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Abstract
Crystal plasticity finite element model (CPFEM) is a powerful numer-
ical simulation in the integrated computational materials engineer-
ing (ICME) toolboxes that relates microstructures to homogenized
materials properties and establishes the structure-property linkages
in computational materials science. However, to establish the pre-
dictive capability, one needs to calibrate the underlying constitu-
tive model, verify the solution and validate the model prediction
against experimental data. Bayesian optimization (BO) has stood
out as a gradient-free efficient global optimization algorithm that
is capable of calibrating constitutive models for CPFEM. In this
paper, we apply a recently developed asynchronous parallel con-
strained BO algorithm to calibrate phenomenological constitutive models
for stainless steel 304L, Tantalum, and Cantor high-entropy alloy.

Keywords: Bayesian optimization, inverse problem, constitutive model
calibration, crystal plasticity finite element, 304L stainless steel, Tantalum,
Cantor alloy

1

ar
X

iv
:2

30
3.

07
54

2v
4 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  1
4 

A
pr

 2
02

3



Springer Nature 2021 LATEX template

2 Asynchronous parallel constitutive model calibration for CPFEM

1 Introduction
Researching and developing predictive integrated computational materials
engineering (ICME) models at multiple length-scales and time-scales has
been conducted at the last two decades. In order to establish the predictive
capability, the ICME model must be numerically verified and experimentally
validated, in the spirit of uncertainty quantification. The development of ICME
models as the third paradigm and scientific machine learning as the fourth
paradigm [1, 2] is consistent with the Materials Genome Initiative [3–5], which
has long been held as a cornerstone in materials science.

In the ICME context, crystal plasticity finite element model (CPFEM),
along with phase-field simulations, have been the main workhorses of compu-
tational materials science to investigate the structure-property relationship.
By targeting the mesoscale, which is sandwiched between microscale and
macroscale, they are also important toolboxes in tackling multiscale ICME
models. Numerous constitutive models have been proposed over the past
few decades, including but not limited to [6], isotropic J2 plasticity, phe-
nomenological crystal plasticity, dislocation-density-based crystal plasticity,
atomistically-informed crystal plasticity, crystal plasticity including disloca-
tion flux. Depending on the materials system of interest and its corresponding
crystal structures, as well as the parameterization of the constitutive model
used, there are many parameters underpinning the constitutive model that one
may need to calibrate against a suitable experimental setup.

Constitutive model calibration has been fairly well-studied within the lit-
erature. Loosely speaking, calibrating a constitutive model for CPFEM can
be formulated as an optimization problem, which in turn minimizes the mis-
fit between the CPFEM and experimental data. However, most approaches, if
not all as of this point, mainly utilized sequential optimization, which suffers
from the high computational cost of the forward CPFEM model. Even though
the high computational cost can be somewhat mitigated by message passing
interface (MPI) parallelism on multi-core high-performance computers, it also
follows a diminishing return characterized by Amdahl’s law [7]. Modern opti-
mization approaches often exploit both MPI (or MPI+X for heterogeneous)
parallelism as well as optimization parallelism on high-performance computers
and are capable of delivering a better solution in shorter wallclock time. Com-
pared to sequential optimization approaches, parallel optimization approaches
can offer better performance in calibrating ICME models, especially for pro-
totyping models that do not scale well with multi-cores and multi-threads on
high-performance computing platforms.

Since the birth of CPFEM [8–11], there have been numerous works in
the literature dedicated to calibrating constitutive model in many materi-
als system. Due to limited space, we attempt to review some notable works
that are relevant to constitutive model calibration in the context of CPFEM.
Chakraborty and Eisenlohr [12] proposed a modified Nelder–Mead optimiza-
tion algorithm to treat the objective function when evaluation fails and demon-
strated their algorithm on the single crystal nano-indentation for face-centered
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cubic materials systems. Hérault et al. [13] applied the Levenberg-Marquadt
gradient-based optimization algorithm to calibrate an isotropic constitutive
model for dual phase steel DP600. Nguyen et al. [14] applied Markov chain
Monte Carlo on top of a Gaussian process (GP) regression to obtain a poste-
rior of a dislocation-density-based constitutive model parameters for copper.
Savage et al. [15] applied genetic algorithm multi-objective optimization algo-
rithm to calibrate a dislocation-density-based constitutive model for dual phase
780 steel against multiple criteria. Hochhalter et al. [16] applied the Nelder–
Mead and Broyden–Fletcher–Goldfarb–Shanno optimization algorithms before
running Markov Chain Monte Carlo to obtain the posterior of a phenomeno-
logical constitutive model parameters for aluminum oligocrystal. Kuhn et
al. [17] also utilized Bayesian optimization (BO) to calibrate a phenomeno-
logical constitutive model for 50CrMo4 steel. Sedighiani et al. [18, 19] applied
genetic algorithm to calibrate both phenomenological and dislocation-density-
based constitutive models for face-centered cubic copper, body-centered cubic
steel, and hexagonal-close packed magnesium. Wang et al. [20] employed
the gradient-based least-squares optimization algorithm to calibrate a micro-
polar plasticity in Hostun sand. Liu et al. [21] employed a Gauss–Newton
trust region optimization algorithm to calibrate a phenomenological Dafalias–
Manzari constitutive model for Nevada sand. Herrera-Solaz et al. [22] used the
Levenberg–Marquadt optimization algorithm to calibrate a phenomenological
constitutive model for AZ31 Magnesium alloy. Do and Ohsaki [23, 24] proposed
a multi-objective BO to calibrate an elastoplastic constitutive model for a
structural steel. Seidl and Granzow [25] proposed an automatic differentiation
framework to calibrate parameters in elastoplastic constitutive model. Corona
et al. [26] calibrated three yield functions, von Mises, Hill-48, and Yld2004-18p
on a 7079 aluminum alloy against digital image correlation experimental data,
which were subsequently verified and validated in Jones et al [27]. Karandikar
et al. [28] also applied BO to calibrate a Johnson-Cook flow stress model. Sun
and Wang [29] applied BO to calibrate a Voce hardening law for Magnesium
alloy ZEK100 in a viscoplastic self-consistent polycrystal plasticity model with
twinning and de-twinning scheme. Morand and Helm [30] utilized a mixture
of experts with an ensemble of neural networks to calibrate an exponential
hardening model. Generale et al. [31] applied parallel MCMC to calibrate a
viscous multimode damage model in an oxide-oxide ceramic matrix compos-
ite. Zambaldi et al. [32] applied the Nelder–Mead optimization algorithm to
calibrate a phenomenological constitutive model for α Titanium. Bolzon et
al. [33] applied the trust region optimization algorithm to calibrate an elasto-
plastic constitutive model for ductile metals. Fuhg et al. utilized the partially
convex neural network [34] and local GP [35] to derive a data-driven macro-
scopic yield function. Zhang et al. [36] calibrated a Johnson-Cook constitutive
model in advanced high strength steel DP1180 against nano-indentation exper-
imental data. Foumani et al. [37] proposed a multi-fidelity BO approach based
on latent map GP and applied on nanolaminate ternary alloy family as well
as organic-inorganic perovskite datasets. Wang et al. [38] proposed a q-EI
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algorithm to parallelize BO in an asynchronous manner and analyzed the con-
vergence accordingly. Veasna et al. [39] proposed to couple SMS-EGO [40],
which is a hypervolume-based approach, to calibrate constitutive model for
elasto-plastic self-consistent CPFEM model. Bostanabad et al. [41] incorpo-
rated and optimized the nugget parameter as an additional hyperparameter
for noisy environment, such as experimental observations.

Despite the fact that numerous constitutive model calibration works have
been done in the literature, not too many have taken a parallel optimiza-
tion route that offers greater efficiency in terms of computational cost. In
this paper, we apply a recently developed asynchronous parallel constrained
BO algorithm [42], built upon the GP-Hedge algorithm [43], to calibrate phe-
nomenological constitutive models for stainless steel 304L, Tantalum, and
Cantor high-entropy alloy. Compared to other previous works listed above,
one of the significant advantages of this framework is the asynchronous paral-
lel feature, which allows multiple CPFEM simulations running asynchronous
parallel on high-performance computers to optimize the objective in shorter
wallclock time.

The remainder of the this paper is organized as follows. Section 2 intro-
duces the BO algorithm used in this paper, its underlying GP and the adaptive
sampling strategy for finding the next query point. Section 3 describes the phe-
nomenological constitutive model, based on the open-source DAMASK CPFEM
package [6]. Section 4 introduces the asynchronous parallel constitutive model
calibration workflow used in this paper. Section 5 describes the numerical and
experimental results for stainless steel 304L. Section 6 describes the numeri-
cal and experimental results for Tantalum. Section 7 describes the numerical
and experimental results for Cantor high-entropy alloy. Section 8 discusses and
concludes the paper.

2 Bayesian optimization
In this section, we introduce the BO concept, which is based on GP and
an asynchronous parallel sampling strategy that allows multiple acquisition
functions simultaneously.

2.1 Gaussian process regression and Bayesian
optimization

Comprehensive and critical review studies are provided by Brochu et al. [44],
Shahriari et al. [45], Frazier [46], and Jones et al. [47] for BO method and
its variants. We adopt the notation from Shahriari et al. [45] and Tran et
al. [42, 48–54]. In this formulation, we treat the optimization problem in the
maximization setting,

x
⋆
= argmax

x∈X
f(x) (1)

subject to a set of nonlinear inequalities constraints λj(x) ≤ 0, 1 ≤ j ≤ J ,
assuming that f is a function of x, where x ∈ X ⊂ Rd is the d-dimensional
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input. A GP(µ0, k) is a non-parametric model over functions f , which is fully
characterized by the prior mean functions µ0(x) ∶ X ↦ R and the positive-
definite kernel, or covariance function k ∶ X × X ↦ R.

Let the dataset D = (xi, yi)ni=1 denote a collection of n noisy observations.
In GP regression, it is assumed that f = f1∶n is jointly Gaussian, and the
observation y is normally distributed given f , leading to

f x ∼ N (m,K), (2)

yf , σ
2
∼ N (f , σ2

I), (3)
where mi ∶= µ(xi), and Ki,j ∶= k(xi,xj). Equation 2 describes the prior
distribution induced by the GP.

The covariance kernel k(⋅, ⋅) is a choice of modeling covariance between
inputs, depending on the smoothness assumption of f . The family of Matérn
kernels is arguably one of the most popular choices for kernels, offering a broad
class for stationary kernels which are controlled by a smoothness parameter
ν > 0 (cf. Section 4.2, [55]), including the square-exponential (ν → ∞) and
exponential (ν = 1/2) kernels. The Matérn kernels are described as

Ki,j = k(xi,xj) = θ20
2
1−ν

Γ(ν)(
√

2νr)νKν(
√

2νr), (4)

where Kν is a modified Bessel fuction of the second kind and order ν. Common
kernels for GP include [45]

• ν = 1/2 ∶ kMatérn1/2(x,x′) = θ20 exp (−r) (also known as exponential kernel),
• ν = 3/2 ∶ kMatérn3/2(x,x′) = θ20 exp (−

√
3r)(1 +

√
3r),

• ν = 5/2 ∶ kMatérn5/2(x,x′) = θ20 exp (−
√

5r) (1 +
√

5r +
5

3
r
2),

• ν → ∞ ∶ ksq-exp(x,x′) = θ
2
0 exp(−r

2

2
) (also known as square exponential

or automatic relevance determination kernel),

where r2 = (x− x
′)Λ(x− x

′), and Λ is a diagonal matrix of d squared length
scale θi.

Under the formulation of GP, given the dataset Dn, the prediction for an
unknown arbitrary point is characterized by the posterior Gaussian distribu-
tion, which can be described by the posterior mean and posterior variance
functions, respectively as

µn(x) = µ0(x) + k(x)T (K + σ
2
I)−1(y −m), (5)

and
σ
2
n(x) = k(x,x) − k(x)T (K + σ

2
I)−1k(x), (6)
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where k(x) is the covariance vector between the query point x and x1∶n. The
main drawback of GP formulation is its scalability O(n3) that originates from
the computation of the inverse of the covariance matrix K. Connection from
GP to convolution neural network has been proposed where it is proved to
be theoretically equivalent to single layer with infinite width [56] or infinite
convolutional filters [57].

2.2 Acquisition function
In the traditional BO method, which is sequential, the GP model is constructed
for the objective function, and the next sampling location is determined by
maximizing the acquisition function based on the constructed GP. This acqui-
sition function is evaluated based on the underlying GP surrogate model, thus
converting the cost of evaluating the real simulation to the cost of evaluating on
the GP model. The latter is much more computationally appealing because it
is semi-analytical. The acquisition function must balance between the exploita-
tion and exploration flavors of the BO method. Too much exploitation would
drive the numerical solution to a local minima, whereas too much exploration
would make BO an inefficient optimization method. We review three main
acquisition functions that are typically used in the literature: the probability of
improvement (PI), the expected improvement (EI), and the upper confidence
bounds (UCB).

Denote µ(x), σ2(x), and θ as the posterior mean, the posterior variance,
and the hyper-parameters of the objective GP model, respectively. θ is obtained
by maximizing the log likelihood estimation over a plausible chosen range,
where the likelihood is described as

log p(yx1∶n, θ) = −
n

2
log (2π)

−
1

2
log K

θ
+ σ

2
I

−
1

2
(y −mθ)T (Kθ

+ σ
2
I)−1(y −mθ).

(7)

Let φ(⋅) and Φ(⋅) be the standard normal probability distribution function and
cumulative distribution function, respectively, and xbest = argmax

1≤i≤n
f(xi) be

the best-so-far sample. Rigorously, the acquisition function should be written
as α(x; {xi, yi}ni=1, θ), but for the sake of simplicity, we drop the dependence
on the observations and simply write as α(x) and E(⋅) is implicitly understood
as E

y∼p(yDn,x)(⋅) unless specified otherwise.
The PI acquisition function [58] is defined as

αPI(x) = Pr(y > f(xbest)) = E [1y>f(xbest)] = Φ(γ(x)), (8)

where
γ(x) = µ(x) − f(xbest)

σ(x) , (9)
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indicates the deviation away from the best sample. The PI acquisition function
is constructed based on the idea of binary utility function, where a unit reward
is received if a new best-so-far sample is found, and zero otherwise.

The EI acquisition function [59–63] is defined as

αEI(x) = σ(x) [γ(x)Φ(γ(x)) + φ(γ(x))] . (10)

The EI acquisition is constructed based on an improvement utility function,
where the reward is the relative difference if a new best-so-far sample is found,
and zero otherwise. A closely related generalization of the EI acquisition func-
tion, called knowledge-gradient (KG) acquisition function, has been suggested
in [64]. Under the assumptions of noise-free and the sampling function is
restricted, the EI acquisition function is recovered from the KG acquisition
function. If the EI acquisition function is rewritten as

αEI(x) = E [max (y, f(xbest)) − f(xbest)]
= E [max(y − f(xbest), 0]
= E [(y − f(xbest)+],

(11)

then the KG acquisition function is expressed as

αKG(x) = E [maxµn+1(x)xn+1 = x] −max(µn(x)) (12)

for one-step look-ahead acquisition function.
The UCB acquisition function [65–67] is defined as

αUCB(x) = µ(x) + κσ(x), (13)

where κ is a hyper-parameter describing the acquisition exploitation-
exploration balance. Here, we adopt the κ computation from Daniel et al. [68],
where

κ =
√
νγn, ν = 1, γn = 2 log (n

d/2+2
π
2

3δ
), (14)

and d is the dimensionality of the problem, and δ ∈ (0, 1) [67].
Another type acquisition function is entropy-based, such as GP-PES [69–

72], GP-ES [73], GP-MES [74]. Since the GP is collectively a distribution of
functions, the distribution of the global optimum x

⋆ can be estimated as well
from sampling the GP posterior. The predictive-entropy-search (PES) [69] can
be written in terms of the differential entropy H(⋅) as

αPES(x) = H[p(x⋆Dn)] − E [H[p(x⋆D ∪ {(x, y)})]]
= H[p(yDn,x)] − E

p(x⋆Dn)[H(p(yDn,x,x⋆))] (15)

Wang et al. [74] proposed GP-MES acquisition function, which effectively
suggests sampling y⋆ from the 1-dimensional output space R using Gumbel
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Table 1: 1
+/−: right-/left-continuous Heaviside step function; ReLU + sigmoid

(σ) + softmax: activation function; Σ = LL
⊤: Cholesky factorization; γ ∼

N (0,Σ) residual
.

Abbr. Acquisition function L Reparameterization
EI Ey[max(ReLU(y − α))] Ez[max(ReLU(µ + Lz − α))]
PI Ey[max(1−(y − α))] Ez[max(σ(µ + Lz − α

τ ))]
SR Ey[max(y)] Ez[max(µ + Lz)]

UCB Ey[max(µ +
√
βπ

2
γ)] Ez[max(µ +

√
βπ

2
Lz)]

ES −Eya[H(E
ybya

[1+(yb −max(yb))])] −Eza[H(Ezb[softmax(
µ
ba
+ L

ba
zb

τ )])]
KG Eya[max(µb +Σb,aΣ

−1
a,a(ya − µa))] Eza[max(µb +Σb,aΣ

−1
a,aLaza)]

distribution instead of x in the high-dimensional input space X , i.e.

αMES(x) = H[p(yDn,x)] − E[H(p(yDn,x, y⋆))], (16)

Last but not least, since f(x) is Gaussian, the differential entropy can be
simplified to a function of posterior variance σ2(x), i.e.

H[p(yDn,x)] = 0.5 log [2πe(σ2(x) + σ2)] , (17)

and thus pure exploration search which targets x with maximum posterior
variance σ2(x), i.e. αPE(x) = σ

2(x) is theoretically identical with the max-
imum differential entropy [69]. Interestingly, Wilson et al. [75] proposed a
reparameterization of most commonly used acquisition functions in terms of
deep learning convolution kernels. Wilson [75] presented a reparameterization
scheme for different acquisition functions in term of activation function for
neural networks, summarizing in the following table.

2.3 Constraints
A review and comparison study is performed by Parr et al. [76] for different
schemes to handle constraints using both synthetic and real-world applica-
tions. Many previous works discussed below in the literature prefer to couple
constraint satisfaction problems with the EI acquisition due to its consistent
numerical performance. Even though constraints can be classified to many
types, for example [77], known versus unknown, quantifiable versus nonquan-
tifiable, a priori versus simulation, relaxable versus unrelaxable, in this work,
we mainly focus on two types of constraints, namely known and unknown.
Known constraints, which are typically physics-based, do not require to invoke
the functional evaluation and are often computationally cheap. We model
known constraints by penalizing the acquisition function with an indicator
function I(x), depending on whether constraints are violated.

α
known
constrained(x) = α(x)Iknown(x), (18)
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where

Iknown(x) = {1, λ(x) ≤ c

0. λ(x) /≤ c
(19)

Unknown or hidden constraints usually occurs when outputs of a forward com-
putational model is NaN or Inf. For such cases, we augment the probability
of failure by a binary probabilistic classifier into the acquisition function in a
soft penalization manner as

α
unknown
constrained(x) = {α(x), with Pr(clf(x) = 1),

0, with Pr(clf(x) = 0). (20)

The expected acquisition function, therefore, follows as

E [αunknown
constrained(x)] = α(x)Prunknown(clf(x) = 1). (21)

2.4 Asynchronous parallel
We adopt the GP-Hedge scheme [78] to sample a portfolio of acquisition func-
tions according to their rewards. The main idea of GP-Hedge is to adaptively
select a suitable acquisition function, whether it is EI, PI, UCB, or something
else, depending their overall performance with respect to the optimization
objective. Figure 1 compares between the batch-sequential parallelism ver-
sus the asynchronous parallelism. It can be observed that if the randomness
of the application runtime is significant, employing an asynchronous parallel
approach may lead to a substantial reduction in wallclock time, assuming there
is sufficient computational resource.

(a) Batch-sequential parallel BO [51]. (b) Asynchronous parallel BO [42].

Fig. 1: Comparison between batch parallel BO [51] and asynchronous parallel
BO [42] showing a substantial improvement in wallclock time reduction. By
aggressively targeting the idle time for concurrent workers on high-performance
computers, the wallclock time can reduce significantly. The actual improve-
ment in wallclock time depends mainly on the stochasticity in real runtime of
the application of interest.
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3 Crystal plasticity finite element with
phenomenological constitutive model

A phenomenological crystal plasticity constitutive model used for face-centered
cubic (FCC) crystals was first proposed by Hutchinson [79] and extended for
deformation twinning by Kalidindi [80]. The plastic component is parameter-
ized in terms of resistance ξ on Ns slip and Ntw twin systems. The resistances
on α = 1, . . . , Ns slip systems evolve from ξ0 to a system-dependent saturation
value and depend on shear on slip and twin systems according to

ξ̇
α
= h

s-s
0 [1 + c1 (f tot

tw )c2] (1 + hαint) [
Ns

∑
α′=1

γ̇
α
′

1 −
ξ
α
′

ξα
′

∞

a

sgn(1 −
ξ
α
′

ξα
′

∞

)hαα
′

]

+
Ntw

∑
β′=1

γ̇
β
′

h
αβ

′

,

(22)
where f tot

tw is the total twin volume fraction, h denotes the components of the
slip-slip and slip-twin interaction matrices, hs-s

0 , hint, c1, c2 are model-specific
fitting parameters and ξ∞ represents the saturated resistance.

The resistances on the β = 1, . . . , Ntw twin systems evolve in a similar way,

ξ̇
β
= h

tw-s
0 (

Ns

∑
α=1

γα)
c3

(
Ns

∑
α′=1

γ̇
α
′

h
βα

′

) + htw-tw
0 (f tot

tw )c4
⎛
⎜
⎝

Ntw

∑
β′=1

γ̇
β
′

h
ββ

′⎞
⎟
⎠
, (23)

where htw-s
0 , htw-tw

0 , c3, and c4 are model-specific fitting parameters. Shear on
each slip system evolves at a rate of

γ̇
α
= (1 − f tot

tw )γ̇0α
τ
α

ξα

n

sgn(τα). (24)

where slip due to mechanical twinning accounting for the unidirectional
character of twin formation is computed slightly differently,

γ̇ = (1 − f tot
tw )γ̇0

τ

ξ

n

H(τ), (25)

where H is the Heaviside step function. The total twin volume is calculated as

f
tot
tw = max

⎛
⎝1.0,

Ntw

∑
β=1

γ
β

γ
β
char

⎞
⎠ , (26)

where γchar is the characteristic shear due to mechanical twinning and depends
on the twin system. Interested readers are referred to Section 6 in [6] for a
comprehensive context of constitutive models in CPFEM.
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4 Materials constitutive model calibration
workflow

4.1 A seamless integration for optimizer and forward
simulations

Figure 2 shows a seamless integration workflow for coupling the asynchronous
parallel Bayesian optimization algorithm with an integrated forward ICME
modules, composed of DREAM.3D [81] and DAMASK [6] with PETSc [82] as
the spectral solver [83]. The integration between DREAM.3D and DAMASK
has been demonstrated in the past by Diehl et al. [84]. A similar variant of
aphBO-2GP-3BO is implemented and publicly available in DAKOTA [85].

4.2 Microstructure-ensemble average loss function
In this paper, the loss function, to be minimized, is modeled as

Lloss =
[∫ (σcomp(ε) − σexp(ε))2 dε]

1/2

min(εcomp, εexp)
, (27)

where εcomp and σcomp are computational results from CPFEM simulation,
respectively, and εexp and σexp are experimental results from experimental
data, respectively. The computational stress used is from the Cauchy stress
tensor, and the computational strain used is the true logarithmic strain.

We measure the loss function in L2 norm, normalized by the observable
minimum strain ε to promote fitting over a wide range of strain ε. Due to the
relatively high failure strain, CPFEM occasionally would fail before reaching
the ultimate yield strain and therefore, the computational stress-strain curve
is only compared on a much shorter computational strain interval compared
to the experimental strain interval. To ensure that a fair comparison between
early terminated CPFEM simulations and normal CPFEM simulations, we
penalize the loss by dividing the normal L2 loss by the min(εcomp, εexp),
which is always less than or equal to εexp. We interpolate the numerical and
experimental stress-strain equivalent curve using a cubic spline to accurately
approximate the L2 loss function. Gaussian filter is sometimes applied to
remove noises from the experimental data. Eisenlohr et al. [83] and Shanthraj
et al.[86] demonstrated that using the spectral solver, it is possible to achieve
a fairly accurate homogenized stress-strain curve with relatively low-resolution
mesh. This observation subsequently justifies the usage of low-resolution mesh
in our approach. The Matérn-1/2 kernel, which corresponds to the exponential
kernel (and the Brownian motion – [55, pp 85–86]), is used in GP to model
and overfit the loss function.
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EGO / Bayesian optimization
• asynchronous parallel
• unknown constraint

• sample microstructure RVE
• crystallography texture

• materials constitutive models
• crystal plasticity finite element
• PETSc numerical solvers

Fig. 2: An asynchronous parallel model calibration workflow for CPFEM. The
workflow is mainly controlled by an advanced Bayesian optimization algorithm,
called aphBO-2GP-3BO, to schedule an iteration on a high-performance com-
puter. Each iteration is composed of a parameterized set of constitutive model
parameters, obtained from the Bayesian optimizer. The parameterized input
is then parsed into DAMASK input files. DREAM.3D is invoked to generate
an ensemble of microstructure RVEs. With the complete inputs, the average
loss function is evaluated and returned to the Bayesian optimizer. Iterations
are scheduled asynchronously so that multiple iterations can run concurrently
on a supercomputing platform to minimize the wall-clock waiting time.
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5 Case study 1: Stainless steel 304L

5.1 Design of numerical experiment
The average equiaxed grain size is set as 8.0µm, following Wang et al. [87]
with random crystallographic texture due to the lack of experimental data [88].
Elastic constants are adopted from Lu et al.[89] and tabulated in Table 2; face-
centered cubic (fcc) system is assumed. Using DREAM.3D, a RVE of 80µm×
80µm× 80µm is constructed and down-sampled to 8× 8× 8 mesh. A uniaxial
loading condition is imposed on the RVE with Ḟ11 = 10

−3s. At every time,
concurrently, 10 CPFEM simulations are performed, under the batch settings
of (6,4,0) in the aphBO-2GP-3B asynchronous parallel BO algorithm [42], with
a batch size of 6 dedicated to the acquisition batch and a batch size of 4
dedicated to the exploration batch. The 5-dimensional input for each run x
is the set of phenomenological constitutive model parameters (τ0, τ∞, h0, n, a),
with the lower bounds of [1 MPa, 100 MPa, 100 MPa, 1.2, 1] and the upper
bounds of [150 MPa, 12,000 MPa, 10,000 MPa, 150, 25], respectively. The
reference shear rate γ̇0 is fixed at 0.001 s−1.

Table 2: Elastic constants for SS304L [87].
Elastic constants Units Value
C11 GPa 262.2
C12 GPa 112.0
C44 GPa 74.6

5.2 Comparison between fitted constitutive model and
experimental data

Table 3: Fitted phenomenological constitutive model parameters for SS304L.
Variable Description Units Value
γ̇0 reference shear rate s−1 0.001
τ0 slip resistance MPa 90
τ∞ saturation stress MPa 7295.1754
h0 slip hardening parameter MPa 392.9772
n strain rate sensitivity parameter – 120
a slip hardening parameter – 8.0

Table 3 lists the optimal phenomenological constitutive model parameters
used for SS304L in this study, which is found after 352 iterations. Figure 3
presents the comparison between the CPFEM numerical results with optimized
constitutive model parameters and the experimental data, where the aleatory
uncertainty in RVE instantiation and epistemic uncertainty in mesh resolution
are both quantified. The blue shaded region captures the uncertainty due
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to both aleatory and epistemic uncertainty in the optimization process. An
ensemble of 4 RVEs are also shown in Figure 3 as ●, ●, ●, ●, to highlight
the natural variability and inherent randomness of microstructures on the σ/ε
curves. Overall, the phenomenological constitutive model without twinning fits
well in the high-strain (ε > 0.10) plasticity regime but does not accurately
capture the hardening behaviors. The low-strain (ε < 0.10) plasticity regime
is poorly captured, due to the lack of intricacy in the constitutive model.

Fig. 3: Comparison of equivalent stress-strain curve between optimal numer-
ical results and experimental data for SS304L, where the constitutive model
parameters used are tabulated in Table 3. ● denotes experimental data. σ/ε
associated with RVE 1 is shown as ●. σ/ε associated with RVE 2 is shown as
●. σ/ε associated with RVE 3 is shown as ●. σ/ε associated with RVE 4 is
shown as ●. The material variability is shown as the shaded region. Readers
are referred to the color version online.

6 Case study 2: Tantalum phenomenological
constitutive model

6.1 Design of numerical experiment
In this case study, we are interested in fitting the bcc Tantalum, with the
average grain size of 50µm. Elastic constants are adopted from [90, 91] and
tabulated in Table 4; body-centered cubic (bcc) system is assumed. Using
DREAM.3D, a RVE of 80µm × 80µm × 80µm is constructed and down-
sampled to 8 × 8 × 8 mesh. A uniaxial loading condition is imposed on the
RVE with Ḟ11 = 10

−3s. No twinning is considered for quasi-static loading
at the ambient temperature. Even though not considered in this study of
calibrating phenomenological constitutive models, calculating Peierls stresses
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in tantalum have been performed in the past through molecular dynamics
simulation [92, 93]. The 5-dimensional input for each run x is the set of phe-
nomenological constitutive model parameters (τ0, τ∞, h0, n, a), with the lower
bounds of [1 MPa, 1 MPa, 1 MPa, 1.2, 1] and the upper bounds of [1,000 MPa,
10,000 MPa, 10,000 MPa, 150, 200], respectively. The reference shear rate γ̇0
is fixed at 0.001 s−1. At every time, concurrently, 24 CPFEM simulations are
performed, under the batch settings of (10,10,4) in the aphBO-2GP-3B asyn-
chronous parallel Bayesian optimization algorithm [42], with a batch size of 10
dedicated to the acquisition batch, a batch size of 4 dedicated to the objec-
tive exploration batch, and a batch size of 4 dedicated to the classification
exploration batch.

Table 4: Elastic constants for Tantalum [90, 91].
Elastic constants Units Value
C11 GPa 267
C12 GPa 161
C44 GPa 82.5

6.2 Comparison between fitted constitutive model and
experimental data

Table 5: Fitted phenomenological constitutive model parameters for Tanta-
lum.

Variable Description Units Value
γ̇0 reference shear rate s−1 0.001
τ0 slip resistance MPa 67.4641
τ∞ saturation stress MPa 7295.1754
h0 slip hardening parameter MPa 1959.1320
n strain rate sensitivity parameter – 45.2726
a slip hardening parameter – 200.0

Table 5 lists the optimal phenomenological constitutive model parameters
used for Tantalum in this study, which is found after 1135 iterations. Figure 4
presents the comparison between the CPFEM numerical results with optimized
constitutive model parameters and the experimental data, where the aleatory
uncertainty in RVE instantiation and epistemic uncertainty in mesh resolu-
tion are both quantified. The blue shaded region captures the uncertainty
due to both aleatory and epistemic uncertainty in the optimization process.
An ensemble of 4 RVEs are also shown in Figure 4 as ●, ●, ●, ●, to highlight
the natural variability and inherent randomness of microstructures on the σ/ε
curves. Overall, the numerical results agree relatively well with the experimen-
tal data, given a long interval of strain, except for the immediate drop in stress
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Fig. 4: Comparison of equivalent stress-strain curve between optimal numeri-
cal results and experimental data for Tantalum, where the constitutive model
parameters used are tabulated in Table 5. ● denotes experimental data. σ/ε
associated with RVE 1 is shown as ●. σ/ε associated with RVE 2 is shown as
●. σ/ε associated with RVE 3 is shown as ●. σ/ε associated with RVE 4 is
shown as ●. The material variability is shown as the shaded region. Readers
are referred to the color version online.

right after the elastic deformation. It should be noted that the experimental
data are filtered to exclude the peak and this immediate sharp drop; in other
words, we exclude the data between the strain ε = [9.3667⋅10

−4
, 1.8572⋅10

−2].

7 Case study 3: Cantor CrMnFeCoNi
high-entropy alloy phenomenological
constitutive model

7.1 Design of numerical experiment

Table 6: Elastic constants for Cantor alloy [94, 95].
Elastic constants Units Value
C11 GPa 172
C12 GPa 108
C44 GPa 92

In this case study, we are interested in fitting a simple phenomenological
constitutive model without twinning for the Cantor alloy, which is also known
as the CrMnFeCoNi high-entropy alloy. The experimental data is obtained
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from Chen et al [96]. We follow [94, 95] for elastic constants, which are tabu-
lated in Table 6. Only fcc system is considered in this case study, even though
fcc, hcp (hexagonal closed packed) [96], and bcc [97] phases are observed exper-
imentally. Using DREAM.3D, a RVE of 80µm × 80µm × 80µm is constructed
and down-sampled to 8× 8× 8 mesh. A uniaxial loading condition is imposed
on the RVE with Ḟ11 = 10

−3s. Average grain size of 7µm from literature [98–
100]. No twinning is considered in fitting the phenomenological constitutive
model. At every time, concurrently, 24 CPFEM simulations are performed,
under the batch settings of (10,10,0) in the aphBO-2GP-3B asynchronous par-
allel Bayesian optimization algorithm [42], with a batch size of 10 dedicated to
the acquisition batch, a batch size of 10 dedicated to the objective exploration
batch. The 5-dimensional input for each run x is the set of phenomenological
constitutive model parameters (τ0, τ∞, h0, n, a).

7.2 Comparison between fitted constitutive model and
experimental data

Table 7: Fitted phenomenological constitutive model parameters for Cantor
alloy (without twinning).

Variable Description Units Value
γ̇0 reference shear rate s−1 0.001
τ0 slip resistance MPa 1.0
τ∞ saturation stress MPa 10000.0
h0 slip hardening parameter MPa 1959.1320
n strain rate sensitivity parameter – 41.2673
a slip hardening parameter – 128.3608

Table 7 lists the optimal phenomenological constitutive model parameters
used for the Cantor alloy in this study, which is found after 969 iterations.
Figure 5 presents the comparison between the CPFEM numerical results with
optimized constitutive model parameters and the experimental data, where
the aleatory uncertainty in RVE instantiation and epistemic uncertainty in
mesh resolution are both quantified. The blue shaded region captures the
uncertainty due to both aleatory and epistemic uncertainty in the optimization
process. An ensemble of 4 RVEs are also shown in Figure 5 as ●, ●, ●, ●, to
highlight the natural variability and inherent randomness of microstructures on
the σ/ε curves. Uncertainty quantification on constitutive models in CPFEM
has been carried out in the past [101]. However, it seems that the phenomeno-
logical constitutive model without twinning in this case study is inadequate to
model the complex materials behaviors of the Cantor alloy, which suggests a
more complicated dislocation-density-based constitutive, e.g. [102], may better
fit its behaviors over a wide range of compositions and temperature.
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Fig. 5: Comparison of equivalent stress-strain curve between optimal numer-
ical results and experimental data for Cantor alloy, where the constitutive
model parameters used are tabulated in Table 7. ● denotes experimental
data [96]. σ/ε associated with RVE 1 is shown as ●. σ/ε associated with RVE
2 is shown as ●. σ/ε associated with RVE 3 is shown as ●. σ/ε associated
with RVE 4 is shown as ●. The material variability is shown as the shaded
region. Readers are referred to the color version online.

8 Discussion & Conclusion
In this paper, we apply an asynchronous parallel constrained BO algorithm [42]
to calibrate phenomenological constitutive model for fcc SS304L, bcc Tanta-
lum, and fcc Cantor alloy. To maximize the acquisition function, we rely on the
CMA-ES algorithms [103–105], which is also gradient-free to search for the next
most informative input parameters. Compared to other sequential optimiza-
tion algorithms used in the literature, the aphBO-2GP-3B algorithm exploits the
computational resource by two layers of parallelisms: the optimization paral-
lelism and the message passing interface (MPI) parallelism, where the former
takes a priority over the later due to diminishing return by Amdahl’s law [7].

Model calibration methods are mainly divided into two classes: determinis-
tic and statistical [85]. On one hand, the deterministic model calibration seeks
a unique set of parameters that optimally matches experimental data, where
optimality is typically measured in L2, as done in this paper. On the other
hand, the statistical model calibration, such as Bayesian inference [106], seeks
a statistical characterization of parameters that are most consistent with the
data. In this study, the only constraint is unknown, where the CPFEM simu-
lation may not return a numerical value, e.g. NaN. This behavior occasionally
happens, depending on the user-defined optimization bounds. This type of
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constraints (i.e. blind constraints) is conveniently handled thanks to the inter-
nal binary classifier that penalize the acquisition function [42] to navigate the
complex acquisition function map.

Multi-fidelity GP [107, 108] could also be used to combine the computa-
tional and experimental data, either at the same length-scale or in multi-scale
manner [109]. In this study, we fix the mesh size due to its insensitivity, based
on prior DAMASK studies, e.g. [83]. However, generalizing to an asynchronous
parallel constrained multi-fidelity GP/BO framework with adaptive coarse and
fine meshes is also possible and makes more sense, thus remaining as an inter-
esting future research direction. In this study, the only constraint is unknown,
where the CPFEM simulation may not return a numerical value, e.g. NaN.
This behavior occasionally happens, depending on the user-defined optimiza-
tion bounds. This type of constraints (i.e. blind constraints) is conveniently
handled thanks to the internal binary classifier that penalize the acquisition
function [42] to navigate the complex acquisition function map.

Based on the optimized constitutive model parameters, we conduct a simple
verification and validation study to investigate the effects of aleatory uncer-
tainty from random RVEs and epistemic uncertainty from mesh-resolution.
The homogenized computational results are shown to be reproducibly consis-
tent with the experimental data. Stainless steel 304L and Tantalum results
show an excellent fit without twinning; however, Cantor alloy results shows a
relatively poor fit due to an overly simplified constitutive model for a complex
materials system.

We conclude that the asynchronous parallel constrained BO [42] is capable
of calibrating phenomenological constitutive models for CPFEM, which paves
way for further research in the future.
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