ R, i ∈ {1, . . . , N}. This estimation
problem can be naturally associated with a measurement graph
Gm = (V ; Em). The vertex set V of the measurement graph
consists of the set of nodes V = {1, . . . , N} where N
is the number of nodes, while its edge set Em consists of
all of the ordered pairs of nodes (i, j) such that a noisy
measurement of the form (2) between i and j is available to
node i. The measurement errors on distinct edges are assumed
uncorrelated. The measurement graph Gm is a directed graph
since (i, j) ∈ Em implies the measurement zij is available
to node i, while (j, i) ∈ Em implies the measurement zji is
available to node j, and these two are in general distinct.

Next we formally state the problem we aim at solving.
Let x ∈ RN be the vector obtained stacking together all
the variables x1, . . . , xN , i.e., x = [x1, . . . , xN ]T , and let
z ∈ RM and n ∈ RM , where M = |Em|, be the vectors
obtained stacking together all the measurements zij and the
noises nij , respectively. Additionally, let Rij > 0 denote the
covariance of the zero mean error nij , i..e, Rij = E[n2ij ],
and let R ∈ RM×M be the diagonal matrix collecting in its
diagonal the covariances of the noises nij , (i, j) ∈ E , i.e.,
R = E[nnT]. Observe that Eqn. (2) can be rewritten in a
vector form as

z = Ax + n

Now, define the set

χ := argmin
x∈RN

(z−Ax)TR−1(z−Ax).

The goal is to construct an optimal estimate xopt of x in a
least square sense, namely, to compute

xopt ∈ χ (3)

Assume the measurement graph Gm to be weakly connected,
then it is well known (see [2]) that

χ =
{(
ATR−1A

)†
ATR−1z + α1

}
.

Moreover let

x∗opt =
(
ATR−1A

)†
ATR−1z,

then x∗opt is the minimum norm solution of (3), i.e.,

x∗opt = min
xopt∈χ

‖ xopt ‖

The matrix ATR−1A is called in literature the Weighted
Generalized Grounded Laplacian [2].

Remark II.1 Observe that, just with relative measurements,
determining the x′is is only possible up to an additive constant.
This ambiguity might be avoided by assuming that a node (say
node 1) is used as reference node, i.e., x1 = 0.

III. A SYNCHRONOUS DISTRIBUTED CONSENSUS BASED
SOLUTION

To compute an optimal estimate xopt directly, one needs
all the measurements and their covariances (z, R), and the
topology of the measurement graph Gm. In this section the

goal is to compute the optimal solution in a distributed
fashion, employing only local communications. In particular
we assume that a node i and another node j can communicate
with each other if either (i, j) ∈ Em or (j, i) ∈ Em. Accord-
ingly, we introduce the communication graph Gc(V, Ec), where
(i, j) ∈ Ec if either (i, j) ∈ Em or (j, i) ∈ Em. Observe that,
if (i, j) ∈ Ec then also (j, i) ∈ Ec, namely, Gc is a bidirected
graph. From now on, Ni denotes the set of neighbors of node
i in the communication graph Gc(V, Ec).

In what follows we introduce a distributed solution which
is based on standard linear consensus algorithm. A discussion
of the linear consensus algorithm can be found in the review
papers [14], [15], hence we refrain from describing it here. In-
stead we make the presentation of the algorithm self-contained.
Firstly, we assume that the communications among the nodes
are synchronous, namely, all nodes perform their transmissions
and updates at the same instant, and design the algorithm for
this scenario. We refer to this algorithm as the synchronous
consensus-based localization algorithm (denoted hereafter as
s-CL algorithm). In section IV we modify the s-CL algorithm
to make it suitable to asynchronous communications. We
assume that before running the s-CL algorithm, the nodes
exchange with their neighbors their relative measurements as
well as the associated covariances. So every node has access to
the measurements on the edges that are incident to it, whether
the edge is directed to or away from it. Each node uses the
measurements obtained initially for all future computations.
The s-CL algorithm is formally described as follows.
Processor states: For i ∈ {1, . . . , N}, node i stores in

memory the measurements {zij , (i, j) ∈ Em}, and
{zji, (j, i) ∈ Em} , and the associated covariances
{Rij , (i, j) ∈ Em} and {Rji, (j, i) ∈ Em}. Moreover
node i stores in memory an estimate x̂i of xi.

Initialization: For i ∈ {1, . . . , N}, node i initializes its
estimate x̂i(0) to any arbitrary value.

Transmission iteration: For k ∈ N, at the start of the
(k + 1)- th iteration of the algorithm, node i transmits
its estimate x̂i(k) to all its neighbors. It also gathers the
k-th estimates of its neighbors, x̂j(k), j ∈ Ni.

Update iteration: For k ∈ N, node i, i ∈ {1, . . . , N}, based
on the information received from its neighbors, updates
its estimate as follows

x̂i(k + 1) := pii x̂i(k) +
∑
j∈Ni

pij x̂j(k) + bi

where

bi = ε
∑

(i,j)∈Em

R−1ij zij − ε
∑

(j,i)∈Em

R−1ji zji

and where

pij =


ε(R−1ij +R−1ji ) if (i, j) ∈ Em and (j, i) ∈ Em

εR−1ij if (i, j) ∈ Em and (j, i) /∈ Em
εR−1ji if (j, i) ∈ Em and (i, j) /∈ Em

and
pii = 1−

∑
j∈Ni

pij

being ε a positive constant a-priori assigned to the nodes.
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Now, let P ∈ RN×N be the matrix defined by the weights pij
above introduced. One can see that such matrix P is equal to

P = I − εATR−1A.

Moreover let
b = εATR−1z,

and let
x̂(k) = [x̂1(k), . . . , x̂N (k)]

T
.

Then the s-CL algorithm can be written in a compact form as

x̂(k + 1) = P x̂(k) + b

To characterize the convergence properties of the s-
CL algorithm, we next introduce two definitions
and a crucial property of the matrix P . First, let
dmax = max {|Ni|, i ∈ {1, . . . , N}}. Second, let
Rmin = min {Rij , (i, j) ∈ Em}. Observe that, if
0 < ε < 1/(2dmaxR

−1
min), then the matrix P is stochastic

and, if, in addition, the measurement graph Gm is weakly
connected, and, in turn, the communication graph Gc is
strongly connected, then the matrix P is primitive. We have
the following Proposition.

Proposition III.1 Consider the s-CL algorithm running over
a weakly connected measurement graph Gm. Let ε be such that
0 < ε < 1/(2dmaxR

−1
min). Moreover let x̂i, i ∈ {1, . . . , N}, be

initialized to any real number. Then the following two facts
hold true

(i) the evolution k → x̂(k) asymptotically converges to an
optimal estimate xopt ∈ χ, i.e., there exists α ∈ R, such
that

lim
k→∞

x̂(k) = x∗opt + α1;

where α linearly depends on x̂(0).
(ii) the convergence is exponential, namely, there exists C >

0, ρess < 1 such that

‖x̂(k)−
(
x∗opt + α1

)
‖

≤ Cρkess(P ) ‖x̂(0)−
(
x∗opt + α1

)
‖.

Proof: We start by proving item (i). Let us define the
change of variable ξ = x̂− x∗opt. Since x∗opt = Px∗opt + b, it is
possible to write

x̂(k + 1)− x∗opt = P x̂(k) + b− x∗opt

= P x̂(k) + b− (Px∗opt + b)

= P (x̂(k)− x∗opt)

and, in turn, ξ(k + 1) = Pξ(k). This equation describes the
iteration of the classical consensus algorithm. Since P is a
primitive doubly stochastic matrix, we have that

ξ(k)→ 11T

N
ξ(0)

where ξ(0) = x̂(0)− x∗opt. This implies that

x̂(k)→ x∗opt +
11T

N
x̂(0)− 11T

N
x∗opt

The fact that 11T

N x∗opt = 0 concludes the proof of item (i).

Concerning item (ii) it is well known ([13]) that the con-
vergence rate of a consensus algorithm ruled by a primitive
matrix P , is exponential and is upper bounded by the essential
spectral radius ρess(P ).

Remark III.2 The s-CL algorithm is similar to the algorithm
proposed in [8]. However in [8], the measurement graph is
assumed to be undirected, namely, both measurements zij
and zji are available to node i and j under the additional
assumption that zij = −zji.

Remark III.3 The authors in [16] solved the problem for-
mulated in (3) proposing a synchronous algorithm that imple-
ments the Jacobi iterative method. The performance of this
algorithm, in terms of rate of convergence to the optimal
solution, is similar, for many families of measurement graphs,
to the performance of the synchronous consensus-based algo-
rithm introduced in this section.

IV. AN ASYNCHRONOUS IMPLEMENTATION OF
DISTRIBUTED CONSENSUS BASED SOLUTION

The distributed algorithm illustrated in the previous section,
has an important limitation: it is applicable only to sensor
networks with synchronized and reliable communication. In-
deed, the s-CL algorithm requires that there exists a predeter-
mined common communication schedule for all nodes and, at
each communication round, each node must simultaneously
and reliably communicate its information. The aim of this
section is to reduce the communication requirements of the
s-CL algorithm, in particular in terms of synchronization.
To do so, we next introduce the asynchronous Consensus-
based Localization algorithm (denoted as a-CL hereafter). This
algorithm is based on an asymmetric broadcast communication
protocol. Differently from the s-CL, at each iteration of the
a-CL there is only one node transmitting information to all
its neighbors. Since the actual value of neighboring estimates
are not available at each iteration, we assume that each node
stores in its local memory a copy of the neighbors’ variables
recorded from the last communication received. For j ∈ Ni,
we denote by x̂

(i)
j (k) the estimate of xj kept in i’s local

memory at the end of the k-th iteration. If node j performed
its last transmission to node i during h-th iteration, h ≤ k,
then x̂(i)j (k) = x̂j(h).

The a-CL algorithm is formally described as follows.
Processor states: For i ∈ {1, . . . , N}, node i stores in

memory the measurements zij , zji and the covariances Rij ,
Rji for all j ∈ Ni. Moreover node i stores in memory also
the estimate x̂i of xi and, for j ∈ Ni an estimate x̂(i)j of x̂j .

Initialization: Every node i initializes its estimate x̂i and
the variables x̂(i)j , j ∈ Ni, to arbitrary values.

Transmission iteration: For k ∈ N, at the start of the
(k + 1)-th iteration of the algorithm, there is only one node,
say i, which transmits information to its neighbors; precisely,
node i sends the value of its estimate x̂i(k) to node j, j ∈ Ni.

Update iteration: For j ∈ Ni, node j performs the
following actions in order

(i) it sets x̂(j)i (k+ 1) = x̂i(k), while for s ∈ Nj \ {i}, x̂(j)s
is left unchanged, i.e., x̂(j)s (k + 1) = x̂

(j)
s (k);
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(ii) it updates x̂j as

x̂j(k+ 1) := pjj x̂j(k) +
∑
h∈Nj

pjhx̂
(j)
h (k+ 1) + bj . (4)

Clearly for s /∈ Ni, x̂s is left unchanged during the (k+ 1)-th
iteration of the algorithm, i.e, x̂s(k + 1) = x̂s(k).

Remark IV.1 Observe that the above algorithm has been de-
scribed assuming that the communication channels are reliable,
i.e, no packet losses occur, and that the communication delays
are negligible, i.e., when node i perform a transmission, the
estimate x̂i is instantaneously used by its neighbors. We will
come back on these non-idealities on Section VI.

Next, we rewrite the updating step of the a-CL in a more
compact way. Observe preliminarily that, under the assumption
of reliable communications over the network, the broadcast
protocol lets only two information about the estimate of xi,
i ∈ V , to flow through the network: specifically, x̂i(k), that is
the actual value of the estimate x̂i at iteration k, and x̂i(t′i(k)),
being t′i(k) the iteration during which node i has performed its
last transmission up to iteration k of a-CL (that is, x̂i(t′i(k))
is the value of x̂i at its last communication round). Notice
that, for j ∈ Ni, x̂(j)i (t′′) = x̂i(t

′
i(k)) for all t′′ such that

t′i(k) < t′′ ≤ k.
Now let us define x′i(k) = x̂i(k) and x′′i (k) = x̂i(t

′
i(k))

and, accordingly, let x′(k) = [x′1(k), . . . , x′N (k)]
T and

x′′(k) = [x′′1(k), . . . , x′′N (k)]
T . Moreover let Qi ∈ R2N×2N

be defined as

Qi =

[
Q

(i)
11 Q

(i)
12

Q
(i)
21 Q

(i)
22

]
(5)

where

Q
(i)
11 =

∑
h/∈Ni

ehe
T
h +

∑
j∈Ni

(
pjjeje

T
j + pjieje

T
i

)
Q

(i)
12 =

∑
j∈Ni

ej

 ∑
h∈Nj/i

pjhe
T
h


Q

(i)
21 = eie

T
i

Q
(i)
22 = I − eieTi

being e`, ` ∈ {1, . . . , N}, the N -dimensional vector having
all the components equal to zero except the `-th component
which is equal to 1. Observe that, for i ∈ {1, . . . , N}, Qi is
a 2N -dimensional stochastic matrix. Finally let

Bi =

[ ∑
j∈Ni

eTj b

0N

]
Assume, w.l.o.g., that node i is the node performing the
transmission during the (k+1)-th iteration of the a-CL. Hence
the updating step of a-CL can be written in vector form as[

x′(k + 1)
x′′(k + 1)

]
= Qi

[
x′(k)
x′′(k)

]
+Bi. (6)

Now let us introduce the auxiliary variable

ξ(k) =

[
x′(k)
x′′(k)

]
−
[

x∗opt
x∗opt

]
.

By exploiting the fact that, for i ∈ {1, . . . , N},[
x∗opt
x∗opt

]
= Qi

[
x∗opt
x∗opt

]
+Bi (7)

we have that the variable ξ satisfies the following 2N -
dimensional recursive equation

ξ(k + 1) = Qiξ(k). (8)

Observe that x̂(k) → x∗opt + α1 if and only if ξ(k) → α1.
Moreover, since Qi is a stochastic matrix for any i ∈
{1, . . . , N}, we have that (8) represents a 2N -dimensional
time-varying consensus algorithm.

In next sections, we analyze the convergence properties
and the robustness to delays and packet losses of the a-CL
algorithm by studying system (8) resorting to the mathematical
tools developed in the literature of the consensus algorithms.
In particular we will provide our results considering two dif-
ferent scenarios which are formally described in the following
definitions.

Definition IV.2 (Randomly persistent communicating network)
A network of N nodes is said to be a randomly persistent
communicating network if there exists a N -upla (β1, . . . , βN )
such that βi > 0, for all i ∈ {1, . . . , N}, and

∑N
i=1 βi = 1,

and such that, for all k ∈ N,

P [the transmitting node at iteration k is node i] = βi.

Definition IV.3 (Uniformly persistent communicating network)
A network of N nodes is said to be a uniformly persistent
communicating network if there exists a positive integer
number τ such that, for all k ∈ N, each node transmits the
value of its estimate to its neighbors at least once within the
time interval [k, k + τ).

V. PERFORMANCE ANALYSIS OF A-CL ALGORITHM
UNDER RANDOMLY PERSISTENT COMMUNICATIONS

The following result characterizes the convergence prop-
erties of the a-CL when the network is randomly persistent
communicating.

Proposition V.1 Consider a randomly persistent communicat-
ing network of N nodes running the a-CL algorithm over a
weakly connected measurement graph Gm. Let ε be such that
0 < ε < 1/(2dmaxR

−1
min). Moreover let x̂i, i ∈ {1, . . . , N},

x̂
(i)
j , j ∈ Ni, be initialized to any real number. Then the

following facts hold true
(i) the evolution k → x̂(k) converges almost surely to an

optimal solution xopt ∈ χ, i.e., there exists α ∈ R such
that

P
[

lim
k→∞

x̂(k) = x∗opt + α1

]
= 1.

(ii) the evolution k → x̂(k) is exponentially convergent in
mean-square sense, i.e., there exist C > 0 and 0 ≤ ρ <
1 such that

lim
k→∞

E
[
‖x̂(k)− (x∗opt + α1)‖2

]
≤ CρkE

[
‖x̂(0)− (x∗opt + α1)‖2

]
.
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Proof: The proof of Proposition V.1 is based on proving
the convergence to consensus of (8) using the mathematical
tools developed in [17]. Let σ be the random process such
that σ(k) denotes the node performing the transmission action
at the beginning of the k + 1-th iteration. Clearly, in the
randomized scenario we are considering, we have that, for
i ∈ {1, . . . , N}, P[σ(k) = i] = βi for all k. Let

S(k) =

k∏
h=0

Qσ(h).

Observe that S(k) inherits the same block structure of the
matrices {Qi}Ni=1, namely we can write

S(k) =

[
S11(k) S12(k)
S21(k) S22(k)

]
As consequence of Theorem 3.1 in [17] the a-CL reaches

almost surely consensus if and only if, for every i and j in V

P [Eij ] = 1, (9)

where
Eij = {∃`,∃k |Si`(k)Sj`(k) > 0} .

Now observe that, since the measurement graph is weakly
connected, then the communication graph is a connected
undirected graph. This fact together with the fact the diagonal
elements of Q(i)

11 are all positive for any i ∈ {1, . . . , N}
implies that there exists almost surely k̄ such that, for all
k′ ≥ k̄, all the elements of the matrix S11(k′) are strictly
greater than 0. Assume now, without loss of generality, that
σ(k′) = i, for k′ ≥ k. Then, since the i-th row of S21(k′+ 1)
is equal to eieTi S11(k′), it turns out that, all the elements of the
i-th row of S21(k′+1) are strictly greater than 0. Moreover, it
is easy to see that they will remain strictly greater than 0 also
for any k′′ ≥ k′. Hence we can argue that, there exists almost
surely, also a k̄′ such that for all k′ ≥ k̄′, all the elements of
the matrix S21(k′) are strictly greater than 0. It follows that
the property stated in (9) is satisfied for any k ≥ k̄′ and for
any ` ∈ {1, . . . , N}. This concludes the proof of item (i).

Concerning item (ii), we again resort to the results in [17].
Let Ω = I − 1/2N11T where in this expression we assume
that I is the 2N -dimensional identity matrix and the vector
1 is 2N -dimensional. From the results in [17], it follows
that to study the rate of convergence of E

[
‖ξ(k)− α1‖2

]
is

equivalent to study the convergence rate of E‖Ωξ(k)‖2 and in
particular of the linear recursive system

∆(t+ 1) = E
[
QTσ(0)∆(t)Qσ(0)

]
where ∆(0) = Ω. Observe that ∆(t) is the evolution of a
linear dynamical system which can be written in the form

∆(t+ 1) = L(∆(t))

where L : R2N×2N → R2N×2N is given by

L(M) = E
[
QTσ(0)MQσ(0)

]
.

As highlighted in [17], the linear operator L can be represented
by the matrix L = E[Qσ(0) ⊗ Qσ(0)]

T where ⊗ denotes
the Kronecker product of matrices. Following the proof of

Proposition 4.3 of [17], one can see that LT is a primitive
stochastic matrix which, therefore, has the eigenvalue 1 with
algebraic multiplicity 1. Moreover, LT(1⊗ 1) = (1⊗ 1) and
(1⊗1)(Ω⊗Ω) = 0, from which it follows that E‖Ωξ(k)‖2 ≤
Cρess(L

T)E‖Ωξ(0)‖2 where ρess(LT) denotes the essential
spectral radius of LT.

A. Bounds on the convergence rate of the a-CL algorithm

In this section we provide some insights on the conver-
gence rate of the a-CL algorithm in the randomly persistent
communicating scenario. To do so, we consider the algorithm
(8) whose performance in terms of rate of convergence to the
consensus can be analyzed following again the treatment in
[17]. Typically, one would like to study the convergence rate
of a randomized consensus algorithm by providing a mean-
square analysis of the behavior of the distance between the
state and the asymptotic consensus point, namely, by analyzing
the speed convergence of the quantity E

[
‖ξ − α1‖2

]
. Unfor-

tunately, this is not a trivial task in general.
To overcome this difficulty we introduce the auxiliary vari-

able Ω ξ where Ω = I− 1
2N 11T 2. The first consequence of the

results obtained in [17] is that the quantities E
[
‖ξ − α1‖2

]
and E

[
‖Ωξ‖2

]
have the same exponential convergence rate to

zero, or, more formally, given any initial condition ξ(0),

lim sup
k→∞

E
[
‖ξ(k)− α1‖2

]1/k
= lim sup

k→∞
E
[
‖Ωξ(k)‖2

]1/k
.

For this reason, in what follows we study the right-hand
expression, which turns out to be simpler to analyze. In order
to have a single figure not dependent on the initial condition,
we focus on this worst case exponential rate of convergence

R = sup
ξ(0)

lim sup
k→∞

E
[
‖Ωξ(k)‖2

]1/k
It has been proved in Proposition 4.4 of [17] that[

ρess(Q̄)
]2 ≤ R ≤ sr(E(QTi ΩQi)). (10)

where Q̄ is the average consensus matrix, namely, Q̄ =
E[Qi] =

∑N
i=1 βiQi, and where sr(E(QTi ΩQi)) denotes the

spectral radius of the semidefinite positive matrix E(QTi ΩQi),
i.e., its largest eigenvalue. Unfortunately, it turns out from a
numerical inspection over significant families of graphs, like
Cayley graphs (see [13]), random geometric graphs, that the
upper bound sr(E(QTi ΩQi)) is greater than 1, that is, it is not
informative for our analysis. However we have run a number of
MonteCarlo simulations randomized over graphs of different
topology and size and over different initial conditions, and it
always resulted that lim supk→∞E

[
‖Ωξ(k)‖2

]1/k ≤ ρess(Q̄).
Based on this experimental evidence we formulate the follow-
ing conjecture.

Conjecture V.2 The quantity ρess(Q̄) is an upper bound for
the exponential convergence rate R, i.e.,

R ≤ ρess(Q̄)

2In this case the identity matrix I is (2N×2N)-dimensional and the vector
1 is 2N -dimensional.
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The above conjecture and the fact that
[
ρess(Q̄)

]2 ≤ R
motivates to study ρess(Q̄).

Remark V.3 Notice that equation (8) describes a higher or-
der consensus algorithm, for which little analytic tools are
available. In fact, the few works available in the literature
which address the rate of convergence of randomized higher
order consensus algorithms are limited to the convergence in
expectation [12].

B. Rate Analysis of a-CL algorithm for regular graphs

In this section we assume that the measurements graph
Gm = (V, Em) is a strongly connected bidirected regular graph
such that, for i ∈ {1, . . . , N}, |Ni| = ν. Moreover we assume
the following properties.

Assumption V.4 We have that
(i) the error measurements covariances are all identical,

i.e., Rij = R for all (i, j) ∈ Em;
(ii) ε = R/(2(ν + 1));

(iii) the probabilities {β1, . . . , βN} are uniform, i.e., β1 =
. . . = βN = 1/N .

Observe that, from properties (i) and (ii) of Assumption V.4, it
turns out that the matrix P = I−εATR−1A, associated to the
s-CL algorithm, is symmetric and such that Pij = 1/(ν+1) for
j ∈ Ni∪{i}. Let λ1(P ) = 1 > λ2(P ) ≥ . . . ≥ λN (P ) be the
eigenvalues of P . Then ρess(P ) = max {|λ2(P )|, |λN (P )|}.
The following Lemma illustrates how the 2N eigenvalues of
Q̄ are related to those of P .

Lemma V.5 Consider the a-CL algorithm running over a
bidirected regular graph Gm = (V, Em) such that, for i ∈
{1, . . . , N}, |Ni| = ν. Assume Assumption V.4 holds true.
Then the 2N eigenvalues of Q̄ are the solutions of the
following N second-order equations

f(s, λi, N, ν) = s2 + (a+ b)s+ (ab+ c) (11)

where

a = −
[
N − ν
N

+
λi
N

+
ν − 1

N(ν + 1)

]
b = −N − 1

N

c = −ν − 1

N2
(λi −

1

ν + 1
)

Now let s(i)1 and s(i)2 denote the two solutions of f(s, λi, N, ν).
It easy to see that s(1)1 = 1 and s

(1)
2 = 1 − ν2+1

N(ν+1) . The
following result restricts the search of ρess(Q̄) among the
values |s(2)1 |, |s

(2)
2 | and 1− ν2+1

N(ν+1) .

Theorem V.6 Consider the a-CL algorithm running on an
bidirected regular graph Gm = (V, Em) such that, for i ∈
{1, . . . , N}, |Ni| = ν. Assume Assumption V.4 holds true.
Moreover let
γ∗ =

ν−1+N(ν+1)−
√
N2(ν+1)2−2N(ν3+ν+2)+(ν−1)2+(ν2+1)2

ν+1
then

(i) if 1− ρess(P ) ≤ γ∗ =⇒ ρess(Q̄) = max(|s(2)1 |, |s
(2)
2 |);

(ii) if 1− ρess(P ) > γ∗ =⇒ ρess(Q̄) = s
(1)
2 = 1− ν2+1

N(ν+1) .

The proofs of Lemma V.5 and Theorem V.6 follows from
standard algebraic manipulations. Due to space constraints we
do not include them here, but we refer the interested reader
to the document [18].

We provide now an asymptotic result on ρess(Q̄). To do so,
consider a sequence of connected undirected regular graphs
GN of increasing size N , and fixed degree ν. Assume As-
sumption V.4 holds true for any GN . Then to any GN we can
associate a stochastic matrix PN such that (PN )ij = 1/(ν+1)
for all j ∈ Ni ∪ {i}. Let us assume the following property.

Assumption V.7 Consider the sequence of matrices PN as-
sociated to the sequence of graphs GN above described, and
assume that

ρess (PN ) = 1− ε(N) + o(ε(N)), (12)

where ε : N → R is a positive function such that ε(N) → 0
as N →∞.

Important families of matrices satisfying the above assumption
are given by the matrices built over the N -dimensional toruses
and the Cayley graphs (see [13]).

Now, let the matrix Q̄N represent the average matrix
associated to the a-CL algorithm running over GN . The
following result characterizes the asymptotic behavior of
ρess

(
Q̄N
)
, with respect to ρess (PN ).

Proposition V.8 Consider the sequence of graphs GN de-
scribed above. Consider the a-CL algorithm running over GN .
Assume Assumption V.4 and Assumption V.7 hold true. Then

ρess
(
Q̄N
)

= 1− ν(ν + 1)

N(ν2 + 1)
ε(N) + o

(
ε(N)

N

)
Proof: Let γi = 1−λi, then we can rewrite Eqn. (11) as:

f(s, λi, N, ν) = d(s,N, ν) + γin(s,N, ν) , g(s, γi, N, ν)

so that g is an explicit function of γi, where

d(s,N, ν) = s2 − 2N(ν + 1)− (ν2 + 1)

N(ν + 1)
s+ 1− ν2 + 1

N(ν + 1)

n(s,N, ν) =
s

N
+
ν −N
N2

Note that
lim
N→∞

γ∗(ν,N) =
ν2 + 1

(ν + 1)2

therefore, according to Theorem V.6 and assumption V.7, for
N sufficiently large, ρess(Q̄N ) is given by (i). Since γ2 =

1−λ2 +ε(N)+o(ε(N)), then s(2)1 = s̄
(2)
1 +αε(N)+o(ε(N))

and s(2)2 = s̄
(2)
2 +βε(N)+o(ε(N)) for some scalar α, β, where

λ2 = ρess(PN ) and s̄(2)1 , s̄
(2)
2 are the solutions of second order

equation g(s, 0, N, ν) = 0. It is easy to verify that s̄(2)1 = 1 and
s̄
(2)
2 = 1− ν2+1

N(ν+1) . Since |s̄(2)1 | > |s̄
(2)
2 |, then for N sufficiently

large and by continuity we have ρess(Q̄N ) = |s(2)1 |. We are
therefore interested in explicitly computing the scalar α. Since{

g(1, 0, N, ν) = 0
∂g
∂s

∣∣∣
(1,0,N,ν)

6= 0
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it is possible to exploit the implicit function theorem that
allows us to write:

s
(2)
1 = 1− ∂g

∂γi

(
∂g

∂s

)−1∣∣∣∣∣
(1,0,N,ν)

(ε(N) + o(ε(N)))

= 1− ν(ν + 1)

N(ν2 + 1)
ε(N) + o

(
ε(N)

N

)
which means that ρess(Q̄) can be expressed as

ρess(Q̄) = 1− ν(ν + 1)

N(ν2 + 1)
ε(N) + o

(
ε(N)

N

)
(13)

Thank to [17], we know that the rate of convergence is lower
bounded by

ρess(Q̄N )2 = 1− 2
ν(ν + 1)

N(ν2 + 1)
ε(N) + o

(
ε(N)

N

)
while we recall we conjecture that R ≤ ρess(Q̄N ). Observe
that, for N � 1,

1− ρess(Q̄N )

1− ρess(PN )
' ν(ν + 1)

N(ν2 + 1)

and so, we can conclude that the a-CL algorithm slows
down of a factor 1/N with respect to the synchronous
implementation which is the same of standard memoryless
asynchronous consensus algorithms. However the fact that the
rate of convergence in expectation is reduced by a factor N ,
is not surprising because in the a-CL there is only one node
transmitting information at each iteration.

Remark V.9 Following Remark III.3, it is worth stressing that
also the Jacobi-like strategy introduced in [2] is amenable
of asynchronous implementation, see [7]. However, to the
best of our knowledge, no theoretical analysis of the rate of
convergence of the asynchronous version, introduced in [7],
has been proposed in the literature.

VI. ROBUSTNESS PROPERTIES OF THE A-CL ALGORITHM
WITH RESPECT TO PACKET LOSSES AND DELAYS

In section IV we have introduced the a-CL algorithm
assuming that the communication channels are reliable, i.e.,
no packet losses occur, and that the transmission delays are
negligible. In this section we relax these assumptions and we
show that the a-CL algorithm still converges provided that
the network is uniformly persistent communicating and the
transmission delays and the frequencies of communication
failures satisfy mild conditions which we formally describe
next.

Assumption VI.1 (Bounded packet losses) There exists a
positive integer L such that the number of consecutive com-
munication failures between every pair of neighboring nodes
in the communication graph Gc is less than L.

Assumption VI.2 (Bounded delay) Assume node i broad-
cast its estimate to its neighbors at the beginning of iteration
k, and, assume that, the communication link (i, j) does not
fail. Then, there exists a positive integer D such that the

information x̂i(k) is used by node j to perform its local update
not later than iteration k +D.

Loosely speaking Assumption VI.1 implies that there can be
no more than L consecutive packet losses between any pair of
nodes i, j belonging to the communication graph. Differently,
Assumption VI.2 consider the scenario where the received
packets are not used instantaneously, but are subject to some
delay no greater than D iterations.

Clearly, in this more realistic scenario, it turns out that
the implementation of the a-CL is slightly different from
the description provided in Section IV. Specifically, consider
the k-th iteration of the a-CL algorithm and, without loss of
generality, assume node i is the transmitting node during this
iteration. Due to the presence of packet losses and delays, it
might happen that the set of updating nodes is, in general,
different from the set Ni. In fact, for j ∈ Ni, node j does not
perform any update since the packet x̂i(k) from node i is lost
or simply because the update is delayed. Moreover there might
be a node h /∈ Ni which, during iteration k, decides to perform
an update since it received a packet x̂s, s ∈ Nh, within the
last B iterations. This scenario can be formally represented
by the set of nodes V ′(k) ⊆ V which decide to perform an
update at iteration k. Then, Eqn. (4) can be rewritten as

x̂j(k + 1) := pjj x̂j(k) +
∑
h∈Nj

pjhx̂h(k′h) + bj , (14)

for all j ∈ V ′(k), where k− (τL+D) ≤ k′h ≤ k, i.e. loosely
speaking when an update is performed, the local estimate
of the neighbouring nodes cannot be older than τL + D
iterations3. Indeed, if L = D = 0, then we recover the
standard a-CL algorithm where V ′(k) = Ni.

The following result characterizes the convergence proper-
ties of the a-CL in presence of delays, packet losses and when
the network is uniformly persistent communicating.

Proposition VI.3 Consider a uniformly persistent communi-
cating of N nodes running the a-CL algorithm over a weakly
connected measurement graph Gm. Let Assumptions VI.1 and
VI.2 be satisfied. Let ε be such that 0 < ε < 1/(2dmaxR

−1
min).

Moreover let x̂i, i ∈ {1, . . . , N}, x̂(i)j , j ∈ Ni, be initialized
to any real number. Then the following facts hold true

(i) the evolution k → x̂(k) asymptotically converges to an
optimal estimate xopt ∈ χ, i.e., there exists α ∈ R such
that

lim
k→∞

x̂(k) = x∗opt + α1;

(ii) the convergence is exponential, namely, there exists C >
0 and 0 ≤ ρ < 1 such that

‖x̂(k)−
(
x∗opt + α1

)
‖ ≤ Cρk‖x̂(0)−

(
x∗opt + α1

)
‖.

Proof: The proof follows from the statement of Propo-
sition 1 in [19]. In [19], the authors consider the following

3Recall we are assuming the network is uniformly persistent communicat-
ing, namely, for all k ∈ N, each node performs at least one transmission
within the time interval [k, k + τ).
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consensus algorithm with delays4

xi(k + 1) =

m∑
j=1

aij(k)xj(k − tij(k)) (15)

where xi denotes the state of node i, i ∈ {1, . . . ,M}, the
scalar tij(k) is nonnegative and it represents the delay of a
message from agent j to agent i, while the scalar aij(k) is a
nonnegative weight that agent i assigns to a delayed estimate
xj(s) arriving from agent j at time k. It is assumed that the
weights aij(k) satisfy the following assumption

Assumption i. There exists a scalar η, 0 < η < 1 such that
(i) aii(k) ≥ η for all k ≥ 0;

(ii) aij(k) ≥ η for all k ≥ 0, and all agents j whose
(potentially delayed) information xj(s) reaches agent i
during the k-th iteration;

(iii) aij(k) = 0 for all k ≥ 0 and j otherwise.
(iv)

∑m
j=1 a

i
j(k) = 1 for all i and k.

For any k let the information exchange among the agents
may be represented by a directed graph (V,Ek), where
V = {1, . . . ,m} with the set Ek of directed edges given by
Ek =

{
(j, i)|aij(k) > 0

}
. The authors impose a connectivity

assumption on the agent system, which is stated as follows.
Assumption ii. The graph (V,E∞) is connected, where

E∞ is the set of edges (j, i) representing agent pairs
communicating directly infinitely many times, i.e., E∞ =
{(j, i)|(j, i) ∈ Ek for infinitely many indices k}.

Additionally it is assumed that the intercommunication in-
tervals are bounded for those agents that communicate directly.
Specifically,

Assumption iii. There exists an integer B ≥ 1 such that for
every (j, i) ∈ E∞, agent j sends information to its neighbor
i at least once every B consecutive iterations.

Finally, it is assumed that the delays tij(k) in delivering
a message from an agent j to any neighboring agent i is
uniformly bounded at all times. Formally

Assumption iv. Let the following hold:
(i) tii(k) = 0 for all agents i and all k ≥ 0.

(ii) tij(k) = 0 for all agents j communicating with agent
i directly and whose estimates xj are not available to
agent i during the k-th iteration.

(iii) There is an integer B1 such that 0 ≤ tij(k) ≤ B1 − 1
for all agents i, j, and all k.

Under Assumptions i,ii,iii,iv, it is shown, in Proposition 1 of
[19], that equation (15) converge exponentially to a consensus.

Consider now the a-CL algorithm in presence of delays and
packet losses. Let δj(k) = x̂j(k)−[x∗opt]j where [x∗opt]j denotes
the j-th component of the vector x∗opt. Recalling that x∗opt =
Px∗opt + b and, according to (14) we have that, if j ∈ V ′(k)

δj(k + 1) := pjjδj(k) +
∑
h∈Nj

pjhδh(k′h), (16)

otherwise
δj(k + 1) = δj(k).

4We adopt the notations of paper [19].

The above equations describe a consensus algorithm on the
variables δ1, . . . , δN which satisfies the above assumptions
i,ii,iii,iv. Indeed assumption (i) on the weights is trivially
satisfied. Assumption (ii) follows from the facts that the com-
munication graph Gc is connected, the network is uniformly
persistent communicating and from Assumptions VI.1 and
VI.2. Assumption iii is a consequence of the fact that the net-
work is uniformly persistent communicating and Assumption
VI.1; in our setup we have B = Lτ . Finally Assumption iv
follows from Assumption VI.2 and equation (16). Hence the
variables δ1, . . . , δN converge exponentially to a consensus
value α which, in turn, implies that x̂ converge exponentially
to x∗opt + α1.

Remark VI.4 We believe that the analysis of the robustness
to packet losses of the a-CL algorithm might be performed
also in the randomized scenario considered in Section V
assuming that each transmitted packet might be lost with a
certain probability. We leave this analysis as object of our
future research. However in the numerical section, specifically
in Example VII.1, we show the effectiveness of the a-CL
algorithm also in presence of random communication failures
when the network is randomly persistent communicating.

Remark VI.5 Also the Jacobi-like strategy has been shown
to be robust to packet losses, see [7]. Instead, concerning the
other algorithms recently proposed in the literature, see [11],
[10], to the best of our knowledge, no analysis considering the
non-idealities introduced in this section has been proposed in
the literature.

VII. NUMERICAL RESULTS

In this Section we provide some simulations implementing
the localization consensus-based strategy introduced in this
paper.

Example VII.1 In this example we consider a random geo-
metric graph generated by choosing N = 100 points randomly
placed in the interval [0, 1]. Two nodes are connected and
take measurements if they are sufficiently close, i.e more
specifically, both measurements zij and zji are available
provided that |xi − xj | ≤ 0.15. This choice resented in
networks with an average number of neighbours per node
of about 7. Every measurement was corrupted by Gaussian
noise with covariance σ2 = 10−4. In this example we assumed
that the network is randomly persistent communicating with
uniform communication probabilities (β1, . . . , βN ), namely,
β1 = . . . = βN = 1/N . Moreover the possibility of commu-
nication failure is taken into account. Specifically, supposing
node i is transmitting, each node j ∈ Ni with a certain
probability i.e., pf , can not receive the sent packet.

In Figure 1 we plotted the behavior of the error

J(k) = log (‖A(x̂(k)− x∗)‖)

for different values of the failure probability pf .
The plot reported is the result of the average over 1000 Monte
Carlo runs, randomized with respect to both the measurement
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graph5 and the initial conditions. Observe that the trajectory
of J converges to 0 exponentially.
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Fig. 1: Behavior of J for a randomly persistent communicating network in
a random geometric graph, for different values of the probability failure pf .

Example VII.2 In this example we tested the validity of
conjecture V.2. We consider a single connected geometric
graph generated as in the previous example with N = 200.
The values of ρess(Q̄), ρess(Q̄)2 and R are reported in the table
below.

ρess(Q̄)2 R ρess(Q̄)
0.999885 0.999940 0.999942

Example VII.3 In this example we provide a numerical
comparison with some well known algorithms proposed in
literature which, for the sake of the completeness, we briefly
recall.

The first algorithm considered, hereafter called a-GL algo-
rithm, is proposed in [3]. Similarly to the a-CL algorithm,
during its k-th iteration one node, say h, transmits its variable
x̂h to all its neighbors. For l ∈ Nh, node l, based on the
information received from node h, performs the following
update

x̂l(k + 1) = 1/2 (x̂l(k) + x̂h(k) + 1/2(zlh − zhl))
= x̂l(k) + 1/2 (x̂l(k)− x̂h(k) + 1/2(zlh − zhl))

while for l /∈ Nh the state remains unchanged, i.e.,
x̂l(k + 1) = x̂l(k). Note that just one packet is transmitted
at each iteration. Moreover, since this algorithm is known to
reach mean square convergence [8], then its ergodic mean
has been proposed as a possible estimator of the state.
The second algorithm, denoted hereafter as BC algorithm,
is proposed in [11]. It requires a coordinated broadcast
communication protocol meaning that, during k-th iteration
one node, say h, asks the variable x̂l to all its neighbors
l ∈ Nh. When it receives the current state values, it performs
the following greedy local optimization based on the current
status of the network:

5In performing our average we kept only the random geometric graphs
which resulted to be connected.

x̂h(k + 1) := argminx̂h

∑|E|
(i,j)∈E ‖x̂i(k)− x̂j(k)− zij‖2

= 1
2|Nh|

∑
l∈Nh

(2x̂l(k)− zlh + zhl)

Note that the number of communications performed during
one iteration are | Nh | +1, since there is a broadcast packet
sent by node h, and | Nh | packets sent by all its neigbours.

The last algorithm that we considered is the Randomized
Extended Kaczmarz, hereafter called REK algorithm, pre-
sented in [10], consisting of two different update steps. The
first step is an orthogonal projection of the noisy measure-
ments onto the column space of the incidence matrix A in
order to bound the measurements error. The second step is
similar to the standard Kaczmarz update. Since a distributed
implementation is not formally presented in [10], we propose
the following. More specifically, let s ∈ RM the current
projection of the noisy measurements onto the column space of
A. Similarly as above, we denote with a little abuse of notation
the e-th entry of s with the corresponding edge, i.e. se = sij .
Then, the REK algorithm proposed in [10] for general least-
squares problems, reduces in our setting to randomly and
independently selecting a node h and an edge (i, j) at each
iteration k according to the following probabilities:

ph =
|Nh|+ 1

2M
; pij =

1

M

and then to performing the following local updates:

s`h(k+1) = s`h(k)+

∑
m∈Nh

(shm(k)−smh(k))

|Nh|+1
, ∀` ∈ Nh

sh`(k+1) = sh`(k)−
∑
m∈Nh

(shm(k)−smh(k))

|Nh|+1
, ∀` ∈ Nh

x̂i(k + 1) = x̂i(k) +
zij − sij(k)− (x̂i(k)− x̂j(k))

2

x̂j(k + 1) = x̂j(k)− zij − sij(k)− (x̂i(k)− x̂j(k))

2

We point out that, since in the updating step only local
informations are required, the algorithm is implemented
in a distributed fashion and it exactly requires Nj + 5
communication rounds to perform an iteration. Specifically
the first Nj + 2 are due to the update of the variable s and
the last 3 are needed to update x̂.

Algorithm Sent packets per iteration
a-CL 1
a-GL 1
BC Ni + 1

REK Nj + 5

Number of sent packets per iteration for each algorithm.

In this example we consider a random geometric measure-
ment graph G built as in the previous example. In Figure 2 we
plot the behavior of J respect to the number of iterations and
sent packets. From these simulations, we observe that from an
energy point of view the a-CL algorithm is the most convenient
since the effective number of sent packets to achieve a certain
estimation error, is lower. On the other hand if no energy
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constraint are imposed, then REK is the fastest algorithm,
although not majorly faster than BC and a-CL.
As observed in [3] the local estimates of a-GL algorithm do
not converge to the optimal solution, but they oscillate around
it. However, a-GL exhibits the fastest transient among all
algorithms and it is also energetically efficient. In our recent
work, we thus proposed to combine the a-CL algorithm with
the a-GL algorithm in order to have fast transient as well
as guaranteed exponential asymptotic convergence by using
suitable switching strategies [20].
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Fig. 2: Comparison of various algorithms considering the number of iteration
(top panel) and number of sent packets (bottom panel).

VIII. CONCLUSION

In this paper we have introduce a consensus-based strat-
egy to solve in a distributed way the problem of optimally
estimating the position of each agent in a network from
relative noisy distances with its neighbors. We have first
introduced the algorithm in its synchronous version showing
that it exponentially converges to the optimal centralized least
squares solution. We have then proposed a more realistic
asynchronous implementation which is still shown to be ex-
ponentially convergent under both uniform persistent commu-
nication and randomized persistent communication protocols.
In the randomized scenario we have performed a theoretical
analysis of the rate of convergence in mean-square, providing
general lower and upper bounds; a more detailed analysis has
been performed restricting to communication graphs which
are regular graphs. Additionally we have shown that our novel
asynchronous algorithm is robust to packet losses and delayes.
Finally through numerical simulations we have tested the
effectiveness of our approach as compared to other strategies
recently proposed in the literature.
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