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The Encyclopedia of DNA Elements (ENCODE) project has established a genomic
resource for mammalian development, profiling a diverse panel of mouse tissues at 8
developmental stages from 10.5 days after conception until birth, including
transcriptomes, methylomes and chromatin states. Here we systematically examined
the state and accessibility of chromatin in the developing mouse fetus. In total we
performed 1,128 chromatin immunoprecipitation with sequencing (ChIP-seq) assays
for histone modifications and 132 assay for transposase-accessible chromatin using
sequencing (ATAC-seq) assays for chromatin accessibility across 72 distinct tissue-
stages. We used integrative analysis to develop a unified set of chromatin state
annotations, infer the identities of dynamic enhancers and key transcriptional
regulators, and characterize the relationship between chromatin state and
accessibility during developmental gene regulation. We also leveraged these data to
link enhancers to putative target genes and demonstrate tissue-specific enrichments
of sequence variants associated with disease in humans. The mouse ENCODE data sets
provide acompendium of resources for biomedical researchers and achieve, to our
knowledge, the most comprehensive view of chromatin dynamics during mammalian
fetal development to date.

Developmental gene regulation relies onacomplexinterplay between
genetic and epigenetic factors. Whereas genetic information encoded
in the DNA sequence provides the instructions for an embryo to
develop, epigeneticinformationisrequired for each cellinanembryo
to obtain its specialized function from this single set of instructions.
Chromatin encodes epigenetic information in the form of post-trans-
lational histone modifications and accessibility to DNA binding fac-
tors"?. Developmental programs of gene expression are orchestrated,
atleastin part, by cis-regulatory sequences that direct the expression of
genesinresponse to specific developmental and environmental cues®*.
Active regulatory sequences show characteristic patterns of histone

modification and accessible chromatin that make them amenable to
the binding of transcription factors (TFs), which canin turnrecruit co-
factors and stimulate transcription. These epigenomic properties have
provenvaluable for genome annotation, because histone modifications
and accessibility at a given genome region can reflect the activity of
the underlying sequence®®.

Inprevious phases of the ENCODE project, epigenomic and transcrip-
tomic datasets were generated from mouse tissues at a single prenatal
time point (embryonic day (E)14.5) and two postnatal time points (8 and
24 weeks after birth)’. In the most recent phase of ENCODE, we made
acoordinated effort to create resources for the study of mammalian
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fetal development by generating epigenomic and transcriptomic data
sets from 7 additional stages of fetal development covering awindow
from E10.5 until birth at approximately one-day intervals. At each stage,
we collected a diverse panel of 8-12 tissues to make a total of 72 tissue-
stages, with 2biological replicates per tissue-stage, and each replicate
containingtissue pooled from multiple embryos. Thiscommon tissue
resource was used as input for RNA sequencing (RNA-seq)’, whole-
genome bisulfite sequencing’, ATAC-seq, and ChIP-seq for eight his-
tone modifications (ATAC-seq and ChIP-seq described here). Data
from this and all phases of ENCODE are publicly available through the

ENCODE portal (https://www.encodeproject.org/).

To map chromatin states during mouse fetal development, we
performed ChIP-seq for a set of eight histone modifications that can
distinguish between functional elements and activity levels. To assay
chromatin accessibility, we used a version of ATAC-seq® optimized for
use on frozen tissues (Methods). Chromatin accessibility can also be
mapped by DNase I hypersensitive sites sequencing (DNase-seq), which
hasbeenintegral to the identification of millions of candidate regula-
tory sequencesin mammalian genomes®'®, but we chose ATAC-seq here
because it offers amore streamlined workflow. The resulting maps of
chromatin accessibility, together with those of histone modifications,
provide deep insightinto the genomic regions and processes that drive
mouse fetal development.

«  Wesystematically map chromatin state and accessibility across
72 distinct tissue-stages of mouse development, and carry out
integrative analyses incorporating additional epigenomic and
transcriptomic data sets from the same tissue-stages.

«  Wederiveachromatinstate model from combinatorial patterns of
histone modifications, encompassing 15 distinct states groupedin
4 broad functional classes: promoter, enhancer, transcriptional,
and heterochromatin states.

«  Wecharacterize the spatial and temporal dynamics of chromatin
states, finding that approximately 1-4% of the genome differsin
chromatin state between tissues at the same stage, and 0.03-3%
differs between adjacent stages of the same tissue; enhancer
chromatin states show the largest differencesin both cases.

«  We show that Polycomb-mediated repression is pervasive
during fetal development at genes that encode transcriptional
regulators and enriched at those with human orthologues linked
toMendelian diseases.

«  We identify more than 500,000 developmental regions of
transposase-accessible chromatin marked by accessible
chromatin during mouse fetal development, including
approximately 140,000 with dynamic temporal activity in at least
onetissue.

«  We show that human orthologues of mouse fetal accessible
chromatinregions are enriched for human disease-associated
sequence variation, with apparent tissue-restricted patterns of
enrichment.

«  Weshowthat temporal changes in chromatin accessibility often
coincide with changesin enhancer chromatin states, and tend to
precede changes in nearby H3K27ac levels.

«  Wepredict21,142 enhancer-promoter interactions by measuring
the correlation between enhancer-associated chromatin signals
and gene expression across tissues-stages.

«  Weshow that candidate enhancers with stronger enrichment
for marks of regulatory activity such as H3K27ac show a higher
validationratein reporter assaysin vivo.

Profiling chromatin statesinvivo

Despite theimportance of chromatin states and accessibility in deter-
mining the functional output of the genome, acomprehensive survey
of chromatin dynamics during mammalian fetal development has been
lacking aside from very early stages of embryogenesis'2. To address

this gap, we collected mouse tissues at closely spaced intervals from
E11.5 until birth. At each stage, we dissected a diverse panel of tissues
from multiple litters of embryos and performed two replicates of
ATAC-seq and ChiIP-seq for each of eight histone modifications cho-
sentodistinguish between different types of functional elements (for
example, promoters, enhancers and gene bodies), and activity levels
(for example, active, poised and repressed)™* (Fig. 1a, b, Extended
DataFig.1a,b). We also profiled 6 tissues at E10.5, using amicro-ChIP-
seq procedure designed for smaller cell numbers and restricting our
scopeto 6 histone modifications”. All ChIP-seq and ATAC-seq datasets
were processed with a uniform pipeline and subjected to quality stand-
ards (Methodes; Fig. 1c, Extended Data Figs. 1c-f, 2, 3). Whole-genome
bisulfite sequencing and RNA-seq from other groups are reported in
companion manuscripts’®® and used in select analyses below.

We observed several notable high-level features of the data series.
As expected, the landscape of histone modifications and chromatin
accessibility varies between tissues, particularly for marks of activity
suchas H3K27ac (acetylation at the 27th lysine residue of histone H3)
(Fig.1d, Extended Data Fig. 4). Within eachtissue, chromatin landscapes
change progressively across stages (Fig. 1e, Extended Data Fig. 5a-c).
These developmental dynamics are likely to reflect at least two underly-
ing biological processes: changes in the epigenetic landscape of indi-
vidual cells within a tissue as they undergo differentiation, and shifts
intherelative abundance of different cell types that compose a tissue.
Althoughin most cases we cannot separate the relative contributions
of these two factors, many of the changes we observe reflect known
hallmarks of cellular differentiation. For example, in the developing
forebrain, neuronal markers acquire active chromatin signatures dur-
ing development, whereas genes that encode cell cycle factors show
the opposite trend (Fig. 1b, Extended Data Fig. 5d-f).

The developmental chromatin landscape

To leverage the chromatin state information captured by combi-
natorial patterns of histone modifications, we used ChromHMM®,
which derived a15-state model that shows near-perfect consistency
betweenbiological replicates and general agreement with previously
published models'®*'¢ (Fig. 2a, Extended Data Fig. 6; Methods). We
segmented the genome for each tissue-stage with the full comple-
ment of eight histone modifications (n =66 tissue-stages), excluding
E10.5 to ensure a consistent approach (Extended Data Fig. 7). Each
state was assigned a descriptive label based onits similarity to known
chromatinsignatures®", and genomic distribution (Extended Data
Fig. 6i). The resulting chromatin state maps allow the visualization of
multiple functional predictions across a range of tissues and stages
(Fig. 2b).

The 15 chromatin states fit into four broad functional classes: pro-
moter, enhancer, transcriptional, and heterochromatin states. As
expected, promoter states show the highest average levels of chromatin
accessibility, followed by enhancer, transcriptional, and heterochro-
matin (Fig. 2c). Intotal, about 33% of the genome shows areproducible
chromatin signature characteristic of one of these four functional
classesinatleast one tissue-stage. In this calculation we required that
aregion be called in the same state in both biological replicates, and
weexcluded states 15 (‘no signal’) and 11 (‘permissive’), which covered
large swaths of the genome (Fig. 2d, Extended Data Fig. 8a). This does
not necessarily imply that 33% of the genome sequence is functional
during development, but rather that 33% of the genome sequence is
mappable and packaged in chromatinwith areproducible signaturein
atleast onetissue-stage profiled here. These chromatin signatures often
reflect transcriptional and/or regulatory activity, but the underlying
sequences may not be under negative selection®.

Thebreadth of data collected here enabled us to characterize the spa-
tial and temporal dynamics of chromatin states. On average, about 1.2%
of the genome differs in chromatin state between tissues at the same
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Fig.1|Profiling histone modifications during mouse fetal development.
a,Experimental design. b, Three major axes of the dataseries: datatypes, tissues,
and developmental stages (chr11:98,318,134-98,336,928; mm10). Horizontal
scale 0-30 for narrow marks (H3K4me3, H3k4me2, H3K27ac, H3K9ac), 0-10 for
broad marks (H3K27me3, H3K4mel, H3K9me3, H3K36me3) and ATAC-seq.

¢, Number of TSS-distal (top, >1 kb) and TSS-proximal (bottom) ATAC-seq
peaks for eachtissue. d, k-means clustering of H3K27ac peaks (n=333,097)
across tissue-stages (k= 8). Cluster sizes, top to bottom: 20,497,50,790, 31,043,

stage (mean 1.2%, 31.3 Mb; range 1.0-4.0%, 26.8-109.1 Mb). Enhancer
states are most variable between tissues, consistent with the role of
enhancers in defining tissue and cell identity (Fig. 2e, Extended Data
Fig.8b-e).Indeed, hierarchical clustering based on strong enhancers
alone (that s, state 5) distinguished tissues and identified similari-
tiesindevelopmental origin (Extended Data Fig. 8b, c). Withina given
tissue, about 1.3% of the genome differs in chromatin state between
adjacent developmental stages (mean1.3%,36.6 Mb; range 0.03-3.01%,
9.4-82.1 Mb). Enhancer states are most variable, although poised or
weak enhancer states are more variable than strong enhancer states
(Fig.2e). Nonetheless, temporal changesin strong enhancer states can
captureimportant developmental processes such as the transition of
fetal liver function from haematopoiesis to metabolism (Extended
DataFig. 9a).

We found that the Polycomb-associated heterochromatinstate (Hc-P,
state13) is prevalent at well-characterized regulators of tissue develop-
ment” > (Fig. 2b, Extended Data Fig. 9b), while another heterochro-
matic state characterized by H3K9me3 is found mainly in repetitive
sequence, as previously described**® (Extended DataFig.10). Tomore
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systematically examine the role of Polycomb-group (PcG) proteins dur-
ingmouse development, we assembled alist of 6,501 putative PcG target
genes with transcription start sites (TSSs) marked by Hc-P in at least
one tissue-stage (Extended Data Figs. 9¢, 11, Supplementary Tables 1,
2), many of which overlapped with DNA methylation valleys (DMVs)
in the same tissue-stage’ (Extended DataFig. 11e). Most of these genes
arepreviously described targets of PcG (Extended Data Fig. 11a-d), but
roughly one quarter (n=1,786) have not been described as PcG targets
in mouse?2, and 400 have not been described in human or mouse®.
Consistent with previous reports®*~*, TFs are highly enriched among
PcG targets (Extended Data Fig. 12a). Furthermore, we find that TFs
with known human Mendelian phenotypes (Mendelian disease genes,
MDGs) are even more likely than other TFs to be PcG targets (1.42-fold,
P=2x107 considering all TFs; 1.23-fold, P=1.3 x 10~* excluding zinc
finger TFs; Fig. 2f, g, Extended Data Fig. 12b-d). These data suggest
that PcG-mediated repression has an essential and pervasive role in
silencing key regulators outside their normal expression domains
and point to failed repression as a potential disease mechanism for
further exploration.
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Fig.2|A15-state model characterizes the mouse developmental chromatin
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ChromHMM states, with descriptive title of each state. b, Chromatin state
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Catalogue of regulatory sequences

To build a catalogue of candidate regulatory sequences in mouse
fetal development, we identified a non-overlapping set of 523,159
regions that were accessible in at least one tissue-stage, referred to
below as developmental regions of transposase-accessible chromatin
(d-TACs) (Fig. 3a, Supplementary Table 3). We note that this d-TAC
catalogueis based only on the mouse tissue ATAC-seq datareported
here, and is thus distinct from the ENCODE Registry of Candidate
cis-Regulatory Elements (ccREs) (http://screen.encodeproject.org/),
which incorporates data from other samples and assays*. Approxi-
mately 22% of d-TACs overlap with peaks from a single-cell ATAC-seq
atlas of adult mouse tissues published while this manuscript was in
revision® (Extended Data Fig. 13a). We find that d-TACs are enriched
in promoter and enhancer states, but generally depleted in states
that characterize gene bodies, heterochromatin, and regions with
no chromatinsignature (Fig. 3b). Most d-TACs are distal to annotated
TSSs, representing putative enhancers and other TSS-distal elements
(90% of d-TACs are more than 1kb from a TSS). Comparison with the

tissuesat E15.5 (bottom).f, Fraction of indicated gene sets that show evidence
of PcGrepression: for all protein-coding genes (0.313, black line); TF protein-
codinggenes (0.515, light blue line); and MDG TF protein-coding genes (0.667,
darkblueline). Cumulative fractions plotted by the number of tissue-stages at
which agene shows PcGrepression (fromone to 66, x-axis). g, MDG TFs are
more likely to show evidence of PcG repression (MDG+,150/225; MDG-,
349/744). x* test of independence between PcG repressionand MDG
involvement.

VISTA database* shows that about 20% of d-TACs tested show in vivo
reporter activity inthe corresponding tissue (Extended Data Fig. 13b),
and 76-94% of in vivo validated enhancers are d-TACs in the corre-
spondingtissue at E11.5 (VISTA reporter expression measured in E11.5
embryos; Fig. 3¢, d).

Tomore directly assess the temporal dynamics of chromatin acces-
sibility during development, we identified 139,894 dynamic d-TACs
that exhibit a significant change in accessibility in at least one stage
transition within a tissue (27% of all d-TACs; Fig. 3f, g, Extended Data
Fig. 13c). Most dynamic d-TACs show a significant change at only
one stage transition in this developmental window (Extended Data
Fig.13d, e), suggesting that these changes reflect enduring shifts in
cell fate and/or composition rather than rapid on-off switches. Gain
or loss of accessibility often corresponds to gain or loss of enhancer
chromatin states, respectively (Fig. 3h, Extended Data Fig. 13f, g). In
addition, d-TACs close to each other in the genome are more likely to
have correlated activity across tissue-stages (Fig. 3e, Supplementary
Table 3), particularly when located in the same topologically associat-
ing domain (TAD)*.
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Catalogues of candidate regulatory sequences can provide valu-
able resources for the interpretation of non-coding genetic varia-
tion linked to disease®?**’. Thus, we investigated whether our d-TAC
catalogue could provide insights into the genetics of human disease.
We first identified putative human orthologues of our mouse d-TACs
(Supplementary Table 4). Approximately 89% (169,571 0f190,462) of
these human sequences have been annotated as accessible chromatin
in human cells®*, suggesting that they have conserved function. We
found that phenotype-associated genetic variation is enriched in the
putative human orthologues of mouse d-TACs, including at regions
not previously annotated as accessible in human®*¢ (Fig. 3i). Moreover,
these enrichments show patterns of tissue specificity which may link
diseases to tissue-dependent and possibly fetal regulatory programs
(Fig. 3j). However, these patterns can be difficult to interpret, in part
because the ATAC-seq data come from heterogeneous tissues. Our
group recently published single-nucleus ATAC-seq of the mouse fore-
brain®, allowing us to further deconvolute several enrichments into
specific cell typesin this tissue (Fig. 3k). Analysis of human orthologues
of mouse enhancer predictions based on DNA methylation (feDMRs)
has produced similar results’.
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Developmental enhancer dynamics

Given the important role of enhancers in directing gene expression,
we focused ondynamic enhancers as awindow into the developmental
processes and regulatory factors in each tissue. We identified a high-
confidence set of candidate enhancers marked by the strong TSS-distal
enhancer state (Extended Data Fig. 14a, Supplementary Table 5), and
identified ‘dynamic’ candidate enhancers for which the H3K27ac-based
activity score changed from stage-to-stage® (Methods). Most dynamic
enhancers overlap d-TACs (67-88%, median 84%), but fewer overlap
dynamic d-TACs (5-35%, median 14%; Extended Data Fig. 14b, c). This
may reflect temporal differences in H3K27ac and accessibility dynamics
(Extended Data Fig. 14d). We also used our H3K27ac data to identify
‘super-enhancers’, which are known to mark key regulators and have
importantrolesindevelopment* (Fig. 4b, Extended DataFig. 15, Sup-
plementary Table 6).

Togain deeperinsightsinto the processes and regulatory factorsin
eachtissue we clustered dynamic candidate enhancers and examined
Gene Ontology (GO) terms associated with nearby genes, enrichment
for TF binding motifs, and expression patterns of TFs corresponding to
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Fig.4|Developmental enhancer dynamics reveal key regulators and link
enhancerstotarget genes. a, k-means clustering (k=4) of dynamic forebrain
enhancers based on H3K27ac signal. The top enriched biological process GO
terms by GREAT are plotted next to each cluster, and the top sequence motifs
enrichedineach clusterare plotted next to the GO terms. Some motifs and GO
termsare abbreviated to fit. Heatmap to the right shows normalized gene
expression for related TFs that potentially correspond to the motifsindicated
by black circles. *TFs mentioned in text. b, The distribution of H3K27ac signal
(read counts) across allenhancersidentified in each tissue at E15.5. Super-
enhancers show exceptionally high signal (coloured lines). ¢, Predicted
enhancers of AsclI (chr10: 87,301,848-87,515,210; mm10). Enhancers with

those motifs (Fig. 4a, Extended Data Fig. 16, Supplementary Table 7).
Considering the forebrain as an example, we found four predominant
clusters (labelled A-D, Fig. 4a). Cluster A represents enhancers that are
active early, associated with GO terms related to general CNS develop-
ment, and enriched for motifs that probably reflect the role of SOX2
in early brain development**2, Clusters B and C contain enhancers
that are most active in middle stages, associated with neurogenesis
and gliogenesis, and enriched for motifs that probably reflect the role
of NEUROD®G in neurogenesis during mid-to-late gestation®. Cluster
Dincludes enhancers that are active late, associated with synaptic
function, and enriched for motifs that support a role for MEF2C in
synapse formation**

The dynamic activity observed across tissue-stages provided the
opportunity to predict enhancer target genes using the correlation
between gene expression (as measured by RNA-seq) and H3K27ac

human orthologues validated by in vivo reporter assays are shown below main
panel. Arrowheads, tissues with reproducible staining. d, Enhancer target
genessupported by published chromatininteraction data obtained using
Capture-C*8, ChIA-PET* and Capture Hi-C*°. The liver Capture Hi-C data set
contains by far the mostinteractions (about 600,000), which may explain why
thenearest gene assumption worksin this dataset only.e, Number ofeQTLs
(y-axis) supporting human orthologues of enhancer target gene predictions
relative to TSS distance matched regions. Two-sided Fisher’s exact test.
f,Genesbinnedinto deciles by distance between enhancer and putative target
gene (n=13,873 pairs). Lower plot shows -log,,(P) by two-sided Fisher’s exact
test. Horizontal lineindicates P=0.05. NS, not significant.

enrichment at candidate enhancers within the same TAD* ¥ (Fig. 4c,
Extended Data Fig. 17a-c, Supplementary Table 8). We derived inde-
pendent target gene maps for each biological replicate comprising
31,964 and 32,734 enhancer-gene assignments, respectively, with an
overlap of21,141used for downstreamanalyses (Extended DataFig.17d-f).
This correlation-based map predicts experimentally determined
enhancer-gene interactions**° with higher accuracy than assigning
anenhancer tothe nearest gene (Fig.4d, Extended DataFig.17g). We fur-
ther examined whether this map could be useful for predicting human
enhancer-generelationships (Extended Data Fig.17h, Supplementary
Table 9). We hypothesized that if our mouse predictions are applicable
to human, we should see enrichment for human expression quantitative
traitloci (eQTLs)* that link the human orthologues of mouse enhancers
tothe predicted target gene(s) by genetic association. Indeed, across
avariety of humantissues we see significant enrichment of eQTLs that
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withreproducible reporter expression, for allenhancers that validated in the
expected tissue. One-tailed Mann-Whitney Utest. White circles, median; black
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enhancers from eachtissue type and rank category that validated in the
expectedtissue. Representative transgenic E12.5embryos show reporter
expression (blue staining), along with the unique VISTA identifier and
reproducibility (fraction of embryos with consistent staining). Far right,
magnifiedimages of heart (RA, rightatrium; LA, left atrium; RV, right ventricle;
LV, left ventricle). Red arrowheads, enhanceractivity pattern.d, Retrospective
analysis 0f 422,299, and 414 elementsin VISTA showing E11.5 activity in
forebrain, limb or heart, respectively. Top, validation rate as a function of E11.5
H3K27acrank.Horizontal dashed linesindicate estimated background
validationrate for each tissue. Thin vertical lines mark the 1st,1,500th, and
3,000th ranks. Bottom, cumulative number of positive enhancers as afunction
of H3K27acrank. e, Enhancer validation rate across forebrain VISTA elements
ranked with different genomic datasets (colours).

link predicted target genes to candidate enhancers relative to regions
equidistant frombutontheotherside of the target TSS (12 of 13 tissues
with P<0.05, Fisher’s exact test; Fig. 4e), and relative to the nearest-
gene approachwhenthe distance between TSSand eQTL is larger than
about 50 kb (Fig. 4f). This distance-dependent effect may reflect our
choice to consider only the ‘strong TSS-distal enhancer’ state, as well
as the fact that TSS-proximal eQTLs are more likely to tag causative
variants in promoters, splice sites, or other non-enhancer elements.

Enhancer validationinvivo

Histone modifications and chromatin accessibility are effective tools
for identifying enhancers®>*, but the quantitative accuracy of these
methods has notbeenwell characterized. The level of H3K27ac enrich-
ment canvary by orders of magnitude across peaks within asingle data
set. During previous studies® we noticed that regions with stronger
H3K27ac validated more frequently in transgenic reporter assays. To
more systematically examine the relationship between H3K27ac signal
andvalidationrate, we used transgenic mouse reporter assays* to test
150 enhancersidentifiedin tissues at E12.5, selected from three H3K27ac
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enrichment rank tiers: tier A (selected from ranks 1-85), tier B (ranks
1,500-1,550), and tier C (ranks 3,000-3,050) (Fig. 5a-c, Extended Data
Fig.18a, Supplementary Table 10). The full list of candidate enhancers
from which these elements were chosen contains 35,955, 42,732, and
42,903 elements for forebrain, heart, and limb. About 60% of tier A ele-
ments displayed reporter expressionin the expected tissue, compared
tolessthan30% fromthe two lower-rank tiers (Fig. 5a, P<0.01, Fisher’s
exact test). Tier A regions that validated in the expected tissue were
alsomorelikely to show activity in additional tissues (Fig. 5b, P<0.05,
Mann-Whitney U test), although we found no significant differences
in overall reproducibility between tiers (Extended Data Fig. 18b). At
alltiers, the validationrateis higher than background rates estimated
fromregionsinthe VISTA database that lack H3K27ac (heart 2.6%, limb
6.4% and forebrain 9.7%). Moreover, these background rates may over-
estimate the true genomic background because many VISTA elements
were originally tested owing to evolutionary sequence conservation or
epigenomic signatures that predict regulatory function.

Retrospective analysis of morethan 2,000 regions assayedin vivoand
catalogued in VISTA (assayed at E11.5) confirmed the trend described
above across a much larger set of test elements (Fig. 5d, Supplemen-
tary Table 12). This larger set of elements also allowed us to evaluate
otherepigenomic datasets. Ranksbased on p300 or H3K27ac ChIP-seq
have the highest accuracy, followed closely by ATAC-seq and DNase
hypersensitivity assays (Fig. 5e, Extended Data Fig. 18c). A combined
score* incorporating ChlP-seq, ATAC-seq, and DNA methylation
as reported in an accompanying manuscript’ slightly outperforms
any individual datatype. Taken together, these results demonstrate
that loci with stronger enrichment for marks of enhancer activity
such as H3K27ac are more likely to direct reporter expression in the
expected tissue.

Discussion

In summary, our results describe a multi-tiered compendium of func-
tional annotations for the developmental mouse genome, including chro-
matin state maps for 72 distinct tissue-stages, an extensive catalogue of
candidateregulatory sequences (many with dynamic temporal activity),
enhancer targetgene predictions, and a collection of transgenicreporter
assays that demonstrates a strong relationship between H3K27ac signal
andvalidationrate. The results of these reporter assays inform akey ques-
tioninthefield: what proportion of sequences withenhancer chromatin
signatures truly function as enhancersinvivo? Surveys of chromatin state
and chromatin accessibility in a single sample often predict enhancers
numberingin the tens or even hundreds of thousands. However, the
results of our in vivo reporter assays suggest that the validation rate of
chromatin-based enhancer predictions decreases rapidly withrank based
onH3K27aclevel. While these results point to the uncertainty inherentin
estimates of enhancer abundance, we do not think these estimates should
be abandoned entirely. Definitive proof of an enhancer’s function (or
lack thereof) requires more than reporter assays, and remains difficult
toascertain experimentally in a high-throughput manner. Ultimately, we
think that our results highlight theimportance of continued investigation
into the molecular basis of enhancer function, as well as the predictive
power of chromatin-based enhancer signatures.

Despite the broad scope of this study, we note some important limi-
tations. First, there are multiple developmental tissues that were not
surveyed here (for example, skeleton, gonads and pancreas). Second, as
noted above, the tissues examined here are heterogeneous, and future
efforts to examine the epigenomes of single cells during development
will be critical to achieve a deeper understanding of developmental
generegulation. Inaddition, this study does not address sex-dependent
aspects of development. Nonetheless, to our knowledge, the survey
of fetal chromatin landscapes reported here is unprecedented in its
breadth. Moreover, the developmental tissue panel examined here is
the subject of complementary analyses focused on DNA methylation



dynamics including methylation-aware enhancer predictions’, tran-
scriptomic analysis including deconvolution of whole-tissue datainto
distinct cell types®®, prediction of mammalian enhancers using evolu-
tionarily conserved epigenetic patternsidentified through massively
parallel regulatory assays such as STARR-seq®, annotation studies
focusing on genome evolution through the analysis of pseudogene
complements across mouse strains*, identification of transcriptional
waves mediated by tissue-stage-specific TFs*, and uncovering DNA
motifs regulating histone modifications®. Given the key role of the
mouse as a model system in biomedical research, we believe that
these data and insights will be a valuable resource to the biomedical
research community. All data sets, methods, and protocols are avail-
able at https://www.encodeproject.org/.
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Methods

Tissue collection

All animal work was reviewed and approved by the Lawrence Berkeley
National Laboratory Animal Welfare and Research Committee. Tissue col-
lection for all developmental stages was performed using C57BL/6N strain
Mus musculus animals. For E14.5and PO, breeding animals were purchased
from both Charles River Laboratories (C57BL/6NCrl strain) and Taconic
Biosciences (C57BL/6NTacstrain). For all remaining developmental stages,
breeding animals were purchased exclusively from CharlesRiver Labora-
tories (C57BL/6NCrlstrain). Wild-type male and female mice were mated
using astandard timed breeding strategy. Embryos and PO pups were col-
lected for dissection using approvedinstitutional protocols. Embryos were
excluded ifthey were not at the expected developmental stage. To avoid
sample degradation, only one embryoniclitter or PO pup was processed
atatime, and tissue was keptice-cold during dissection. Collection tubes
for each tissue type were placed in a dry ice ethanol bath so that tissue
samples could be flash-frozenimmediately upon dissection. Tissue from
multiple embryos was pooled together in the same collection tube, and
atleasttwoseparate collection tubes were collected for each tissue-stage
for biological replication. Experimenter blinding was not performed for
tissue dissection, as there were no separate treatment and control
groups being assessed. Randomization was not feasible given the
scale of production. Tissue was stored in a freezer at —-80 °C or on dry
ice until further processing. A step-by-step protocol for tissue collec-
tion, including detailedinformation about how embryonic stage was
determined, can be found on the ENCODE Project website at https://
www.encodeproject.org/documents/631aa2lc-8e48-467e-8cac-d40c
875b3913/@@download/attachment/StandardTissueExcisionProtocol_
02132017.pdf.

ChIP-seq datageneration

The complete ChIP-seqdataseriesincludes more than 66 billion sequenc-
ingreadsfrom 564 ChIP-seqexperiments, each consisting of two biologi-
cal replicates derived from different embryo pools (n =1,128 replicates
total). ChIP-seq experiments for all marks and tissues from E11.5 to PO
were performed as previously described®. The ChIP-seq protocol was
modified slightly for all E10.5 experiments owing to the low amount of
input (micro-ChIP-seq). Detailed protocols for both standard and micro-
ChlIP-seq, including antibodies used and antibody validations performed,
are available at https://www.encodeproject.org/ associated with each
experiment described here. They can also be found at the links below.

Standard ChIP-seq (E11.5-P0). Tissue fixation &sonication: https://www.
encodeproject.org/documents/3125496b-c833-4414-bf5f-84dd633eb30
d/@@download/attachment/Ren_Tissue_Fixation_and_Sonication_v060
614.pdf. Immunoprecipitation: https://www.encodeproject.org/
documents/89795b31-e65a-42ca-9d7b-d75196f6f4b3/@@download/
attachment/Ren%20Lab%20ENCODE%20Chromatin%20lmmunoprecipi
tation%20Protocol_V2.pdf. Library preparation: https:/www.encode-
project.org/documents/4f73fbc3-956e-47ae-aa2d-41a7df552c81/@@
download/attachment/Ren_ChIP_Library_Preparation_v060614.pdf.

Micro-ChIP-seq (E10.5). Tissue fixation & sonication: https:/www.
encodeproject.org/documents/1fcaab50-6¢a0-4778-88cb-5f6b8517
0d21/@@download/attachment/Ren%20Lab%20ENCODE%20Tissue
%20Fixation%20and%20Sonication%20Protocol%20MicroChlIP.pdf.
Immunoprecipitationand library preparation: https://www.encodepro-
ject.org/documents/18580e80-0907-4258-a412-46bcc37bd040/@@
download/attachment/Ren%20Lab%20ENCODE%20Chromatin%20
Immunoprecipitation%20Protocol%20MicroChlIP.pdf.

ATAC-seq data generation
The full ATAC-seq dataseries includes more than 7 billion sequencing
reads from 66 experiments (n =132 replicates total). Our ATAC-seq

procedure is based onapreviously published method®, with modifica-
tions to optimize for frozentissue. In brief, tissues were pulverized with
mortar and pestleinliquid nitrogen, and then nuclei permeabilization
was performed by resuspension in a nuclei permeabilization buffer
(PBS,1mM DTTm 0.2% IGEPAL-CA630, 5% BSA, 1x cOmplete protease
inhibitor cocktail), and incubation with very gentle rotation at 4 °C.
Our full ATAC-seq protocol is available via the ENCODE data portal
here: https://www.encodeproject.org/documents/4a2fc974-f021-
4f85-ba7a-bd401fe682d1/@@download/attachment/RenLab_ATAC-
seq_protocol_20170130.pdf. We required a minimum of 20 million
usable ATAC-seqread pairs per data set and aminimum fraction of read
overlapping TSS (FROT) of 0.1 (Extended Data Fig. 3). We use FROT as
ameasure of signal-to-noise ratio in ATAC-seq data sets because TSSs
arewidely marked by open chromatin, evenintissuesinwhichthe gene
isnot expressed. We calculate FROT for each library as the number
of reads that map within 1 kb of a GENCODE v4 TSS, divided by the
total number of usable reads. ATAC-seq data are highly reproducible
betweenbiological replicates of the same tissue-stage as measured by
Pearsonand Spearman correlation (Extended Data Fig. 3). Inaddition,
multidimensional scaling analysis of ATAC-seq enrichment across
identified peaks confirms that the samples tend to cluster primarily by
tissue types and then by developmental stage (Extended Data Fig. 3).

ChIP-seq data processing and analysis

Uniform processing pipeline. Histone ChIP-seq data were analysed
using a software pipeline implemented by the ENCODE Data Coordi-
nating Center (DCC) for the ENCODE Consortium. Each step of the
pipeline corresponds to a script written in the Python programming
language that assembles the input files, runs external programs (such
asthe MACS2 peak caller), and calculates quality-control metrics. The
methodology is similar to that previously described for ENCODE®*
with the following modifications: the mapping step used bwa version
0.7.10 and samtools version1.0,and MACS2 version 2.1.0 was used for
signal track generation and peak calling. To ensure adequate sampling
of noise for subsequent replicate comparisons, peaks were initially
called at a relaxed P threshold of 1 x 1072, Such relaxed peak sets were
generated for eachbiological replicate, for the replicates pooled, and
for pooled pseudoreplicates of each true replicate (each pseudorep-
licate consists of half the reads sampled without replacement). Peaks
fromthe pooledreplicate set wereretained inthe replicated peak set if
they overlapped by at least halftheir length (in bases) peaks fromboth
biological replicates. Additionally, peaks that overlapped both pooled
pseudoreplicates were added to the replicated peak set. In this way
very strong biological replicates could ‘rescue’ peaks that were only
marginal in a second replicate. The pipeline is available to be run on
the DNAnexus (https://www.dnanexus.com/) web platform, backed by
cloud computing from Amazon Web Services (AWS), and is the same
pipeline used for the analysis of all ENCODE histone ChIP-seq experi-
ments. The platform provides both an API for programmatic execution
ofthe pipeline and a web-based interface for interactive execution of
the same workflows. ENCODE DCC uses this approach to ensure that
primary data from different labs within the Consortiumare processed
uniformly, and thus to minimize factors that could confound subse-
quent comparisons®. The ENCODE DCC analysed the experimentsin
parallel and accessioned the results to the ENCODE Portal® (https://
www.encodeproject.org/).

Analysis of data from individual histone marks. To facilitate com-
parisons across stages, one peak list per mark per tissue was generated
by merging replicated peaks across stages within each tissue. Each
peak was then scored using ChIP-seq fold enrichment over input in
eachstageinthe corresponding tissue using bigWigAverageOverBed
(https://github.com/ENCODE-DCC/kentUtils/blob/master/bin/linux.
x86_64/bigWigAverageOverBed), and using bigwigs fromeither repli-
catelorreplicate2 asindicated. These values were quantile normalized
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across stages to eliminate potential confounding effects of biases in
the distribution of signal between stages. These normalized score ta-
bles (one per mark, tissue, replicate) were used for the analyses below.

Comparisons between samples. For correlation betweenreplicates
of each experiment, we used Pearson’s correlation as plotted in Ex-
tended DataFig.2d. Narrow marks (H3K4me3, H3K4me2, H3K27ac and
H3K9ac) have tighter peaks of enrichment and tend to correlate more
strongly than broad marks (H3K27me3, H3K4mel, H3K9me3 and
H3K36me3). For correlation between stages, we used Pearson’s cor-
relation to compare replicates as above for each mark, but compar-
ing all stages to each other within one tissue and one mark. We then
categorized these correlations according to how many stages separate
the data sets being compared: for example, zero for true biological
replicates from the same stage, or seven for comparisons of E11.5 data
sets to PO data sets. These correlations are plotted in Fig. 1e. To further
facilitate comparisons across tissues, a similar approach was taken to
thatdescribed in‘Analysis of data fromindividual histone marks’ above,
but in this case generating one master peak list per mark by merging
replicated peaks across all tissue-stages. As above, each peak was then
scored using ChIP-seq fold enrichment over inputineach tissue-stage,
butin this case using data pooled from both replicates (pooled data).
These values were then quantile normalized across tissue-stages, and
the resulting master score tables (one per mark) were used for hierarchi-
cal clustering performed in R with default parameters. The resulting
dendrogramsare plotted in Extended Data Fig. 4a. For H3K27ac k-means
clusteringinFig.1, one additional data processing step was performed
before clustering: across each row, the values were converted to a unit
vector in R (x/¥(sum(x?)), to prevent overall enrichment level from
dominating the clusters. These unit vector values were used only for
clustering; the values plotted are the normalized H3K27ac enrichment
values fromthe scoretables described above. K-means clustering was
performed in R with k=8 and default parameters. Rows were ordered
within each cluster based on mean normalized enrichment.

Principal component analysis. The whole genome was splitinto 1-kb
tiling bins. Average fold enrichment signals were calculated for each
binusing the bigWigAverageOverBed. Bins that overlapped amerged
peak by aminimum of 20% (reciprocal) were denoted as peak-bins.
The average fold enrichment signals from each peak-bin were quantile
normalized within agiven tissue. The signal strength for each peak was
calculated as the sum of the signals of all bins that overlapped that
peak. Principal component analysis was performed on the peak signals
for each histone mark with the R function ‘prcomp’. PC1, PC2 and PC3
values were plotted for each sample.

Metagene profiles. To illustrate the characteristic enrichment pat-
terns at active and silent genes in Extended Data Fig. 1b, we used con-
servative definitions of “active’ genes as reads per kilobase of transcript
per million mapped reads (RPKM) >10in every tissue-stage evaluated
here, and ‘silent’ genes were defined as RPKM <2 in all tissue-stages.
Metagene profiles were plotted with deeptools plotProfile®*, using
datafromE15.5 heart.

ATAC-seq data processing and analysis

Uniform processing pipeline. ATAC-seq data were analysed using
astandardized software pipeline developed by the ENCODE DCC for
the ENCODE Consortium to perform quality-control analysis and read
alignment. ATAC-seq reads were trimmed witha custom adaptor script
and mapped to mm10 using bowtie version 2.2.6 and samtools version
1.2 to eliminate PCR duplicates. MACS2 version 2.1.1.20160309 was
used for generating signal tracks and peak calling with the following
parameters: —nomodel —shift 37 —ext 73 —pval 1le-2 -B —SPMR —call-
summits. To produce aset of ‘replicated’ ATAC-seq peaks for analysis,
the peak calling steps above were performed for each pair of replicates

independently as well as for a pooled set of data from both replicates.
TheintersectBed tool from the bedtools v2.27.1suite was used toiden-
tify a set of replicated peaks, which we define as the subset of peaks
called inthe pooled set that were also present independently in both
replicate peak call sets.

d-TAC catalogue. To obtain a uniform d-TAC catalogue that can en-
able multi-dimensional analysis across all 66 tissue-stages, the afore-
mentioned replicated peak sets for each sample were concatenated,
merged, sorted, and then labelled using the mergeBed and sortBed
tools from the bedtools v2.27.1 suite. The intersectBed tool was used
associate each d-TAC with the original tissue-stages where its constitu-
ent peaks were accessible. The catalogue was further categorized as
being TSS distal or proximal based on a +1-kb window around GENCODE
v4 TSSs.

To evaluate the sensitivity of our peak calls in detecting potential
cis-regulatory elements, we calculated the true positive rate, or frac-
tion of peaks recovered, for every applicable tissue-stage with respect
to two reference sets: actively transcribed promoters; and enhancers
from the VISTA enhancer database (accessed 22 July 2017) with activ-
ity at E11.5. Using matched RNA-seq downloaded from https://www.
encodeproject.org/, transcripts with counts of >10 TPM were classified
as actively transcribed for each tissue-stage.

Catalogue specificity was assessed by calculating the true negative
rate of each tissue-stage’s d-TACs against GENCODE v4 TSSs that were
notaccessible to matched DNase-seq from https://www.encodeproject.
org/. To further probe the tissue-specificity of the d-TAC catalogue,
the overlap between d-TACs for each tissue at E11.5 and enhancers that
showed activity in the matching tissue pattern was calculated and com-
pared toabackground hitrate of enhancers with activity in any pattern.
Enrichment significance was computed using abinomial test.

To calculate enrichmentin ChromHMM states, the d-TAC catalogue
was overlapped with autosomal ChromHMM state calls for each tissue-
stage (pooled or replicate call set, as indicated). Enrichment foragiven
statesina particular tissue-stage was calculated as the observed num-
ber of base pairs of the d-TAC catalogue that overlapped state s, divided
by the total number of base pairs expected to overlap state s on the
basis of its genome coverage (total bp coverage of d-TAC catalogue x
fraction of genome covered by state s).

Dynamic d-TACs. To identify differentially accessible d-TACs, for each
d-TACinthe uniform catalogue, we counted the number of ATAC-seq
reads that overlapped the d-TAC for each tissue-stage and replicate
using the coverage functioninbedtoolsv2.27.1. For each tissue, d-TACs
at any stage were classified as temporally dynamic if they showed a
significant change in accessibility (fold change >2, P< 0.05) between
any sequential stages of development, using DEseq2.

Toinvestigate the relationship between changesin accessibility and
changesin chromatin state, the dynamic d-TACs were classified as either
gaining (positive log[fold change]) or losing (negative log[fold change])
accessibility. For each tissue-stage-transition (nto n +1), these sets of
gain-or loss-of-accessibility d-TACs were overlapped with ChromHMM
state calls for stages nand n + 1. Enrichment was calculated by taking
the observed fraction of dynamic base pairs that overlapped each com-
bination of states (state at n, state at n +1) and dividing by the expected
fraction of base pairs that overlapped each state combination based
onthe dynamic and non-dynamic d-TACs.

Toinvestigate the temporal relationship between H3K27ac and chro-
matin accessibility, dynamic strong-enhancers (replicated, Chrom-
HMM state U5) at each stage-transition were overlapped against d-TACs
for therespective tissue to identify matching enhancersand d-TACs.In
cases where more than one d-TAC overlapped an enhancer, the d-TAC
with the largest number of overlapping base pairs was selected. The
sequentiallog[fold-change] in ATAC-seq signal was evaluated atevery
possible stage-transition for these matching d-TACs and a mean was
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taken. These stage-transitions were converted to ‘offsets’ relative to
the strong enhancers and the fold-changes averaged for the purpose
of derivingaglobal trend (thatis, for dynamic enhancers at E11.5-E12.5;
E11.5-E12.5isanoffset of O, E12.5-E13.5is an offset of 1, and so on until
E16.5-P0Ois an offset of 5). The inverse analysis was also performed to
assess the log[fold-change] in H3K27ac at dynamic d-TACs.

Correlative d-TAC map. A correlative map between d-TACs was gener-
ated for each chromosome by calculating the Pearson correlation coef-
ficient (PCC) for each pair of d-TACs, using the ATAC-seq read counts
normalized to RPKM and log,-transformed with asmall pseudocount.
We define ‘correlated d-TACs’ as those in the same TAD (as defined by
mouse embryonic stem (ES) cells) with a pairwise PCC>0.7.

To assess d-TAC correlations as a function of genomic distance, we
assigned each d-TACto al0-kb bin. For each bin A, the correlation was
measured between its d-TACs and those of bin B, at various distances
away ranging from 10 kb to 2 Mb. The average of these correlations
across allchromosomes was plotted as afunction of distance. Addition-
ally, toinvestigate the validity of using mouse ES cell TAD boundaries
asaconstraint for the correlative map, the mean correlations between
d-TACs at various genomic distances were compared for pairs located
within the same TAD and those not sharing a TAD. The significance of
the difference in correlation between intra-TAD and inter-TAD d-TAC
pairs was calculated using the Wilcoxon signed-rank test.

Enrichment of GWAS catalogue variants in human orthologues
of d-TACs. To enable comparison to GWAS of human phenotypes, we
used liftOver with default settings to convert d-TACs from mm10 to
hgl9 genomic coordinates. We then defined novel d-TACs by removing
those that overlapped DNasel hypersensitivity sites from any cell line or
tissue in two published data sets®*¢, one of whichincluded embryonic
tissue. We obtained index variants for all traits in the GWAS catalogue
(https://www.ebi.ac.uk/gwas/api/search/downloads/full) and retained
auniquesetof variants that wereidentified as genome-wide significant
(P<5x107%) in GWAS of individuals with European ancestry. To obtain
abackground set of variants for enrichment testing, we used the fil-
tered index variants as the input for SNPsnap®®, which matches based
on (1) minor allele frequency, (2) distance to the nearest annotated
gene, (3) gene density in the surrounding region, and (4) number of
SNPs in linkage disequilibrium (LD), with the following parameters:
European population, ten matched SNPs, exclude HLASNPs and input
SNPs, and report clumping. As GWAS index variants are not necessarily
causaland canbein LD with the true causal variant, we next defined loci
for allindex and matched background variants as all SNPs in high LD
(r*>0.8) with the variant in European 1000 Genomes® samples using
PLINK v1.90p®¢. We then calculated the number of GWAS and back-
ground loci with at least one variant that overlapped either all d-TACs
or novel d-TACs and used a hypergeometric test to assess the enrich-
mentsignificance of GWAS loci compared to matched background loci.

Enrichment of phenotypes and complex diseases in human or-
thologues of enhancer d-TACs. To test for enrichment of complex
phenotypes and diseases with publicly available summary statistics, we
first defined sets of human orthologues of enhancer d-TACs. For each
tissue, we collapsed all strong and weak enhancer chromatin states
(En-Sd, En-Sp, En-W) across time points and used liftOver to convert
genomic coordinates frommm10 to hgl9. We thenintersected ortholo-
gous enhancers with orthologous d-TACs to obtain aset of orthologous
enhancer d-TACs for each tissue. We collected summary statistics for 41
humantraits and diseases (Supplementary Table 11), converting odds
ratios and confidence intervals to log odds ratios and standard errors
for binary traits and estimating allele frequencies from the European
subset of 1000 Genomes where unavailable from the summary data.
We used polyTest® to test for enrichment of variant effects on each
phenotype within orthologous enhancer d-TAC annotations with the

parameters ‘—univariate-maf 0.05-high-mem’. We used hierarchi-
cal clustering on signed -log;,(P) for enrichments that were z-score
normalized within studies to group similar phenotypes.

Celltype enrichment of phenotypes and disease within the mouse
forebrain. We obtained the aggregate accessible chromatin peaks
for each cell cluster in the P56 mouse forebrain and removed peaks
that overlapped promoters (2 kb upstream of mm10 RefSeq TSSs),
retaining sets of promoter-distal peaks®, For this analysis, we did not
restrict peaks to enhancer chromatin states, as doing sowould poten-
tially bias results for cell types that were over-represented in the bulk
tissue. We converted genomic coordinates for promoter-distal peaks
from mm10 to hgl9 using liftOver. We then used polyTest to assess cell-
type-specific enrichment of phenotypes and diseases that showed at
least nominally significant enrichment (P < 0.05) in mouse forebrain
d-TACs from the previous analysis. We used hierarchical clustering on
z-score-normalized signed —log,,(P) for enrichment as described in
the previous analysis and plotted results for traits that showed at least
nominal significancein atleast one cell cluster.

ChromHMM

We note that the chromatinstate annotations reported here are specific
to this study and are distinct from larger efforts by the ENCODE Data
Analysis Center to integrate data from across the entire consortium
into acomprehensive ‘encyclopaedia. We also note that we excluded
E10.5 from the ChromHMM analysis because this stage did not have
the full complement of eight histone modification profiles, and testing
showed that models with only six marks failed to capture the full set of
states derived from eight marks (Extended Data Fig. 7). However, we
provide a set of ChromHMM annotations using the six-mark model
onE10.50nour website here: http://renlab.sdsc.edu/renlab_website//
download/encode3-mouse-histone-atac/.

Generating the model. Chromatin data sets (.bam files) were down-
loaded fromthe ENCODE DCC on15October2016. De-duplicated .bam
files for each sample, along with their respective input controls, were
binarized using the binarizeBam function of ChromHMM, with default
parameters. Models considering 2-24 states were learned separately
on the two replicates using the LearnModel function, with default
parameters. For therest of the analyses, we leveraged the availability of
two distinct replicate time series; namely, we applied the same strategy
separately and compared the results a posteriori. The conclusions
obtained were invariably consistent, suggesting that the inferences
on asingle time series (at least in terms of global genomic patterns)
are highly reproducible.

Identifying the optimal number of chromatin states. We devised
two strategies to identify the minimal number of states that captures
the combinations of histone modifications present in the data, both
of which converged on a 15-state model. First, the ChromHMM Com-
pareModels function was run separately on the two series. This func-
tion compares the emission parameters of aselected model to aset of
models (in terms of Pearson’s correlation), and outputs the maximum
correlation of each state in the selected model with its best matching
state in each other model. We used this function to compare the “full’
model (the one that considers 24 states) to the states in the simpler
models. We then calculated the median correlation of all the 24 states
against the simpler models, plotted these numbers against the number
of statesin the model and looked at the number of states at which both
series reached a plateau. As a complementary strategy, the emission
probabilities from all the 23 models (considering 2-24 states) from both
replicates were clustered together. The rationale behind this strategy
is that very similar states across models will tend to cluster together,
so there must be an optimal number of clusters corresponding to the
optimal number of states in the model. To this end, we applied k-means
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clustering with kbetween 2 and 24, and evaluated the goodness of the
separation for each kas the ratio between the ‘between sumof squares’
(referred to as Between SS) and the ‘total sum of squares’ (Total SS). Very
cohesive, well-separated clusters tend to approach aratio of 1. Givena
value of k, the ratio was averaged over one hundred realizations of the
clustering. The ratio observed for k=24 was used as a maximum, and
the optimal number of states was then defined by the smallest value of k
thatshowed aratio equalto or higher than 95% of the maximum. To com-
pare the eight-mark model to asix-mark model (Extended Data Fig. 7)
we used the 66 tissue-stages for which we had the full complement of
eight marks, then downsampled to six marks (H3K4mel, H3K4me3,
H3K27ac, H3K27me3, H3K9me3 and H3K26me3), and repeated the
analyses described above to arrive at an optimal number of states. We
then compared the 8-mark 15-state model to 6-mark models with two
different numbers of states (11 states and 16 states) representing the
minimum and maximum of the optimal range, respectively.

Genome segmentation and chromatin state tracking across
genomic positions. The segmentation was run separately for each
sample, using the MakeSegmentation function of ChromHMM (default
parameters) and the model derived from the first replicate. For the
final set of replicated state calls we required that aregion was assigned
to the same state in both biological replicates (within a given tissue
and stage). Regions that were not assigned to the same state in both
replicates were reclassified as ‘no reproducible signal’ (distinct from
state 15: no signal in both replicates). The unionbedg functionality of
BEDTools* v2.17.0 was used to keep track of the chromatin state of
genomicintervals across adefined set of samples. The total coverage of
annotated sequenceis 2,725,535,600 bp. This number was used as the
denominator to calculate per cent genome coverage from ChromHMM
statesin the text and figures.

Chromatin state trajectories along developmental time. Given a
replicate for a defined tissue, all those genomic intervals classified in
aspecified state (for example, number 5, strong enhancers) at one or
more time points were tracked using the approach described above.
Considering each pair of adjacent developmental time points, the
genomic coverage of each transition between each pair of states was
then calculated. The resulting numbers were then normalized on the
coverage of the largest transitionin the time series under investigation
(forexample, liver, replicate number 2) and shown as adirected graph.

Clustering on enhancer states. After tracking the changes in chro-
matin state of each genomic base pair in the genome across multiple
stages and tissues, the resulting matrix was binarized according to
eachsegmentbeing classified inaspecified state (1) or any other state
(0). The binary distances between all the pairs of samples considered
in each specific analysis were then calculated. These were used either
for comparisons or hierarchical clustering (Ward’s method).

GO analysis. Functional enrichments through GREAT®® were ob-
tained using the greatBatchQuery.py script. The resulting lists were
first filtered for the relevant ontologies. After that, only the terms
showing abinomial FDR < 0.05 and aregional enrichment equal or
higher than twofold were considered. VISTA validated elements
were downloaded from https://enhancer.Ibl.gov on 17 June 2016.
Mm9 and hgl9 coordinates were converted to mm10 using liftOver
(setting -minMatch to 0.95 and 0.1, respectively). VISTA positive
elements with any of the following annotations: forebrain, mid-
brain, hindbrain, neuraltube, limb, facial mesenchyme or heart were
considered for the following analysis. Liver was not considered in
this enrichment analysis since there are currently fewer than 10
validated elementsin VISTA that show reproducible staining in the
liver. coverageBed from BEDTools v2.17.0 was used to calculate the
coverage of the regions in each state in the E11.5 predictions with

each tissue-specific group of VISTA elements. The fraction of bases
covered was then normalized to the expected overlap, based on the
overall genome-wide coverage of each state. The enrichment for
repetitive elements was calculated using the OverlapEnrichment
function of ChromHMM.

Classification of genes as putative PcG targets. A 2-kb window was
defined around the TSS coordinates of all protein coding transcriptsin
GENCODE® vM9. These 2-kb windows were overlapped with ChromH-
MM calls (‘pooled’ set) to determine their chromatin statein each tissue
and stage. ATSS was classified as active in a giventissue-stage if this 2-kb
window overlapped the active promoter state (state no.1, Fig.1a), and
didnot overlap any repressive states (states 3,13,14). ATSS was classi-
fied asrepressedinagiventissue-stage if this 2-kb window overlapped
the state characteristic of polycomb-mediated repression state (state
13), and did not overlap any active states (states1,2,4,5,6,7,10,12). TSSs
that did not meet the criteria for either active or repressed in a given
tissue-stage were left unclassified. A gene was classified as a putative
PcGtargetifithad atleast onerepressed TSSinatleast one tissue-stage.
To determine whether the genes we identified as putative PcG targets
hadbeenidentified previously, we compared our datato five published
studies examining the genome-wide distribution of H3K27me3 and/or
PcG proteins®**, including the NIH Epigenome Roadmap data set,
which examined at more than 100 human sample types. For refs. 23°,
any gene with a TSS annotated as H3K27me3-positive in any sample
(irrespective of other marks) was considered a previously identified
PcG target. For refs. **2, any gene classified in one of the ‘PRC’ states
inany sample was considered a previously identified PcG target. For
ref.”®, ChromHMM state calls for 127 human samples were downloaded
on 31 March 2018 (‘15_coreMarks_mnemonics’ call set). Putative PcG
target genes in this data set were identified as described above for
our mouse ChromHMM calls, with the following modifications: the
GENCODE v27 annotation set was used for human (gencode.v27lift37.
annotation.gtf.gz), and the Polycomb-associated heterochromatin
states considered were ‘13_ReprPC’,'14_ReprPCWk’, and ‘10_TssBiv’. Any
gene withatleast one TSS overlapping one of these statesinatleast one
sample was considered apreviously identified PcG target. Ensembl v84
was used to match mouse gene IDs with human orthologous gene IDs
(attribute = hsapiens_homolog_ensembl_gene). For CpG analyses, a list
of CpG Islands with corresponding values (length GC#, CpG#, GC%,
CpG%) was downloaded from UCSC Table Browser on 8 January 2018,
and overlapped with the list of TSSs using bedtools v2.20.1. If a TSS
overlapped more than one CGl, the corresponding values of all over-
lapping CGls were combined and associated with the overlapping TSS.

Classification of genes as MDG and/or TF. We obtained a list of Men-
delian disease genes from https://www.omim.org/”° (genemap2.txt, ac-
cessed on14 January 2018). Tofilter out genes associated with complex
diseases or non-disease phenotypes, we performed the following filter
steps.1) Werequired that the genes be classified as type 3 (the molecular
basis of the disorder is known). 2) We required that the gene have at
least one associated phenotype that is not in brackets (nondiseases)
or braces (multifactorial disorders), or containing a question mark
(relationship between the phenotype and gene is provisional). 3) We
further required that the human gene Ensembl ID mapped uniquely
to one mouse Ensembl ID. 4) Finally, we considered only autosomes,
because of the mixed-gender litter pools used for ChIP-seq. These
filtering stepsled toaset of 3,281 genes that we classified as MDGs. To
identify TF genes, we downloaded alist of mouse TFs from the TFClass
database” (accessed 18 February 2017). As alternative sources of TF
genes to support the TFClass results, we used the DBD: transcription
factor prediction database’, and genes associated with one or more
GO terms containing the phrase ‘TF’ as determined by AmiGO” (ac-
cessed on14 January 2018, taxon_subset_closure_label: Mus musculus,
document_category: bioentity). AmiGO was also used in this way to
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identify genes associated with one or more GO terms containing the
word ‘development’ (Extended Data Fig.12). Genes with at least one
transcripttagged as a consensus coding sequence (CCDS) in GENCODE
were classified as CCDSs in Extended Data Fig.12.

Characterization of dynamic enhancer elements. The temporal
dynamic analysis was performed for each tissue separately. First, 1-kb
genomic bins that overlapped with regions defined as ChromHMM
strong enhancer states in at least one stage were identified. Then we
selected dynamic elements (bins) from these strong enhancer bins us-
ing the bioconductor LIMMA package’™ v3.28.21. LIMMA is a package
developed for calling differentially expressed genes for microarray but
was also adapted for sequencing data with the LOOM functionality.
LIMMA was used to call differential enrichment between each adjacent
stage comparison (for example, E11.5 versus E12.5, E12.5 versus E13.5,
and so on). Pvalues were calculated with the eBayes function within
LIMMA with trend parameter disabled, and were adjusted using the
Benjamini-Hochberg method. A bin was called overall dynamic if its
adjusted Pvalue was less than 0.05 in any adjacent stage comparison;
otherwise it was called a non-dynamic bin. Non-dynamic bins were
not included in the following analysis to reduce noise. We performed
k-means clustering on dynamic bins across stages. The rows (bins)
were normalized by dividing by acommon value so that the squares
of the values sum to 1. The optimal k was determined using the elbow
method to cut off at the k value where percentage of ‘withinness’ values
transition fromincreasing quickly to increasing steadily with larger k.
The resulting heatmaps of the k-means clusters are shown in Fig. 4a
and Extended Data Fig. 16. For each of the identified clusters, we per-
formed enrichment testing of GO Biological Processes using GREAT.
Over-represented motifs for each dynamic cluster were identified as
follows:first, all vertebrate motif position weight matrices (PWMs) were
downloaded from the JASPAR TF database and used to scan the peak-
bins for motif occurrences with FIMO, MEME suite v4.11.27, For each
motif, we computed the oddsratio and the significance of enrichmentin
eachcluster, comparing to anon-dynamic bin pool using Fisher’s exact
test. The non-dynamic bin pool was sampled with replacement to match
the distribution of average signal strength from the dynamic bins.
Followingthat, significant TF PWMs were grouped in subfamilies using
the structural information from TFClass” because they share similar
ifnotidentical binding motifs. The top significantly over-represented
TFsand their associated subfamilies were reported.

Identification of super-enhancers. Super-enhancers were identified
using rose v0.1*”” with default parameters for each tissue-stage with
H3K27ac signals. Super-enhancers were then combined within the
same tissue and across all tissues to generate a non-redundant set of
super-enhancers (Extended Data Fig. 14c, Supplementary Table 6).

A TAD-constrained map of enhancer-promoter associations

Generating the map. The reproducible strong enhancer calls (state
no.5) were merged using the mergeBed utility from BEDTools v2.17.0.
After that, those regions or sub-regions that overlapped the intervals
+2.5kb from the TSSs of genes in Gencode were excluded from the
merged regions using subtractBed from BEDTools v2.17.0. Regions
smaller than 2 kb were enlarged to 2 kb from their central coordinate
(to allow more robust signal estimation). This resulted in 66,556 puta-
tive enhancers. H3K27acsignals at these regions were then quantified
using uniquely aligned, de-duplicated reads. These measurements were
carried out using the coverageBed utility from BEDTools v2.17.0, then
normalized to RPKM according to the sequencing depth of eachsample,
andlog,-transformed (zeros were replaced by the smallest detectable
value larger than zero). The mRNA expression of protein-coding genes
was tracked across the 66 samples. Small and non-coding RNAs were
excluded from any subsequent step by considering only those genes
with a GENCODE biotype supporting protein-coding functionality.

FPKM werelog,-transformed (zeros were replaced by the smallest de-
tectable value larger than zero). For each TAD defined in the genome of
mouseES cells®, the putative enhancers and genes were retrieved. All
the enhancer-gene pairs within the TAD were then evaluated interms
of SCC between the H3K27ac pattern of enrichment and the mRNA
expressionacross the samples. Each gene was assigned to the putative
enhancer showing the highest value of SCC. To attach Pvalues to these
correlations, anull distribution was estimated empirically, by calculat-
ingthe SCC of the enhancer withall the genes on the chromosome. Two
strategies were used to estimate a Pvalue: 1) az-score was calculated by
subtracting the mean and dividing by the standard deviation of the null,
and the corresponding P value was then calculated using the pnorm
functioninR;2) anempirical Pvalue was defined as the number of times
an equal or better than the observed SCC was found in the null. Only
those putative enhancers showing a Pvalue <0.05 (for both strategies)
andanSCC>0.25wereretained. Two maps wereindependently derived
from the two biological replicates. Only these overlapping associations
were used for further evaluation and analyses.

Validation of the enhancer-gene map using published chromatin
conformation data. Capture-Cinteraction data from the developing
limb and brain*® were retrieved from the GEO (GSE84792). Chromatin
interaction analysis by paired-end tag sequencing (ChIA-PET) interac-
tions at sites bound by the cohesion subunit SMC1A in the developing
limb* were retrieved from Supplementary Table 2 of the original pub-
lication. Enhancer-gene contacts in fetal liver cells as inferred from
Capture HiC** were downloaded from ArrayExpress (E-MTAB-2414).
In all cases, mm9 coordinates were mapped to mm10 using liftOver.
For each published dataset, only those regionsin the enhancer-gene
map that overlapped any experimentally validated interaction were
retained. The fraction of interactions showing experimental support
was then calculated for both the gene assigned by correlation and the
nearest RefSeq gene.

Mapping of mouse enhancer-gene map to human. The putative
enhancer regions were mapped to the human genome (hgl9) using
liftOver, with astrategy similar to previous reports’®. Each region was
required to both uniquely map to hgl9, and to uniquely map back to
the original region in mm10, with the requirement that 250% of the
basesineach region were mapped back to mouse after being mapped
to human. For each enhancer-gene pair, the orthologous human gene
was inferred using BioMart” (Ensembl version 87; from http://www.en-
sembl.org/biomart/martview, Filters ->Multiple Species Comparisons
->Attributes->Homologues ->Mouse Orthologues). The orthologous
pairswere also required to share the same TAD in human (TADs derived
from human ES cells*). Three thousand, five hundred and seventy of
the genesinour mouse map had ahumanorthologue (gene) and at least
one linked enhancer with an alignable region in the human genome
(residing in the same human TAD). Of the 17,689 putative enhancers
that were successfully mapped to hgl9,12,564 were assigned to genes
with an unambiguous homologue in human.

Validation of the enhancer-gene map using published eQTL-gene
associations. Single-tissue eQTL-gene associations generated by the
GTEx consortium® were downloaded from the GTEx portal (http://
gtexportal.org, release vép). Only those tissues with more than 750,000
annotated eQTLs were considered. A control set of enhancer-gene
associations matching the size and the TSS-distance distributions
of the real enhancer-gene map was generated. In brief, for each en-
hancer-gene pair, the distance between the TSS of the gene and the
central coordinate of the enhancer was calculated; after that, aregion
the same size of the enhancer centred at the same distance to the TSS
of the gene but on the opposite side of the enhancer was picked as a
control set. For the eQTL analysis, the fraction of eQTLs supported
by enhancer-gene pairs was then calculated for ten equal-sized bins
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based on the distance between the enhancer and the TSS of the gene.
The same procedure was applied to the nearest gene. The fraction of
associations supported by eQTLs was then calculated, separately for
the two groups and for each one of the ten bins. These numbers were
used to derive a Pvalue for each bin using Fisher’s exact test. For this
analysis, we considered only those eQTLs derived from human tissues
for which the equivalent tissue was profiled in this study (brain, heart,
liver, lung, stomach and small intestine).

Comparisons to publicly available maps of enhancer-gene as-
sociations. Data sets from ref. ¢, GeneHancer®, JEME®, and RIP-
PLE® were downloaded and consistently re-mapped to the hgl9
genome using liftOver. Mapping of enhancer-gene associations
between different maps was performed using closestBed from BED-
Tools v2.17.0.

Transgenic reporter assays

Prospective testing of elements. Names for functionally validated
enhancers used throughout this work (mm numbers) are the unique
identifiers from the VISTA Enhancer Browser (https://enhancer.
Ibl.gov/)**. Enhancers were selected for testing as follows: The
H3K27ac peak calls for three tissues (E12.5 heart, forebrain, and
limb) were taken from the TSS-distal H3K27ac peaks called using
the uniform processing pipeline (mm10-minimal) by the ENCODE
DCC (narrow peaks from combined replicates). Peaks for each tis-
sue were ranked by enrichment score (most to least significant).
We then selected predicted enhancers from three different bins
within eachtissue’s ranked list for testing (bins were approximately
ranks1-85,1,500-1,550, and 3,000-3,050). Loci that were already
includedinthe VISTA Enhancer Browser or that appeared to overlap
unannotated promoters were excluded from testing. In total, 150
predicted enhancers were tested, including 60 top ranked candi-
dates (20 per tissue), 45 middle ranked (15 per tissue), and 45 lower
ranked candidates (15 per tissue). Transgenic mouse assays were
performed in FVB/NCrl strain mice (Charles River) as previously
described®?®*, In brief, predicted enhancers were PCR amplified
and clonedinto a plasmid upstream of aminimal Hsp68 promoter
and alacZreporter gene. Transgenic embryos were generated by
pronuclearinjection of the resulting plasmids into fertilized mouse
eggs. Embryos were implanted into surrogate mothers, collected
at E12.5, and stained for B-galactosidase activity. Elements were
scored as positive enhancersif at least three embryos had identical
B-galactosidase staining in the same tissue. Elements were scored
as negative if no reproducible staining was observed and at least
five embryos harbouring a transgene insertion were obtained.
Genomic coordinates and results for each element are provided
in Supplementary Table 10, through the ENCODE project data por-
tal (https://www.encodeproject.org/), and at the VISTA Enhancer
Browser website (https://enhancer.lbl.gov/).

Retrospective analyses of VISTA elements. Overall, 422,299 and
414 elements showing activity in forebrain, limb or heart, respectively,
were considered. For eachranked list of H3K27acregions, overlap with
positive (those elements showing activity in the same tissue from which
the H3K27ac profile was derived) and negative (in all tissues or posi-
tive in other tissues) elements was calculated. A spline was used to fit
the overlap (0-1values) against the rank (smooth.spline R function,
degrees of freedom (df) = 2), separately for each of the three tissues.
Toderive estimates of the background validation rates for each tissue,
the VISTA elements missed by the H3K27ac profiles were leveraged.
Specifically, the number of VISTA elements validated in the tissue and
part of this set was divided by the total number of VISTA elements in
thisset. Validationrates across ranked forebrain VISTA elements were
derived using the spline approach described above. Each element was
annotated to the best overlapping feature (in terms of signal, or LOD

score of the conserved element), for each one of the following catego-
ries: H3K27ac enrichment, p300 binding, DNasel-hypersensitive sites
(DHSs), ATAC and phastCons conservation. When available, biological
replicates were used to derive separate ranks, then the sum of ranks
across themwas used tore-rank the elements. DHSs were downloaded
from the ENCODE DCC website (accession: ENCSRO14SFF) or GEO
(accessions: GSM348064, GSM348066, GSM559652). PhastCons con-
served elements were download from the UCSC Genome Browser on
24 January 2018 (phastConsElements60way and phastConsElement-
s60wayPlacental)®.

Mapping to repeat element families

As the ENCODE analysis pipeline was focused primarily on uniquely
mapped reads, we used a separate approach to study repetitive regions.
More specifically, we used a pipeline with two rounds of mapping steps
to re-process all the fastq files. In the first round of mapping, sample
reads were aligned to the reference genome mm10 using Bowtie with:
bowtie hgl9 -p16-t-m1-S-chunkmbs 512-max multimap.fastqinput.
fastqoutput.sam®. -max is used to separate reads mapping to multiple
locations of the genome from uniquely mapped reads. In the second
round of mapping, a customized assemblies file was constructed by
concatenating genomicinstances of each repetitive element subfamily,
their 15-bp flanking genomic sequences and a 200-bp spacer sequence
in FASTA format®. The annotation file for repetitive elements used in
this step was downloaded from Repeatmasker.org. A python script was
used with parameters as follows: python RepEnrich.py /data/mm10_
repeatmasker.txt /data/sample_A sample_A /data/mm10_setup_folder
sampleA_multimap.fastqsampleA_unique.bam-cpus16%, The number
of reads that mapped to repetitive element subfamilies, repetitive
element families, or repetitive element classes was determined using
information from both uniquely mapped reads that overlap with repeti-
tive element and non-uniquely mapped reads. As some of the repetitive
element subfamilies are very similar to each other, afractional counts
method was used to classify the reads that map to multiple repetitive
element subfamilies. It sums reads that map uniquely to a repetitive
element subfamily once and counts reads that map to multiple sub-
families using a fraction 1/n,, in which n, is the number of repetitive
element subfamilies with which the read aligns. A table of counts that
estimate enrichment signal for the repeats classes across different
tissues is built as the final output for plotting the figures.

Data processinginR

Most of the described data processing steps (plotting, statistical tests,
calculating correlations and hierarchical clustering) were performed
in the statistical computing environment R v.3.3.1 (https:/www.
r-project.org/).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

All raw and processed data can be accessed via the ENCODE Data
Collection and Coordination (DCC) website: https://www.encodedcc.
org viathe experiment IDs listed in Supplementary Table 13.

Code availability

The ENCODE histone ChIP-seq pipeline is among the collection of
ENCODE Uniform Processing Pipelines that can be found here: https://
github.com/ENCODE-DCC/ChIP-seq-pipeline.
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Extended DataFig.1|See next page for caption.
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Extended DataFig.1| ChIP-seqdatasummary.a, Summary of characteristic
enrichment patterns for histone modifications surveyed here. Modifications
aregenerally categorized as narrow or broad depending on the typical breadth
of enrichment. H3K9me3 s further distinguished from other broad marks
becauseitshows very few regions of enrichmentin non-repetitive sequence in
primary tissues and cells?*. b, Metagene plotillustrating the typical patterns of
histone modificationenrichment at active genes (here defined asRPKM >10 in
alltissue-stages surveyed). ChIP-seq dataplotted are from embryonic heart at
E15.5.c,Sequencingdepth plotted for everylibrary reported (n=1,272 total,
552 narrow,432broad, 144 H3K9me3,144 input). ENCODE ‘usable’ read depth
standards (mapping quality scores (mapq) >30, and after PCR duplicate
removal) areindicated to theright. Read depth standards changed part way
through our study (increasing from 10M to 20M for narrow marks, 20M to 45M
forbroad marks, and 10M to 30M for input). All narrow mark libraries exceed
the10M minimal depth. Broad marklibraries exceed the 20M minimal depth

withonly four exceptions, all of which exceed 19M. Input libraries exceed the
10M minimal depth with only one exception, which exceeds 9.7M. The read
depth standard for H3K9me3 is >45M mapped reads of any mapq (because
H3k9me3isenrichedinrepetitive sequence, Extended Data Fig.10); all
H3K9me3 libraries exceed this threshold. Box plots: horizontal line, median;
box, IQR; whiskers, most extreme value within 1.5 xIQR. d, Mapping quality
plotted forevery library, measured as the fraction of reads with mapq >30.
Readswithlower mapqscores (that is, non-uniquely mapping reads) were
eliminated from downstream analysis. e, Three metrics of library complexity
areplotted (NRF, PBC1, PBC2). See ENCODE data standards® for detailed
descriptionsand formulas. Tables below each plot show the percentage of
libraries that exceed the thresholds indicated. f, Two measures of signal-to-
noiseratio are plotted (NSC, RSC). Again, detailed descriptions are available in
the ENCODE datastandards descriptions. These metrics are not well calibrated
forbroad marks orinputand thresholds apply only to narrow marks.
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Extended DataFig.2| ChIP-seqpeak calling. a, Schematic of ChIP-seq peak
calling pipeline. More information can be found here: https:/www.
encodeproject.org/pipelines/.b, Four peak summary statistics plotted for
every tissue-stage. From top to bottom:1) number of peaks called (passing IDR
threshold); 2) total coverage of those peaks; 3) peak coverage asin (2), but
separated accordingto tissue; 4) peak coverage asin (2), but separated by
stage.E10.5 ChIP-seqexperiments were performed with amodified protocol,

andinsome cases adifferent, more sensitive antibody was used (H3K27ac,
H3K4mel). We suspect thatiswhy E10.5sometimes appears as anoutlierin
terms of coverage. n=72for all marks, expect for H3K4me2 and H3K9ac where
n=66.c,Peakreproducibility as measured by the percentage of peaks called
fromthe pooled datathat were called independently inboth individual
replicates. d, Peak reproducibility as measured by correlation of peak
strengths (average fold enrichment overinput) between biological replicates.
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ATAC-seqsignal atreplicated peaks betweenbiological replicates (n=66
tissue-stages), as measured by Pearson’s correlation coefficient (left) or
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Extended DataFig. 5| Chromatinlandscapes acrossstages.a, Heatmap
showing the H3K27ac ChlP-seqsignal at H3K27ac ChIP-seq peaksin forebrain.
Peaks are clustered according to how many stages within forebrain they were
presentat (y-axis, left). Thenumber of peaksin eachclusterisindicated to the
right. b, Pearson’s correlation coefficients between H3K27ac signal in peaks at
stages E11.5-P0Oinforebrain (top) or heart (bottom). ¢, The x-axis at the top
indicates the number of tissues inwhichagiven peakis present (1-12). The top
line plot shows tissue specificity as the percentage of total peaks foragiven
mark that were called inagiven number of tissues. The middle heatmap shows
stage specificity as the average fraction of stages withinatissue at which a peak
is present. Peaks that are more restricted to specific tissues are also more
restricted to specific stages within those tissues. The bottom heatmap shows

thelocations of peaks relative to TSSs by plotting the fraction of peaks that
overlap anannotated GENCODE TSS. Peaks that are more consistentacross
tissuesand across stagesalsotendtooverlapaTSS.d, Genome browser view of
Gadl(chr2:70,547,104-70,615,401; mm10) and NeuroD6 (chr6:55,637,617—
55,708,251; mm10), neuronal markers, showing the gain of active chromatin
signatures during forebrain development. e, Genome browser views of Ccnbl
(chr13:100,776,802-100,788,423; mm10) and Cdk2 (chr10:128,693,493-
128,709,497, mm10), key cell cycle regulators, showing the loss of active
chromatinsignatures during forebrain development. f, Genome browser view
ofthe Myh6/Myh7locus (chrl4:54,927,121-55,010,762; mm10), showing a shift
inactivity from Myh7to Myhé that is known to occur in cardiomyocytes just
beforebirth®.
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Extended DataFig. 6 | Fifteen-state ChromHMM model. a, Schematic of the
ChromHMM strategy applied in this study. b, Heatmaps showing the maximum
Pearson’s correlation of each statein the full model (y-axis) withits best
matching state in each simpler model (x-axis). The median correlation of all 24
statesis showninthe plots ontop of the heatmaps. ¢, Classification of the
k-means clustering of the emission probabilities fromall the models. The
optimal number of states was defined by the smallest value of k that showed a
ratio equal to or higher than 95% (orange line) of the maximum clusters’
separation (redline).SS, sumof squares. d, The emission probabilities for each
chromatin markin each state, as defined by ChromHMM, for both replicates.
e, Spearman’s correlation of emission probabilities from ChromHMM models
derived from two biological replicates, colour-coded by state (left) or by

modification (right).f, Comparison of the ChromHMM model reported here
with previously published ChromHMM models. Horizontal white bars indicate
chromatin statesidentified in our study that did not have a clear counterpartin
those studies. g, Similarity betweenreplicates from the same tissue-stage
(n=66), from the same tissue any stage (n=702), or from any tissue any stage
(n=8,646).Similarity measured as pairwise binary distance. Two-sided
Mann-Whitney test. h, Enrichment of eachmarkin state 11 (permissive) relative
tostatel5 (nosignal, genomic background). The ChromHMM emission
probability for H3K36me3 in state 11is >30-fold higher than genomic
background.i, Enrichment of chromatin states relative to annotated genes.
Gene annotations were not considered during model training or genome
segmentation.
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** Transcription initiation state (#12) is absent from 6-mark models; regions mostly classified with enhancer states

Extended DataFig.7| Comparing eight-mark ChromHMM model with six-
mark models. a, Median correlations of the 24 states in the full model (y-axis)
withits best matchingstate in each simpler model (x-axis). The boxindicates
thatavalue close to the maximumis already reached withan11-state model,
and avalue virtually equal to the maximum s obtained with a16-state model.
Shaded arearepresents confidence intervals of the smoothing line obtained

using stat_smooth() of ggplot2 (using default parameters, default methodis
LOESS). b, Emission probabilities for each histone modificationin each state, as
defined by ChromHMM, for both replicates (11-state model on top, and 16-state
modelatthe bottom). c, Overlap of regionsin each of the eight-mark 15-state
models with the regions classified by the 11- and 16-state models using only 6
marks. Major differences are indicated by asterisks and explained below.
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Extended DataFig. 8| Chromatin state developmental dynamics.

a, Enrichment of accessible chromatin within regions segmented into different
chromatin states. Left, values for aset of ChromHMM annotations made using
ChIP-seq datapooled frombothbiological replicates. Right, values for amore
conservative set of ChromHMM annotations including only those regions
annotated inthe same state independently in both biological replicates.n=66
tissue-stages per box. b, Hierarchical relationships among strong enhancers
(state no.5) in different tissues during development (clustering according to
binary distance, Ward’s method). This analysis revealed astrong relationship
between limb and facial tissue, also observed in clustering of specific histone
modifications (Extended Data Fig. 4a), and further supporting the hypothesis
of that facial structures and limbs have acommon developmental origin®®.

¢, Enrichment of functional terms (x-axis, GO biological processes, Pvalues

from GREAT binomial test; FDR is Benjamini-Hochberg corrected g value) for
thesets of strongenhancers (state no. 5) across each tissue-stage (y-axis).
Samplesizes provided in Supplementary Table 5. The terms were hierarchically
clustered (average linkage) according to Pearson’s correlation. Asubset of the
terms highly enriched in both limb and face s listed below the main heatmap.
d, Fraction of bases (x-axis) annotated in the indicated state consistently in up
tosevenstagessampled (y-axis). Only tissues sampled at seven stages are
shownhere (n=5). e, Sankey diagram showing the origin and fate of all genomic
intervals classified as TSS-distal strong enhancers (stateno.5) in E14.5
forebrain. The chromatin state classification of these regions was tracked
across the available developmental stages, and the relative genomic coverage
of each chromatinstate ateach transitionis plotted. The thickness of each
colour (y-axis) indicates the coverage of each state.
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Extended DataFig. 9| Chromatin state dynamics and signature of PcG
repressionatkey regulators. a, The mostenriched biological processes (GO
terms) for genes near putative liver enhancers (n=4,595). The significantly
enriched terms for each stage were identified and divided into deciles (based
onstatistical significance). The ten most enriched terms for each stage were
then grouped together and hierarchically clustered. Genesinvolved in either
haematopoiesis or metabolic processes are colour-coded, as indicated.
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gvalue.b, Genome browser views showing tissue-restricted activity patterns at
Cdx2(chr5:147,294,550-147,313,599; mm10), BarxI (chr13: 48,649,148
48,680,395, mm10), Nkx2-1(chr12:56,507,647-56,560,509; mm10), and WtI
(chr2:105,097,427-105,200,306). ¢, Left, the number of TSSs marked by Hc-Pin
eachtissue-stage.Right, thenumber of genes with at least one annotated TSS
marked by Hc-Pin each tissue-stage.
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Extended DataFig.10 | See next page for caption.



Extended DataFig.10 |H3K9me3 heterochromatin. a, Genome browser view
showingalarge region of chromosome 15 (chr15: 87,165,311-104,043,685;
mml10). Signal tracks (fold enrichment over input) are shown for all marks.
H3K9me3looks relatively flat, unlike the other marks. We find very few regions
of strong H3K9me3 enrichment outside repetitive elements, consistent with
previousreports of H3K9me3 distributionin primary tissues. Datashown
hereandindarefromE15.5.b, The fraction of total sequencing reads that map
tothereference genome (lightgreen), and that map uniquely to the reference
genome (mapq >30; dark green). y-axis is the mean for all ChIP libraries
reported here separated by mark (n=72 for allmarks except for H3K4me2 and
H3K9acwheren=66),and error barsrepresents.d. Control bars represent ChIP
inputlibraries (noIP step). Allmarks and input have a high mapping rate (mean

>90%), but H3K9me3 has amarkedly low rate of unique mapping, suggesting
that this modificationis specifically enriched in non-unique (that is, repetitive)
genomicregions.c, Stacked bar plots show the type of repetitive elements
fromwhich the non-uniquely mapping reads fromb are likely to originate.
H3K9me3reads are highly enriched insatellite repeatsrelative to the input
controls.d, Genome browser view of ChIP-seq fold enrichment tracks at
Pchd (chr18:36,720,767-38,058,585; mm10) and Zfp454 (chr11:50,774,
724-50,939,391; mm10) shows significant H3K9me3 enrichment (state 14)
during development. The 3’ UTRs of Zfp genes marked by H3K9me3 (reported
previously?®) areindicated by pink arrowheads. e, Asind, but showing
chromatin states across these regions.
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# of tissue-stages a given
TSS is marked by Hc-P

# of tissue-stages a given
TSS is marked by Hc-P



Extended DataFig.11|Properties of putative PcG target genes.a, TSSsare
binned together accordingto the number of tissue-stages inwhich they are
marked by Hc-P (0-66, x-axis). For each bin, the fraction of TSSs that are

K4 +K27 (bivalent), K27 (repressed), K4 (active), or hasno K4 or K27 in mouse ES
cellsisplotted, asreported previously”. b-d, Similar schemato a, but plotting
thefraction of TSSs bound by RING1B (PRC1component), EZH2 (PRC2
component), or SUZ12 (PRC2 component) in mouse ES cells, as previously
reported®. e, Comparison of Hc-P regions asreported here and DMVs from
ref.’. Left, metrics related to regions annotated as Hc-P in each tissue-stage
(x-axis). From top to bottom: number of Hc-Pregions in each tissue-stage;
coverage of Hc-Pin each tissue-stage; fraction of Hc-P regions that overlap a
TSS; fraction of Hc-P regions that overlap aDMV. Right, metrics related to

regions annotated as DMVsin each tissue-stage (x-axis). From top to bottom:
number of DMVsin each tissue-stage; coverage of DMVsin each tissue-stage;
fraction of DMVregionsthat overlap a TSS; fraction of DMV regions that
overlapaHc-Pregion.f,Schemaasina-d, but with axes switched. Foreachbin,
thefraction of TSSs that overlap a CGlis plotted on the x-axis. g—j, The
following properties of CGls that overlapped Hc-P TSSs are plotted (left to
right): CGllength; CpG number; CPG percentage; GC percentage. None of
these propertiesis strongly correlated with the number of tissue-stages in
whichagiven TSSis marked by Hc-P (x-axis), supporting the role of factors
other than CGlsinrecruiting or excluding PcG at target promotersinatissue-
and/or stage-restricted fashion®**. Green line shows LOESS smooth curve,
span0.25and degreel.
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Extended DataFig.12|See next page for caption.
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Extended DataFig.12|Hc-Penrichmentatdisease-relevant TF genes.

a, Enrichment of ‘molecular function’ GO termsin genes near repressed regions
(state13,Hc-P) as measured by GREAT binomial test with Benjamini-Hochberg
correction. GO terms on the y-axis are ordered by average enrichment Pvalue
acrossalltissue-stages. Thetop 20 GO termsare listed below, and are all related
to TF function. Number of regions for each tissue-stage shown in Extended
DataFig.11e.b, Similar layout to Fig. 2f. The fractions of six gene sets that show
evidence of PcGrepression are plotted: 1) all protein-coding genes (black line);
2) the subset of protein-coding genes that code for TFs (greenline); 3) the
subset of protein-coding genes that code for TFsand underlie human
Mendelian diseases (dark blue line); 4) the subset of protein-coding genes that
code for TFsbut do not underlie human Mendelian diseases (light blueline); 5)
the subset of protein-coding genes that underlie human Mendelian diseases; 6)
the subset of protein-coding genes that underlie human Mendelian diseases
butarenot TFs. The origin of the TF super-setsisindicated on top of each sub-
panel, fromleft toright: the TFClass database, the DBD database, and genes
associated witha GO term containing the phrase ‘TF’. ¢, Pvalues from x* test of

independence between PcG repressionand Mendelian phenotype
involvement. Different subsets of TF genes were used for this analysis,
clockwise fromtop to bottom: All, all genes annotated as TF in theindicated
database (TFClass or DBD); non-Zf, genes annotated as TF but not as zinc finger,
toensure that the enrichment for disease genes is not coming only from this
large family of TFs; GO term development, genes witha GO term containing
‘development’, to show that the enrichment for disease genes exists even
amongst TFsthatareall likely to have arole in development; CCDS, genes with
transcripts annotated by the consensus coding sequence (CCDS) project,
representing high-confidence gene annotations in both the mouse and human
genomes. Sample sizes shown over each bar.d, Patterns of PcG repression at
Sox9(chr11:112,766,260-112,803,708; mm10), Shh (chr5: 28,392,703~
28,531,239; mm10), Pax3(chrl: 78,027,730-78,280,060; mm10), and Wnt6/Ihh
(chrl:74,643,751-74,987,517; mm10). This small but well-characterized set of
genesisknownto cause human congenital phenotypes when expressed
ectopically during development*¢°¢,
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Extended DataFig.13|Dynamicd-TACs. a, Overlapping regions between our
d-TAC catalogue and the adult single-cell ATAC-seq atlas fromref. **. b, Fraction
oftested d-TACsactivein each tissue that exhibit positive reporteractivity in
the same tissue. This analysis was performed for three different sets of tissue-
accessible d-TACs: all d-TACs, TSS-distal d-TACs, and TSS-distal d-TACs that
overlap state 5 (strong TSS-distal enhancers). ¢, Top, number of dynamic
d-TACs per tissue. Bottom, number of non-dynamic d-TACs per tissue. Ifad-TAC
was called as significantly dynamic at any stage transition withinitatissue it
was labelled as dynamic; otherwiseit was labelled as non-dynamic. d, Stacked

bar plot shows the fraction of dynamic d-TACsin each tissue that are dynamic at
one, two, three, four, five, or six stage transitions. e, The fraction of dynamic
d-TACswithinatissue thatundergo significant changesinaccessibility ateach
stage transition. f, Similar schema to Fig. 3h but showing each chromatin state
separately instead of assupersets. The heatmap shows the chromatin state
changes that occuratdynamic d-TACs that gainaccessibility at agiven stage
transition. Enrichmentisrelative to the coverage of each statein total d-TAC
catalogue. g, Asinf,but for d-TACs thatlose accessibility at agiven stage
transition.
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Extended DataFig.14 | Chromatinstate-based enhancers. a, Tissue-specific
enrichments of VISTA enhancers for different chromatin statesin E11.5 heart,
limb and forebrain. b, Top, fraction of dynamic enhancersin each tissue (based
onH3K27ac) that overlap d-TACs accessiblein the matchingtissue. Bottom,
fraction of dynamicenhancersin each tissue that overlap d-TACs that were also
called as dynamic by ATAC-seqin the matching tissue. c, Top, fraction of
dynamicd-TACsineachtissue that overlap enhancers called by ChromHMM
(state 5) in the matchingtissue. Bottom, fraction of dynamic d-TACsineach
tissue that overlap dynamic enhancers called with H3K27ac in the matching
tissue. Each pointrepresents onetissue-stage (n=66).d, Top, dynamic
enhancers that gain H3K27ac atagivenstage transitionnton+1.Lines show the
log, fold change in ATAC-seq signal within d-TACs that overlap those dynamic
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enhancersat various stage transitions. Dynamic enhancers that gain H3K27ac
atagiven stage transition tend to gain accessibility asmeasured by ATAC-seq
either at or before the stage transition in question (sometimes preceding
H3K27ac gain by as much as five stage transitions). Mean and s.d., filled circles
and verticallines, respectively. Bottom, dynamic enhancers that lose H3K27ac
atagivenstagetransitionnton+1.Dynamic enhancers thatlose H3K27acata
givenstage transition tend to lose accessibility asmeasured by ATAC-seq
eitherator after the stage transition in question (sometimes proceeding
H3K27acloss by as much as five stage transitions). The number of stage
comparisons for each offsetis: +0n=54,+t1n=42,+2n=30,+3n=18,+4n=10,
+5n=5.
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Extended DataFig.15|Super-enhancers. a, Distribution of the H3K27ac colouredlines. b, Heatmap shows the normalized H3K27ac signal for all super-
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(super-enhancers) show exceptionally high levels of signal, as represented by
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Extended DataFig.17| Enhancer target gene predictions. a, Schematic of
theapproachtoassignenhancerstotargetgenes. b, Genome browser view
showingthe AsclIlocus, asinFig.4c, butshowing ChIP-seqfold enrichment
tracksinstead of chromatin states. ¢, Histogram of the number of enhancers
pergene.d, Foreachreplicate, the fraction of putative enhancers assigned to
thesame gene using datafrom the other available replicate. e, Scatter plots
showing reproducibility of enhancer-gene maps as measured by correlation
between enhancer-gene pairs (left; n=21,141 pairs), and the number of
enhancers per gene (right; n=5,611genes).f, Left, fraction of enhancer-gene
associations thatoverlap interactions previously reportedinref.®
(n=907/12,655), GeneHancer® (n=2,067/12,546),JEME®? (662/36,007), and
RIPPLE®?(31/37,541). The global level of overlap is low, perhaps in part owing to
thedifferent sample types used to predict these interactions. Right,
distribution of scores for the unique and overlapping pairsin GeneHancer,
JEME and RIPPLE, respectively. Where predictions from those reports overlap
with ours, their scores are significantly higher. Pvalues calculated using two-
sided Mann-Whitney Utest. g, Asin Fig.4d, this plot shows thatenhancer-gene

interactionsidentified by this correlative approach are generally more likely to
besupported by chromatininteraction datathanassociations derivedbya
nearestgene approach. Toensure that this was not due toanartefactof the
chromatin capture technologies being unable to detect short-range
interactions, we used different distance cutoffs (10 kb, 100 kb) to define the
‘nearest’non-targetgene.h, The Bclllalocus (chrll: 24,044,043-24,197,927;
mmlO0) provides aninteresting case in which genetic variationin enhancers
regulating a pleiotropic Mendelian disease gene may contribute to tissue-
restricted phenotypes with lower penetrance. Boxes outline enhancer clusters
withactive chromatin signatures in the CNS (left) and liver (right), and which
have validated activity in the CNS and erythroid lineage, respectively®**%%7
(mouse embryonicliverisasite of erythropoiesis). The subpanels on either side
ofthe main browser view show regions of the human genome that correspond
toeither the CNS enhancer cluster (left, chr2: 60,752,530-60,767,198; hg19) or
liver enhancer cluster (right, chr2: 60,711,940-60,741,118; hg19). Thick black
barsontop representorthologues of the predicted Bcllla enhancers, and thin
greenbars below represent GWAS SNPs for the EMBL-EBI GWAS catalogue.
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Extended DataFig. 18| Transgenic validation results for predicted Supplementary Table 10 for results. b, Violin plots show transgenic enhancer
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Reporter gene expressionisindicated by blue staining, and enhancer names that validated in the correct expected tissue are shown. Reproducibility
(mm numbers) are the unique identifiers from the VISTA Enhancer Browser*. differences betweenrank classes were not statistically significant (Mann-
Reproducibility for each enhanceris availablein Supplementary Table 10 and Whitney Utest). Violin plots as in Fig. 5b, sample sizes shown below each violin.

through VISTA. Red arrows indicate forebrain, limbs, or heart. See also c,SameschemaasinFig. 5e, but for heart (left) and limb (right).
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Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics

For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.
Confirmed

|X| The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

& A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

|X| The statistical test(s) used AND whether they are one- or two-sided
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

[X] A description of all covariates tested
& A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

|X| A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient)
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

|X| For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
Give P values as exact values whenever suitable.

|:| For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

|X| For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

ODOX O OO0O0O0gdds

|X| Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code

Policy information about availability of computer code

Data collection No software used.

Data analysis The ENCODE histone ChIP-seq pipeline is among the collection of ENCODE Uniform Processing Pipelines that can be found here: https://
platform.dnanexus.com/projects/featured. The code is open-source, and available here: https://github.com/ENCODE-DCC/chip-seq-
pipeline. The ATAC-seq data were analyzed using a standardized software pipeline implemented by the ENCODE Data Coordinating
Center (DCC) for the ENCODE Consortium to perform quality-control analysis and read alignment. Details in methods, along with versions
of specific software packages that were used. The following open source software packages were used in data analysis, as described in
methods section: bowtie v2.2.6; samtools v1.2 or v1.0 as indicated in methods; MACS2 v.1.0 or v2.1.1.20160309 as indicated in methods;
bedtools v2.17.0,v2.20.1, or v2.27.1 as indicated in methods; R v3.3.1; PLINK v1.90p; SNPsnap (No version available, March 2015
update); polyTest (no information available); bwa v0.7.10; bigWigAverageOverBed (no version available); deeptools v2.5.7; liftOver (no
version available); AmiGo v2; MEME v4.11.2; DEseq2 v1.22.0 Rose v0.1; BioMart (no version available, accessed 02/14/2017);
greatBatchQuery.py (no version available); chromHMM v1.12; LIMMA v3.28.21.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers.
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data
All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- Alist of figures that have associated raw data
- A description of any restrictions on data availability

Raw and processed ChlIP-seq data from our study can be accessed via the ENCODE Data Collection and Coordination (DCC) website: www.encodedcc.org. A full list
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of the ChIP-seq experiments included in this manuscript can be found at the link below: https://www.encodeproject.org/search/?
type=Experiment&assay_title=ChlIP-seq&award.rfa=ENCODE3&lab.title=Bing+Ren%2C+UCSD&limit=all. A fill list of ATAC-seq experiments included in this
manuscript can be found at the link below:
https://www.encodeproject.org/search/?type=Experiment&award.rfa=ENCODE3&lab.title=Bing+Ren%2C+UCSD&limit=all.&assay_title=ATAC-seq&limit=all.
Additional data files including ChromHMM state calls, dynamic d-TACs, and dynamic enhancers can be found here: http://renlab.sdsc.edu/renlab_website//
download/encode3-mouse-histone-atac/.

Field-specific reporting

Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf
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Life sciences study design

All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes were chosen to provide sufficient material for ChIP-seq of multiple histone modifications.

Data exclusions  No data points are excluded, except in rare cases of failed ChiP-seq libraries that did not meet ENCODE quality criteria (https://
www.encodeproject.org/chip-seq/histone/), were re-done, and replaced by new libraries from the same biosample.

Replication 2 biological replicates were performed for each experiment, derived from independent embryo pools. Quantitative analyses of reproducibility
can be found in Extended data figure 2 and 3.

Randomization  Not randomized. This was not feasible given the scale of tissue dissections and ChIP-seq data production here.

Blinding Not blinded. This was not feasible given the scale of tissue dissections and ChIP-seq data production here.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
Antibodies [1IX chip-seq
[ ] Eukaryotic cell lines [] Flow cytometry
[ ] palaeontology [ ] MRI-based neuroimaging

Animals and other organisms
|:| Human research participants

[ ] clinical data

XXOXKXO S

Antibodies

Antibodies used Standard ChIP-seq:
H3K4mel Abcam ab8895
H3K4me2 Millipore 05-1338
H3K4me3 Millipore 04-745
H3K27ac Active motif 39133
H3K27me3 Active motif 61017
H3K9ac Active motif 39137
H3K9me3 Abcam ab8898
H3K36me3 Abcam ab9050
MicroChlIP-seq
H3K4mel Abcam ab8895 polyclonal
H3K4me3 Cell Signaling 9727 polyclonal
H3K27ac Abcam Ab4729 polyclonal
H3K27me3 Active motif 61017 monoclonal
H3K9me3 Abcam ab8898 polyclonal
H3K36me3 Abcam ab9050 polyclonal
The specific antibody and lot numbers used for each library can be found in the publicly accessible metadata associated with
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each experiment at the ENCODE data portal, here: https://www.encodeproject.org/search/?type=Experiment&assay_title=ChlIP-
seq&award.rfa=ENCODE3&lab.title=Bing+Ren%2C+UCSD&limit=all

Validation Validation procedure described here :https://www.encodeproject.org/documents/4bb40778-387a-47c4-ab24-cebe64eadSae/
@ @download/attachment/
ENCODE_Approved_Oct_2016_Histone_and_Chromatin_associated_Proteins_Antibody_Characterization_Guidelines.pdf

All validations available at encodeproject.org: https://www.encodeproject.org/search/?
type=AntibodyLot&characterizations.lab.title=Bing+Ren%2C+UCSD

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Mouse tissue collection was performed using C57BL/6NCrl and C57BL/6NTac strain Mus musculus, and breeder mice were
purchased from Charles River and Taconic, respectively. Tissue was collected using mouse neonates or embryos for the
following developmental stages: E10.5, E11.5, E12.5, E13.5, E14.5, E15.5, E16.5, PO. Biological sex is not visually obvious for
these developmental stages and was not assessed. All biological replicates consisted of tissue from multiple embryos and are,
therefore, expected to consist of roughly equal numbers of males and females. The number of embryos pooled for each
replicate can be found in the publicly accessible metadata associated with each experiment at the ENCODE data portal, here:
https://www.encodeproject.org/search/?type=Experiment&assay_title=ChIP-seq&award.rfa=ENCODE3&lab.title=Bing+Ren%2C
+UCSD&limit=allTransgenic mouse assays were performed using FVB strain Mus musculus
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Wild animals Study did not involve wild animals.

Field-collected samples No field samples were collected.

Ethics oversight All animal work was reviewed and approved by the Lawrence Berkeley National Laboratory Animal Welfare and Research
Committee

Note that full information on the approval of the study protocol must also be provided in the manuscript.

ChlIP-seq

Data deposition
X] Confirm that both raw and final processed data have been deposited in a public database such as GEO.

X] Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links https://www.encodeproject.org/search/?type=Experiment&assay_slims=DNA+binding&assay_title=ChIP-
May remain private before publication. seq&award.rfa=ENCODE3&lab.title=Bing+Ren%2C+UCSD&limit=all

Files in database submission Thousands of files, not feasible to list here.
Genome browser session g00.g!/57GK9P
(e.g. UCSC)
Methodology
Replicates All ChiP-seq and ATAC-seq experiments were performed on two biological replicates of tissue. For each tissue-stage, we

harvested tissues from multiple litters of embryos. Tissue was pooled such that each tissue-stage had two biological
replicates derived from different embryos. Each replicate contains tissue pooled from several embryos (precise numbers are
provided at encodedcc.org), but the embryos in each replicate are unique to that replicate.

Sequencing depth A detailed list of ENCODE3 ChlP-seq read depth and other standards can be found here: https://www.encodeproject.org/
chip-seq/histone/.

Antibodies Standard ChIP-seq:
H3K4mel Abcam ab8895
H3K4me2 Millipore 05-1338
H3K4me3 Millipore 04-745
H3K27ac Active motif 39133
H3K27me3 Active motif 61017
H3K9ac Active motif 39137
H3K9me3 Abcam ab8898
H3K36me3 Abcam ab9050
MicroChlIP-seq
H3K4mel Abcam ab8895 polyclonal
H3K4me3 Cell Signaling 9727 polyclonal
H3K27ac Abcam Ab4729 polyclonal
H3K27me3 Active motif 61017 monoclonal
H3K9me3 Abcam ab8898 polyclonal
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Peak calling parameters

Data quality

Software

H3K36me3 Abcam ab9050 polyclonal

The specific antibody and lot numbers used for each library can be found in the publicly accessible metadata associated with
each experiment at the ENCODE data portal, here: https://www.encodeproject.org/search/?
type=Experiment&assay_title=ChIP-seq&award.rfa=ENCODE3&lab.title=Bing+Ren%2C+UCSD&limit=all

The ENCODE histone ChIP-seq pipeline is among the collection of ENCODE Uniform Processing Pipelines that can be found
here: https://platform.dnanexus.com/projects/featured. The code is open-source, and available here: https://github.com/
ENCODE-DCC/chip-seg-pipeline. ATAC-seq pipeline: Uniform processing pipeline. ATAC-seq data were analyzed using a
standardized software pipeline implemented by the ENCODE Data Coordinating Center (DCC) for the ENCODE Consortium to
perform quality-control analysis and read alignment. ATAC-seq reads were trimmed with a custom adapter script and
mapped to mm10 using bowtie version 2.2.6 and samtools version 1.2 to eliminate PCR duplicates and mitochondrial reads.
To center peaks on the Tn5 cut site, the paired-end read ends were converted to single-ended read ends and the read end
was shifted 4bp towards the center of the fragment to account for the Tn5 insertion position by moving the read end
towards the center of the fragment. MACS2 version 2.1.1.20160309 was used for generating signal tracks and peak calling
with the following parameters: —nomodel —shift 37 —ext 73 —pval 1e-2 -B —SPMR —call-summits. To produce a set of
“replicated” ATAC-seq peaks for analysis, the peak calling steps above were performed for each experiment on each pair of
replicates independently as well as a pooled set of the two replicates. The intersectBed tool from the bedtools v2.27.1 suite
was used to identify a set of replicated peaks which we define as the subset of peaks called in the pooled set, were also
present in both of the replicate peak call sets. Any additional code or scripts are available from authors upon request.

A detailed list of ENCODE3 ChlIP-seq read depth and other standards can be found here: https://www.encodeproject.org/
chip-seq/histone/.

The ENCODE histone ChIP-seq pipeline is among the collection of ENCODE Uniform Processing Pipelines that can be found
here: https://platform.dnanexus.com/projects/featured. The code is open-source, and available here: https://github.com/
ENCODE-DCC/chip-seg-pipeline. ATAC-seq pipeline: Uniform processing pipeline. ATAC-seq data were analyzed using a
standardized software pipeline implemented by the ENCODE Data Coordinating Center (DCC) for the ENCODE Consortium to
perform quality-control analysis and read alignment. ATAC-seq reads were trimmed with a custom adapter script and
mapped to mm10 using bowtie version 2.2.6 and samtools version 1.2 to eliminate PCR duplicates and mitochondrial reads.
To center peaks on the Tn5 cut site, the paired-end read ends were converted to single-ended read ends and the read end
was shifted 4bp towards the center of the fragment to account for the Tn5 insertion position by moving the read end
towards the center of the fragment. MACS2 version 2.1.1.20160309 was used for generating signal tracks and peak calling
with the following parameters: —nomodel —shift 37 —ext 73 —pval 1e-2 -B —SPMR —call-summits. To produce a set of
“replicated” ATAC-seq peaks for analysis, the peak calling steps above were performed for each experiment on each pair of
replicates independently as well as a pooled set of the two replicates. The intersectBed tool from the bedtools v2.27.1 suite
was used to identify a set of replicated peaks which we define as the subset of peaks called in the pooled set, were also
present in both of the replicate peak call sets. Any additional code or scripts are available from authors upon request.
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