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Abstract 

Networks on Chip that can guarantee Quality of 

Service (QNoC) are based on special routers that can 

support multiple service levels. GALS SoCs call for 

asynchronous NoC implementations, to eliminate the need 
for synchronization when crossing clock domains. An 

asynchronous multi-service level QNoC router is 

investigated. It comprises multiple interconnected input 

and output ports, and arbitration mechanisms that resolve 

any output port and service level conflicts. Buffering and 

credit based transport are enabled, enhancing throughput. 
A synchronous and an asynchronous routers have been 

designed, and their performance is compared. The 

asynchronous router requires less area and enables a 

higher data rate. 

1. Introduction 

Interconnect is a very expensive resource within large 

systems on chip (SoC), consuming area and power and 

incurring high delays relative to gate delays and clock 

cycles  [1]. Requirements for wide-bandwidth inter-

module communications exacerbates the problem, 

incurring larger area and power costs for the 

interconnects. In addition, data synchronization problems 

arise in multi-clock domain SoCs, and operating clocked 

interconnects becomes increasingly more difficult. Large 

SoCs are treated as Globally Asynchronous Locally 

Synchronous (GALS) systems, calling for suitable 

interconnects beyond conventional synchronous buses. 

Networks on Chip (NoC) are advocated as a solution for 

the SoC interconnect problem  [2]– [4]. To support varying 

communication requirements, a Quality-of-Service NoC 

(QNoC) has been proposed, which performs preemptive 

routing according to packet priority  [5]. Since it is 

designed to support GALS systems with multiple clock 

domains, including dynamic scaling of voltage and 

frequencies per each synchronous module, it is best 

implemented as asynchronous circuits. 

A 2D mesh architecture of QNoC is shown in Figure 1  

[5]. The SoC comprises modules and a NoC, consisting of 

links and routers. All inter-modular communications are 

carried out in packets; legacy modules (capable only of 

bus-oriented read/write operations) may require wrappers 

that handle packet based communications. Packets are 

partitioned into small flits, which are sent through the 

NoC using wormhole routing. Each QNoC packet carries 

a Service-Level (SL) priority tag, related to data 

communication requirements. In this paper we explore 

QNoC routers that support four service levels, as defined 

in  [5] (Table 1). The packet consists of three types of flits: 

a header flit with routing address, body flits and a tail flit, 

indicating end-of-packet (EOP), as in Figure 2. Each flit 

contains bits indicating its type and SL. 

MODULE

ROUTER

LINK

Figure 1: QNoC 2D Mesh Architecture 

Table 1: Service Levels Example [5] 

Service-

Level 

Description Priority 

Signaling Urgent Messages, Short 

Packets, Interrupts, Control 

signals requiring low transport 

latency 

Highest 

Real-Time Real-time application packets  

RD/WR Short memory and register 

access 

Block 

Transfer 

Long messages and blocks of 

data 

Lowest 

Flat 2D mesh QNoC may be inappropriate in some 

applications. Typically, module placement on SoC strives 

to minimize long range communications, and blocks that 
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require high bandwidth interconnect between them are 

placed close to each other. Thus, most communications 

are ideally short range. However, long range 

communications, though usually needing lower 

bandwidth, cannot be avoided. On the other hand, some 

nearest-neighbor communications may be optimized by 

creating custom links that avoid NoC overhead. These 

observations give rise to hierarchical multi-level NoC 

architectures that offer different types of links and 

communication channels for different needs. An example 

is shown in Figure 3, where three types of links are 

supported: neighbor, local, and global. The Hierarchical 

QNoC (HQNoC) is designed to employ the same multiple 

service level routers, and manage the use of different links 

through different service levels. 

CHAIN  [6], [7] proposes a different asynchronous 

interconnect for NoC. Its CHAINlink protocol is based on 

1-of-4 encoding, routers and arbiters. CHAIN provides a 

flexible framework for NoC, but it is limited to a single 

service level. An asynchronous router architecture with 

QoS support was recently presented in  [3] [8]. 

Synchronous routers using round-robin arbitration and 

supporting asynchronous interconnect are presented in  [9] 

[10], though synchronization issues are ignored. 

Asynchronous packet routers for off-chip networks were 

presented as early as 1994  [11]. Synchronous NoC routers 

supporting virtual channels, which could be used to 

provide multiple service levels, are described in  [12] and  

[13]. Other synchronous routers are discussed in  [14]. A 

synchronous five-port router that supports two service 

levels (best effort and guaranteed throughput) is described 

in  [15]. The butterfly fat-tree interconnect of  [16] may 

also take advantage of routers described in this paper. 

NoC wrappers and synchronization issues are discussed in 

 [17]– [22]. 

We present a single service level QNoC router in 

Section  2 and reuse the same components in a multi 

service level router in Section  3. Performance analysis of 

our design is discussed in Section  4. 

Header

(Routing Address)

Body
(Payload)

Tail
(EOP)

SL
Flit

Type
DATA

Flit Type Encoding:
00  Header

01  Body
10  Tail

Figure 2: Packet Structure and Flit Format 

Neighbour Local Global
SoC Module WrapperRouter

Figure 3: 3-Level Hierarchical NoC Example 
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2. A Single Service Level (SSL) 

Asynchronous Router 

Routers are the main functional blocks of QNoC, 

routing flits from an input port (IP) to one of the output 

ports (OP), according to the routing address and packet 

priority. The routing is either specified by the source or 

computed at each router along the route. In computed 

routing, the packet contains the destination address and 

each router determines its own switching. One example is 

X-Y routing for a 2D mesh  [5] [23], where the packet is 

first routed along the X dimension and then along the Y 

dimension towards its destination. When source-specified 

routing is employed, the packet contains a list of 

switching indices, providing a switching command for 

each router  [6]. In this paper we employ a simplified 

version of a source-specified routing: m bits are used to 

specify switching of an incoming packet to one of 2m 

possible output ports at each router. The m bits are 

consumed by the router, and the packet needs M×m

routing bits when M routers are traversed. In the following 

we describe, as an example, a 5-port router (Figure 4), 

namely m=2.

The bi-directional router interfaces consist each of an 

input port (IP) and an output port (OP). We consider a 

router with five interfaces, suitable for a 2D mesh with an 

additional interface to a SoC Module (as in Figure 1). We 

assume that a packet coming through an IP does not loop 

back, and thus each IP is connected to four OPs (Figure 

4b) and only two bits are required for switching (Figure 

4a). The OPs emit flits according to their arrival order and 

their priority, as defined by the packet's Service Level 

(SL). In the rest of this section we discuss the architecture 

of a single service level router. In the next section we 

extend this to supporting multiple service levels. 

1 0 0 1 1 1 0 0

OP

Addr

to 1st
Router

OP

Addr

to 2nd
Router

OP

Addr

to 3d
Router

OP

Addr

to 4th
Router

(a) (b)

IP2 OP2

IP
3

O
P

3

"10"

"11"

"01"

"00"

IP
1

O
P

1

IP0 OP0
IP

4

O
P4

Figure 4: Routing Address from Source to Sink 

2.1. Single Service Level Input Port (SSL-

IP) Architecture  

SSL-IP manages incoming flits that belong to a single 

service level. The incoming flits are first saved in an 

internal buffer L (Figure 5), decoupling the external 

(input) interface and internal processing, and enabling 

additional flit transmissions. Next, the SSL-IP decodes the 

flit type (header, body or tail). 
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Figure 5: Single Service Level Input Port Architecture
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On a header flit, the first two data bits contain the 

target OP index i for the present router. This index is 

saved in the OP-Index latch, controlling all muxes that 

select one of four OPs. The index will serve all subsequent 

flits of the same packet, and will be changed only by the 

header flit of the next packet. In addition, a shifted version 

of the header flit is sent out, so that the first two data bits 

now contain the OP index for the next router. Last, the 

header is sent out by signaling Rhi. No processing is 

required for body and tail flits—they are sent out by 

signaling the common request Rbti to the ith
 OP. Note that 

the controller employs asymmetric delay lines to match 

latch propagation delays. 

Ri+

Ri-

Ai+

Ai-

Ld+

Di+

Ld-

Di-

Ro+

Ao+

Ro-

Ao-

Figure 6: Latch-Control STG 

The Latch-Control STG is shown in Figure 6. The 

external interface (Ri, Ai) is decoupled and is released as 

soon as the flit has been latched inside the IP (upon Di-). 

The controller was synthesized using Petrify  [24] (see 

Section  4). 

In order to enhance throughput, asynchronous buffer 

stages may be inserted on the input link (dashed block in 

Figure 5). The number of buffers depends on throughput 

and latency requirements. In case of a single service level 

NoC, the buffers may be spread along the interconnect 

wires between routers (serving also as repeaters). As 

explained below, this is different for multi-service level 

NoCs.  

2.2. Single Service Level Output Port (SSL-

OP) Architecture 

SSL-OP (Figure 7) interfaces four IPs and one external 

output. It monitors incoming requests and when one is 

granted it establishes an IP-OP connection and maintains 

it for the duration of the packet, until receiving a tail-type 

flit (different packets from the same service-level cannot 

be interleaved). 

The Latch-Control unit latches the selected data in data 

latch L. Subsequently, it conducts the external handshake 

with the next router. The unit is identical to the one used 

in SSL-IP, having same STG as Figure 6.  

On a header flit, the current IP index is saved inside the 

IP-Index latch prior to data latching. Actually, Latch-

Control receives no input request (Ri) before the index is 

latched. After header flit handling, body and flit requests 

arrive in a mutually exclusive manner. Body and tail flits 

are immediately sent out to the external interface, through 

latch L. 
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The value inside the IP-Index latch remains unchanged 

throughout packet transmission, continuously connecting 

the SSL-OP with the current source SSL-IP. The value is 

updated by an incoming header-flit and is locked as soon 

as header-type appears at the output of data latch L, 

switching the c-element output to low. During body flit 

transmission the value inside the IP-Index register remains 

unchanged. Upon a tail-flit, the IP-Index latch becomes 

transparent allowing the processing of the next packet. 

The latch becomes transparent only after the port 

completes the (Ri, Ai) handshake for the tail-flit. This is 

assured by the NOR gate, keeping the c-element input low 

during the tail-flit data cycle. 

Similarly to the SSL-IP, output buffers can optionally 

be used to enhance router performance.  

Since the router is asynchronous, arrival time of the 

request signals is unknown, and requests may conflict. 

Therefore, the four requests should be arbitrated. Note that 

only header-type requests are arbitrated, since once an IP-

OP connection is established, requests from the other IPs 

are blocked.  

Arbitration can be performed using either a tree arbiter 

(Figure 8b), consisting of three standard two-way arbiters 

(Figure 8a), or a MUTEX-NET (Figure 9). Both 

architectures incur similar latency and area. Since 

MUTEX-NET seems to be slightly faster than the tree-

arbiter we use it in our design, and its fairness  [25] is 

analyzed below. 
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In Figure 9, four requests are mutually excluded by 

means of a net of six two-input MUTEX elements, 

arranged in three stages. The latency of the MUTEX-NET 

is expected to be very low for non-conflicting cases, 

making this solution fast and effective for the majority of 

packet transmissions. 

R1

R2

R3

R4

G2

G3

G1

G4

Figure 9: MUTEX-NET 

The MUTEX-NET does not always preserve the 

original order of the incoming requests. For instance, 

assume the sequence R1+, R2+, R4+, R1-. Clearly, R2+ is 

blocked by the first stage of MUTEX-NET, while R4 is 

blocked by the last one. When R1 is released, R2 is 

blocked again at the second stage by R4, and R4 is 

granted, even though it came after R2. However, a request 

is not starved forever inside the net, as follows. 

Claim: MUTEX-NET has a bounded blocking time, 

and a request may be outrun by no more than two later 

requests. 

Proof: Assume that there are four concurrent requests 

at the input of the first MUTEX-NET stage, say Ri, Ri', 

RK, RK' (the tag means a “pair request,” namely a request 

connected to the same two-input MUTEX of the first stage 

as the untagged request ). Then, at most two of them, say 

only Ri (worst-case: Ri wins over RK at the second stage), 

are granted at the second stage, and only one, Ri, wins at 

the last (third) stage. When the winner request Ri is 

released, its pair request Ri' wins at the first stage, 

blocking any new Ri propagations through the net. Then, 

there is a race between Ri' and RK that will end in the 

worst case by blocking RK again at the third stage. In this 

case after Ri' is released, the subsequent request that will 

be granted is RK, since by being at the third stage it blocks 

the pair request Ri. This is the worst-case, and RK was 

outrun by two other requests from a different input pair. 

When at the beginning RK and Ri both meet only at the 

third stage, then RK will be outrun at most by Ri. QED. 

Conclusions: Given a request R, the following hold: 

a. R cannot be outrun by its pair request R' (only in 

case of concurrency). 

b. When blocked by a request from another pair at 

the second stage, R will always propagate to the 

third stage once the blocking is released. 

c. When blocked by a request from another pair at 

the third stage, R will win the blocker's pair 

request after the block is released, thus R is 

granted next (this is thanks to the blocking of the 

pair request at the second stage).  

In an arbiter, one of the main concerns is fairness,

which guarantees that a request will be granted after a 
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bounded number of other requests  [25]. Fairness and 

correctness  [26] of arbitration can be improved by using 

ordered arbiters  [27], preserving the closest possible 

granting order to input arrival, by storing the incoming 

requests in an internal FIFO. We consider the scheme of 

Figure 9 as fair enough for our application and use it in 

the implementation example. 

3. Multi-Service Levels (MSL) 

Asynchronous Router 

We now describe the input and output ports that 

support multiple service levels. Additional bits are added 

to each flit to identify the service level  [5]. 

3.1. Multi-Service Level Input Port 

The QNoC router input port comprises k SSL-IPs (k is 

the number of service levels). Figure 10 shows a k=4

example. For each incoming flit, the request is applied to 

only one of the four SSL-IPs, according to the service 

level. The selected SSL-IP conducts handshake with the 

input channel asking for data transmission. After the data 

is latched inside the SSL-IP, a request is sent to the 

appropriate OP, according to the latched flit’s routing 

address. Additional asynchronous buffering per each 

service level can optionally be employed, as shown in 

Figure 10. 

3.2. Multi-Service Level Output Port (MSL-

OP) 

The QNoC multi-service level output port structure is 

shown in Figure 11. The header requests from the IPs are 

grouped according to their service level, and conflicts 

within each service level are resolved using the MUTEX-

NET inside the corresponding SSL-OP (see Figure 7). 

Flit requests from all service levels enter the static 

priority arbiter (SPA)  [25]. The SPA decides according to 

service level priority which flit is sent at the next output 

data cycle. When a service level is granted (G_SLi), the 

corresponding SSL-OP is connected to the data link and 

sends one flit through the shared output interface. After 

sending one flit, control is returned to the SPA, since there 

could be higher service level flits pending. Priority 

decision is performed only when the output data cycle is 

over, thanks to the Gate signal of the SPA. Gating is de-

asserted as soon as current cycle is over (on Ao–). 

A modified SPA  [25] consists of a Request Lock 

Register (containing the MUTEX elements) and priority 

logic (Figure 12). When at least one request is sensed, the 

set of pending input requests are locked in the register, 

and eventually the highest priority request is granted at the 

output (Gi+). As a result, the Request Lock Register is 

reset. The C-element holding the grant is released only 

after the corresponding request goes low. Although 

fairness of the priority arbiter has recently been improved  

[28], we employ a modified version of the simpler 

approach  [25], since in our case fairness among service 

levels is less of an issue, thanks to additional MUTEX-

arbitration within each service level. 
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Table 2: Comparison results for Complete Router for 1- and 4-SL 

Synchronous Router Asynchronous Router 
Parameter 

1-SL 4-SL 1-SL,  [6] 1-SL 4-SL 
Units 

Cell Area 210,000 960,000 - 93,300 470,000 m
2

Equivalent Gates (2-in NAND) 3,800 17,500 - 1,700 8,500 Gates

Number of transistors 15,200 70,000 ~19,000 6,800 34,200  

Number of FFs / Latches 195 880 - 130 620  

Min Latency (Input to Output) 3.3 (1) 3.7 (1) - 7.6 / 3.9 13.0 / 9.2 ns (CLKs) 

Data Cycle  13.2 (4) 14.8 (4) - 18.0 / 11.9 13.3 / 13.3 ns (CLKs) 

Max Data Rate  75.8 67.6 ~120 55.5 / 84.0 75.2 / 75.2 Mflits/s 

Max Clock Frequency  303.0 270.2 - - - MHz 

    Notes: (1) Times and rates for async router are specified for header / body&tail flits. (2) Numbers for  [6] are estimates.

In a single-service level router, the asynchronous 

handshake serves also as the “credit” mechanism  [5], 

allowing data transfer only when there is a free buffer 

space in the next router. In the multi-service level case, 

another approach must be applied, since the single 

asynchronous communication channel is shared among all 

service levels. A free space indication signal is required 

per each service level (Figure 13). This indication enables 

requests of the same service level inside the SPA (Figure 

14).

4. Performance 

The proposed asynchronous QNoC router is compared 

with a synchronous router of the same functionality. The 

asynchronous controller was synthesized with Petrify  [24] 

and Synopsis Design Compiler, using a 0.35 m standard 

cell library. The synchronous router was designed based 

on the same technology and has a critical path / clock 

cycle of ~20 FO4 gate delays, matching or outperforming 

other published results  [12]– [15], at a smaller area. Eight-

bit flits were assumed for the single service level router, 

and ten-bit flits for the four service level one. The results 

are listed in Table 2. The synchronous and asynchronous 

designs show similar data rate performance, while the 

asynchronous routers require less area. The area reduction 

is mostly the consequence of using latches instead of flip-

flops. In addition, we have estimated the cost and 

performance of a single service level router using CHAIN 

link  [6]. The authors reported 120 Mbps per wire data rate 

for a case without steering. We have assumed that the rate 

with steering is not much lower. The total area of the five-

port CHAIN router was estimated by extrapolating the 

data in  [6], which relates to a 2×2 router.    

Note that the reported results depend closely on the 

choice of protocols and on implementation details. Future 

research is required to optimize the design, to investigate 

alternative protocols, and to evaluate bottlenecks. As 

explained in Sections  2 and  3, data buffers may be added 

to enhance performance. Buffered routers have not been 

analyzed yet, and are expected to improve throughput. 

While the synchronous and asynchronous routers 

exhibit similar performance, it should be noted that when 

the NoC spans multiple clock domains, a multi-link data 

transfer may incur the additional penalty of multiple 

synchronization latencies. An asynchronous NoC helps 

eliminate en-route resynchronizations. 

5. Conclusions and Future Research 

We have presented QNoC routers for both single and 

multiple service levels. The single service level router 

comprises a number of interconnected input and output 

ports. The output ports arbitrate conflicting requests. 

Simplified routing mechanism, as well as minimal 

buffering, are designed to minimize area and power costs 

at the router. The multi-service level router provides 

complete functionality for either planar or hierarchical 

QNoCs. Service levels are arbitrated according to priority, 

and allow preemption of lower priority transports. Service 

level specific credit based signaling between adjacent 

routers provides for minimized blocking and high 

performance communications. Buffers may be employed 

as necessary in either single or multiple service level 

routers. 

QNoC for multi-clock domain GALS SoCs naturally 

benefit from asynchronous interconnects. Our design 

demonstrates that asynchronous routers require less area 

than their synchronous counterparts, and incurs a shorter 

data delay. 

Future study is planned for investigating the following 

issues. The use of buffering must be analyzed to 

determine their potential for throughput enhancement. 

Alternative protocols should be studied, as well as other 

definitions of service levels. Packet and flit formats should 

also be questioned. Employing different links, such as 

serial versus parallel links, should also be investigated in 

the context of different applications. The entire NoC 

model should be analyzed when used for specific 
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applications and different usage models and 

communication requirement mixes. 
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