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Abstract

Background: While genome-wide associations studies (GWAS) have successfully elucidated the genetic architecture

of complex human traits and diseases, understanding mechanisms that lead from genetic variation to

pathophysiology remains an important challenge. Methods are needed to systematically bridge this crucial gap to

facilitate experimental testing of hypotheses and translation to clinical utility.

Results: Here, we leveraged cross-phenotype associations to identify traits with shared genetic architecture, using

linkage disequilibrium (LD) information to accurately capture shared SNPs by proxy, and calculate significance of

enrichment. This shared genetic architecture was examined across differing biological scales through incorporating

data from catalogs of clinical, cellular, and molecular GWAS. We have created an interactive web database

(interactive Cross-Phenotype Analysis of GWAS database (iCPAGdb)) to facilitate exploration and allow rapid analysis

of user-uploaded GWAS summary statistics. This database revealed well-known relationships among phenotypes, as

well as the generation of novel hypotheses to explain the pathophysiology of common diseases. Application of

iCPAGdb to a recent GWAS of severe COVID-19 demonstrated unexpected overlap of GWAS signals between

COVID-19 and human diseases, including with idiopathic pulmonary fibrosis driven by the DPP9 locus.

Transcriptomics from peripheral blood of COVID-19 patients demonstrated that DPP9 was induced in SARS-CoV-2

compared to healthy controls or those with bacterial infection. Further investigation of cross-phenotype SNPs

associated with both severe COVID-19 and other human traits demonstrated colocalization of the GWAS signal at

the ABO locus with plasma protein levels of a reported receptor of SARS-CoV-2, CD209 (DC-SIGN). This finding

points to a possible mechanism whereby glycosylation of CD209 by ABO may regulate COVID-19 disease severity.
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Conclusions: Thus, connecting genetically related traits across phenotypic scales links human diseases to molecular

and cellular measurements that can reveal mechanisms and lead to novel biomarkers and therapeutic approaches.

The iCPAGdb web portal is accessible at http://cpag.oit.duke.edu and the software code at https://github.com/

tbalmat/iCPAGdb.

Keywords: Pleiotropy, Cross-phenotype association, Gout, LD-score, Colocalization, PheWAS, Hi-HOST, Idiopathic

pulmonary fibrosis, Macular telangiectasia, rs2869462, rs505922, rs12610495

Background
Genome-wide association studies (GWAS) have identi-

fied hundreds of thousands of genomic regions that are

associated with complex human traits and have in-

creased our understanding of the genetic architecture of

human disease [1]. While GWAS now utilize even mil-

lions of subjects through leveraging electronic medical

record data [2, 3], progress towards understanding how

identified genetic variants alter cellular function and

physiology remains elusive. More efficient mechanisms

are needed for translating knowledge of genetic disease

risk and severity into insight of the underlying physi-

ology. Integrating analysis of GWAS across different

scales of biological phenotypes (molecular, cellular, and

organismal) may provide novel insight into how genetic

variants influence complex traits.

Comparative analyses of GWAS have revealed that

numerous, seemingly unrelated traits are connected by

shared underlying genetic variants [1]. This

phenomenon in which genetic variants affect multiple

traits or diseases is called pleiotropy. Several methods

have been developed to study pleiotropic SNPs by ex-

ploring the genetic relationship of multiple phenotypes.

Broadly, these approaches can be categorized into three

major groups. The first method is genetic correlation,

which aims to quantify the similarity of the genetic ef-

fects on pairwise traits using GWAS summary statistics

such as LD-score regression [4] or from individual geno-

type data with GCTA GREML [5]. With large popula-

tion sizes, these methods can accurately partition

variance into a shared genetic component but do not re-

veal the genetic variants driving the genetic correlation.

Genome-wide cross-trait analysis [6] has emerged as a

means to follow-up such results, but these univariate

meta-analyses of two traits requires genome wide sum-

mary statistics for both traits, can suffer from effect size

heterogeneity in combining results from disparate traits,

and cannot be easily applied to thousands of traits at

once. The second approach is colocalization, which esti-

mates how well the GWAS signals from two signals

overlap in a given region while revealing plausibility of

individual causal variants [7]. These two methods have

successfully identified novel genetic connections across

distant traits as well as pleiotropic genomic regions but

have generally been used independently of each other.

Finally, perhaps the most intuitive approach, is quantify-

ing cross-phenotype SNPs that are shared across mul-

tiple phenotypes. In its simplest form, a phenome-wide

association study takes a single SNP and examines the

significance of association across many traits, often from

electronic medical record [8]. Valuable websites, includ-

ing PhenoScanner [9], GRASP [10], and GeneATLAS

[11], have integrated thousands of GWAS studies with

billions of SNP-traits associations and allow users to

query individual SNPs across the phenome. However,

such PheWAS approaches do not leverage shared gen-

etic architecture that extends beyond individual SNPs

and do not take advantage of LD information.

Motivated to simultaneously connect human pheno-

types with shared genetic architecture and to identify

the precise loci driving this similarity, we previously de-

veloped a method, CPAG (Cross-phenotype Analysis of

GWAS), which estimated phenotype similarity of

NHGRI-EBI GWAS catalog [12] traits based on shared

genetic associations [13]. CPAG utilized cross-

phenotype SNP associations to cluster traits into groups

that were consistent with pre-defined categories and dis-

covered novel pleiotropic SNPs connecting Crohn’s dis-

ease and the fatty acid palmitoleic acid. However, CPAG

could not scale sufficiently to keep up with the massive

increase in the scope and scale of GWAS (facilitated

through increasing use of electronic medical record

(EMR)-based GWAS of huge cohorts) and the deeper

phenotyping of molecular and cellular traits that can

provide insight into mechanisms of pathophysiology of

disease. Here, we introduce iCPAGdb (interactive Cross-

Phenotype Analysis of GWAS database; https://github.

com/tbalmat/iCPAGdb [14]), a new cross-phenotype

analysis platform with improved identification of shared

loci using pre-computed ancestry-specific LD databases

and a more efficient algorithm for capturing cross-

phenotype associations. These improvements facilitated

integration of the NHGRI-EBI GWAS catalog with large

datasets of plasma and urine metabolites and cellular

host-pathogen traits. Such integration of pleiotropic ana-

lyses using GWAS datasets that include intermediate

traits across biological scales are crucial for moving from

lists of associated SNPs to understanding the
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pathophysiology of complex diseases. Finally, iCPAGdb

allows users to upload their own GWAS summary statis-

tics via web interface (http://cpag.oit.duke.edu) to iden-

tify and explore shared SNPs between their own GWAS

and a deep catalog of 4418 molecular, cellular, and dis-

ease phenotypes. Using a GWAS of severe COVID-19

[15] as the querying phenotype in iCPAGdb revealed

shared SNPs associated with idiopathic pulmonary fibro-

sis and plasma protein levels of CD209, a possible recep-

tor for SARS-CoV-2.

Implementation
Collection of GWAS summary statistics

Publicly available GWAS summary statistics were

downloaded from the following sources: 3793 traits

from NHGRI-EBI GWAS Catalog (https://www.ebi.ac.

uk/gwas/) [12] (version 1.02, downloaded on 2020/08/

05), 79 traits from H2P2 cellular GWAS (http://h2p2.

oit.duke.edu) [16], and 546 traits from human blood

circulating metabolites and urine metabolites GWAS

(http://metabolomics.helmholtz-muenchen.de/gwas/)

[17, 18]. NHGRI-EBI GWAS catalog traits included

annotation by Experimental Factor Ontology (EFO).

All GWAS data were harmonized to genome coordi-

nates of HG19. In total, we collected 4418 GWAS

traits, and 91,323 trait-SNPs pairs. A detailed list of

trait-SNP pairs at varying p value threshold can be

found in Table 1.

Severe COVID-19 summary statistics (adjusted for

top 10 principal components) generated by Ellin-

ghaus et al. [15] were downloaded from the GRASP

webpage of aggregated COVID-19 GWAS results

(https://grasp.nhlbi.nih.gov/Covid19GWASResults.

aspx) [10] (download date 2020/07/15). Genome co-

ordinates were converted from GRCh38 to HG19

using UCSC liftOver. GWAS summary statistics of

IPF were kindly provided by Allen et al. [19] after

r eque s t i ng a c c e s s f r om h t tp s : / / g i t hub . c om/

genomicsITER/PFgenetics.

LD clumping

GWAS summary statistics were individually pre-

processed by LD clumping using PLINK v1.9 [20], based

on genotypes from European populations from the 1000

Genomes project [21]. The general PLINK command

was “--clump-p1 1e-5 --clump-p2 1 --clump-r2 0.4

--clump-kb 1000.” For NHGRI/EBI GWAS catalog, the

index SNPs were selected using the genome-wide signifi-

cant p value threshold of 5 × 10−8 (--clump-p1 5e-8). For

molecular and cellular GWAS, we used a varying p value

cutoff from 1 × 10−3 to 1 × 10−5 for --clump-p1 param-

eter to choose the index SNPs.

For uploaded GWAS data, iCPAGdb calls on PLINK

automatically to perform LD clumping. Users can define

the p value for --clump-p1 to select the index SNPs and

choose proper LD structure (European, African, or

Asian) based on the ancestry of the GWAS.

LD proxy calculation

To maximize phenotypic associations due to indirect asso-

ciations, pairwise LD R2 values were computed for each

leading SNP against its surrounding SNPs using the geno-

types from the 1000 Genomes project (Phase 3 genotypes)

[21]. Prior to calculation, all SNPs with minor allele fre-

quency less than 0.01 and missingness > 0.1 were re-

moved. R2 of pairwise SNPs within 10,000 bp windows

were then calculated, and only LD proxies with R2 > 0.4

were retained in further analysis. The PLINK parameters

for calculating LD were “--ld-window-kb 1000 --ld-win-

dow 10000 --keep-allele-order --r2 in-phase with-freqs

gz.” The choice of R2 threshold of 0.4 was a practical deci-

sion made to reduce multiply counting regions with broad

association signals in moderate LD, while maintaining

sensitivity and specificity in detecting cross-phenotype as-

sociations. This R2 threshold was implemented in V1.0 of

the iCPAGdb software used for all analysis in this manu-

script and implemented in the web portal described below.

However, users can also download the iCPAGdb V1.1

source code and population-specific LD proxy databases

from Github (https://github.com/tbalmat/iCPAGdb [14])

Table 1 A summary of GWAS data in iCPAGdb

Type Traits/diseases # SNPs (p <
5e−8)

Trait-SNP
associations #

Website

NHGRI
catalog

Clinical GWAS 3793 63,933 85,639 https://www.ebi.ac.uk/gwas/

H2P2 Molecular/ cellular
GWAS

79 (44 flow cytometric phenotypes +
35 cytokines)

17 3489 (p < 1e−5) http://h2p2.oit.duke.edu

Blood
metabolites

Molecular GWAS 491 blood (453 metabolites + 38
xenobiotics)

1441 2024 http://metabolomics.helmholtz-
muenchen.de/gwas/

Urine
metabolites

Molecular GWAS 55 urine 149 171 http://metabolomics.helmholtz-
muenchen.de/gwas/

Sum 4418 65,540 91,323

GWAS summary statistics were clumped to include only a lead SNP for each trait locus
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and run analysis with different R2 cutoffs to retain overlap-

ping SNPs with higher LD (R2 > 0.8) or lower LD (R2 >

0.2). While performing colocalization analysis is a prudent

subsequent step in pursuing any iCPAGdb results, we cau-

tion that this is especially true when using the R2 cutoff of

0.2, because the iCPAGdb analysis may be identifying two

distinct association signals in the same region or a single

shared signal being harder to detect due to noisy data.

Since GWAS may be performed on diverse populations

from different ancestry or continents, we calculated

ancestry-specific LD proxies for European, African, and

Asian populations separately. European population included

503 samples from 5 populations (CEU, TSI, FIN, GBR, IBS),

African included 661 samples from 7 populations (YRI,

LWK, GWD, MSL, ESN, ASW, ACB), and Asian population

included 504 samples from 5 populations (CHB, JPT, CHS,

CDX, and KHV). We filtered genotypes for each ancestry

population by minor allele frequency more than 0.01 and

retained only biallelic SNPs. SNPs which have the same gen-

ome coordinates were merged using “--merge-equal-pos.”

For duplicated SNPs with the same variant rsID, we kept

only the first variant by using “--rm-dup force-first” using

PLINK 2.0.

Cross-phenotype SNP analysis

Cross-phenotype SNPs were used to quantify the similarity

of different traits. Cross-phenotype loci were identified as

leading SNPs and/or their LD proxies having statistically sig-

nificant associations with more than one trait/disease. If two

traits shared a common leading SNP, we termed this “direct

association.” If a leading SNP was associated with one trait,

while its LD proxy SNPs were associated with another trait,

we called this “indirect association.” If any shared SNP was

in LD with another SNP with R2 > 0.4, these SNPs were

merged into a SNP block until no further LD was found

across shared SNP/LD pairs. The similarity of traits pairs

based on shared associated SNPs was quantified using the

Chao-Sorensen and Jaccard similarity index as described

[13]. In this prior work, the Chao-Sorenson index resulted in

clusters with less heterogeneity based on a pre-defined dis-

ease categorization compared to other measures of similarity

and thus was the primary similarity index used in this work.

The significance of association for each trait pair was calcu-

lated using Fisher’s exact test, based on the hypergeometric

distribution:

p ¼

n2

k

 !

N e−n2

n1−k

 !

N e

n1

 !

where Ne is the effective number of independent SNPs

in the selected population, n1 and n2 are the number of

independent SNPs associated with trait 1 and trait 2,

and k is the number of independent SNP blocks. The ef-

fective number of independent SNPs for European, Afri-

can and Asian population was obtained from Table 4

from [22].

The significance of associations for all trait pairs was

further corrected for all possible pairwise comparisons

using the Benjamini-Hochberg and Bonferroni methods

for multiple test correction. A false discovery rate of 0.1

was chosen to identify significantly correlated trait pairs.

Comparison to LDSC

Bulik-Sullivan et al. [4] developed an innovative and un-

biased method, LDSC, to estimate genetic correlation

using GWAS summary statistics for all measured SNPs.

Their model calculated the LD scores for a variant

against all other variants in a 1 centimorgan window and

hypothesized that SNPs with higher LD scores are

tagged to a risk-conferring variant, and the genetic cor-

relation among traits can be calculated by normalizing

genetic covariance of SNP heritability. With this method,

they estimated 276 genetic correlations for 24 diseases/

traits based on full GWAS summary statistics [23]. To

evaluate the power of iCPAGdb, we calculated the gen-

etic associations on the same 24 GWAS traits. For each

trait pair, only SNPs associated with each trait passing a

genome-wide significant threshold (5 × 10−8) were used

by iCPAGdb. We quantified the strength of cross-

phenotype similarity for each trait pair using the Chao-

Sorensen similarity index. Since the p values from [23]

were not corrected by multiple test correction, we calcu-

lated the p values for rg using the R “p.adjust” function

with a total number of 276 comparisons.

Colocalization analysis

To evaluate whether the associations of GWAS trait

pairs identified by iCPAGdb were due to sharing the

same causal variants, we performed colocalization ana-

lysis using the R COLOC packages [7]. COLOC uses a

Bayesian framework to estimate the posterior probability

that two GWAS traits share two independent causal sig-

nals (PP3) or shares a single casual variant (PP4) in the

selected genome region. For each trait pair evaluated by

COLOC, SNPs within 200 kb window from the lead SNP

were included. Since COLOC requires minor allele fre-

quency (MAF) for each SNP in both GWAS studies,

when MAF was not available, we calculated the MAF

using European populations from the 1000 Genomes

Project [21]. We ran COLOC “coloc.abf” function using

the default prior parameters, p1 = 1 × 10−4, p2 = 1 ×

10−4, and p12 = 1 × 10−5. We also ran the built-in “sensi-

tivity” function to evaluate the robustness of predefined

priors, and all tests suggested that default prior
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parameters were robust. Therefore, we ran all colocaliza-

tion analyses with default priors.

COVID-19 transcriptomic analysis

Transcriptomics of COVID-19 peripheral blood was

generated by a previous study as described [24]. For that

study [24], samples were collected as part of the Molecu-

lar and Epidemiological Study of Suspected Infection

(MESSI), which was conducted at Duke University

Health System (DUHS) and the Durham Veterans Af-

fairs Health Care System (DVAHCS). SARS-CoV-2 RT-

PCR testing was used to confirm infection status. A total

of 46 subjects were analyzed, 14 of which were assayed

at more than 1 time point. In total, 77 samples were

assayed. Subjects were divided into early (≤ 10 days),

middle (11–21 days), and late (> 21 days) stage based on

duration of symptoms. Participant self-reported symp-

toms were recorded at each time point for 39 symptom

categories. Each symptom was scored on a scale of 0–4,

with 0 indicating not present, 1 mild, 2 moderate, 3 se-

vere, and 4 very severe symptoms. Daily symptom sever-

ity (sum of symptom scores for all symptoms) was

determined for each time point. At enrollment (day 0),

date of symptom onset was determined, and an initial

symptom survey recorded maximum score for each

symptom category between symptom onset and study

enrollment. Samples used for blood transcriptomics of

acute respiratory infection due to seasonal coronavirus,

influenza, or bacterial pneumonia, and healthy controls

were also previously described [24]. Total RNA was ex-

tracted from peripheral whole blood, and cDNA libraries

prepared using NuGEN Universal Plus mRNA-seq with

AnyDeplete Globin reduction were sequenced on the

Illumina NovaSeq 6000, as described [24]. In brief,

STAR v 2.7.1 [25] was used to align the short reads and

generate the count matrix. The count matrix was further

normalized using TMM method [26] and log2 trans-

formed. Associations were performed with generalized

linear models (LIMMA, [27]) and corrected for multiple

testing using the Benjamini-Hochberg method [28].

RNAs-seq datasets generated in [24] are publicly avail-

able through the National Center for Biotechnology In-

formation Gene Expression Omnibus, accession#

GSE161731. For the present study, analysis of DPP9 ex-

pression in these data was carried out in R, and p values

were calculated using the Wilcoxon rank-sum test.

iCPAGdb software and website implementation

iCPAGdb is comprised of two core parts, the back-end

computation and the front-end web browser. All code is

available at https://github.com/tbalmat/iCPAGdb [14].

The back-end was written in python v3.6 with utilization

of SQLite. SQLite tables were constructed for harmo-

nized GWAS datasets and LD tables for different

populations and are accessed using python sqlite3 pack-

age. The GWAS table stores clumped GWAS summary

statistics, including trait name, trait sources, SNP rsIDs,

beta values, standard error/standard deviation of beta,

effective allele, and p values. The ancestry-specific LD

proxy tables contain pairwise SNPs’ rsID and R2 values

(R2 > = 0.4) for different populations. All SQLite tables

were indexed on unique combinations of SNP and trait

or SNP pairs for LD proxy tables, which greatly reduces

the searching time. To further increase calculation

speed, the core cross-phenotype analysis part of

iCPAGdb is parallelized by utilizing multiple threads.

Primary software components for the web portion of

iCPAGdb are the R statistical programming language

[29], the R package Shiny (v1.5.0) for interaction of web

pages with R scripts [30], Shiny Server as a 24/7 multi-

user platform to make Shiny apps publicly accessible

[31], the database environment SQLite for efficient

querying of GWAS and iCPAGdb results [32], and the R

package RSQLite to execute SQL queries from within R

scripts [33]. The results of a iCPAGdb execution are

read by the R script, processed, and presented to the

viewer in various tables and graphs on a web page. The

iCPAGdb website is currently loaded with associations

across more than 4400 public GWAS datasets that can

be browsed and searched in “Review” mode. The user

requests an existing iCPAGdb result set from which a

corresponding table and heatmap are generated and dis-

played. Various filtering and graph construction controls

are available for iterative sub-setting of data and selec-

tion of significance measure and number of top signifi-

cant phenotype pairs to plot. The “Download" button

enables the researcher to make a local copy of records

appearing in the currently displayed results table. Im-

portant packages used in this mode are DT for construc-

tion of and interaction with tables and ggplot2, plotly,

and heatmaply for basic plotting, interactive plotting

(hover labels), and heatmap generation, respectively. The

web browser also allows users to upload their own

GWAS summary data, and iCPAGdb will automatically

perform LD clumping based on selected population and

generate an atlas of connections for the user’s GWAS

against > 4400 GWAS traits in the database. In this “Up-

load” mode, the user browses files on a local computer,

selects a properly formatted GWAS result file of interest

(containing, for a single phenotype, SNP rsIDs and

GWAS p values), specifies format and column configur-

ation, then uploads the file. Next, iCPAGdb computation

parameter values, including iCPAGdb GWAS set to be

crossed with, significance thresholds for filtering, and

linkage disequilibrium (LD) population are specified.

When “Compute CPAG" is pressed, the R script com-

poses a system level command to execute the CPAG

(Python) function. The future() function of the R future
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package [34] combined with a delaying pipe from the

promises package execute iCPAGdb operations asyn-

chronously, waiting on completion before resuming R

script execution. Typical run time for a single uploaded

GWAS that is already clumped to lead variants is < 30 s.

For GWAS summary statistics including all SNPs in a

study, run time is typically < 2 min. The results are avail-

able with downloadable tables and figures. Additional in-

formation on webapp is in Additional file 1.

Results
iCPAGdb: an atlas for discovery of cross-phenotype

associations

We created iCPAGdb to facilitate exploration of cross-

phenotype associations of human phenotypes and dis-

covery of shared genetics connecting traits that were

previously not known to be related. iCPAGdb utilizes

85,639 SNP-trait associations (p < 5 × 10−8) across 3793

traits from the NHGRI-EBI GWAS catalog, incorporates

additional GWAS datasets (see below and Table 1), and

allows for uploading and analysis of user GWAS sum-

mary statistics (Fig. 1a). In contrast, the original CPAG

(published in 2015 [13];) used only 14198 SNP-trait as-

sociations for 887 traits from the NHGRI-EBI GWAS

catalog.

Beyond this large expansion in traits and associations,

we improved on the original CPAG algorithm by clump-

ing GWAS data from each study (Additional file 2: Fig-

ure S1), creating a database of LD values based on 1000

Genomes [21], allowing selection of either European, Af-

rican, or Asian LD structure, and efficiently capturing

cross-phenotype associations that are driven by LD

proxy (Fig. 1b). For each trait pair, iCPAGdb first selects

the lead SNPs from all associated loci at a selected p

value threshold (p < 5 × 10−8 was used for analysis of the

NHGRI-EBI GWAS catalog; Additional file 3: Table S1;

Additional file 4: Figure S2). These lead SNPs are com-

pared across the trait pair to count directly shared SNPs.

For SNPs that are not directly shared, iCPAGdb then

checks an LD database for overlap by LD proxy. For all

directly or indirectly shared SNPs, iCPAGdb further

forms them into bigger SNP blocks by recursively mer-

ging them until each SNP block has no LD proxy with

R2 > = 0.4 against all others. iCPAGdb improves mem-

ory efficiency with built-in functions connecting to SQL

GWAS and LD proxy databases and improves computa-

tional efficiency and speed by utilizing multiple CPUs.

For the NHGRI-EBI GWAS Catalog, the growth of

GWAS findings and improvements of iCPAGdb over the

previous version of CPAG led to a 27.7-fold increase in

direct cross-phenotype associations and a 47.7-fold in-

crease in indirect cross-phenotype associations, many of

which would have been missed by the original CPAG al-

gorithm (Fig. 1c, d). Indeed, analyzing the 2013 NHGRI-

EBI GWAS catalog with iCPAGdb had little effect on

direct associations but increased indirect associations by

76% (Additional file 5: Figure S3).

Results of iCPAGdb are consistent with results from

the orthogonal approach of genetic correlation by LD

score regression [4]. Comparing the absolute values for

genetic correlation of 24 phenotypes from [23] against a

similarity index quantifying the degree of shared SNPs

in iCPAGdb revealed that the two are significantly corre-

lated (p = 3.52 × 10−8; R2 = 0.14) (Fig. 1e). Nearly all

phenotypes (64 of 70) that showed significant correlation

by LD score regression also demonstrated a significant

excess of shared SNPs in iCPAGdb. The output of

iCPAGdb provides the SNPs driving the similarity be-

tween the two phenotypes, facilitating follow-up studies.

Interestingly, 61% of pairwise comparisons that had sig-

nificant overlap based on iCPAGdb did not have signifi-

cant genetic correlation based on LD score regression.

For example, LD-score regression did not detect signifi-

cant genetic correlation between LDL and HDL choles-

terol measurements [23], but iCPAGdb detected 92

shared SNPs, including 31 by direct overlap where the

two phenotypes have the same lead SNPs (p = 7.55 ×

10−195 by Fisher’s exact test; p = 1.49 × 10−190 after

Benjamini-Hochberg procedure. p values from iCPAGdb

in the remainder of the paper are FDR-corrected for all

pairwise comparisons using Benjamini-Hochberg pro-

cedure). As iCPAGdb quantifies overlapping SNPs to de-

tect shared genetic associations rather than genetic

correlation based on genome-wide summary statistics,

iCPAGdb may be detecting instances where discrete loci

are shared (perhaps suggesting shared biology or plei-

otropy), even though the genome-wide genetic correl-

ation is weak. Another possibility is due to the fact that

iCPAGdb does not take into account directionality of ef-

fects for quantifying SNP overlap. Shared SNPs with in-

consistent direction of effect between traits can lead to

overall low genetic correlation by LD score regression,

even when many SNPs are shared, as has been previ-

ously described for some autoimmune diseases [23].

GWAS of varying phenotypic scales reveals shared

genetic architecture connecting molecular and cellular

traits with human disease

In a previous study [13], we defined 4 categories of

cross-phenotype associations: (1) SNP similarity between

an intermediate trait/risk factor and disease, (2) SNP

similarity between a disease and a consequence of dis-

ease, (3) SNP similarity between two traits affected by

the same gene/pathway, and (4) SNP similarity between

two traits affected by the same gene having effects in dif-

ferent tissues or on different pathways. Of these categor-

ies, perhaps the most clinically useful is the first

category—shared SNPs that connect an intermediate
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Fig. 1 (See legend on next page.)
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trait to a disease may reveal how molecular or cellular

phenotypes mediate some aspect of the pathophysiology

of disease. While the NHGRI-EBI GWAS catalog is

comprised primarily of case-control GWAS of disease,

we detected numerous known shared associations link-

ing a human disease with levels of a metabolite. Metabo-

lites are the substrates, intermediates, and products of

cellular metabolism and are routinely already used as

biomarkers, such as measuring glucose in diabetes

management.

Cross-phenotype associations involving the metabolite

uric acid and gout, an inflammatory arthritis driven by

excess levels of uric acid [35], are illustrative of

iCPAGdb’s usefulness. GWAS studies have been con-

ducted on risk of gout [36–43] as well as uric acid or

urate levels [44–51]. Notably, of 32 GWAS loci for gout

and 126 GWAS loci for serum uric acid levels at p < 5 ×

10−8, 13 loci overlap, including 9 loci identified only by

LD proxy (over 5000-fold enrichment; p = 1.4 × 10−42).

These loci are spread across 7 chromosomes and include

several solute carrier (SLC) and ATP-binding class

(ABC) transporters that control urate absorption and se-

cretion. Some of the loci are in close proximity but are

counted separately by iCPAGdb, as could occur if differ-

ent GWAS studies locate nearby peaks that fall below

our R2 > 0.4 threshold or if multiple causal signals are

located in the same region. These data provide genetic

evidence for the well-known causal role of excess uric

acid in gout and further reveal multiple genes that may

serve as therapeutic targets. Inhibitors of renal uric acid

reabsorption through URAT1 (SLC22A12) are com-

monly used in treating gout [52], but additional trans-

porters implicated through human genetics may also

prove to be useful drug targets. Beyond uric acid levels,

GWAS of kidney stones [53–55], a second manifestation

of elevated uric acid levels, also share associated SNPs

with gout (3 shared loci, all identified by proxy on chro-

mosomes 2, 4, and 17; p = 5.9 × 10−9). Finally, gout

shares 2 loci (out of 5 from [56, 57]) with levels of serum

alpha-1-antitrypsin, an anti-inflammatory endogenous

protease inhibitor (p = 1.0 × 10−6), providing a human

genetic rationale for the use of alpha-1-antitrypsin-based

therapeutics in acute gouty flares (as has been demon-

strated to be efficacious in mice [58]). Thus, examining

the gout cross-phenotype associations revealed causal

connections, comorbid conditions with shared etiology,

and factors that modulate inflammation in the disease

(Fig. 1f, g).

Shared genetic associations reveal other well-known

molecular and cellular disease relationships such as

LDL cholesterol levels with cardiovascular disease

(1.61 × 10−83) and Alzheimer’s disease (p = 8.9 ×

10−17) as well as glucose with type II diabetes mellitus

(p = 5.3 × 10−40). Other cross-phenotype associations

highlight genetic variation that can extend our know-

ledge. For example, cross-phenotype associations were

found between malaria [59–64] and red blood cell

distribution width [65–69] (p = 1.4 × 10−9). This

overlap is driven by well-known genetic variation in

the beta-hemoglobin gene (HBB) and ABO blood type

affecting malaria risk but also by genetic variation in

ATP2B4 which encodes a calcium transporter. To the

best of our knowledge, whether size of red blood cells

impacts susceptibility to malaria parasites has not

been examined. These cross-phenotype associations

demonstrate the promise of this approach for

(See figure on previous page.)

Fig. 1 An improved method for finding shared genetic architecture of human traits. a The overall framework of the iCPAGdb pipeline. GWAS

summary statistics (from published GWAS datasets or from user-uploaded GWAS) undergo LD clumping to obtain a lead variant for each signal

below a specified p value threshold. These SNPs are queried against an LD proxy database generated from 1000 Genomes African, Asian, or

European population to identify cross-phenotype associations through direct overlap or LD proxy at R2 > 0.4. Significance of overlap for each trait

pair was calculated using Fisher’s exact test. Outputs can be visualized/downloaded from the iCPAGdb web browser. b Comparison of the

number of shared SNPs for each NHGRI-EBI GWAS catalog trait pair identified through direct overlap vs. both direct and indirect (LD-proxy)

overlap. c iCPAGdb detected more significant cross-phenotypes associations than CPAG1 at FDR < 0.1. Expansion of the NHGRI-EBI GWAS catalog

and improvements in capturing by LD proxy in iCPAGdb fueled a large increase in detected cross-phenotype associations across human traits.

Comparisons between CPAG1 and iCPAGdb on the same 2013 dataset are in Additional file 5: Figure S3. d Circle plot of cross-phenotype

associations detected by iCPAGdb in the NHGRI-EBI GWAS catalog. After excluding compound phenotypes (phenotypes described by NHGRI-EBI

GWAS catalog as > 1 comma-separated phenotype in their ontology), a total of 1709 traits involved in a total of 53314 cross-phenotype

associations were left. These were categorized into 17 EFO Parental groups. Inner ribbons link phenotypes connected by cross-phenotype

associations with the width of ribbon corresponding to the number of cross-phenotype associations. The axis outside the circle represents the

cumulative number of associations for each group vs all other groups. e Comparison of genetic correlation from LD score regression (LDSC) and

the Chao-Sorensen similarity index implemented in iCPAG demonstrates significant correlation. The genetic correlation rg of 24 diseases/trait were

obtained from [23]. Since Chao-Sorensen values are bounded from 0 to 1 and rg ranges from − 1 to 1, we used the absolute value of rg here.

Colored * indicates significant trait-pair for LDSC, iCPAGdb, or both at false discovery rate of 0.1. f A model demonstrating how SNPs regulate uric

acid levels to impact the development of kidney stones and gout. g Riverplot of gout cross-phenotype associations generated from iCPAGdb

output shows mapped genes associated with gout by GWAS (left) connected with NHGRI-EBI GWAS phenotypes grouped into EFO categories

(right; colors are different categories). Cross-phenotype associations include causal connections (such as uric acid levels), comorbid outcomes

(such as kidney stones), and regulators of disease (such as alpha-1-antitrypsin levels)
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revealing novel relationships that can be mined

through iCPAGdb.

Expansion of iCPAGdb to additional datasets of molecular

and cellular traits

The above examples of clinically relevant cross-

phenotype associations involving metabolite and cellular

phenotypes motivated expansion of iCPAGdb to add-

itional datasets. We used three datasets to provide mo-

lecular and cellular traits to our analysis: 491

metabolites and xenobiotics in blood [18] and 55 metab-

olites in urine [17], both from the Metabolomics GWAS

Server (http://metabolomics.helmholtz-muenchen.de/

gwas/index.php), and 79 cellular host-pathogen

interaction traits from our dataset of cellular host-

pathogen interaction GWAS, H2P2 (http://h2p2.oit.

duke.edu) [16]. iCPAGdb revealed many connections be-

tween these molecular/cellular datasets and the NHGRI-

EBI GWAS catalog (Fig. 2a; Additional file 6: Table S2).

Cross-phenotype associations with macular telangi-

ectasia (MacTel) type 2, a disease characterized by loss

of central vision due to alterations in blood vessels in

the macula of the eye, confirmed the importance of the

amino acid serine (Fig. 2b). A GWAS of MacTel type 2

uncovered 3 genome-wide significant loci and the au-

thors noted that two of these loci were involved in

serine/glycine metabolism, with the alleles associated

with low glycine and serine conferring increased risk of

Fig. 2 iCPAGdb integrates GWAS of different scales to reveal a biological connection between MacTel 2 and serine. a Multi-dataset network of

cross-phenotype associations detected by iCPAGdb. Phenotypes that demonstrated significant overlap (FDR ≤0.1) are color-coded in the

indicated colors. b Riverplot of macular telangiectasia type 2 (MacTel type 2) cross-phenotype associations generated from iCPAGdb shows

mapped genes associated with MacTel type 2 (left) connected with NHGRI-EBI GWAS phenotypes grouped into EFO categories (right; colors are

different categories). SNPs in CPS1 and PHGDH are associated with MacTel type 2 and are also associated with serine levels, which are believed to

play a causal role in the disease. Other connections may represent causal connections, comorbid outcomes, and regulators of disease. c Cross-

phenotype associations connecting MacTel type 2 and serine. One locus demonstrated direct SNP overlap (rs715). A second locus demonstrated

indirect overlap based on 4 SNPs in LD as visualized in the heatmap color-coded by LD. d A model for how SNPs regulate serine levels to impact

pathogenesis of MacTel type 2 based on iCPAGdb and prior work described in the text
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MacTel type 2 [70]. The authors speculated that the low

serine levels could lead to high levels of ammonia and

glutamate causing neurotoxicity and stress-induced

angiogenesis [70]. Gantner et al. have since provided evi-

dence that low serine levels result in elevated levels of

deoxysphingolipids to trigger cell death in photorecep-

tors [71]. iCPAGdb rediscovered the connection of two

loci being shared between serine in serum (measured by

[18]) and risk of MacTel (Fig. 2c, d; p = 3.9 × 10−7; 99,

084-fold enrichment). iCPAGdb also revealed 7 other

serum metabolites including glycine that shared an asso-

ciation with rs715 but not with the second MacTel

locus. While serine was not part of the urine metabolo-

mics dataset, iCPAGdb did detect overlap of glycine in

urine and MacTel type 2 (p = 0.01).

We also included host-pathogen traits from H2P2, a

cellular GWAS we previously carried out using 528

lymphoblastoid cell lines (LCLs) exposed to 7 differ-

ent pathogens [16]. Notably, unlike the metabolomics

datasets, H2P2 identified SNPs associated with traits

at baseline and in response to stimuli. Further, as

pathogens have likely been drivers of human evolu-

tion [72, 73], comparing H2P2 to human disease

GWAS may reveal unintended consequences of past

pandemics on the human genome. Previously, we re-

ported colocalization of a locus regulating CXCL10

levels following Chlamydia trachomatis infection

(rs2869462) and risk of inflammatory bowel disease

[16]. iCPAGdb revealed shared genetic variants for

this H2P2 phenotype and blood levels of CXCL9

(MIG) [74] (Fig. 3a; p = 0.04). p values for the two

associations are strongly correlated (Fig. 3b), and the

effect size for SNPs associated with both chemokines

are significantly positively correlated (Fig. 3c). We uti-

lized COLOC, which uses a Bayesian framework to

determine whether GWAS signals in the same region

are likely due to the same causal variant [7]. The pos-

terior probability that both CXCL10 protein levels

from cells and CXCL9 levels in blood share the same

causal variant is 0.90 (Table 2), with rs2869462 iden-

tified as the most likely causal SNP (Additional file 7:

Table S3). The genes encoding these two chemokines

are adjacent to each other on chromosome 4, and this

result points to variants regulating expression of both

genes that will make it challenging to disentangle

their effects in disease.

Application of iCPAGdb to COVID-19 reveals susceptibility

due to ABO may occur through regulation of CD209

We applied iCPAGdb to a recently published GWAS of

severe COVID-19 with respiratory failure [15]. While

this study focused on two genome-wide significant as-

sociations at the ABO locus and in a cluster of chemo-

kine receptors and other genes on Chromosome 3, we

relaxed the p value threshold for iCPAGdb to 1 × 10−5,

resulting in 24 suggestive loci after LD clumping. Not

surprisingly, iCPAGdb revealed that the genome-wide

significant association near the blood type locus ABO is

in LD with multiple other SNPs in this region associ-

ated with other human diseases and traits (Fig. 4a; Add-

itional file 8: Table S4). This included the classic

association with malaria resistance [64], but also less

well known associations with duodenal ulcer [75], pan-

creatic cancer [76], and heart failure [77]. Multiple

studies have now reported the association of the ABO

locus with risk of COVID-19 [15, 78]. The causal effect

on COVID-19 may involve A and B antigens on blood

cells, antibodies against A and B antigens, the enzym-

atic activity of the ABO glycosyltransferase on possibly

other glycoproteins, or even other genes in the region.

Insight into these possible mechanisms was revealed by

iCPAGdb, which identified association of this locus

with levels of 8 individual proteins in the NHGRI-EBI

GWAS catalog. These proteins, all encoded on different

chromosomes than ABO, include IL-6, TNF-α, CD209

(DC-SIGN), Tie-1, mannose-binding protein C, FGF23,

and clotting factors (factor VIII and vWF). In each of

these cases, the association of the locus to both mo-

lecular trait and disease provides a plausible causal

chain from SNP to cis-effect on ABO to trans-effect on

a protein to severe COVID-19 disease. For example, as-

sociation with VWF and Factor VIII may indicate ABO

affects COVID-19 through regulation of thrombosis, as

patients with severe COVID-19 can have thrombo-

embolic complications as part of a hyper-inflammatory

state [79]. In fact, both VWF and factor VIII are targets

of glycosylation by ABO [80–82] and levels of these

proteins are reported to be regulated by ABO [83–87].

Further, regulation of levels of IL-6 and TNF-α suggest

possible regulation of inflammation, as “cytokine

storm” plays an important role during severe COVID-

19 [88]. Most interestingly, the ABO locus is associated

with both COVID-19 and CD209 (p = 0.008). A pre-

print recently confirmed this association across popula-

tions, and these authors speculated that ABO may

affect CD209 levels to regulate SARS-CoV-2 entry [89].

Indeed, there has since been evidence from two pre-

prints that CD209 can bind to SARS-CoV-2 and can

act as a receptor for entry into immune cells [90, 91].

The “A” allele of rs657152 associated with increased

risk of COVID-19 with respiratory failure is also associ-

ated with increased levels of CD209 (Fig. 4b). We per-

formed colocalization analysis of the GWAS signals for

COVID-19 [15] and CD209 protein levels [57]. This ana-

lysis indicated the two are likely driven by the same

causal variants (Fig. 4c; COLOC posterior probability

PP4 = 0.98 with the lead causal SNP of rs505922; Add-

itional file 9: Table S5). Thus, iCPAGdb and subsequent
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colocalization analysis support a model where ABO

regulates CD209 protein levels to impact COVID-19

risk, though much future experimental and clinical

studies will be required to fully test this hypothesis

(Fig. 4d). The pleiotropic effects of ABO on levels of

multiple proteins will make defining the mechanism

challenging.

Application of iCPAGdb to COVID-19 reveals a role for

DPP9 in regulation of both COVID-19 and idiopathic

pulmonary fibrosis

Beyond ABO, a locus in the dipeptidyl peptidase 9

(DPP9) gene associated at p < 1 × 10−5 with severe

COVID-19 was identified as being shared with a GWAS

of fibrotic idiopathic interstitial pneumonia [92] and a

Fig. 3 Cross-phenotype association analysis reveals the same genetic locus impacts both Chlamydia-induced CXCL10 levels and MIG level in

serum. a Regional Miami colocalization plot demonstrates a genetic locus that impacts both CXCL10 level in lymphoblastoid cell lines following

Chlamydia trachomatis infection and CXCL9 (MIG) levels in serum. b Comparison of -log10(p value) for GWAS of CXCL10 following C. trachomatis

infection and levels of CXCL9 (MIG) in serum. The lead SNP in the region for each phenotype is marked. c Scatter plot demonstrates a highly

positive correlation of the effect coefficients of cellular CXCL10 after C. trachomatis infection and of SNPs associated with blood CXCL9 levels.

Each dot represents a SNP which has p value < 0.01 for both phenotypes. A total of 413 SNPs from a 4-mb window surrounding the leading SNP

rs2869462 was selected. The blue vertical or red horizontal bar shows the standard error of the beta value for each SNP

Table 2 COLOC analysis output

Trait1 Trait2 Locus SNP # PP3 PP4 PP3 + PP4 PP4/PP3 Lead causal SNP

CXCL10 level after Chlamydia infection Blood CXCL9 levels CXCL10 1533 0.101 0.899 1.00 8.91 rs2869462

COVID-19 Plasma CD209 antigen level ABO 56 0.0159 0.984 1.00 61.72 rs505922

COVID-19 Idiopathic pulmonary fibrosis DPP9 1233 0.00216 0.994 0.996 459.63 rs12610495

PP3 is the posterior probability for the model where the two traits have independent causal variants. PP4 is the posterior probability for the model where the two

traits share a single causal variant
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recent GWAS of the most severe form of that group of

diseases, idiopathic pulmonary fibrosis (IPF) [19].

rs12610495 was the lead variant for each of these GWAS

studies as well as the suggestive peak for severe COVID-

19 (p = 5.2 × 10−6 [15];). Much evidence has already ac-

cumulated that pulmonary fibrosis is a hallmark of se-

vere COVID-19 [93, 94]. While the association of

rs12610495 with COVID-19 did not reach genome-wide

significance in Ellinghaus et al. 2020 [15], this SNP is in

LD with the lead variant from a recent GWAS of critic-

ally ill COVID-19 patients that does surpass genome-

wide significance (p = 3.98 × 10−12 [95];; R2 = 0.95 in

1000 Genomes European populations). Thus, iCPAGdb

alerted us to the importance of a suggestive COVID-19

susceptibility locus that has since been validated in an

independent cohort.

We determined that rs12610495 is an eQTL in lung

tissue for the gene for DPP9 (and no other genes in the

region) in GTEx (p = 4.5 × 10−9 [96];), with the “G”

allele being associated with lower expression (Fig. 5a).

Interestingly, DPP9 is a protease in the same family as

DPP4, the receptor for MERS-coronavirus [97]. Add-

itionally, DPP9 is an inhibitor of inflammasome activa-

tion by NLRP3 [98–100]. Colocalization analysis

confirmed the signals from severe COVID-19 and IPF

are likely driven by the same causal variant (Fig. 5b;

COLOC posterior probability PP4 = 0.994, lead SNP

rs12610495; Additional file 10: Table S6). Based on these

data and the known biology, we developed alternative

hypotheses for how this SNP might be regulating risk of

severe COVID-19: DPP9 may be acting as a previously

unrecognized receptor for SARS-CoV-2 or it may be

inhibiting inflammation during COVID-19 infection.

Based on the directionality of effect of rs12610495 on

DPP9 gene expression, the “G” allele should lead to

lower DPP9 expression and less entry if the receptor

model is correct. However, the “G” allele is instead asso-

ciated with increased risk of severe COVID-19 (Fig. 5c).

Fig. 4 Cross-phenotype association of ABO reveals a possible role for CD209 in severe COVID-19. a A network of genetic associations involving

severe COVID-19. Each node represents either a disease/trait (filled circles) or a gene (dark blue diamond). The ABO locus was associated with

multiple other diseases and levels of specific proteins, while DPP9 connects COVID-19 only with IPF and interstitial lung disease (idiopathic

interstitial pneumonia). b Regional Miami colocalization plot demonstrates the ABO locus impacts both CD209 protein levels and risk of severe

COVID-19. c A significant positive correlation for effect size of SNPs in the ABO locus on CD209 protein levels and risk of severe COVID-19. d

Model of how ABO may affect CD209 and severe COVID-19
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Fig. 5 (See legend on next page.)
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Alternatively, the “G” allele could lead to lower DPP9 to

increase inflammasome activation in lung tissue, a model

consistent with “G” increasing risk of severe COVID-19

and this allele also increasing risk of idiopathic pulmon-

ary fibrosis (Fig. 5d).

To further examine the role of DPP9 in COVID-19,

we analyzed previously generated transcriptomics of per-

ipheral blood from COVID-19 patients [24]. Levels of

DPP9 expression across 46 COVID-19 patients were

compared to individuals with seasonal coronavirus, in-

fluenza, bacterial pneumonia, and healthy controls.

DPP9 levels were significantly increased in COVID-19

patients compared to the other groups (fold-change =

1.15, p = 0.003 adjusted by Benjamini-Hochberg

method). Comparing COVID-19 data vs. each compara-

tor individually revealed that DPP9 levels were elevated

vs. healthy controls (p = 0.0016) and bacterial infection

(p = 0.0078) but not influenza or other coronavirus in-

fection (Fig. 5e). This data supports a role for DPP9 in

the host response to viral infections. In examining all

samples in the cohort, increased DPP9 was observed

both early and late in COVID-19 infection (Fig. 5f).

However, eleven subjects that did not require

hospitalization had repeated measurements at day 0 (ini-

tial enrollment into the study), day 7, and day 14 that re-

vealed changes in DPP9 expression as infection resolved.

While DPP9 expression increased from day 0 compared

to 7 days and 14 days (Fig. 5g; p = 0.0089), symptom se-

verity dramatically improved over this period (Fig. 5h; p

= 0.00006). We speculate that DPP9 may be induced to

effectively turn off the inflammatory response to SARS-

CoV-2 to minimize tissue damage and fibrosis. Com-

bined with our human genetic data, these findings sug-

gest that insufficient induction of DPP9 expression

could predispose to severe COVID-19.

Searching the iCPAGdb web server with user-provided

GWAS summary statistics

As the above examples demonstrate, iCPAGdb analysis

can rapidly generate hypotheses connecting molecular

and cellular traits to human disease. The website allows

quick access to the pre-calculated cross-phenotype asso-

ciations results described in this manuscript. Users can

also upload their own GWAS summary statistics for

comparing against all 4418 GWAS traits in the

iCPAGdb website, facilitating the discovery of new

cross-phenotype relationships. Total time for uploading,

clumping of summary statistics, and calculation of cross-

phenotype associations is typically < 2 min.

Discussion
The expansion of GWAS studies to more molecular, cel-

lular, and human disease traits requires the development

and implementation of new tools to facilitate drawing

meaningful connections between phenotypes and under-

standing the molecular mechanisms that explain this

shared genetic architecture. Our work demonstrates that

leveraging available GWAS summary statistics and effi-

cient algorithms of integrating pleiotropic information

using ancestry-specific LD structure can rapidly reveal

cross-phenotype associations across different phenotypic

scales, which can be applied in real-time to better under-

stand ongoing health crises such as the SARS-CoV2

pandemic.

In examining cross-phenotype connections, it is im-

portant to carefully examine the overlapping SNPs pro-

vided as part of the iCPAGdb output to determine (1)

the genome location where the variants are located, as

some may be adjacent/overlapping loci in weak LD and

not truly distinct and (2) how well identified GWAS sig-

nals from two traits overlap. Indeed, we view iCPAGdb

as the first step in a pipeline for gaining greater under-

standing of any GWAS that then moves to colocalization

analysis (see Figs. 3a, 4b, 5b; Additional file 7: Table S3;

Additional file 9: Table S5; Additional file 10: Table S6),

to further dissect GWAS signals in the same region.

Making summary statistics more readily available for all

GWAS, especially earlier studies in NHGRI-EBI GWAS,

would facilitate these validation studies. Finally, func-

tional studies in model systems and clinical studies are

needed to test the proposed hypothesis and deeply

understand the underlying mechanisms.

(See figure on previous page.)

Fig. 5 Cross-phenotype analysis and COVID-19 patient transcriptomics reveals a role for DPP9 in severe COVID-19. a Lung eQTL data from GTEx

shows rs12610495 “G” allele is associated with reduced expression of DPP9. b Regional Miami colocalization plot demonstrates the DPP9 locus

impacts both idiopathic pulmonary fibrosis and risk of severe COVID-19. c A significant positive correlation for effect size of SNPs in the DPP9

locus on idiopathic pulmonary fibrosis and risk of severe COVID-19. d Model of how DPP9 may affect idiopathic pulmonary fibrosis and risk of

severe COVID-19. e DPP9 expression in peripheral blood is significantly higher in COVID-19 patients (n = 77 samples) compared to healthy (n =

19) and bacteria-infected patients (n = 23). The p values were calculated using the Wilcoxon rank-sum test. f COVID-19 patients demonstrate

significantly higher DPP9 expression compared to healthy controls during early (days 1–10; n = 19 samples), middle (days 11–20; n = 36), and late

(21+ days; n=22) stages of SARS-CoV-2 infection. The p values were calculated using the Wilcoxon rank-sum test. g DPP9 demonstrates increased

expression during recovery from COVID-19. A total of 11 patients were measured sequentially at enrollment (day 0), day 7, and day 14. The

colored dash line connects measurements from the same patient across time points. p value was calculated using Friedman test. h Decreased

symptom severity scores of COVID-19 patients over time. The eleven subjects in G were assessed for symptom severity at days 0, 7, and 14. The

colored dash line connects measurements from the same patient across time points. p value was calculated using Friedman test
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While the current web implementation of iCPAGdb

uses NHGRI-EBI GWAS catalog [12], H2P2 [16], and

metabolomics GWAS datasets [17, 18], additional

datasets of molecular, cellular, and disease GWAS can

be easily added. Analysis of user-uploaded GWAS

may be the most useful application of iCPAGdb and

will lead to discovery of new connections among hu-

man phenotypes to encourage experimental and clin-

ical follow-up studies. Our studies of COVID-19

provide a test case for this and revealed possible

mechanisms underlying the associations of severe

COVID-19 with ABO and DPP9.

While our work highlights shared genetic architec-

ture regulating ABO, protein abundance, and COVID-

19, much work remains to be done to understand the

mechanisms underlying these connections. The ABO

locus controls abundance of many proteins. Some of

these proteins, such as VWF and Factor VIII, have

already been shown to be regulated by glycosylation

of ABO [80–82]. For CD209, ABO is a protein quan-

titative trait locus, but it is unknown whether CD209

protein abundance is regulated by ABO glycosylation.

CD209 has a predicted N-linked glycosylation site

(N80) and glycosylation has been observed by mass

spectrometry (http://glycositeatlas.biomarkercenter.

org/glycosites/33001/) [101]. Whether human genetic

variation also impacts CD209 glycosylation is also an

unanswered question. Previous studies have examined

protein glycosylation as a GWAS trait, resulting in 16

genome-wide significant loci [102–104], 15 of which

have been recently replicated [105]. However, these

studies quantified total plasma N-glycans released

from proteins and did not specifically quantify glyco-

sylation and glycoforms for individual proteins. Future

GWAS quantifying individual glycosylated protein iso-

forms, as well as other post-translational modifica-

tions, may therefore be valuable.

The shared underlying genetic risk factors for IPF and

COVID-19 suggest that DPP9 may have a common role

in pathogenesis in these diseases. iCPAGdb was able to

identify this connection in the first published COVID19

GWAS despite the DPP9 allele being below genome-

wide significance in that cohort, demonstrating the

utility of iCPAGdb in expanding the power of GWAS

studies on emerging and understudied diseases. We

speculate that characteristics of inflammasome-mediated

responses, normally suppressed by high expression of

DPP9, may predispose to fibrosis. The shared genetic

architecture also suggests that therapeutic approaches

targeting fibrosis may be beneficial in both conditions.

Pirfenidone and Nintedanib are anti-fibrotic FDA-

approved drugs used to treat IPF, and our findings sup-

port the idea that these drugs may prove beneficial in

COVID-19 [106–108].

Conclusions
As our examination of COVID-19 demonstrates,

iCPAGdb is a powerful hypothesis engine that will lead

to a deeper understanding of the genetic underpinnings

of human disease risk, severity, and drug response.
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