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Introduction

The conserved catabolic pathway of autophagy is essential 

to generate an internal pool of nutrients that permit cells to 

survive during prolonged periods of starvation (Mizushima 

et al., 2008). Recent studies have revealed that because of its 

ability to eliminate unwanted structures, autophagy also par-

ticipates in development, cellular differentiation, degradation 

of aberrant structures, and life span extension, as well as pro-

tecting against pathogens and tumors (Levine and Deretic, 

2007; Levine and Kroemer, 2008; Mizushima et al., 2008).  

As a result, this pathway plays a relevant role in the pathophysi-

ology of neurodegenerative, cardiovascular, muscular, and auto-

immune diseases.

The general mechanism of autophagy involves the 

sequestration of the cytoplasmic cargo into large double-

membrane vesicles called autophagosomes that fuse with  

lysosomes/vacuoles to provide their contents with access to the 

hydrolytically active interior of these organelles, thus allow-

ing for the cargo’s degradation. The current model of auto-

phagosome biogenesis is that they are formed by expansion 

and successive sealing of a small membrane cisterna termed the 

phagophore or isolation membrane (Reggiori and Klionsky, 

2005). The phagophore appears to be generated at a special-

ized site called the preautophagosomal structure or the phago-

phore assembly site (PAS; Xie and Klionsky, 2007). Most of 

the studies about the PAS have been done in the yeast Sac-

charomyces cerevisiae, where only one of these structures is 

present in each cell and it is found in proximity to the vacuole 

(Xie and Klionsky, 2007). These investigations have revealed 

that the autophagy-related (Atg) proteins, the components 

of the conserved machinery mediating autophagosome bio-

genesis, assemble according to a hierarchical order and form 

this specialized site (Suzuki et al., 2007). Despite the appar-

ent importance of the PAS, very little is known about this site 

at the molecular level, including the origin of the nucleating 

membrane and the subsequent rearrangements that allow it to 

form a sequestering compartment.

Most of the Atg proteins are cytosolic and transiently  

associate with the PAS by interacting with other Atg compo-

nents and/or lipids. Atg9 is the only conserved integral mem-

brane protein that is essential for autophagosome formation 

E
ukaryotes use the process of autophagy, in which 
structures targeted for lysosomal/vacuolar deg-
radation are sequestered into double-membrane 

autophagosomes, in numerous physiological and patho-
logical situations. The key questions in the field relate  
to the origin of the membranes as well as the precise  
nature of the rearrangements that lead to the formation of  
autophagosomes. We found that yeast Atg9 concentrates 
in a novel compartment comprising clusters of vesicles and 
tubules, which are derived from the secretory pathway and 

are often adjacent to mitochondria. We show that these 
clusters translocate en bloc next to the vacuole to form 
the phagophore assembly site (PAS), where they become 
the autophagosome precursor, the phagophore. In ad-
dition, genetic analyses indicate that Atg1, Atg13, and 
phosphatidylinositol-3-phosphate are involved in the 
further rearrangement of these initial membranes. Thus, 
our data reveal that the Atg9-positive compartments are 
important for the de novo formation of the PAS and the 
sequestering vesicle that are the hallmarks of autophagy.
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Atg9 is crucial to understand the nature and biogenesis of the 

PAS, and its role in autophagosome formation. Fluorescence 

microscopy has shown that Atg9 resides in numerous puncta, 

some of them partially colocalizing with or near mitochondria 

(Reggiori et al., 2005; Reggiori and Klionsky, 2006). This ap-

proach, however, does not make it possible to determine the 

nature of the Atg9 compartments and their structural relation-

ship with mitochondria. To unveil their morphology and acquire 

mechanistic insights into their contribution to PAS formation, 

we analyzed the localization and traf�cking of Atg9 at the  

ultrastructural level using a recently developed IEM proce-

dure (Grif�th et al., 2008). As the cellular levels of endogenous 

Atg9 are too low for IEM detection, we created a functional  

C-terminal GFP fusion protein (Atg9-GFP), which behaves like 

the endogenous one (Fig. 1).

Wild-type cells expressing Atg9-GFP were grown in 

rich medium and prepared for IEM. The vast majority of 

Atg9-GFP was present in clusters of vesicular (mean diam-

eter of 30–40 nm) and tubular structures (Fig. 2, A–D; and  

Fig. S1). The Atg9 clusters (de�ned in Materials and methods) 

were found in 53% of the cells, and their numbers vary from 

one to three, with occasionally four, per cell section (Table I).  

The gold particles corresponding to Atg9-GFP decorated the 

cytosolic surface of these membranes, in agreement with Atg9 

topology that predicts GFP fused to the C terminus to be on 

the cytosolic face of lipid bilayers (He et al., 2006). Interest-

ingly, the Atg9 clusters were occasionally seen surrounding a  

circular electron-dense cytoplasmic structure with a diameter  

of 100–150 nm (Figs. 2 D and S1, A [arrowhead] and E). Double 

immunogold labeling for GFP and Ape1 identi�ed it as the 

Cvt complex (Figs. 2 E and S1 B; Baba et al., 1997). When  

more than one Atg9 cluster was observed in a cell section, 

only one of them was associated with a Cvt complex (Tables I  

and II; 1% of the cell sections are Cvt complex positive).  

In contrast, the Cvt complex was associated with an Atg9 

cluster in 80% of the cells where the former was detected, 

re�ecting the close association between these two structures 

(He et al., 2006).

In agreement with the �uorescence microscopy data  

(Reggiori et al., 2005; He et al., 2006; Reggiori and Klionsky, 

2006), the Atg9 clusters were predominantly adjacent to mito-

chondria (57%, Table II), but they were never seen continuous 

with the outer membrane of this organelle. To reinforce the notion 

that these clusters are separated from mitochondria, we immuno-

localized Por1, a component of the mitochondrial outer membrane. 

The Por1 was found exclusively on the surface of mitochondria 

and was absent from the Atg9-containing clusters (Fig. 3 A).  

An identical result was also obtained with Idh1, another mito-

chondrial protein marker (Fig. 3, B–F).

In parallel, we addressed whether higher levels of Atg9-

GFP were altering the Atg9 reservoirs morphology. When we  

analyzed an untransformed wild-type strain by IEM, we de-

tected identical clusters adjacent to mitochondria, albeit with a  

reduced size (Fig. S2 A). To determine if these clusters showed  

similar biophysical properties in wild-type and Atg9-GFP–

overexpressing cells, cell extracts were centrifuged at 13,000 g. 

Under these conditions, most of the endogenous Atg9 was 

(Lang et al., 2000; Noda et al., 2000; Young et al., 2006). In yeast, 

Atg9 localizes to several puncta dispersed throughout the cyto-

plasm, some of which colocalize with mitochondria markers; 

however, it remains unclear whether they are part of the outer 

membrane of this organelle or adjacent to it (Reggiori et al., 

2004a, 2005). Atg9 cycles between these peripheral puncta 

(hereafter referred as the Atg9 reservoirs), which do not contain 

detectable levels of most other conserved Atg proteins, and the 

PAS, which supports the notion that Atg9 is involved in the de-

livery of membrane necessary for the formation of the seques-

tering vesicles (Reggiori et al., 2004a). In addition, Atg9 is one 

of the �rst Atg components to be localized to the PAS (Suzuki  

et al., 2007). In atg9 cells, nearly all the other Atg proteins fail 

to be recruited to the PAS, making its role crucial in the assem-

bly of the Atg machinery.

The key organizational function of Atg9 is also exempli-

�ed by the fact that Atg9 transport to the PAS is regulated during 

the yeast cytoplasm-to-vacuole targeting (Cvt) pathway, a bio-

synthetic selective type of autophagy devoted to the delivery into 

the vacuole of cytosolic oligomers mostly formed by the precur-

sor vacuolar protease aminopeptidase I (prApe1; Klionsky et al., 

1992). After oligomerization, the prApe1 complex binds to its 

receptor, Atg19, to form the Cvt complex, which is subsequently 

recruited near the vacuole surface in an Atg11-dependent step 

(Shintani et al., 2002). Atg11 also binds Atg9 and thus medi-

ates the simultaneous movement of both the Cvt complex and 

Atg9 (Shintani et al., 2002; Shintani and Klionsky, 2004; He  

et al., 2006). This regulated relocation triggers the recruitment 

of the Atg proteins to the PAS and subsequent sequestration of 

the Cvt complex into a double-membrane Cvt vesicle (Shintani 

and Klionsky, 2004).

Despite the important progress made in understanding  

autophagy, the study of the precise function of these factors as well 

as the mechanism of this pathway has been hampered by the 

lack of information regarding the membrane dynamics during 

the autophagosome formation process. To gain insights into this 

crucial question, we have studied the biogenesis of the yeast PAS 

by combining a recently developed immunoelectron micros-

copy (IEM) protocol (Grif�th et al., 2008) with yeast genetics.  

We show that the PAS originates from Atg9-positive clusters of 

vesicles and tubules that we called Atg9 reservoirs. Translocation 

of one or more reservoirs in proximity to the vacuole, together 

with the successive recruitment of other Atg proteins, gener-

ates the PAS. Hence, fusion of the tubulovesicular membranes 

of the Atg9 reservoirs leads to the formation of the phagophore 

necessary for the subsequent biogenesis of a double-membrane 

vesicle. Thus, our results suggest the de novo formation of the 

PAS from vesicles and tubules and highlight the crucial role of 

Atg9 in this process.

Results

Atg9 localizes to tubulovesicular clusters 

adjacent to mitochondria

It has been proposed that Atg9 is one of the factors mediating 

the transport of lipid bilayers to the PAS (Reggiori et al., 2004a). 

Consequently, the identi�cation of the membranes positive for 
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of the Atg9 clusters to accommodate more protein but that they  

do not alter their biophysical properties. Similar enlargements 

have been reported for other organelles like the ER, where over-

production of a resident protein leads to ER expansion without 

altering its physiology (Wright et al., 1988).

We concluded that the Atg9-containing compartments 

consist of a cluster of vesicles and tubules that are often in the 

vicinity of mitochondria, but not connected with them.

found in the low-speed supernatant (S13) fraction and only a 

small amount in the pellet (P13) fraction (Fig. S2 B; Reggiori 

et al., 2004b, 2005). The reduction in the amount of Atg9 in  

the P13 fraction in comparison to previously published data 

(Reggiori et al., 2005) may represent more ef�cient spheroplast 

lysis. Using the same approach for cells overproducing Atg9-

GFP, we found this fusion protein in the S13 fraction (Fig. S2 B). 

This result indicates that higher levels of Atg9 change the volume 

Figure 1. The Atg9-GFP construct for IEM analyses. (A) The prApe1 processing is normal in Atg9-GFP–expressing cells. The atg9 (JCK007) mutant 
transformed with either an empty vector (pRS416), a plasmid carrying the ATG9 gene (pJK1-2416), or the ATG9-GFP fusion (pATG9GFP416) was grown 
in YPD medium to log phase before analyzing prApe1 maturation by immunoblotting. The cytosolic protein Pgk1 was used as a loading control. Mr is 
indicated in kilodaltons. The black line indicates that intervening lanes have been spliced out. (B) Autophagy is normal in the presence of Atg9-GFP. The 
atg9 (FRY300) cells expressing Pho860 and transformed with the same plasmids described in A were shifted from YPD medium (dark gray bars) to 
SD-N medium (light gray bars) for 4 h. Autophagy induction was determined by a Pho8 activity assay. (C and D) Atg9-GFP has a normal distribution, and 
one of the Atg9-GFP-containing puncta is the PAS. Strains expressing Atg9-GFP under the control of the ATG9 promoter (FRY162) or the TPI1 promoter 
(MMY067) were transformed with a plasmid (promRFPATG8415) carrying the PAS protein marker RFP-Atg8. (C) Transformants were cultured to log phase 
and imaged. The number of Atg9-GFP puncta per cell was counted (D) and error bars represent the standard deviation of the mean. Arrowheads highlight 
colocalizations. (E and F) Part of Atg9-GFP distributes to mitochondria. The strains analyzed in C were transformed with the pmitoDsRed415 plasmid 
expressing mitochondria-targeted RFP and imaged (E). Arrowheads highlight Atg9 puncta adjacent to mitochondria. Determination of Atg9-GFP puncta 
distribution on mitochondria (F) was determined as described in Materials and methods, and error bars represent the standard deviation of the mean.  
DIC, differential interference contrast. Bar, 2 µm.
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Figure 2. IEM analysis of wild-type cells expressing Atg9-GFP. Atg9-GFP (MMY067) cells were grown to log phase and processed for IEM as described 
in Materials and methods. Preparations shown in A–D were immunogold labeled only for GFP, whereas those presented in E were double immunogold 
labeled for GFP and Ape1. (A) Overview of a labeled cell section. (B) Insets of A illustrating an Atg9-positive cluster of vesicles and tubules. (C) Atg9- 
containing membranous arrangements (arrow) adjacent to mitochondria (≤50 nm distance). (D) Micrograph showing a GFP-labeled cell with two Atg9 
clusters (marked by an arrow and an arrowhead), one of which (arrowhead) associated with an electron-dense structure with a 100–150 nm diameter 
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promoter. Transfer into a galactose-containing medium for 2 h 

allowed us to detect Atg9 clusters (Fig. 4). No intermediate struc-

tures, e.g., mitochondria or ER, were visualized even at earlier time 

points, probably due to the rapid transport of Atg9 after synthe-

sis. To further explore whether Atg9 is transported through the 

secretory pathway, we used a strain carrying a thermosensitive 

allele of SEC12, which blocks ER exit (Barlowe and Schekman, 

1993). At a permissive temperature, the localization pattern of 

Atg9 resides in a novel compartment 

originating from the secretory system

The proximity of the Atg9 clusters adjacent to, but distinct from, 

mitochondria raised the question of their biogenesis. As Atg9 is 

a transmembrane protein, it could be inserted into membranes 

either in the mitochondria or in the ER.

To follow the Atg9 biosynthetic route, Atg9-GFP expres-

sion was put under the control of the galactose-inducible GAL1 

(broken lines). (E) The circular electron-dense structures found in close proximity to the Atg9 clusters and labeled for Ape1 are Cvt complexes (broken lines). 
The dashed cisterna emphasizes the Cvt complex surface not associated with Atg9-containing membranes. D and E are also shown in Fig. S1 (A and B) 
without broken lines for clarity, while additional examples of Atg9 clusters are presented in Fig. S1, C–H. The size of the gold particles is indicated on the 
top of each picture. CW, cell wall; M, mitochondria; MVB, multivesicular body; N, nucleus; PM, plasma membrane; V, vacuole. Bars, 200 nm.

 

Table I. Frequency of the Atg9-GFP containing structures and the Cvt complex

Criteria Strain background

WT atg11 atg1

Atg9-GFP–containing membranous  
clusters/cell section

0 47 ± 1.8 57 ± 2.3 84 ± 1.2

1 28 ± 1.3 25 ± 0.8 14 ± 0.7a

2 19 ± 0.9 16 ± 0.8 2 ± 0.2a

3 5 ± 0.8 2 ± 1.1 0

≥4 1 ± 0.2 0 0

Cvt complex/cell section

0 99 ± 0.1 99.7 ± 0.3 95 ± 0.8

1 1 ± 0.4 0.3 ± 0.1a 5 ± 0.8a

2 0 0 0

3 0 0 0

≥4 0 0 0

Counting and statistical analyses were carried out as described in Materials and methods. All the results are expressed in percentages ± the standard error of  
the mean.
aP ≤ 0.05.

Table II. Relative subcellular distribution of the Atg9-GFP containing structures and Cvt complex

Criteria/cell type Location

Adjacent to mitochondria Perivacuolar Perinuclear Other cytoplasmic

Atg9-GFP–containing mem-
branous clusters

WT 57.0 ± 0.2 3.8 ± 0.05 4.9 ± 0.05 34.3 ± 0.1

atg11 50 ± 0.4 4 ± 0.3 2 ± 0.03 44 ± 0.1

atg1 17.5 ± 0.1 37.5 ± 0.1 7.5 ± 0.05 37.5 ± 0.2

Cvt complexes associated with 
Atg9-GFP–containing  
membranous clusters

WT 58.8 ± 0.3 2.0 ± 0.1 3.9 ± 0.2 35.3 ± 0.3

atg11 ND ND ND ND

atg1 14.3 ± 0.2 57.1 ± 0.2 12.2 ± 0.5 16.4 ± 0.8

Free Cvt complexes

WT 2.2 ± 0.2 0 0 97.8 ± 0.3

atg11 15.4 ± 1.1 0 1.2 ± 0.8 83.4 ± 1.5

atg1 ND ND ND ND

Counting and statistical analyses were carried out as described in Materials and methods. All the results are expressed in percentages ± the standard error of the 
mean. ND, not determined because this structure is not present or very rare in the indicated strain.
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Figure 3. Mitochondrial protein markers do not localize to the Atg9 clusters. (A) Ultrathin cryosections obtained from a wild-type (MMY067) strain were 
immunogold labeled only for Por1 because the anti-Por1 antibody does not work in double labeling. The broken line highlights an Atg9 cluster. (B–F) Cells 
expressing both Atg9-GFP and the mitochondrial marker Idh1-3xHA (MOY003) were processed for IEM, and cryo-sections were double immunogold 
labeled for GFP and HA. CW, cell wall; M, mitochondria; N, nucleus; PM, plasma membrane; V, vacuole. Bars, 200 nm.
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Atg9-GFP was indistinguishable from that observed in wild-

type cells (Fig. 4 A). At a restrictive temperature, in contrast, the 

transport block between the ER and Golgi apparatus resulted  

in the accumulation of newly synthesized Atg9 in the ER, as  

revealed by colocalization with the speci�c protein marker 

Sec63 (Fig. 4 A; Deshaies et al., 1991). This transport block was 

Figure 4. Atg9 is transported through part of the secretory pathway. 
(A) Atg9 is translocated into the ER. The wild-type (MMY126) and  
sec12 (MMY129) cells expressing Sec63-mChe-V5 and carrying the  
pGalATG9GFP416 plasmid were grown in SMD at 24°C before being trans-
ferred into a galactose-containing medium. Cultures were subsequently split 
and separately incubated at either 24°C or 37°C for 2 h before imaging. No 
fluorescence signal was detected when cells were grown in the presence of 
glucose (not depicted). (B) Atg9 passes through the Golgi before reaching 
its final destination. Wild-type (MMY125) and sec7 (MMY127) cells ex-
pressing genomically mChe-V5–tagged Sec7 and Sec7ts, respectively, and 
transformed with the pGalATG9GFP416 plasmid were analyzed as in A. 
Arrows highlight the colocalization between Atg9-GFP and Sec7ts-mChe in 
sec7ts cells at 37°C. DIC, differential interference contrast. Bars, 2 µm.

reversible, which indicates that Atg9-GFP was not amassed in a 

terminal structure but rather accumulated in a transport inter-

mediate (unpublished data). To examine the role of the Golgi com-

plex in Atg9 transport, we used a thermosensitive sec7 allele, 

which blocks protein traf�c from this organelle but does not  

affect localization of the protein (Franzusoff and Schekman, 

1989; Jackson and Casanova, 2000). At 24°C, Atg9-GFP was 

again normally distributed to several cytoplasmic puncta, and 

those were only rarely positive for the late Golgi compartment 

protein marker Sec7 (Fig. 4 B; Losev et al., 2006). In contrast, 

at 37°C, newly synthesized Atg9-GFP was present in circular 

structures, often positive for Sec7ts tagged with Discosoma red 

�uorescent protein (dsRed), which occasionally had an elon-

gated conformation (Fig. 4 B, arrows). These structures are 

likely Berkeley bodies, aberrant Golgi generated as a result of 

the sec7 sorting defect (Novick et al., 1980). Again, the trans-

port block was reversible, which indicates that Atg9-GFP was 

not accumulated in a terminal structure (unpublished data). We 

concluded that Atg9 is translocated into the ER and reaches  

its �nal destination, the Atg9 clusters, probably after passing 

through the Golgi.

As a post-Golgi organelle, the Atg9 clusters could be endo-

somes. To test this possibility, we used FM 4-64, a lipophilic 

dye that, after associating with the plasma membrane, passes 

through endosomes before reaching the vacuole (Vida and Emr, 

1995). At 4°C, endocytosis is inhibited and FM 4-64 exclusively 

associates with the plasma membrane. Transfer of FM 4-64–

loaded cells to RT allows the internalization of this dye in a 

time-dependent manner (Sipos et al., 2004). After 10 min at RT, 

FM 4-64 reached early endosomes (EE; Sipos et al., 2004), as 

demonstrated by the extensive colocalization with the speci�c 

protein marker Tlg1 (Fig. 5 A; Holthuis et al., 1998). Several 

Atg9 clusters were faintly positive for FM 4-64 at the same  

internalization time point (Fig. 5 A, arrows).

The fact that the Atg9 clusters are connected with the endo-

cytic and secretory systems prompted us to investigate whether 

known protein markers of these compartments localized on 

Atg9 clusters. We created strains expressing Atg9-GFP together 

with dsRed- or Cherry-tagged Tlg1 (EE), Pep12 (late endo-

somes [LE]), Vrg4 (early Golgi), Sec7 (late Golgi), and Atg23 

(colocalizes with Atg9; Holthuis et al., 1998; Losev et al., 2006) 

under the control of the endogenous promoters. As expected, 

Atg23 displayed substantial colocalization with Atg9 (Fig. 5 C). 

In contrast, the tagged endosomal and Golgi proteins did not 

(Fig. 5, B and C).

Collectively, our results show that the Atg9 clusters repre-

sent a novel compartment originating from the secretory pathway 

and able to exchange at least lipids with the endocytic system.

The Atg9 reservoirs and the PAS have a 

similar morphological organization

Atg9 is a highly dynamic protein that shuttles between the Atg9 

reservoirs and the PAS (Reggiori et al., 2004a; Geng et al., 2008). 

Therefore, one of the observed Atg9 clusters described could 

represent the PAS. In wild-type cells it is not possible to distin-

guish the PAS from the Atg9 reservoirs. Therefore, we capitalized 

on certain characteristics of the Cvt pathway for two reasons: 
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(1) it uses primarily the same Atg machinery as autophagy, and 

(2) speci�c gene deletions can modulate Atg9 traf�cking. For in-

stance, Atg11 is essential for both the association between Atg9 

and the Cvt complex, and their transport near the vacuole in 

growing conditions, where they recruit the Atg proteins (Fig. S3 A; 

He et al., 2006). As a consequence, no PAS is formed in the 

atg11 strain (Fig. S3 B; Shintani and Klionsky, 2004), and this 

allows exclusive visualization of the Atg9 reservoirs.

IEM analysis of the atg11 cells revealed that the Atg9 

clusters adjacent to mitochondria are the Atg9 reservoirs (Fig. 6,  

A and B; Fig. S4, A–C; and Table II). The Atg9-positive struc-

tures were found in 43% of the cell sections, and the subcellular 

distribution of these compartments was identical to that observed 

in wild-type cells, which shows that the Atg9 reservoirs are the 

main site of Atg9 concentration (Table II). As expected, the Atg9 

reservoirs were no longer associated with Cvt complexes in 

agreement with the described phenotype of the atg11 mutant 

(Fig. S3 A; He et al., 2006).

We then used a similar genetic approach to capture the 

PAS and analyze its ultrastructure. Deletion of ATG genes 

blocks PAS assembly at a precise stage (Suzuki et al., 2007). 

Under these conditions, this specialized site is identi�ed by �uor-

escence microscopy as a perivacuolar punctum positive for the 

Cvt complex and for several Atg proteins, the array of which de-

pends on the knocked out gene (Suzuki et al., 2007). Atg1 is one 

of the �rst proteins to be recruited to the PAS, and consequently, 

an early formation intermediate accumulates when it is absent 

(Suzuki et al., 2007). Crucially, Atg9 is exclusively localized at 

the PAS in atg1 cells because it cannot recycle to the reser-

voirs (Fig. S3; Reggiori et al., 2004a), providing an excellent 

tool to capture the forming PAS. Remarkably, the PAS appeared 

as a single cluster of Atg9-containing vesicles and tubules, very 

similar to the Atg9 reservoirs observed in wild-type and atg11 

cells (Fig. 6, C and D; and Fig. S4, D–H). A main difference 

was that this single cluster was detected in fewer cells (Table I; 

16% of the cell sections in comparison with 53% and 43% for 

wild-type and atg11, respectively) and was no longer located 

in close proximity to the mitochondria, but was mostly adjacent 

to the vacuole (Table II; 37% of the time), which reinforces the 

notion that it corresponds to the PAS (Suzuki et al., 2007). Fur-

thermore, this cluster was associated with the Cvt complex in 

94% of the cases, which con�rms its PAS identity (Fig. 6, C and D; 

and Fig. S4, E–H).

To corroborate the conclusions drawn from the examina-

tion of the atg1 mutant, we next analyzed the PAS in atg13 

and atg14 cells, where the PAS biogenesis is also blocked at an 

early assembly stage (Suzuki et al., 2007) and Atg9 is accumu-

lated at this site (Fig. S3; Reggiori et al., 2004a). Similar to atg1 

cells, the number of Atg9 reservoirs was strongly reduced in these 

mutants, and when detected, they were often in association with 

the Cvt complex and proximal to the vacuole, further suggest-

ing that this is indeed the PAS (Fig. 6, E–H; and Fig. S4, I–Q).  

Strikingly, the PAS observed in the absence of ATG13 and 

ATG14 displayed a slightly different morphology from that of 

atg1 cells. In the atg13 knockout (Fig. 6, E and F; and S4, 

I–M), the PAS was comprised almost entirely of small vesicular 

pro�les with a diameter of 25–30 nm, whereas in the atg14 

Figure 5. Atg9 concentrates into a novel organelle. (A) Atg9-GFP co-
localizes with some FM 4-64-positive puncta shortly after endocytosis. 
The strains expressing genomically GFP-tagged Tlg1 (FRY360) or Atg9 
(FRY162) were grown to log phase and then exposed to FM 4-64 as  
described in Materials and methods. Arrowheads highlight the colocal-
ization between FM 4-64 and GFP-Tlg1 or Atg9-GFP. (B) Atg9 does not 
colocalize with endosomal and Golgi protein markers. The Atg9-GFP 
Vrg4-mChe-V5 (FRY340), Atg9-GFP Sec7-dsRED (FRY341), GFP-Tlg1  
Atg9-mChe-V5 (FRY342), and GFP-Pep12 Atg9-mChe-V5 (FRY344) strains 
were grown to log phase before being fixed and imaged. Bars, 2 µm.  
(C) The colocalization experiments shown in B were statistically evaluated 
as described in Materials and methods. Atg23 was used as a positive 
control for colocalization because forming a complex with Atg9 (Reggiori 
et al., 2004a). DIC, differential interference contrast.
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Figure 6. Atg9-GFP distribution in various atg mutants. The atg11 (MMY069; A and B), atg1 (MMY068; C and D), atg13 (MMY070; E and F), 
and atg14 (MMY071; G and H) strains were grown and processed as described in Fig. 2. Cryosections were immunolabeled for GFP alone (A, B, and 
D–J) or in combination with Ape1 (C). (A and B) The Atg9 reservoirs observed in atg11 cells. (C and D) The PAS accumulated in the atg1 knockout.  
(E and F) The PAS present in the atg13 strain displays a Cvt complex surrounded by numerous small vesicles. (G and H) Enrichment of tubular membranes 
at the PAS of the atg14 mutant. Cvt complexes are highlighted with broken lines. D–F are also shown in Fig. S4 (E, F, I, and J) without dashed lines for 
clarity, while additional examples are presented in Fig. S4 (A–D, G, H, and K–Q). CW, cell wall; M, mitochondria; N, nucleus; PM, plasma membrane; 
V, vacuole. Bars, 200 nm.
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clusters) before autophagy induction and an atg1 phenotype 

(16% of cell pro�les positive for one Atg9 compartment) after 

starving the cells. The observed phenotypes were not caused by 

a structural reorganization of the Atg9 clusters, e.g., fusion and 

�ssion, because the mean surface section of the Atg9 clusters  

is very similar at the 0 and 60 min time points (0.121 and 

0.139 mm2, respectively; t test assessment of the individual mea-

surements revealed no signi�cant difference between the values;  

P = 0.09). Importantly, we did not observe a signi�cant increase 

in the total number of isolated Atg9-positive vesicles in the cyto-

plasm, which supports the notion that Atg9 reservoirs translocate 

en bloc (Fig. 8 E).

To further demonstrate that the Atg9 reservoirs are the 

PAS precursor, we analyzed the evolution of this compartment 

by time-lapse �uorescence microscopy. At present, the primary 

distinguishing feature of the PAS is that most of the Atg pro-

teins associate at least transiently with this site. Thus, the idea 

behind this experiment is that an Atg9 reservoir should acquire 

the rest of the conserved Atg proteins as it becomes a PAS. To test 

this hypothesis, we generated a strain expressing higher levels 

of Atg9-monomeric cherry (mChe) to avoid rapid bleaching of 

the red �uorescent protein, allowing longer recording intervals.  

In addition, ATG8 was genomically tagged with GFP in the same 

cells. We selected Atg8 as a PAS protein marker because this fac-

tor is the last Atg protein to be recruited at this site (Suzuki et al., 

2007), and consequently, its presence at the PAS re�ects the com-

plete assembly of the Atg machinery. The engineered cells were 

then grown to logarithmic (log) phase before being transferred 

in SD-N medium for 20 min and imaged. Nitrogen starvation 

was used to induce autophagy because under these conditions, 

double-membrane vesicles form at a higher frequency, increas-

ing the chance of capturing PAS biogenesis. As shown in Fig. 9 

and Video 1, this approach allowed us to observe Atg9 reservoirs 

becoming the PAS; GFP-Atg8 was seen to move from a cytosolic 

location and ultimately colocalized with a reservoir. Importantly, 

the same result was obtained with cells expressing endogenous 

Atg9-GFP and carrying a plasmid expressing mChe-Atg8  

(Video 2). These results demonstrate that the PAS originates 

from the Atg9 reservoirs, and consequently, this latter compart-

ment supplies at least part of the phagophore membrane. They 

also further support the notion that the Atg9 reservoirs translocate 

en bloc to become the PAS.

Discussion

To shed light on the long-standing issue in autophagy of how 

autophagosomes are generated, we investigated PAS biogenesis 

using Atg9 as a protein marker. We discovered that the Atg9 

reservoirs are clusters of vesicles and tubules that are often  

adjacent to mitochondria but not continuous with them (Fig. 2,  

Fig. S1, and Tables I and II). The reason for the intimate connec-

tion between these two organelles remains unknown, and their 

proximity could be simply due to both organelles being asso-

ciated with actin cables. Nevertheless, it is now clear that the 

Atg9 reservoirs are not directly generated from mitochondria. 

First, we never observed the membrane of the vesicles/tubules 

comprising this compartment in continuity with the mitochondrial 

mutant, more and longer tubular pro�les were present in this 

structure, which in general appeared to be larger (Fig. 6, G and H; 

and Fig. S3, N–Q).

Together, our data strongly support the concept that the 

PAS is a vesicular and tubular cluster with morphology very 

similar to Atg9 reservoirs. The data also indicate that double-

membrane vesicles are formed through a process that initially 

requires the fusion/remodeling of these membranes through the 

direct or indirect functions of Atg1, Atg13, and Atg14.

The Atg9 reservoirs participate in the 

generation of the PAS

The strong morphological similarity between the Atg9 reservoirs 

and the PAS suggests that the latter originates from the former.  

If so, these two structures are expected to have similar bio-

chemical properties. To test this, we fractionated intracellular 

membranes of wild-type, atg11, and atg1 strains. Cell ex-

tracts were �rst centrifuged at 13,000 g. In all three strains, most  

of the Atg9 was found in the low speed S13 fraction and only  

a small amount in the pellet P13 fraction (Figs. 7 A and S2 B;  

Reggiori et al., 2004b, 2005). The S13 supernatant fraction was  

then separated on a sucrose step-density gradient (Reggiori et al., 

2004b). From wild-type cells, Atg9 fractionated in a single peak 

that was for the most part distinct from EE and LE (Fig. 7,  

B and C). Importantly, the Atg9 reservoirs and the PAS that ac-

cumulated in the atg11 and atg1 mutant, respectively, are also 

present in the same fractions (Fig. 7, B and C). This �nding in-

dicates that the Atg9 reservoirs and the PAS have almost identi-

cal densities, which supports the notion that the PAS could be 

derived from the Atg9 reservoirs.

Two possible models could explain how the PAS is gener-

ated from the Atg9 reservoirs. In the �rst, reservoirs translocate 

en bloc toward the vacuole, whereas in the second model, single 

vesicles derived from one or more reservoirs assemble near the 

vacuole. To determine how the PAS is generated from the Atg9 

reservoirs, we took advantage of the fact that Atg9 transport to 

the PAS requires the Cvt complex in growing conditions, but not 

when autophagy is induced (Shintani and Klionsky, 2004). In the 

ape1 atg1 double-knockout cells maintained in growing con-

ditions, therefore, Atg9 remains locked in the Atg9 reservoirs, 

whereas it accumulates at the PAS when these cells are starved 

(Shintani and Klionsky, 2004). To determine how Atg9 is trans-

ported from the Atg9 reservoirs to the PAS, we followed the re-

localization of Atg9 in the ape1 atg1 mutant by IEM over 

time (up to 1 h) after autophagy induction by nitrogen starvation. 

At the early time points, the only Atg9-positive structures we 

identi�ed were clusters of vesicles and tubules; these cor-

responded to the Atg9 reservoirs, as they were often found, in 

47% of the cases, adjacent to the mitochondria (Fig. 8, A and D). 

Before starvation (time 0 min), 40% of the cell pro�les were 

positive for 1–3 Atg9 reservoirs. In contrast, 60 min after the in-

duction of autophagy, only 14% of the cell pro�les were positive 

for Atg9 clusters and only one of them was observed per cell sec-

tion. The Atg9-positive compartments were mostly found close 

to the vacuole after 60 min (Fig. 8, B–D). This observation is in 

line with the design of the experiment, which predicts an atg11-

equivalent phenotype (43% of cell pro�les positive for 1–3 Atg9 
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Figure 7. Subcellular fractionation of Atg9 clusters in wild-type, atg11, and atg1 backgrounds. (A) The Atg9-PA (FRY172), Atg9-PA atg11 pep4 
(FRY250), and Atg9-PA atg1 pep4 (FRY196) strains were grown to log phase, converted to spheroplasts, and lysed, then cell extracts were centrifuged 
at 13,000 g for 15 min. The cell extract (T), the supernatant (S13), and the pellet (P13) fractions were then separated by SDS-PAGE, and Atg9 distribution 
was analyzed by Western blotting using anti-PA antibodies. Efficient lysis and correct fractionation were assessed by verifying the partitioning of cytosolic 
Pgk1 and mitochondrial Por1. Mr is indicated in kilodaltons. (B) The S13 supernatants were fractionated on sucrose step-density gradients, and the fractions 
were analyzed by Western blotting using antisera against PA (for Atg9-PA), Pep12, Tlg1, and Pgk1. (C) Quantification of the immunoblots.

outer membrane. Second, Atg9 was not detected on the surface 

of this organelle, and conversely, the mitochondrial protein 

markers Por1 and Idh1 were not found localizing to the Atg9 

reservoirs (Fig. 2, B–E; Fig. 3; and Fig. S1). Finally, our studies 

about Atg9 biosynthesis show that this protein is translocated 

into the ER and reaches its �nal location via part of the secretory 
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Figure 8. The Atg9 reservoirs move en bloc to become the PAS. The ape1 atg1 (MMY078) double mutant was grown to log phase before being nitro-
gen starved to induce autophagy. Cell aliquots were collected after 0, 10, 20, 30, 45, and 60 min. They were then processed for IEM, and cryosections 
were immunogold labeled for GFP (A–C). (A) An Atg9 reservoir adjacent to a mitochondrion observed at the 0 min time point. (B and C) Atg9 clusters 
close to the vacuole limiting membrane detected after 60 min of starvation. The gold particles size is indicated on the top of each picture. M, mitochondria; 
V, vacuole. Bars, 200 nm. (D) Relative subcellular distribution of the Atg9-GFP clusters in the ape1 atg1 cells before and after induction of autophagy 
for 60 min. Statistical analyses were performed as described in Materials and methods. (E) The number of isolated Atg9-positive vesicles in the cytoplasm 
does not increase after triggering Atg9 relocalization in the ape1 atg1 mutant by autophagy induction. 100 cell profiles were randomly selected and 
the number of isolated Atg9-positive vesicles per cell profile was established. Results in D and E are expressed in percentages ± the standard error of the 
mean (error bars).

pathway (Fig. 4). Our results could appear to contradict pub-

lished studies that suggested Atg9 localized at the mitochondria 

(Reggiori et al., 2005; He et al., 2006; Reggiori and Klionsky, 

2006; Yen et al., 2007). In these studies, the mitochondrial local-

ization of Atg9 was only hypothetical due to the resolution limits  

of �uorescence microscopy, and thus these previous analyses 

could not exclude the possibility that Atg9 is in a structure adja-

cent to mitochondria. Moreover, only a small fraction of Atg9-

containing membranes (Fig. 6 A) are found associated with 

mitochondria in subcellular fractionation experiments (Reggiori  

et al., 2005). Consequently, our data are not inconsistent with the 

literature, but rather explain previous observations and solve the 
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discordance about Atg9 localization. It has been reported that 

the sec12 mutation causes an Atg9 redistribution from preexist-

ing Atg9 reservoirs to the mitochondria surface (Reggiori and 

Klionsky, 2006). The Atg9 localization to mitochondria, however, 

was probably artifactual due to this organelle auto�uorescence 

(unpublished data).

Based on our data, the Atg9 reservoirs emerge as a new 

organelle, and newly synthesized Atg9 is delivered to these sites 

through part of the secretory pathway (Fig. 4). Because of the 

only partial colocalization between newly synthesized Atg9  

and the late Golgi protein marker Sec7 in sec7 cells (Fig. 4 B), 

it remains unclear from which Golgi compartment Atg9 is exiting. 

In addition, it cannot be excluded that Atg9 passes through an-

other organelle, and from there mediates the formation of the  

Atg9 reservoirs. These issues are currently being investigated in  

our laboratory. The Atg9 reservoirs are accessible to endocytic  

material, indicating that they are able to exchange materials with  

the endocytic system (Fig. 5 A). Atg9, however, shows minimal 

colocalization, and only modestly fractionates with protein 

markers of the EE, LE, and Golgi, which indicates that this pro-

tein concentrates in a unique organelle (Fig. 5, B and C; and  

Fig. 7 C; Noda et al., 2000; Reggiori et al., 2004b; Yen et al., 

2007). In support of this, the disruption of the endocytic system 

with speci�c deletions such as that of VPS4 leads to the concen-

tration of endosomal proteins and several late Golgi factors into 

an abnormal, large LE adjacent to the vacuole (Odorizzi et al., 

1998, 2003) without affecting Atg9 distribution or autophagy  

ef�ciency (Epple et al., 2003; Reggiori et al., 2004b; Reggiori 

and Klionsky, 2006).

It has been postulated that Atg9 is involved in supplying 

the nascent autophagosomes with lipid bilayers (Reggiori et al., 

2004a). Here, we show that the PAS originates from at least one of 

the Atg9 reservoirs (Figs. 8 and 9). Thus, we argue that the initial 

membranes of the PAS and by extension of double-membrane ves-

icles are derived from the Atg9 reservoirs. We cannot exclude the 

possibility that during the expansion of the phagophore, additional 

lipid bilayers are obtained from a different source, e.g., from the 

ER, mitochondria, or Golgi (Hayashi-Nishino et al., 2009; Geng  

et al., 2010; Hailey et al., 2010; van der Vaart et al., 2010).

In addition to the similar morphology between the Atg9 

reservoirs and the PAS (Figs. 1, 6, S1, and S4), one of our 

unpredicted discoveries has been the en bloc translocation of 

the reservoirs to form the PAS next to the vacuole. Our time-

lapse �uorescence microscopy showed that the Atg machinery  

can be recruited to a single Atg9 reservoir (Fig. 9 and Videos 1 

and 2). When the Atg9 movement was triggered from the reser-

voirs to the PAS, we did not observe an increase in the number 

of isolated Atg9-containing vesicles and tubules in the cyto-

plasm (Fig. 8). These data support the notion that the Atg9 

reservoirs move as clusters. This observation �ts with our pre-

vious studies showing Atg9 present in cytoplasmic clusters 

(Reggiori et al., 2004a, 2005) and the demonstration that Atg9 

self-interacts (Reggiori et al., 2005; He et al., 2008). An alter-

native model is that the PAS is generated by a small cluster of 

vesicles and/or tubules that results from the fragmentation of 

an Atg9 reservoir, but we do not consider this likely because 

we have never seen such a scission event during the live-cell 

imaging experiments, and small clusters comprising less than 

six vesicular and/or tubular pro�les have only rarely been ob-

served in our IEM preparations (see Materials and methods). 

All together, our data allow us to postulate a model where at 

least one Atg9 reservoir acts as a pre-PAS and where a change 

in localization of this compartment determines the biogenesis of 

the PAS (Fig. 10). The movement of an Atg9 reservoir in close 

proximity to the vacuole triggers the hierarchical recruitment of 

the remaining Atg proteins that mediate the rearrangement of 

these vesicles and tubules into what becomes the phagophore. 

It remains to be determined which factors on the vacuole limiting 

membrane or adjacent to it induce the Atg machinery assembly. 

Figure 9. Live cell imaging of an Atg9 reservoir becoming the PAS.  
Atg9-mChe GFP-Atg8 (MMY120) cells were grown to log phase and trans-
ferred to SD-N medium for 20 min before being imaged as described in 
Materials and methods. Sequential images acquired with a time lapse of  
5 s are shown. The arrow highlights the Atg9 reservoirs that ultimately co-
localize with Atg8 in the process of becoming the PAS. The complete movie 
reconstruction is presented in Video 1. An identical result was obtained 
with cells expressing endogenous Atg9-GFP (FRY172) and carrying the 
pCumCheV5ATG8415 plasmid, which expresses mChe-Atg8 (Video 2). 
DIC, differential interference contrast. Bar, 2 µm.
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Nonetheless, at this time we cannot conclusively rule out alter-

native models, and this hypothesis has to be experimentally 

demonstrated in future.

The mammalian orthologue of Atg9 (mAtg9) cycles be-

tween the TGN and LE; and after autophagy stimulation, it re-

localizes to autophagosomal membranes (Young et al., 2006). All 

the proteins encoded by the genes knocked out in our study pos-

sess orthologues, and some of them have also been implicated in 

mAtg9 traf�cking (Young et al., 2006; Itakura et al., 2008; Chan 

et al., 2009). Consequently, by extension, our results suggest that 

the origin of the initial autophagosomal membranes in higher eu-

karyotes could be the TGN and/or LE, and that the Atg9-positive 

membranes lead to the formation of the mammalian PAS after 

relocalization to the cell periphery, but this hypothesis remains 

to be experimentally tested.

The current hypothesis for double-membrane vesicle for-

mation is that Atg proteins assemble at the PAS, and at this site, 

they mediate the formation of a phagophore that in turn expands 

into an autophagosome. Two main models have been proposed 

for the generation of phagophores: �rst, the generation by emer-

gence from a de�ned organelle (which is supported by the recent 

observation according to which mammalian autophagosomes 

are generated in close proximity to the ER or mitochondria; 

Hayashi-Nishino et al., 2009; Hailey et al., 2010), and second,  

de novo formation by fusion of vesicles. Our results clearly support 

the model where the initial events of double-membrane vesicle 

biogenesis in yeast involve the de novo fusion of vesicles and 

tubules. One observation in support of de novo formation is that 

we have detected the Atg9-containing clusters of vesicles and 

tubules always positioned on one side of the Cvt complex, never 

completely surrounding this circular structure (Fig. 2, D and E; 

Fig. 6, C–F, cisternae circled with broken lines; Fig. S1, A–D and E; 

and Fig. S4, E–M). It is consequently tempting to imagine that 

the initial fusions generate a small cisterna, e.g., the phagophore.  

Our data do not exclude the possibility that after these early  

events, the completion of autophagosomes entails the acquisition 

of additional membranes through a different mechanism.

What would be the molecular basis for the fusion events?  

It has recently been shown that lipidated Atg8 mediates the teth-

ering and hemifusion of membranes in vitro (Nakatogawa et al., 

2007). Our observations indicate that the early fusion events dur-

ing double-membrane vesicle biogenesis probably do not require 

these Atg8 functions. In the atg1 and atg13 mutants, lipidated 

Atg8 is present at the PAS (Fig. S1, C–H; Suzuki et al., 2007), but 

our micrographs clearly illustrate that the Atg9-containing vesi-

cles and tubules are not hemifused (Fig. 6, C–F; and Fig. S4, E, 

F, and H–M). In atg14 cells, moreover, Atg8 is not associated 

with the PAS (Fig. S3, C–H; Suzuki et al., 2007), but the Atg9-

positive membranes appear to have undergone some fusion, 

and this is exempli�ed by the presence of larger tubular pro�les  

(Fig. 6, G and H; and Fig. S4, N–Q). Our data are consistent 

with the observation that the tethering and hemifusion proper-

ties of lipidated Atg8 do not play a role before the expansion of 

the autophagosomal membranes (Nakatogawa et al., 2007; Sou 

et al., 2008). Because Sec18/NSF and SNARE proteins have so 

far not been implicated in double-membrane vesicle formation 

(Ishihara et al., 2001; Reggiori et al., 2004b), future studies will 

have to address which factors carry out these initial fusion events. 

The Atg proteins are the most likely candidates because deletion 

of some of them leads to the formation of a PAS with differ-

ent membrane rearrangement (Fig. 6, C–H; Fig. S2; and Fig. S4, 

D–Q). Our observations show that the protein composition of the 

PAS dictates the extent of fusion events (Fig. 6, G and H; and 

Fig. S4, N–Q) and possibly �ssion events (Fig. 6, E and F; and 

Fig. S4, C, D, and N–Q) occurring at this site. Atg14 is involved 

in the recruitment of the kinase complex that generates the  

PAS pool of phosphatidylinositol-3-phosphate (Obara et al., 

2006). Consequently, our results also indicate that the membrane 

Figure 10. Model for the role of the Atg9 reservoirs in double-membrane vesicle formation. The Atg9 reservoirs, which often are adjacent to mitochon-
dria, act as a pre-PAS. Association with the prApe1 oligomer in nutrient-rich conditions (Cvt pathway) and probably cellular signals during starvation 
(autophagy) induces the translocation of one or more Atg9 reservoirs into close proximity with the vacuole. This relocalization event triggers the recruitment 
of the rest of the Atg proteins to a reservoir, leading to the formation of the PAS. Successive fusion of the tubulovesicular membranes composing the PAS 
and possibly acquisition of additional membrane from other Atg9 reservoirs and/or other sources creates a double-membrane vesicle.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://ru

p
re

s
s
.o

rg
/jc

b
/a

rtic
le

-p
d
f/1

9
0
/6

/1
0
0
5
/1

3
4
7
4
9
9
/jc

b
_
2
0
0
9
1
2
0
8
9
.p

d
f b

y
 g

u
e
s
t o

n
 0

9
 A

u
g
u
s
t 2

0
2
2



1019Atg9 and PAS biogenesis • Mari et al.

TRP1, or the Saccharomyces pombe HIS5 genes using PCR primers contain-
ing 60 bases of identity to the regions flanking the open reading frame.

PCR-based integration of GFP, mCHE-V5, and a triple HA tag at the  
3 end of ATG9, IDH1, SEC63, SEC7, and VRG4 was used to generate strains  
expressing C-terminal fusion proteins under the control of the native promot-
ers. The template for integration was pFA6a-3xHA-HIS5, pFA6a-GFP-TRP1, 
pFA6a-mCherry-V5-TRP1, pFA6a-mCherry-V5-HIS3, and pFA6a-mCherry-V5-
HIS3 (Longtine et al., 1998; and see Plasmids). PCR-based integration of GFP 
at the 5 end of TLG1 and PEP12 followed by Cre recombinase-mediated ex-
cision of the auxotrophic marker was used to generate strains expressing  
N-terminal fusion proteins under the control of their native promoters (Gauss 
et al., 2005). The PCR template for integration was pOM43.

Western blotting using specific antibodies recognizing the proteins 
encoded by the deleted genes, analysis of the Ape1 processing, and PCR 
verification were used to confirm all deletions and integrations, and the 
functionality of all the genomic fusions.

Media
Yeast cells were grown in rich (YPD; 1% yeast extract, 2% peptone, and  
2% glucose) or synthetic minimal media (SMD; 0.67% yeast nitrogen base, 
2% glucose, and amino acids and vitamins as needed). Starvation experi-
ments were conducted by adding 200 ng/ml of rapamycin or by transfer-
ring cells into a nitrogen starvation medium (SD-N; 0.17% yeast nitrogen 
base without amino acids and ammonium sulfate, and 2% glucose).

Fluorescence microscopy
Yeast cells were grown in the appropriate medium before imaging. Endo-
somes were stained with FM 4-64 as described previously (Sipos et al., 
2004). In brief, 1 ml of log phase cultures was centrifuged and resuspended 
in 100 µl of ice-cold medium containing 20 µM of FM 4-64 (Invitrogen).  
After 15 min on ice, cells were washed once with ice-cold medium without 
FM 4-64 and then resuspended in the same solution before being spotted 
on a cover slide. Preparations were successively imaged at RT over a  
10-min period.

Fluorescence signals were captured with a fluorescence microscope 
system (DeltaVision RT; (Applied Precision) with a 100× objective lens, 
equipped with a CoolSNAP HQ camera (Photometrix). Images were gener-
ated by collecting a stack of 20 pictures with focal planes 0.20 µm apart to 
cover the entire volume of a yeast cell (4–5 µm) and by successively decon-
volving and analyzing them with the softWoRx software (Applied Precision). 
A single focal plane is shown at each time point.

To perform statistical analyses of the colocalization degree between 
fluorescence signals, mild conditions were used to fix cells without destroy-
ing the fluorescent proteins (Reggiori et al., 2005). The three-dimensional 
projection of the picture stacks allow for visualizing all the Atg9-positive 
puncta present in each cell. Subsequently, the number of these puncta  
colocalizing with the fluorescent organelle protein marker present in the  
same cells was determined. Percentages represent how many Atg9- 
positive puncta colocalize with a specific organelle protein marker. In total,  
200–350 Atg9-positive puncta were analyzed for each time point, and 
this counting was repeated twice with samples from two independent ex-
periments. Standard deviations between these two countings were calcu-
lated. To determine the number of Atg9-positive compartments per cell in 
strains expressing endogenous or overexpressed Atg9-GFP, the number of 
green puncta per cell was counted in 100 randomly chosen cells. Estima-
tion of colocalization between endogenous or overexpressed Atg9-GFP 
puncta and mitochondria labeled with mitochondria-targeted DsRed was 
also performed in 100 randomly chosen cells. Three different categories 
of Atg9-GFP puncta were found. Those completely colocalizing with mito-
chondria were defined as overlapping and those adjacent or apposed to 
mitochondria were defined as adjacent, whereas those not in proximity to 
mitochondria were defined as free.

The time-lapse experiments were performed by imaging the same 
cells every 5 s for 4 min and 5 s (50 pictures). At each time point, images 
were generated by collecting a stack of three pictures with focal planes 
0.20 µm apart and by successively deconvolving them.

IEM
Cells were fixed, embedded in gelatin, and cryo-sectioned as described 
previously (Griffith et al., 2008). Sections were then immuno-labeled using 
rabbit anti-GFP (Abcam) and anti-Ape1 antisera (a gift from I. Sandoval 
and M. Mazón, Universidad Autonoma de Madrid, Madrid, Spain), mouse 
anti-Por1 (Invitrogen), and anti-HA antibodies (a gift of G. Bu, Washington 
University in St. Louis, St. Louis, MO), and goat anti-GFP antibody (Rock-
land Immunochemicals, Inc.) follow by protein A (PA)-gold detection. The 
specificity of the antigenic reaction has been controlled for each single or 

rearrangements occurring at the PAS could be directly in�uenced 

by the lipid composition.

In conclusion, our work has revealed that the PAS is formed 

from a preexisting cluster of Atg9-containing vesicles and tubules 

whose composition is unique and from which atypical fusion 

events generate the double-membrane sequestering vesicles. This 

discovery provides the knowledge essential to perform further 

studies on the function of Atg proteins. Understanding the role of 

Atg proteins in rearranging and fusing membranes will be crucial 

to unveil the molecular mechanism of autophagy, which in turn 

will be essential to understand the contribution of this pathway in 

physiological and pathological situations.

Materials and methods

Plasmids
To create the ATG9-GFP fusion under the control of a TPI1 promoter  
(pATG9GFP416), ATG9 was amplified by PCR and cloned as a HindIII–
XmaI fragment into the pSNA3416 plasmid digested with HindIII–AgeI 
(Reggiori and Pelham, 2001). The 3 primer used for this PCR reaction in-
troduced a Gly-Ala-Gly-Ala-Gly-Ala-Gly protein linker between Atg9 and 
GFP. The integration vector pATG9GFP406 was generated by swapping 
TPI1-ATG9-GFP as a XhoI–SacI fragment into a pRS406 plasmid (Sikorski 
and Hieter, 1989). This construct leads to levels of Atg9-GFP eight times 
higher when compared with endogenous Atg9 as assessed by Western 
blotting. The plasmid expressing the Atg9-GFP chimera under the control 
of the GAL1 promoter (pGalATG9416) was made by excising the TPI1 
promoter from the pATG9GFP416 vector with XhoI–HindIII and replacing 
it with that of GAL1, which was obtained by PCR from genomic DNA. The 
integration vector pATG9mCheV5403, which leads to the expression of 
Atg9-mChe-V5 under the control of a TPI1 promoter, was created as fol-
lows: first, PCR-amplified mCHE-V5 was cloned into the pSNA3416  
plasmid as an AgeI–KpnI fragment, resulting in the pSNA3mCheV5416 
plasmid. The SNA3 gene was then excised from this plasmid with HindIII 
and AgeI, and replaced by PCR-amplified ATG9 digested with HindIII and 
XmaI to produce the pATG9mCheV5416 plasmid. The integration vector 
pATG9mCheV5403 was finally made by swapping TPI1-ATG9-mCHE-V5 
as a XhoI–SacI fragment into a pRS403 plasmid (Sikorski and Hieter, 
1989). As with the Atg9-GFP chimera (Fig. 1), the TPI1 promoter-driven 
Atg9-mChe fusion protein is also functional.

The plasmids expressing monomeric RFP-Atg8 under the control of 
the authentic promoter (promRFPATG8415) were created in two steps. First, 
GFP was excised from the pRS316GFP–AUT7 plasmid (a gift of Y. Ohsumi, 
National Institute for Basic Biology, Okazaki, Japan; Suzuki et al., 2001) 
with BamHI and replaced by the gene coding for RFP flanked by BamHI 
sites. The promoter and gene fusions were then shuttled into the pRS415 
vector (Sikorski and Hieter, 1989). The plasmid expressing mChe-V5-Atg8 
under the control of the CUP1 promoter (pCumCheV5ATG8415) was cre-
ated by excising and replacing GFP in the pCuGFPATG8415 vector (Kim 
et al., 2002; Suzuki et al., 2001, 2007), with PCR-generated mCHE-V5  
digested with SpeI–XmaI.

The plasmid pmitoDsRed415 was generated by digesting the  
pADHmitoDsRED (Meeusen and Nunnari, 2003) vector with NotI–HindIII 
and cloning the resulting ADH1 promoter-mitoDsRED fragment into the 
pRS415 vector using the same restriction enzymes.

Template plasmids for the PCR-based integration of the mCherry-V5 
tag (pFA6a-mCherry-V5-TRP1, pFA6a-mCherry-V5-HIS3, and pFA6a-
mCherry-V5-KanMX) at the 3 end of genes were created as follows: the 
GFP gene was excised with PacI and AscI from the pFA6a-GFP-TRP1, 
pFA6a-GFP-HIS3, and pFA6a-GFP-KanMX vectors (Longtine et al., 1998), 
respectively, and replaced with the PCR-amplified mCherry-V5.

Plasmids pRS416, pJK1-2416, and those used for the genomic integra-
tion of Sec7-DsRED, GFP-Atg8, and RFP-Ape1 have been described previously 
(Sikorski and Hieter, 1989; Noda et al., 2000; Suzuki et al., 2001; Reggiori 
et al., 2004a; Losev et al., 2006). The plasmid for the genomic integration of 
Sec7-DsRED was a gift of B. Glick (University of Chicago, Chicago, IL).

Strains
The S. cerevisiae strains used in this study are listed in Table III. For gene 
disruptions, the APE1, ATG1, ATG9, ATG11, ATG13, and ATG14 coding 
regions were replaced with the Escherichia coli kanr, the S. cerevisiae 
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and 1 mM EDTA) containing freshly added Complete protease inhibitors 
(Roche) and 2 mM PMSF by 20 aspirations through a syringe. Cell lysates 
were centrifuged twice at 500 g for 5 min, and 4 ml of the supernatant 
fractions (T) were subjected to centrifugation at 13,000 g for 15 min to be 
separated into supernatant (S13) and pellet (P13) fractions. The S13 frac-
tions (2 ml) were subsequently loaded on a top of sucrose step gradients 
and centrifuged at 170,000 g for 16 h. All fractions were mixed with 4× 
Sample buffer, heated at 37°C for 5 min, and resolved by SDS-PAGE fol-
lowed by Western blotting using antibodies or serum against GFP (Roche), 
V5 (Invitrogen), Tlg1 (a gift from H. Pelham, Medical Research Council 
Laboratory of Molecular Biology, Cambridge, England, UK), Por1, Pgk1, 
and Pep12 (all from Invitrogen).

Pho8 activity assay
4 OD600 of cells in log phase or nitrogen-starved for 4 h were harvested 
by centrifugation, washed with 1 ml of ice-cold water, and resuspended in 
400 µl of Lysis buffer (20 mM Pipes, pH 6.8, 0.5% Triton X-100, 50 mM 
KCl, 100 mM potassium acetate, 10 mM MgSO4, 10 µM ZnSO4, and  
2 mM PMSF). The same volume of glass beads was added and cells were dis-
rupted by agitation for 5 min. After pelleting of cell debris at 13,000 g for 
5 min, 100 µl of lysate were mixed with 400 µl of reaction buffer (250 mM 
Tris-HCl, pH 8.5, 0.4% Triton TX-100, 10 mM MgSO4, 10 µM ZnSO4, and 
1.25 mM p-nitrophenyl phosphate; Sigma-Aldrich) prewarmed at 37°C.  
Incubation was performed at 37°C for 20 min and stopped by adding 500 µl  
of 1 M glycine buffer, pH 11.0. Samples were then centrifuged at 13,000 g  
for 2 min, and 1 ml of supernatant was taken to measure the absorbance 
at OD420. Protein concentration in the lysate was determinate with a  
Dc Protein Assay kit (Bio-Rad Laboratories). Pho8 activity was calculated as 
(1,000 × OD420)/(min × [prot]), where min = 20 min and [prot] = protein 
concentration in the lysate expressed in mg/ml. Results were expressed in 
a plot as the percentage of the activity measured for the wild-type strain 

double immunogold labeling that has been performed (Fig. S5). Sections 
were viewed in an electron microscope (1200 EX; JEOL).

Statistical analysis of IEM data
The presence of gold particles associated with membranes comprising at 
least six vesicular and/or tubular profiles with a distance no greater than 
10–15 nm defined an Atg9 cluster, whereas labeled single vesicles at a 
distance >100 nm from a membranous structure, vesicle, or organelle, 
were defined as isolated vesicles. Membranes comprising 2–5 vesicular 
and/or tubular profiles have not been included in the statistical analyses 
because they were very rarely observed. A gold particle was assigned to a 
compartment when no further than 25 nm away from its limiting membrane. 
The number of Atg9 clusters and Cvt complexes per cell section were 
counted in wild-type, atg11, and atg1 strains by randomly analyzing 
250 cell profiles per strain over three independent experiments. This count-
ing was also used to determine the number of cell sections positive for an 
Atg9 cluster or a Cvt complex.

The relative distribution of Atg9-GFP tubulovesicular clusters was as-
sessed by randomly analyzing 150 sampled profiles from at least four distinct 
grids. These structures (adjacent or not to a Cvt complex) were designated as 
being associated with a well-defined organelle (nucleus, vacuole, or mitochon-
dria) if within 50 nm from its limiting membrane. Structures further away were 
defined as cytoplasmic. Estimation of the average surface section of the Atg9 
clusters was performed by analyzing 30 micrographs per condition using the 
point-hit method (Rabouille, 1999).

Subcellular fractionation
Separation of membranes present in low-speed supernatant fractions on 
sucrose gradients were performed as described previously (Reggiori et al., 
2004b). In brief, 500 OD600 equivalents of spheroplasts were lysed in 5 ml 
of ice-cold hypo-osmotic buffer (50 mM K2HPO4, pH 7.5, 200 mM sorbitol, 

Table III. Strains used in this study

Name Genotype Reference/origin

AFM69-1A MATa sec7-4 his3,11-15 leu2-3,112 ura3-1 Reggiori et al., 2004b

BY4742 MAT his31 leu20 lys20 ura30 Euroscarf

FBY217 MAT sec12-4 his3 leu2 ura3 trp1 ade2 Reggiori et al., 2004b

FRY162 SEY6210 ATG9-GFP::HIS5S.p. Reggiori et al., 2005

FRY172 SEY6210 ATG9-PA::TRP1 pep4::LEU2 Reggiori et al., 2004a

FRY196 SEY6210 ATG9-PA::TRP1 atg1::URA3 pep4::LEU2 Reggiori et al., 2004a

FRY250 SEY6210 ATG9-PA::TRP1 atg11::URA3 pep4::LEU2 This study

FRY300 MAT his31 leu20 lys20 ura30 pho13::KAN pho8::PHO860 atg9∆0 This study

FRY340 SEY6210 ATG9-GFP::TRP1 VRG4-mCHE-V5::HIS5 S.p. This study

FRY341 SEY6210 ATG9-GFP::TRP1 SEC7-dsRED::URA3 This study

FRY342 SEY6210 GFP-TLG1 ATG9-mCHE-V5::TRP1 This study

FRY344 SEY6210 GFP-PEP12 ATG9-mCHE-V5::TRP1 This study

FRY360 SEY6210 GFP-TLG1 This study

JCK007 SEY6210 atg9::HIS3 Noda et al., 2000

MMY067 SEY6210 atg9::KAN TPI1-ATG9-GFP::URA3 This study

MMY068 SEY6210 atg9::KAN atg1::HIS5 S.p. TPI1-ATG9-GFP::URA3 This study 

MMY069 SEY6210 atg9::KAN atg11::HIS5 S.p. TPI1-ATG9-GFP::URA3 This study

MMY070 SEY6210 atg9::KAN atg13::HIS5 S.p. TPI1-ATG9-GFP::URA3 This study

MMY071 SEY6210 atg9::KAN atg14::HIS5 S.p. TPI1-ATG9-GFP::URA3 This study

MMY072 SEY6210 atg9::KAN TPI1-ATG9-GFP::URA3 RFP-APE1::LEU2 This study

MMY073 SEY6210 atg9::KAN atg1::HIS5 S.p. TPI1-ATG9-GFP::URA3 RFP-APE1::LEU2 This study

MMY074 SEY6210 atg9::KAN atg11::HIS5 S.p. TPI1-ATG9-GFP::URA3 RFP-APE1::LEU2 This study

MMY075 SEY6210 atg9::KAN atg13::HIS5 S.p. TPI1-ATG9-GFP::URA3 RFP-APE1::LEU2 This study

MMY076 SEY6210 atg9::KAN atg14::HIS5 S.p. TPI1-ATG9-GFP::URA3 RFP-APE1::LEU2 This study

MMY078 SEY6210 atg9::KAN atg1::HIS5 S.p. ape1::HIS5 S.p. TPI1-ATG9-GFP::URA3 This study

MMY120 SEY6210 TPI1-ATG9-mCHE-V5::HIS3 This study

MMY125 BY4742 SEC7-mCHE-V5::KAN This study

MMY126 BY4742 SEC63-mCHE-V5::KAN This study

MMY127 MATa sec7-4-mCHE-V5::KAN his3,11-15 leu2-3,112 ura3-1 This study

MMY129 MAT sec12-4 SEC63-mChe-V5::HIS3 leu2 ura3 trp1 ade2 This study

MOY003 SEY6210 atg9::KAN TPI1-ATG9-GFP::URA3 IDH1-3xHA::HIS3 This study

SEY6210 MAT ura3-52 leu2-3, 112 his3-200 trp1-901 lys2-801 suc2-9 mel GAL Robinson et al., 1988
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Ape1 analysis by Western blotting
2.5 OD600 of cells grown in YPD to log phase were collected by cen-
trifugation, and proteins were precipitated with 400 µl of ice-cold 10%  
trichloroacetic acid for 30 min. After spinning the samples for 5 min, 
pellets were washed with ice-cold acetone. Pellets were subsequently air 
dried, resuspended in 100 µl of sample buffer (80 mM Tris-HCl, pH 6.8, 
2% SDS, 8.7% glycerol, 2.5% 2-mercaptoethanol, and 0.05% bromo-
phenol blue), and boiled for 5 min. Aliquots of 20 µl were loaded on 8%  
SDS-PAGE gels, and after Western blotting, membranes were probed with 
the anti-Ape1 antibodies. The anti-Ape1 polyclonal antiserum was gener-
ated by injecting the synthetic peptide CKHWRSVYDEFGEL corresponding 
to amino acid residues 502–514 of Ape1 in New Zealand white rabbits 
(New England Peptide).

Online supplemental material
Fig. S1 shows Fig. 2 (D and E) without dashed lines as well as additional ex-
amples of Atg9 clusters in wild-type cells. Fig. S2 illustrates that Atg9 over-
expression leads to an expansion of the membranes containing this protein 
without altering their biophysical properties. Fig. S3 shows the subcellular 
distribution of Atg9 in various mutant strains. Fig. S4 presents Fig. 6 (C–F) 
without dashed lines and ultrastructural views of Atg9 clusters in various mu-
tant strains. Fig. S5 displays the immunogold labeling controls. Videos 1 and 2 
show an Atg9 reservoir becoming the PAS. Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.200912089/DC1.

The authors thank G. Bu, B. Glick, H. Pelham, Y. Ohsumi, M. Mazón and  
I. Sandoval for reagents; C. Rabouille and J. Klumperman for critical reading 
of the manuscript; and R. Scriwanek and M. van Peski for assistance with the 
figure preparation.

F. Reggiori is supported by the Netherlands Organization for Health  
Research and Development (ZonMW-VIDI) and by the Utrecht University (High 
Potential grant). D.J. Klionsky is supported by Public Health Service grant 
GM53396 from the National Institutes of Health.

Submitted: 15 December 2009
Accepted: 13 August 2010

References

Baba, M., M. Osumi, S.V. Scott, D.J. Klionsky, and Y. Ohsumi. 1997. Two dis-
tinct pathways for targeting proteins from the cytoplasm to the vacuole/
lysosome. J. Cell Biol. 139:1687–1695. doi:10.1083/jcb.139.7.1687

Barlowe, C., and R. Schekman. 1993. SEC12 encodes a guanine-nucleotide- 
exchange factor essential for transport vesicle budding from the ER. 
Nature. 365:347–349. doi:10.1038/365347a0

Chan, E.Y.W., A. Longatti, N.C. McKnight, and S.A. Tooze. 2009. Kinase- 
inactivated ULK proteins inhibit autophagy via their conserved C-terminal  
domains using an Atg13-independent mechanism. Mol. Cell. Biol. 
29:157–171. doi:10.1128/MCB.01082-08

Deshaies, R.J., S.L. Sanders, D.A. Feldheim, and R. Schekman. 1991. Assembly 
of yeast Sec proteins involved in translocation into the endoplasmic  
reticulum into a membrane-bound multisubunit complex. Nature. 349: 
806–808. doi:10.1038/349806a0

Epple, U.D., E.-L. Eskelinen, and M. Thumm. 2003. Intravacuolar membrane 
lysis in Saccharomyces cerevisiae. Does vacuolar targeting of Cvt17/
Aut5p affect its function? J. Biol. Chem. 278:7810–7821. doi:10.1074/
jbc.M209309200

Franzusoff, A., and R. Schekman. 1989. Functional compartments of the 
yeast Golgi apparatus are de�ned by the sec7 mutation. EMBO J. 
8:2695–2702.

Gauss, R., M. Trautwein, T. Sommer, and A. Spang. 2005. New modules 
for the repeated internal and N-terminal epitope tagging of genes in 
Saccharomyces cerevisiae. Yeast. 22:1–12. doi:10.1002/yea.1187

Geng, J., M. Baba, U. Nair, and D.J. Klionsky. 2008. Quantitative analysis of 
autophagy-related protein stoichiometry by �uorescence microscopy.  
J. Cell Biol. 182:129–140. doi:10.1083/jcb.200711112

Geng, J., U. Nair, K. Yasumura-Yorimitsu, and D.J. Klionsky. 2010. Post-golgi 
sec proteins are required for autophagy in Saccharomyces cerevisiae. 
Mol. Biol. Cell. 21:2257–2269. doi:10.1091/mbc.E09-11-0969

Grif�th, J., M. Mari, A. De Mazière, and F. Reggiori. 2008. A cryosectioning 
procedure for the ultrastructural analysis and the immunogold labelling 
of yeast Saccharomyces cerevisiae. Traf�c. 9:1060–1072. doi:10.1111/
j.1600-0854.2008.00753.x

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://ru

p
re

s
s
.o

rg
/jc

b
/a

rtic
le

-p
d
f/1

9
0
/6

/1
0
0
5
/1

3
4
7
4
9
9
/jc

b
_
2
0
0
9
1
2
0
8
9
.p

d
f b

y
 g

u
e
s
t o

n
 0

9
 A

u
g
u
s
t 2

0
2
2

dx.doi.org/10.1016/j.cell.2010.04.009
dx.doi.org/10.1038/ncb1991
dx.doi.org/10.1038/ncb1991
dx.doi.org/10.1083/jcb.200606084
dx.doi.org/10.1091/mbc.E08-05-0544
dx.doi.org/10.1093/emboj/17.1.113
dx.doi.org/10.1091/mbc.E08-01-0080
dx.doi.org/10.1016/S0962-8924(99)01699-2
dx.doi.org/10.1074/jbc.M109134200
dx.doi.org/10.1083/jcb.119.2.287
dx.doi.org/10.1128/JB.182.8.2125-2133.2000
dx.doi.org/10.1038/nri2161
dx.doi.org/10.1016/j.cell.2007.12.018
dx.doi.org/10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
dx.doi.org/10.1002/(SICI)1097-0061(199807)14:10<953::AID-YEA293>3.0.CO;2-U
dx.doi.org/10.1038/nature04717
dx.doi.org/10.1038/nature04717
dx.doi.org/10.1083/jcb.200304040
dx.doi.org/10.1038/nature06639
dx.doi.org/10.1016/j.cell.2007.05.021
dx.doi.org/10.1083/jcb.148.3.465
dx.doi.org/10.1016/0092-8674(80)90128-2
dx.doi.org/10.1091/mbc.E05-09-0841
dx.doi.org/10.1016/S0092-8674(00)81707-9
dx.doi.org/10.1242/jcs.00395
dx.doi.org/10.1083/jcb.139.7.1687
dx.doi.org/10.1038/365347a0
dx.doi.org/10.1128/MCB.01082-08
dx.doi.org/10.1038/349806a0
dx.doi.org/10.1074/jbc.M209309200
dx.doi.org/10.1074/jbc.M209309200
dx.doi.org/10.1002/yea.1187
dx.doi.org/10.1083/jcb.200711112
dx.doi.org/10.1091/mbc.E09-11-0969
dx.doi.org/10.1111/j.1600-0854.2008.00753.x
dx.doi.org/10.1111/j.1600-0854.2008.00753.x


JCB • VOLUME 190 • NUMBER 6 • 2010 1022

Rabouille, C. 1999. Quantitative aspects of immunogold labeling in embedded 
and nonembedded sections. Methods Mol. Biol. 117:125–144.

Reggiori, F., and D.J. Klionsky. 2005. Autophagosomes: biogenesis from scratch? 
Curr. Opin. Cell Biol. 17:415–422. doi:10.1016/j.ceb.2005.06.007

Reggiori, F., and D.J. Klionsky. 2006. Atg9 sorting from mitochondria is impaired 
in early secretion and VFT-complex mutants in Saccharomyces cerevisiae. 
J. Cell Sci. 119:2903–2911. doi:10.1242/jcs.03047

Reggiori, F., and H.R.B. Pelham. 2001. Sorting of proteins into multivesicular bod-
ies: ubiquitin-dependent and -independent targeting. EMBO J. 20:5176– 
5186. doi:10.1093/emboj/20.18.5176

Reggiori, F., K.A. Tucker, P.E. Stromhaug, and D.J. Klionsky. 2004a. The Atg1-
Atg13 complex regulates Atg9 and Atg23 retrieval transport from the 
pre-autophagosomal structure. Dev. Cell. 6:79–90. doi:10.1016/S1534- 
5807(03)00402-7

Reggiori, F., C.-W. Wang, U. Nair, T. Shintani, H. Abeliovich, and D.J. Klionsky. 
2004b. Early stages of the secretory pathway, but not endosomes, are re-
quired for Cvt vesicle and autophagosome assembly in Saccharomyces 
cerevisiae. Mol. Biol. Cell. 15:2189–2204. doi:10.1091/mbc.E03-07-0479

Reggiori, F., T. Shintani, U. Nair, and D.J. Klionsky. 2005. Atg9 cycles between 
mitochondria and the pre-autophagosomal structure in yeasts. Autophagy. 
1:101–109. doi:10.4161/auto.1.2.1840

Robinson, J.S., D.J. Klionsky, L.M. Banta, and S.D. Emr. 1988. Protein sort-
ing in Saccharomyces cerevisiae: isolation of mutants defective in the 
delivery and processing of multiple vacuolar hydrolases. Mol. Cell. Biol. 
8:4936–4948.

Shintani, T., and D.J. Klionsky. 2004. Cargo proteins facilitate the formation of 
transport vesicles in the cytoplasm to vacuole targeting pathway. J. Biol. 
Chem. 279:29889–29894. doi:10.1074/jbc.M404399200

Shintani, T., W.-P. Huang, P.E. Stromhaug, and D.J. Klionsky. 2002. Mechanism 
of cargo selection in the cytoplasm to vacuole targeting pathway. Dev. 
Cell. 3:825–837. doi:10.1016/S1534-5807(02)00373-8

Sikorski, R.S., and P. Hieter. 1989. A system of shuttle vectors and yeast host 
strains designed for ef�cient manipulation of DNA in Saccharomyces 
cerevisiae. Genetics. 122:19–27.

Sipos, G., J.H. Brickner, E.J. Brace, L. Chen, A. Rambourg, F. Kepes, and R.S. 
Fuller. 2004. Soi3p/Rav1p functions at the early endosome to regulate  
endocytic traf�cking to the vacuole and localization of trans-Golgi 
network transmembrane proteins. Mol. Biol. Cell. 15:3196–3209. doi: 
10.1091/mbc.E03-10-0755

Sou, Y.S., S. Waguri, J. Iwata, T. Ueno, T. Fujimura, T. Hara, N. Sawada, A. 
Yamada, N. Mizushima, Y. Uchiyama, et al. 2008. The Atg8 conjugation 
system is indispensable for proper development of autophagic isolation 
membranes in mice. Mol. Biol. Cell. 19:4762–4775. doi:10.1091/mbc 
.E08-03-0309

Suzuki, K., T. Kirisako, Y. Kamada, N. Mizushima, T. Noda, and Y. Ohsumi. 
2001. The pre-autophagosomal structure organized by concerted func-
tions of APG genes is essential for autophagosome formation. EMBO J. 
20:5971–5981. doi:10.1093/emboj/20.21.5971

Suzuki, K., Y. Kubota, T. Sekito, and Y. Ohsumi. 2007. Hierarchy of Atg proteins 
in pre-autophagosomal structure organization. Genes Cells. 12:209–218. 
doi:10.1111/j.1365-2443.2007.01050.x

van der Vaart, A., J. Grif�th, and F. Reggiori. 2010. Exit from the golgi is re-
quired for the expansion of the autophagosomal phagophore in yeast 
Saccharomyces cerevisiae. Mol. Biol. Cell. 21:2270–2284. doi:10.1091/
mbc.E09-04-0345

Vida, T.A., and S.D. Emr. 1995. A new vital stain for visualizing vacuolar mem-
brane dynamics and endocytosis in yeast. J. Cell Biol. 128:779–792. 
doi:10.1083/jcb.128.5.779

Wright, R., M. Basson, L. D’Ari, and J. Rine. 1988. Increased amounts of  
HMG-CoA reductase induce “karmellae”: a proliferation of stacked mem-
brane pairs surrounding the yeast nucleus. J. Cell Biol. 107:101–114. 
doi:10.1083/jcb.107.1.101

Xie, Z., and D.J. Klionsky. 2007. Autophagosome formation: core machinery and 
adaptations. Nat. Cell Biol. 9:1102–1109. doi:10.1038/ncb1007-1102

Yen, W.L., J.E. Legakis, U. Nair, and D.J. Klionsky. 2007. Atg27 is required 
for autophagy-dependent cycling of Atg9. Mol. Biol. Cell. 18:581–593. 
doi:10.1091/mbc.E06-07-0612

Young, A.R.J., E.Y.W. Chan, X.W. Hu, R. Köchl, S.G. Crawshaw, S. High, 
D.W. Hailey, J. Lippincott-Schwartz, and S.A. Tooze. 2006. Starvation 
and ULK1-dependent cycling of mammalian Atg9 between the TGN and  
endosomes. J. Cell Sci. 119:3888–3900. doi:10.1242/jcs.03172

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
://ru

p
re

s
s
.o

rg
/jc

b
/a

rtic
le

-p
d
f/1

9
0
/6

/1
0
0
5
/1

3
4
7
4
9
9
/jc

b
_
2
0
0
9
1
2
0
8
9
.p

d
f b

y
 g

u
e
s
t o

n
 0

9
 A

u
g
u
s
t 2

0
2
2

dx.doi.org/10.1016/j.ceb.2005.06.007
dx.doi.org/10.1242/jcs.03047
dx.doi.org/10.1093/emboj/20.18.5176
dx.doi.org/10.1016/S1534-5807(03)00402-7
dx.doi.org/10.1016/S1534-5807(03)00402-7
dx.doi.org/10.1091/mbc.E03-07-0479
dx.doi.org/10.4161/auto.1.2.1840
dx.doi.org/10.1074/jbc.M404399200
dx.doi.org/10.1016/S1534-5807(02)00373-8
dx.doi.org/10.1091/mbc.E03-10-0755
dx.doi.org/10.1091/mbc.E03-10-0755
dx.doi.org/10.1091/mbc.E08-03-0309
dx.doi.org/10.1091/mbc.E08-03-0309
dx.doi.org/10.1093/emboj/20.21.5971
dx.doi.org/10.1111/j.1365-2443.2007.01050.x
dx.doi.org/10.1091/mbc.E09-04-0345
dx.doi.org/10.1091/mbc.E09-04-0345
dx.doi.org/10.1083/jcb.128.5.779
dx.doi.org/10.1083/jcb.107.1.101
dx.doi.org/10.1038/ncb1007-1102
dx.doi.org/10.1091/mbc.E06-07-0612
dx.doi.org/10.1242/jcs.03172

