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An atlas of dynamic chromatin landscapes in 
mouse fetal development
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The Encyclopedia of DNA Elements (ENCODE) project has established a genomic 

resource for mammalian development, pro�ling a diverse panel of mouse tissues at 8 

developmental stages from 10.5 days after conception until birth, including 

transcriptomes, methylomes and chromatin states. Here we systematically examined 

the state and accessibility of chromatin in the developing mouse fetus. In total we 

performed 1,128 chromatin immunoprecipitation with sequencing (ChIP–seq) assays 

for histone modi�cations and 132 assay for transposase-accessible chromatin using 

sequencing (ATAC–seq) assays for chromatin accessibility across 72 distinct tissue-

stages. We used integrative analysis to develop a uni�ed set of chromatin state 

annotations, infer the identities of dynamic enhancers and key transcriptional 

regulators, and characterize the relationship between chromatin state and 

accessibility during developmental gene regulation. We also leveraged these data to 

link enhancers to putative target genes and demonstrate tissue-speci�c enrichments 

of sequence variants associated with disease in humans. The mouse ENCODE data sets 

provide a compendium of resources for biomedical researchers and achieve, to our 

knowledge, the most comprehensive view of chromatin dynamics during mammalian 

fetal development to date.

Developmental gene regulation relies on a complex interplay between 

genetic and epigenetic factors. Whereas genetic information encoded 

in the DNA sequence provides the instructions for an embryo to 

develop, epigenetic information is required for each cell in an embryo 

to obtain its specialized function from this single set of instructions. 

Chromatin encodes epigenetic information in the form of post-trans-

lational histone modifications and accessibility to DNA binding fac-

tors1,2. Developmental programs of gene expression are orchestrated, 

at least in part, by cis-regulatory sequences that direct the expression of 

genes in response to specific developmental and environmental cues3,4. 

Active regulatory sequences show characteristic patterns of histone 

modification and accessible chromatin that make them amenable to 

the binding of transcription factors (TFs), which can in turn recruit co-

factors and stimulate transcription. These epigenomic properties have 

proven valuable for genome annotation, because histone modifications 

and accessibility at a given genome region can reflect the activity of 

the underlying sequence5,6.

In previous phases of the ENCODE project, epigenomic and transcrip-

tomic data sets were generated from mouse tissues at a single prenatal 

time point (embryonic day (E)14.5) and two postnatal time points (8 and 

24 weeks after birth)5. In the most recent phase of ENCODE, we made 

a coordinated effort to create resources for the study of mammalian 
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fetal development by generating epigenomic and transcriptomic data 

sets from 7 additional stages of fetal development covering a window 

from E10.5 until birth at approximately one-day intervals. At each stage, 

we collected a diverse panel of 8–12 tissues to make a total of 72 tissue-

stages, with 2 biological replicates per tissue-stage, and each replicate 

containing tissue pooled from multiple embryos. This common tissue 

resource was used as input for RNA sequencing (RNA-seq)98, whole-

genome bisulfite sequencing7, ATAC–seq, and ChIP–seq for eight his-

tone modifications (ATAC–seq and ChIP–seq described here). Data 

from this and all phases of ENCODE are publicly available through the 

ENCODE portal (https://www.encodeproject.org/).

To map chromatin states during mouse fetal development, we 

performed ChIP–seq for a set of eight histone modifications that can 

distinguish between functional elements and activity levels. To assay 

chromatin accessibility, we used a version of ATAC–seq8 optimized for 

use on frozen tissues (Methods). Chromatin accessibility can also be 

mapped by DNase I hypersensitive sites sequencing (DNase-seq), which 

has been integral to the identification of millions of candidate regula-

tory sequences in mammalian genomes9,10, but we chose ATAC–seq here 

because it offers a more streamlined workflow. The resulting maps of 

chromatin accessibility, together with those of histone modifications, 

provide deep insight into the genomic regions and processes that drive 

mouse fetal development.

•	 We systematically map chromatin state and accessibility across 

72 distinct tissue-stages of mouse development, and carry out 

integrative analyses incorporating additional epigenomic and 

transcriptomic data sets from the same tissue-stages.

•	 We derive a chromatin state model from combinatorial patterns of 

histone modifications, encompassing 15 distinct states grouped in 

4 broad functional classes: promoter, enhancer, transcriptional, 

and heterochromatin states.

•	 We characterize the spatial and temporal dynamics of chromatin 

states, finding that approximately 1–4% of the genome differs in 

chromatin state between tissues at the same stage, and 0.03–3% 

differs between adjacent stages of the same tissue; enhancer 

chromatin states show the largest differences in both cases.

•	 We show that Polycomb-mediated repression is pervasive 

during fetal development at genes that encode transcriptional 

regulators and enriched at those with human orthologues linked 

to Mendelian diseases.

•	 We identify more than 500,000 developmental regions of 

transposase-accessible chromatin marked by accessible 

chromatin during mouse fetal development, including 

approximately 140,000 with dynamic temporal activity in at least 

one tissue.

•	 We show that human orthologues of mouse fetal accessible 

chromatin regions are enriched for human disease-associated 

sequence variation, with apparent tissue-restricted patterns of 

enrichment.

•	 We show that temporal changes in chromatin accessibility often 

coincide with changes in enhancer chromatin states, and tend to 

precede changes in nearby H3K27ac levels.

•	 We predict 21,142 enhancer–promoter interactions by measuring 

the correlation between enhancer-associated chromatin signals 

and gene expression across tissues-stages.

•	 We show that candidate enhancers with stronger enrichment 

for marks of regulatory activity such as H3K27ac show a higher 

validation rate in reporter assays in vivo.

Profiling chromatin states in vivo

Despite the importance of chromatin states and accessibility in deter-

mining the functional output of the genome, a comprehensive survey 

of chromatin dynamics during mammalian fetal development has been 

lacking aside from very early stages of embryogenesis11,12. To address 

this gap, we collected mouse tissues at closely spaced intervals from 

E11.5 until birth. At each stage, we dissected a diverse panel of tissues 

from multiple litters of embryos and performed two replicates of 

ATAC–seq and ChIP–seq for each of eight histone modifications cho-

sen to distinguish between different types of functional elements (for 

example, promoters, enhancers and gene bodies), and activity levels 

(for example, active, poised and repressed)13,14 (Fig. 1a, b, Extended 

Data Fig. 1a, b). We also profiled 6 tissues at E10.5, using a micro-ChIP–

seq procedure designed for smaller cell numbers and restricting our 

scope to 6 histone modifications15. All ChIP–seq and ATAC–seq data sets 

were processed with a uniform pipeline and subjected to quality stand-

ards (Methods; Fig. 1c, Extended Data Figs. 1c–f, 2, 3). Whole-genome 

bisulfite sequencing and RNA-seq from other groups are reported in 

companion manuscripts7,98 and used in select analyses below.

We observed several notable high-level features of the data series. 

As expected, the landscape of histone modifications and chromatin 

accessibility varies between tissues, particularly for marks of activity 

such as H3K27ac (acetylation at the 27th lysine residue of histone H3) 

(Fig. 1d, Extended Data Fig. 4). Within each tissue, chromatin landscapes 

change progressively across stages (Fig. 1e, Extended Data Fig. 5a–c). 

These developmental dynamics are likely to reflect at least two underly-

ing biological processes: changes in the epigenetic landscape of indi-

vidual cells within a tissue as they undergo differentiation, and shifts 

in the relative abundance of different cell types that compose a tissue. 

Although in most cases we cannot separate the relative contributions 

of these two factors, many of the changes we observe reflect known 

hallmarks of cellular differentiation. For example, in the developing 

forebrain, neuronal markers acquire active chromatin signatures dur-

ing development, whereas genes that encode cell cycle factors show 

the opposite trend (Fig. 1b, Extended Data Fig. 5d–f).

The developmental chromatin landscape

To leverage the chromatin state information captured by combi-

natorial patterns of histone modifications, we used ChromHMM16, 

which derived a 15-state model that shows near-perfect consistency 

between biological replicates and general agreement with previously 

published models10,13,16 (Fig. 2a, Extended Data Fig. 6; Methods). We 

segmented the genome for each tissue-stage with the full comple-

ment of eight histone modifications (n = 66 tissue-stages), excluding 

E10.5 to ensure a consistent approach (Extended Data Fig. 7). Each 

state was assigned a descriptive label based on its similarity to known 

chromatin signatures5,13,17, and genomic distribution (Extended Data 

Fig. 6i). The resulting chromatin state maps allow the visualization of 

multiple functional predictions across a range of tissues and stages 

(Fig. 2b).

The 15 chromatin states fit into four broad functional classes: pro-

moter, enhancer, transcriptional, and heterochromatin states. As 

expected, promoter states show the highest average levels of chromatin 

accessibility, followed by enhancer, transcriptional, and heterochro-

matin (Fig. 2c). In total, about 33% of the genome shows a reproducible 

chromatin signature characteristic of one of these four functional 

classes in at least one tissue-stage. In this calculation we required that 

a region be called in the same state in both biological replicates, and 

we excluded states 15 (‘no signal’) and 11 (‘permissive’), which covered 

large swaths of the genome (Fig. 2d, Extended Data Fig. 8a). This does 

not necessarily imply that 33% of the genome sequence is functional 

during development, but rather that 33% of the genome sequence is 

mappable and packaged in chromatin with a reproducible signature in 

at least one tissue-stage profiled here. These chromatin signatures often 

reflect transcriptional and/or regulatory activity, but the underlying 

sequences may not be under negative selection18.

The breadth of data collected here enabled us to characterize the spa-

tial and temporal dynamics of chromatin states. On average, about 1.2% 

of the genome differs in chromatin state between tissues at the same 

https://www.encodeproject.org/
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stage (mean 1.2%, 31.3 Mb; range 1.0–4.0%, 26.8–109.1 Mb). Enhancer 

states are most variable between tissues, consistent with the role of 

enhancers in defining tissue and cell identity (Fig. 2e, Extended Data 

Fig. 8b–e). Indeed, hierarchical clustering based on strong enhancers 

alone (that is, state 5) distinguished tissues and identified similari-

ties in developmental origin (Extended Data Fig. 8b, c). Within a given 

tissue, about 1.3% of the genome differs in chromatin state between 

adjacent developmental stages (mean 1.3%, 36.6 Mb; range 0.03–3.01%, 

9.4–82.1 Mb). Enhancer states are most variable, although poised or 

weak enhancer states are more variable than strong enhancer states 

(Fig. 2e). Nonetheless, temporal changes in strong enhancer states can 

capture important developmental processes such as the transition of 

fetal liver function from haematopoiesis to metabolism (Extended 

Data Fig. 9a).

We found that the Polycomb-associated heterochromatin state (Hc-P, 

state 13) is prevalent at well-characterized regulators of tissue develop-

ment19–23 (Fig. 2b, Extended Data Fig. 9b), while another heterochro-

matic state characterized by H3K9me3 is found mainly in repetitive 

sequence, as previously described24–28 (Extended Data Fig. 10). To more 

systematically examine the role of Polycomb-group (PcG) proteins dur-

ing mouse development, we assembled a list of 6,501 putative PcG target 

genes with transcription start sites (TSSs) marked by Hc-P in at least 

one tissue-stage (Extended Data Figs. 9c, 11, Supplementary Tables 1, 

2), many of which overlapped with DNA methylation valleys (DMVs) 

in the same tissue-stage7 (Extended Data Fig. 11e). Most of these genes 

are previously described targets of PcG (Extended Data Fig. 11a–d), but 

roughly one quarter (n = 1,786) have not been described as PcG targets 

in mouse29–32, and 400 have not been described in human or mouse13. 

Consistent with previous reports29–31, TFs are highly enriched among 

PcG targets (Extended Data Fig. 12a). Furthermore, we find that TFs 

with known human Mendelian phenotypes (Mendelian disease genes, 

MDGs) are even more likely than other TFs to be PcG targets (1.42-fold, 

P = 2 × 10−7 considering all TFs; 1.23-fold, P = 1.3 × 10−4 excluding zinc 

finger TFs; Fig. 2f, g, Extended Data Fig. 12b–d). These data suggest 

that PcG-mediated repression has an essential and pervasive role in 

silencing key regulators outside their normal expression domains 

and point to failed repression as a potential disease mechanism for 

further exploration.
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Fig. 1 | Profiling histone modifications during mouse fetal development. 

 a, Experimental design. b, Three major axes of the data series: data types, tissues, 

and developmental stages (chr11: 98,318,134–98,336,928; mm10). Horizontal 

scale 0–30 for narrow marks (H3K4me3, H3K4me2, H3K27ac, H3K9ac), 0–10 for 

broad marks (H3K27me3, H3K4me1, H3K9me3, H3K36me3) and ATAC–seq.  

c, Number of TSS-distal (top, >1 kb) and TSS-proximal (bottom) ATAC–seq 

peaks for each tissue. d, k-means clustering of H3K27ac peaks (n = 333,097) 

across tissue-stages (k = 8). Cluster sizes, top to bottom: 20,497, 50,790, 31,043, 

36,849, 38,670, 31,168, 36,822 and 87,258. e, Spearman’s correlations of peak 

strength between replicates from the same stage (that is, developmental 

stages separating data sets is 0), or from different stages separated by one to 

six intervening stages, as indicated. Number of points per comparison:  

0 stages, 66; 1 stage, 108; 2 stages, 84; 3 stages, 60; 4 stages, 36; 5 stages, 20;  

6 stages, 10. For all boxplots in this paper: horizontal line, median; box, 

interquartile range (IQR); whiskers, most extreme value within ±1.5 × IQR.
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Catalogue of regulatory sequences

To build a catalogue of candidate regulatory sequences in mouse 

fetal development, we identified a non-overlapping set of 523,159 

regions that were accessible in at least one tissue-stage, referred to 

below as developmental regions of transposase-accessible chromatin 

(d-TACs) (Fig. 3a, Supplementary Table 3). We note that this d-TAC 

catalogue is based only on the mouse tissue ATAC–seq data reported 

here, and is thus distinct from the ENCODE Registry of Candidate 

cis-Regulatory Elements (ccREs) (http://screen.encodeproject.org/), 

which incorporates data from other samples and assays53. Approxi-

mately 22% of d-TACs overlap with peaks from a single-cell ATAC–seq 

atlas of adult mouse tissues published while this manuscript was in 

revision33 (Extended Data Fig. 13a). We find that d-TACs are enriched 

in promoter and enhancer states, but generally depleted in states 

that characterize gene bodies, heterochromatin, and regions with 

no chromatin signature (Fig. 3b). Most d-TACs are distal to annotated 

TSSs, representing putative enhancers and other TSS-distal elements 

(90% of d-TACs are more than 1 kb from a TSS). Comparison with the 

VISTA database34 shows that about 20% of d-TACs tested show in vivo 

reporter activity in the corresponding tissue (Extended Data Fig. 13b), 

and 76–94% of in vivo validated enhancers are d-TACs in the corre-

sponding tissue at E11.5 (VISTA reporter expression measured in E11.5 

embryos; Fig. 3c, d).

To more directly assess the temporal dynamics of chromatin acces-

sibility during development, we identified 139,894 dynamic d-TACs 

that exhibit a significant change in accessibility in at least one stage 

transition within a tissue (27% of all d-TACs; Fig. 3f, g, Extended Data 

Fig. 13c). Most dynamic d-TACs show a significant change at only 

one stage transition in this developmental window (Extended Data 

Fig. 13d, e), suggesting that these changes reflect enduring shifts in 

cell fate and/or composition rather than rapid on–off switches. Gain 

or loss of accessibility often corresponds to gain or loss of enhancer 

chromatin states, respectively (Fig. 3h, Extended Data Fig. 13f, g). In 

addition, d-TACs close to each other in the genome are more likely to 

have correlated activity across tissue-stages (Fig. 3e, Supplementary 

Table 3), particularly when located in the same topologically associat-

ing domain (TAD)35.
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Hc, heterochromatin. c, Average chromatin accessibility at different chromatin 

states in E15.5 forebrain. d, Genome coverage of chromatin states in each 

tissue-stage (n = 66). e, Fraction of bases for each state that vary in forebrain 

between E11.5 and other stages (top), or between E15.5 forebrain and other 

tissues at E15.5 (bottom). f, Fraction of indicated gene sets that show evidence 

of PcG repression: for all protein-coding genes (0.313, black line); TF protein-

coding genes (0.515, light blue line); and MDG TF protein-coding genes (0.667, 

dark blue line). Cumulative fractions plotted by the number of tissue-stages at 

which a gene shows PcG repression (from one to 66, x-axis). g, MDG TFs are 

more likely to show evidence of PcG repression (MDG+, 150/225; MDG−, 

349/744). χ2 test of independence between PcG repression and MDG 

involvement.
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Catalogues of candidate regulatory sequences can provide valu-

able resources for the interpretation of non-coding genetic varia-

tion linked to disease33,36,37. Thus, we investigated whether our d-TAC 

catalogue could provide insights into the genetics of human disease. 

We first identified putative human orthologues of our mouse d-TACs 

(Supplementary Table 4). Approximately 89% (169,571 of 190,462) of 

these human sequences have been annotated as accessible chromatin 

in human cells9,36, suggesting that they have conserved function. We 

found that phenotype-associated genetic variation is enriched in the 

putative human orthologues of mouse d-TACs, including at regions 

not previously annotated as accessible in human9,36 (Fig. 3i). Moreover, 

these enrichments show patterns of tissue specificity which may link 

diseases to tissue-dependent and possibly fetal regulatory programs 

(Fig. 3j). However, these patterns can be difficult to interpret, in part 

because the ATAC–seq data come from heterogeneous tissues. Our 

group recently published single-nucleus ATAC–seq of the mouse fore-

brain38, allowing us to further deconvolute several enrichments into 

specific cell types in this tissue (Fig. 3k). Analysis of human orthologues 

of mouse enhancer predictions based on DNA methylation (feDMRs) 

has produced similar results7.

Developmental enhancer dynamics

Given the important role of enhancers in directing gene expression, 

we focused on dynamic enhancers as a window into the developmental 

processes and regulatory factors in each tissue. We identified a high-

confidence set of candidate enhancers marked by the strong TSS-distal 

enhancer state (Extended Data Fig. 14a, Supplementary Table 5), and 

identified ‘dynamic’ candidate enhancers for which the H3K27ac-based 

activity score changed from stage-to-stage39 (Methods). Most dynamic 

enhancers overlap d-TACs (67–88%, median 84%), but fewer overlap 

dynamic d-TACs (5–35%, median 14%; Extended Data Fig. 14b, c). This 

may reflect temporal differences in H3K27ac and accessibility dynamics 

(Extended Data Fig. 14d). We also used our H3K27ac data to identify 

‘super-enhancers’, which are known to mark key regulators and have 

important roles in development40 (Fig. 4b, Extended Data Fig. 15, Sup-

plementary Table 6).

To gain deeper insights into the processes and regulatory factors in 

each tissue we clustered dynamic candidate enhancers and examined 

Gene Ontology (GO) terms associated with nearby genes, enrichment 

for TF binding motifs, and expression patterns of TFs corresponding to 
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Fig. 3 | An expansive catalogue of regulatory sequences in mouse fetal 

development. a, Number of TSS-proximal and TSS-distal d-TACs. 

 b, Enrichment of accessible chromatin within different chromatin states 

(n = 66 tissue-stages). c, Estimates of d-TAC catalogue sensitivity (left) and 

specificity (right). Six tissue-stages plotted for enhancers based on VISTA data 

availability (E11.5 forebrain, midbrain, hindbrain, limb, heart and neural tube). 

Eighteen tissue-stages plotted for DNase-inaccessible TSS based on matched 

DNase data available through the ENCODE portal. pr, promoter; enh, enhancer. 

d, Enrichment for elements that direct tissue-restricted reporter expression 

within d-TACs accessible in the corresponding tissue. e, Correlation of  

ATAC–seq signal across tissue-stages plotted as a function of genomic distance 
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(left) or lose (right) accessibility. Enrichment relative to coverage of each state 

in total d-TAC catalogue. i, Enrichment of genome-wide association study 
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compared to background set generated with SNPsnap60. Hypergeometric test 
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those motifs (Fig. 4a, Extended Data Fig. 16, Supplementary Table 7). 

Considering the forebrain as an example, we found four predominant 

clusters (labelled A–D, Fig. 4a). Cluster A represents enhancers that are 

active early, associated with GO terms related to general CNS develop-

ment, and enriched for motifs that probably reflect the role of SOX2 

in early brain development41,42. Clusters B and C contain enhancers 

that are most active in middle stages, associated with neurogenesis 

and gliogenesis, and enriched for motifs that probably reflect the role 

of NEUROD6 in neurogenesis during mid-to-late gestation43. Cluster 

D includes enhancers that are active late, associated with synaptic 

function, and enriched for motifs that support a role for MEF2C in 

synapse formation44.

The dynamic activity observed across tissue-stages provided the 

opportunity to predict enhancer target genes using the correlation 

between gene expression (as measured by RNA-seq) and H3K27ac 

enrichment at candidate enhancers within the same TAD45–47 (Fig. 4c, 

Extended Data Fig. 17a–c, Supplementary Table 8). We derived inde-

pendent target gene maps for each biological replicate comprising 

31,964 and 32,734 enhancer–gene assignments, respectively, with an 

overlap of 21,141 used for downstream analyses (Extended Data Fig. 17d–f).  

This correlation-based map predicts experimentally determined 

enhancer–gene interactions48–50 with higher accuracy than assigning 

an enhancer to the nearest gene (Fig. 4d, Extended Data Fig. 17g). We fur-

ther examined whether this map could be useful for predicting human 

enhancer–gene relationships (Extended Data Fig. 17h, Supplementary 

Table 9). We hypothesized that if our mouse predictions are applicable 

to human, we should see enrichment for human expression quantitative 

trait loci (eQTLs)51 that link the human orthologues of mouse enhancers 

to the predicted target gene(s) by genetic association. Indeed, across 

a variety of human tissues we see significant enrichment of eQTLs that 
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Fig. 4 | Developmental enhancer dynamics reveal key regulators and link 

enhancers to target genes. a, k-means clustering (k = 4) of dynamic forebrain 

enhancers based on H3K27ac signal. The top enriched biological process GO 

terms by GREAT are plotted next to each cluster, and the top sequence motifs 

enriched in each cluster are plotted next to the GO terms. Some motifs and GO 

terms are abbreviated to fit. Heatmap to the right shows normalized gene 

expression for related TFs that potentially correspond to the motifs indicated 

by black circles. *TFs mentioned in text. b, The distribution of H3K27ac signal 

(read counts) across all enhancers identified in each tissue at E15.5. Super-

enhancers show exceptionally high signal (coloured lines). c, Predicted 

enhancers of Ascl1 (chr10: 87,301,848–87,515,210; mm10). Enhancers with 

human orthologues validated by in vivo reporter assays are shown below main 

panel. Arrowheads, tissues with reproducible staining. d, Enhancer target 

genes supported by published chromatin interaction data obtained using 

Capture-C48, ChIA–PET49 and Capture Hi-C50. The liver Capture Hi-C data set 

contains by far the most interactions (about 600,000), which may explain why 

the nearest gene assumption works in this data set only. e, Number of eQTLs  

( y-axis) supporting human orthologues of enhancer target gene predictions 

relative to TSS distance matched regions. Two-sided Fisher’s exact test.  

f, Genes binned into deciles by distance between enhancer and putative target 

gene (n = 13,873 pairs). Lower plot shows −log10(P) by two-sided Fisher’s exact 

test. Horizontal line indicates P = 0.05. NS, not significant.
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link predicted target genes to candidate enhancers relative to regions 

equidistant from but on the other side of the target TSS (12 of 13 tissues 

with P ≤ 0.05, Fisher’s exact test; Fig. 4e), and relative to the nearest-

gene approach when the distance between TSS and eQTL is larger than 

about 50 kb (Fig. 4f). This distance-dependent effect may reflect our 

choice to consider only the ‘strong TSS-distal enhancer’ state, as well 

as the fact that TSS-proximal eQTLs are more likely to tag causative 

variants in promoters, splice sites, or other non-enhancer elements.

Enhancer validation in vivo

Histone modifications and chromatin accessibility are effective tools 

for identifying enhancers5,39, but the quantitative accuracy of these 

methods has not been well characterized. The level of H3K27ac enrich-

ment can vary by orders of magnitude across peaks within a single data 

set. During previous studies39 we noticed that regions with stronger 

H3K27ac validated more frequently in transgenic reporter assays. To 

more systematically examine the relationship between H3K27ac signal 

and validation rate, we used transgenic mouse reporter assays52 to test 

150 enhancers identified in tissues at E12.5, selected from three H3K27ac 

enrichment rank tiers: tier A (selected from ranks 1–85), tier B (ranks 

1,500–1,550), and tier C (ranks 3,000–3,050) (Fig. 5a–c, Extended Data 

Fig. 18a, Supplementary Table 10). The full list of candidate enhancers 

from which these elements were chosen contains 35,955, 42,732, and 

42,903 elements for forebrain, heart, and limb. About 60% of tier A ele-

ments displayed reporter expression in the expected tissue, compared 

to less than 30% from the two lower-rank tiers (Fig. 5a, P < 0.01, Fisher’s 

exact test). Tier A regions that validated in the expected tissue were 

also more likely to show activity in additional tissues (Fig. 5b, P < 0.05, 

Mann–Whitney U test), although we found no significant differences 

in overall reproducibility between tiers (Extended Data Fig. 18b). At 

all tiers, the validation rate is higher than background rates estimated 

from regions in the VISTA database that lack H3K27ac (heart 2.6%, limb 

6.4% and forebrain 9.7%). Moreover, these background rates may over-

estimate the true genomic background because many VISTA elements 

were originally tested owing to evolutionary sequence conservation or 

epigenomic signatures that predict regulatory function.

Retrospective analysis of more than 2,000 regions assayed in vivo and 

catalogued in VISTA (assayed at E11.5) confirmed the trend described 

above across a much larger set of test elements (Fig. 5d, Supplemen-

tary Table 12). This larger set of elements also allowed us to evaluate 

other epigenomic data sets. Ranks based on p300 or H3K27ac ChIP–seq 

have the highest accuracy, followed closely by ATAC–seq and DNase  

hypersensitivity assays (Fig. 5e, Extended Data Fig. 18c). A combined 

score54 incorporating ChIP–seq, ATAC–seq, and DNA methylation 

as reported in an accompanying manuscript7 slightly outperforms 

any individual datatype. Taken together, these results demonstrate  

that loci with stronger enrichment for marks of enhancer activity 

such as H3K27ac are more likely to direct reporter expression in the 

expected tissue.

Discussion

In summary, our results describe a multi-tiered compendium of func-

tional annotations for the developmental mouse genome, including chro-

matin state maps for 72 distinct tissue-stages, an extensive catalogue of 

candidate regulatory sequences (many with dynamic temporal activity), 

enhancer target gene predictions, and a collection of transgenic reporter 

assays that demonstrates a strong relationship between H3K27ac signal 

and validation rate. The results of these reporter assays inform a key ques-

tion in the field: what proportion of sequences with enhancer chromatin 

signatures truly function as enhancers in vivo? Surveys of chromatin state 

and chromatin accessibility in a single sample often predict enhancers 

numbering in the tens or even hundreds of thousands. However, the 

results of our in vivo reporter assays suggest that the validation rate of 

chromatin-based enhancer predictions decreases rapidly with rank based 

on H3K27ac level. While these results point to the uncertainty inherent in 

estimates of enhancer abundance, we do not think these estimates should 

be abandoned entirely. Definitive proof of an enhancer’s function (or 

lack thereof) requires more than reporter assays, and remains difficult 

to ascertain experimentally in a high-throughput manner. Ultimately, we 

think that our results highlight the importance of continued investigation 

into the molecular basis of enhancer function, as well as the predictive 

power of chromatin-based enhancer signatures.

Despite the broad scope of this study, we note some important limi-

tations. First, there are multiple developmental tissues that were not 

surveyed here (for example, skeleton, gonads and pancreas). Second, as 

noted above, the tissues examined here are heterogeneous, and future 

efforts to examine the epigenomes of single cells during development 

will be critical to achieve a deeper understanding of developmental 

gene regulation. In addition, this study does not address sex-dependent 

aspects of development. Nonetheless, to our knowledge, the survey 

of fetal chromatin landscapes reported here is unprecedented in its 

breadth. Moreover, the developmental tissue panel examined here is 

the subject of complementary analyses focused on DNA methylation 
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Fig. 5 | Systematic analysis of enhancer validation rate in vivo. a, Proportion 

of enhancers in each rank tier with reproducible staining in the expected tissue 

(blue) or any tissue (white). One-tailed Fisher’s exact test. b, Number of tissues 

with reproducible reporter expression, for all enhancers that validated in the 

expected tissue. One-tailed Mann–Whitney U test. White circles, median; black 

rectangles, IQR; whiskers, most extreme value within ±1.5 × IQR. c, Example 

enhancers from each tissue type and rank category that validated in the 

expected tissue. Representative transgenic E12.5 embryos show reporter 

expression (blue staining), along with the unique VISTA identifier and 

reproducibility (fraction of embryos with consistent staining). Far right, 

magnified images of heart (RA, right atrium; LA, left atrium; RV, right ventricle; 

LV, left ventricle). Red arrowheads, enhancer activity pattern. d, Retrospective 

analysis of 422, 299, and 414 elements in VISTA showing E11.5 activity in 

forebrain, limb or heart, respectively. Top, validation rate as a function of E11.5 

H3K27ac rank. Horizontal dashed lines indicate estimated background 

validation rate for each tissue. Thin vertical lines mark the 1st, 1,500th, and 

3,000th ranks. Bottom, cumulative number of positive enhancers as a function 

of H3K27ac rank. e, Enhancer validation rate across forebrain VISTA elements 

ranked with different genomic data sets (colours).
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dynamics including methylation-aware enhancer predictions7, tran-

scriptomic analysis including deconvolution of whole-tissue data into 

distinct cell types98, prediction of mammalian enhancers using evolu-

tionarily conserved epigenetic patterns identified through massively 

parallel regulatory assays such as STARR-seq55, annotation studies 

focusing on genome evolution through the analysis of pseudogene 

complements across mouse strains56, identification of transcriptional 

waves mediated by tissue-stage-specific TFs57, and uncovering DNA 

motifs regulating histone modifications58. Given the key role of the 

mouse as a model system in biomedical research, we believe that 

these data and insights will be a valuable resource to the biomedical 

research community. All data sets, methods, and protocols are avail-

able at https://www.encodeproject.org/.
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Methods

Tissue collection

All animal work was reviewed and approved by the Lawrence Berkeley 

National Laboratory Animal Welfare and Research Committee. Tissue col-

lection for all developmental stages was performed using C57BL/6N strain 

Mus musculus animals. For E14.5 and P0, breeding animals were purchased 

from both Charles River Laboratories (C57BL/6NCrl strain) and Taconic 

Biosciences (C57BL/6NTac strain). For all remaining developmental stages, 

breeding animals were purchased exclusively from Charles River Labora-

tories (C57BL/6NCrl strain). Wild-type male and female mice were mated 

using a standard timed breeding strategy. Embryos and P0 pups were col-

lected for dissection using approved institutional protocols. Embryos were 

excluded if they were not at the expected developmental stage. To avoid 

sample degradation, only one embryonic litter or P0 pup was processed 

at a time, and tissue was kept ice-cold during dissection. Collection tubes 

for each tissue type were placed in a dry ice ethanol bath so that tissue 

samples could be flash-frozen immediately upon dissection. Tissue from 

multiple embryos was pooled together in the same collection tube, and 

at least two separate collection tubes were collected for each tissue-stage 

for biological replication. Experimenter blinding was not performed for  

tissue dissection, as there were no separate treatment and control 

groups being assessed. Randomization was not feasible given the 

scale of production. Tissue was stored in a freezer at −80 °C or on dry 

ice until further processing. A step-by-step protocol for tissue collec-

tion, including detailedinformation about how embryonic stage was 

determined, can be found on the ENCODE Project website at https://

www.encodeproject.org/documents/631aa21c-8e48-467e-8cac-d40c 

875b3913/@@download/attachment/StandardTissueExcisionProtocol_ 

02132017.pdf.

ChIP–seq data generation

The complete ChIP–seq data series includes more than 66 billion sequenc-

ing reads from 564 ChIP–seq experiments, each consisting of two biologi-

cal replicates derived from different embryo pools (n = 1,128 replicates 

total). ChIP–seq experiments for all marks and tissues from E11.5 to P0 

were performed as previously described5. The ChIP–seq protocol was 

modified slightly for all E10.5 experiments owing to the low amount of 

input (micro-ChIP–seq). Detailed protocols for both standard and micro-

ChIP–seq, including antibodies used and antibody validations performed, 

are available at https://www.encodeproject.org/ associated with each 

experiment described here. They can also be found at the links below.

Standard ChIP–seq (E11.5–P0). Tissue fixation & sonication: https://www.

encodeproject.org/documents/3125496b-c833-4414-bf5f-84dd633eb30 

d/@@download/attachment/Ren_Tissue_Fixation_and_Sonication_v060 

614.pdf. Immunoprecipitation: https://www.encodeproject.org/

documents/89795b31-e65a-42ca-9d7b-d75196f6f4b3/@@download/

attachment/Ren%20Lab%20ENCODE%20Chromatin%20Immunoprecipi 

tation%20Protocol_V2.pdf. Library preparation: https://www.encode-

project.org/documents/4f73fbc3-956e-47ae-aa2d-41a7df552c81/@@

download/attachment/Ren_ChIP_Library_Preparation_v060614.pdf.

Micro-ChIP–seq (E10.5). Tissue fixation & sonication: https://www.

encodeproject.org/documents/1fcaab50-6ca0-4778-88cb-5f6b8517 

0d21/@@download/attachment/Ren%20Lab%20ENCODE%20Tissue 

%20Fixation%20and%20Sonication%20Protocol%20MicroChIP.pdf. 

Immunoprecipitation and library preparation: https://www.encodepro-

ject.org/documents/18580e80-0907-4258-a412-46bcc37bd040/@@

download/attachment/Ren%20Lab%20ENCODE%20Chromatin%20

Immunoprecipitation%20Protocol%20MicroChIP.pdf.

ATAC–seq data generation

The full ATAC–seq data series includes more than 7 billion sequencing 

reads from 66 experiments (n = 132 replicates total). Our ATAC–seq 

procedure is based on a previously published method8, with modifica-

tions to optimize for frozen tissue. In brief, tissues were pulverized with 

mortar and pestle in liquid nitrogen, and then nuclei permeabilization 

was performed by resuspension in a nuclei permeabilization buffer 

(PBS, 1 mM DTTm 0.2% IGEPAL-CA630, 5% BSA, 1× cOmplete protease 

inhibitor cocktail), and incubation with very gentle rotation at 4 °C. 

Our full ATAC–seq protocol is available via the ENCODE data portal 

here: https://www.encodeproject.org/documents/4a2fc974-f021-

4f85-ba7a-bd401fe682d1/@@download/attachment/RenLab_ATAC-

seq_protocol_20170130.pdf. We required a minimum of 20 million 

usable ATAC–seq read pairs per data set and a minimum fraction of read 

overlapping TSS (FROT) of 0.1 (Extended Data Fig. 3). We use FROT as 

a measure of signal-to-noise ratio in ATAC–seq data sets because TSSs 

are widely marked by open chromatin, even in tissues in which the gene 

is not expressed. We calculate FROT for each library as the number 

of reads that map within 1 kb of a GENCODE v4 TSS, divided by the 

total number of usable reads. ATAC–seq data are highly reproducible 

between biological replicates of the same tissue-stage as measured by 

Pearson and Spearman correlation (Extended Data Fig. 3). In addition, 

multidimensional scaling analysis of ATAC–seq enrichment across 

identified peaks confirms that the samples tend to cluster primarily by 

tissue types and then by developmental stage (Extended Data Fig. 3).

ChIP–seq data processing and analysis

Uniform processing pipeline. Histone ChIP–seq data were analysed 

using a software pipeline implemented by the ENCODE Data Coordi-

nating Center (DCC) for the ENCODE Consortium. Each step of the 

pipeline corresponds to a script written in the Python programming 

language that assembles the input files, runs external programs (such 

as the MACS2 peak caller), and calculates quality-control metrics. The 

methodology is similar to that previously described for ENCODE62 

with the following modifications: the mapping step used bwa version 

0.7.10 and samtools version 1.0, and MACS2 version 2.1.0 was used for 

signal track generation and peak calling. To ensure adequate sampling 

of noise for subsequent replicate comparisons, peaks were initially 

called at a relaxed P threshold of 1 × 10−2. Such relaxed peak sets were 

generated for each biological replicate, for the replicates pooled, and 

for pooled pseudoreplicates of each true replicate (each pseudorep-

licate consists of half the reads sampled without replacement). Peaks 

from the pooled replicate set were retained in the replicated peak set if 

they overlapped by at least half their length (in bases) peaks from both 

biological replicates. Additionally, peaks that overlapped both pooled 

pseudoreplicates were added to the replicated peak set. In this way 

very strong biological replicates could ‘rescue’ peaks that were only 

marginal in a second replicate. The pipeline is available to be run on 

the DNAnexus (https://www.dnanexus.com/) web platform, backed by 

cloud computing from Amazon Web Services (AWS), and is the same 

pipeline used for the analysis of all ENCODE histone ChIP–seq experi-

ments. The platform provides both an API for programmatic execution 

of the pipeline and a web-based interface for interactive execution of 

the same workflows. ENCODE DCC uses this approach to ensure that 

primary data from different labs within the Consortium are processed 

uniformly, and thus to minimize factors that could confound subse-

quent comparisons63. The ENCODE DCC analysed the experiments in 

parallel and accessioned the results to the ENCODE Portal62 (https://

www.encodeproject.org/).

Analysis of data from individual histone marks. To facilitate com-

parisons across stages, one peak list per mark per tissue was generated 

by merging replicated peaks across stages within each tissue. Each 

peak was then scored using ChIP–seq fold enrichment over input in 

each stage in the corresponding tissue using bigWigAverageOverBed 

(https://github.com/ENCODE-DCC/kentUtils/blob/master/bin/linux.

x86_64/bigWigAverageOverBed), and using bigwigs from either repli-

cate 1 or replicate 2 as indicated. These values were quantile normalized 
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across stages to eliminate potential confounding effects of biases in 

the distribution of signal between stages. These normalized score ta-

bles (one per mark, tissue, replicate) were used for the analyses below.

Comparisons between samples. For correlation between replicates 

of each experiment, we used Pearson’s correlation as plotted in Ex-

tended Data Fig. 2d. Narrow marks (H3K4me3, H3K4me2, H3K27ac and 

H3K9ac) have tighter peaks of enrichment and tend to correlate more 

strongly than broad marks (H3K27me3, H3K4me1, H3K9me3 and 

H3K36me3). For correlation between stages, we used Pearson’s cor-

relation to compare replicates as above for each mark, but compar-

ing all stages to each other within one tissue and one mark. We then 

categorized these correlations according to how many stages separate 

the data sets being compared: for example, zero for true biological 

replicates from the same stage, or seven for comparisons of E11.5 data 

sets to P0 data sets. These correlations are plotted in Fig. 1e. To further 

facilitate comparisons across tissues, a similar approach was taken to 

that described in ‘Analysis of data from individual histone marks’ above, 

but in this case generating one master peak list per mark by merging 

replicated peaks across all tissue-stages. As above, each peak was then 

scored using ChIP–seq fold enrichment over input in each tissue-stage, 

but in this case using data pooled from both replicates (pooled data). 

These values were then quantile normalized across tissue-stages, and 

the resulting master score tables (one per mark) were used for hierarchi-

cal clustering performed in R with default parameters. The resulting 

dendrograms are plotted in Extended Data Fig. 4a. For H3K27ac k-means 

clustering in Fig. 1, one additional data processing step was performed 

before clustering: across each row, the values were converted to a unit 

vector in R (x/√(sum(x2)), to prevent overall enrichment level from 

dominating the clusters. These unit vector values were used only for 

clustering; the values plotted are the normalized H3K27ac enrichment 

values from the score tables described above. K-means clustering was 

performed in R with k = 8 and default parameters. Rows were ordered 

within each cluster based on mean normalized enrichment.

Principal component analysis. The whole genome was split into 1-kb 

tiling bins. Average fold enrichment signals were calculated for each 

bin using the bigWigAverageOverBed. Bins that overlapped a merged 

peak by a minimum of 20% (reciprocal) were denoted as peak-bins. 

The average fold enrichment signals from each peak-bin were quantile 

normalized within a given tissue. The signal strength for each peak was 

calculated as the sum of the signals of all bins that overlapped that 

peak. Principal component analysis was performed on the peak signals 

for each histone mark with the R function ‘prcomp’. PC1, PC2 and PC3 

values were plotted for each sample.

Metagene profiles. To illustrate the characteristic enrichment pat-

terns at active and silent genes in Extended Data Fig. 1b, we used con-

servative definitions of ‘active’ genes as reads per kilobase of transcript 

per million mapped reads (RPKM) > 10 in every tissue-stage evaluated 

here, and ‘silent’ genes were defined as RPKM < 2 in all tissue-stages. 

Metagene profiles were plotted with deeptools plotProfile64, using 

data from E15.5 heart.

ATAC–seq data processing and analysis

Uniform processing pipeline. ATAC–seq data were analysed using 

a standardized software pipeline developed by the ENCODE DCC for 

the ENCODE Consortium to perform quality-control analysis and read 

alignment. ATAC–seq reads were trimmed with a custom adaptor script 

and mapped to mm10 using bowtie version 2.2.6 and samtools version 

1.2 to eliminate PCR duplicates. MACS2 version 2.1.1.20160309 was 

used for generating signal tracks and peak calling with the following 

parameters: —nomodel —shift 37 —ext 73 —pval 1e-2 -B —SPMR —call-

summits. To produce a set of ‘replicated’ ATAC–seq peaks for analysis, 

the peak calling steps above were performed for each pair of replicates 

independently as well as for a pooled set of data from both replicates. 

The intersectBed tool from the bedtools v2.27.1 suite was used to iden-

tify a set of replicated peaks, which we define as the subset of peaks 

called in the pooled set that were also present independently in both 

replicate peak call sets.

d-TAC catalogue. To obtain a uniform d-TAC catalogue that can en-

able multi-dimensional analysis across all 66 tissue-stages, the afore-

mentioned replicated peak sets for each sample were concatenated, 

merged, sorted, and then labelled using the mergeBed and sortBed 

tools from the bedtools v2.27.1 suite. The intersectBed tool was used 

associate each d-TAC with the original tissue-stages where its constitu-

ent peaks were accessible. The catalogue was further categorized as 

being TSS distal or proximal based on a ±1-kb window around GENCODE 

v4 TSSs.

To evaluate the sensitivity of our peak calls in detecting potential 

cis-regulatory elements, we calculated the true positive rate, or frac-

tion of peaks recovered, for every applicable tissue-stage with respect 

to two reference sets: actively transcribed promoters; and enhancers 

from the VISTA enhancer database (accessed 22 July 2017) with activ-

ity at E11.5. Using matched RNA-seq downloaded from https://www.

encodeproject.org/, transcripts with counts of ≥10 TPM were classified 

as actively transcribed for each tissue-stage.

Catalogue specificity was assessed by calculating the true negative 

rate of each tissue-stage’s d-TACs against GENCODE v4 TSSs that were 

not accessible to matched DNase-seq from https://www.encodeproject.

org/. To further probe the tissue-specificity of the d-TAC catalogue, 

the overlap between d-TACs for each tissue at E11.5 and enhancers that 

showed activity in the matching tissue pattern was calculated and com-

pared to a background hit rate of enhancers with activity in any pattern. 

Enrichment significance was computed using a binomial test.

To calculate enrichment in ChromHMM states, the d-TAC catalogue 

was overlapped with autosomal ChromHMM state calls for each tissue-

stage (pooled or replicate call set, as indicated). Enrichment for a given 

state s in a particular tissue-stage was calculated as the observed num-

ber of base pairs of the d-TAC catalogue that overlapped state s, divided 

by the total number of base pairs expected to overlap state s on the 

basis of its genome coverage (total bp coverage of d-TAC catalogue × 

fraction of genome covered by state s).

Dynamic d-TACs. To identify differentially accessible d-TACs, for each 

d-TAC in the uniform catalogue, we counted the number of ATAC–seq 

reads that overlapped the d-TAC for each tissue-stage and replicate 

using the coverage function in bedtools v2.27.1. For each tissue, d-TACs 

at any stage were classified as temporally dynamic if they showed a 

significant change in accessibility (fold change ≥2, P ≤ 0.05) between 

any sequential stages of development, using DEseq2.

To investigate the relationship between changes in accessibility and 

changes in chromatin state, the dynamic d-TACs were classified as either 

gaining (positive log[fold change]) or losing (negative log[fold change]) 

accessibility. For each tissue-stage-transition (n to n + 1), these sets of 

gain- or loss-of-accessibility d-TACs were overlapped with ChromHMM 

state calls for stages n and n + 1. Enrichment was calculated by taking 

the observed fraction of dynamic base pairs that overlapped each com-

bination of states (state at n, state at n + 1) and dividing by the expected 

fraction of base pairs that overlapped each state combination based 

on the dynamic and non-dynamic d-TACs.

To investigate the temporal relationship between H3K27ac and chro-

matin accessibility, dynamic strong-enhancers (replicated, Chrom-

HMM state U5) at each stage-transition were overlapped against d-TACs 

for the respective tissue to identify matching enhancers and d-TACs. In 

cases where more than one d-TAC overlapped an enhancer, the d-TAC 

with the largest number of overlapping base pairs was selected. The 

sequential log[fold-change] in ATAC–seq signal was evaluated at every 

possible stage-transition for these matching d-TACs and a mean was 
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taken. These stage-transitions were converted to ‘offsets’ relative to 

the strong enhancers and the fold-changes averaged for the purpose 

of deriving a global trend (that is, for dynamic enhancers at E11.5–E12.5; 

E11.5–E12.5 is an offset of 0, E12.5–E13.5 is an offset of 1, and so on until 

E16.5–P0 is an offset of 5). The inverse analysis was also performed to 

assess the log[fold-change] in H3K27ac at dynamic d-TACs.

Correlative d-TAC map. A correlative map between d-TACs was gener-

ated for each chromosome by calculating the Pearson correlation coef-

ficient (PCC) for each pair of d-TACs, using the ATAC–seq read counts 

normalized to RPKM and log2-transformed with a small pseudocount. 

We define ‘correlated d-TACs’ as those in the same TAD (as defined by 

mouse embryonic stem (ES) cells) with a pairwise PCC ≥ 0.7.

To assess d-TAC correlations as a function of genomic distance, we 

assigned each d-TAC to a 10-kb bin. For each bin A, the correlation was 

measured between its d-TACs and those of bin B, at various distances 

away ranging from 10 kb to 2 Mb. The average of these correlations 

across all chromosomes was plotted as a function of distance. Addition-

ally, to investigate the validity of using mouse ES cell TAD boundaries 

as a constraint for the correlative map, the mean correlations between 

d-TACs at various genomic distances were compared for pairs located 

within the same TAD and those not sharing a TAD. The significance of 

the difference in correlation between intra-TAD and inter-TAD d-TAC 

pairs was calculated using the Wilcoxon signed-rank test.

Enrichment of GWAS catalogue variants in human orthologues 

of d-TACs. To enable comparison to GWAS of human phenotypes, we 

used liftOver with default settings to convert d-TACs from mm10 to 

hg19 genomic coordinates. We then defined novel d-TACs by removing 

those that overlapped DNaseI hypersensitivity sites from any cell line or 

tissue in two published data sets9,36, one of which included embryonic 

tissue. We obtained index variants for all traits in the GWAS catalogue 

(https://www.ebi.ac.uk/gwas/api/search/downloads/full) and retained 

a unique set of variants that were identified as genome-wide significant 

(P < 5 × 10−8) in GWAS of individuals with European ancestry. To obtain 

a background set of variants for enrichment testing, we used the fil-

tered index variants as the input for SNPsnap60, which matches based 

on (1) minor allele frequency, (2) distance to the nearest annotated 

gene, (3) gene density in the surrounding region, and (4) number of 

SNPs in linkage disequilibrium (LD), with the following parameters: 

European population, ten matched SNPs, exclude HLA SNPs and input 

SNPs, and report clumping. As GWAS index variants are not necessarily 

causal and can be in LD with the true causal variant, we next defined loci 

for all index and matched background variants as all SNPs in high LD  

(r2> 0.8) with the variant in European 1000 Genomes65 samples using 

PLINK v1.90p66. We then calculated the number of GWAS and back-

ground loci with at least one variant that overlapped either all d-TACs 

or novel d-TACs and used a hypergeometric test to assess the enrich-

ment significance of GWAS loci compared to matched background loci.

Enrichment of phenotypes and complex diseases in human or-

thologues of enhancer d-TACs. To test for enrichment of complex 

phenotypes and diseases with publicly available summary statistics, we 

first defined sets of human orthologues of enhancer d-TACs. For each 

tissue, we collapsed all strong and weak enhancer chromatin states 

(En-Sd, En-Sp, En-W) across time points and used liftOver to convert 

genomic coordinates from mm10 to hg19. We then intersected ortholo-

gous enhancers with orthologous d-TACs to obtain a set of orthologous 

enhancer d-TACs for each tissue. We collected summary statistics for 41 

human traits and diseases (Supplementary Table 11), converting odds 

ratios and confidence intervals to log odds ratios and standard errors 

for binary traits and estimating allele frequencies from the European 

subset of 1000 Genomes where unavailable from the summary data. 

We used polyTest61 to test for enrichment of variant effects on each 

phenotype within orthologous enhancer d-TAC annotations with the 

parameters ‘–univariate–maf 0.05–high-mem’. We used hierarchi-

cal clustering on signed −log10(P) for enrichments that were z-score  

normalized within studies to group similar phenotypes.

Cell type enrichment of phenotypes and disease within the mouse 

forebrain. We obtained the aggregate accessible chromatin peaks 

for each cell cluster in the P56 mouse forebrain and removed peaks 

that overlapped promoters (2 kb upstream of mm10 RefSeq TSSs), 

retaining sets of promoter-distal peaks38. For this analysis, we did not 

restrict peaks to enhancer chromatin states, as doing so would poten-

tially bias results for cell types that were over-represented in the bulk 

tissue. We converted genomic coordinates for promoter-distal peaks 

from mm10 to hg19 using liftOver. We then used polyTest to assess cell-

type-specific enrichment of phenotypes and diseases that showed at 

least nominally significant enrichment (P < 0.05) in mouse forebrain 

d-TACs from the previous analysis. We used hierarchical clustering on 

z-score-normalized signed −log10(P) for enrichment as described in 

the previous analysis and plotted results for traits that showed at least 

nominal significance in at least one cell cluster.

ChromHMM

We note that the chromatin state annotations reported here are specific 

to this study and are distinct from larger efforts by the ENCODE Data 

Analysis Center to integrate data from across the entire consortium 

into a comprehensive ‘encyclopaedia.’ We also note that we excluded 

E10.5 from the ChromHMM analysis because this stage did not have 

the full complement of eight histone modification profiles, and testing 

showed that models with only six marks failed to capture the full set of 

states derived from eight marks (Extended Data Fig. 7). However, we 

provide a set of ChromHMM annotations using the six-mark model 

on E10.5 on our website here: http://renlab.sdsc.edu/renlab_website//

download/encode3-mouse-histone-atac/.

Generating the model. Chromatin data sets (.bam files) were down-

loaded from the ENCODE DCC on 15 October 2016. De-duplicated .bam 

files for each sample, along with their respective input controls, were 

binarized using the binarizeBam function of ChromHMM, with default 

parameters. Models considering 2–24 states were learned separately 

on the two replicates using the LearnModel function, with default  

parameters. For the rest of the analyses, we leveraged the availability of 

two distinct replicate time series; namely, we applied the same strategy 

separately and compared the results a posteriori. The conclusions 

obtained were invariably consistent, suggesting that the inferences 

on a single time series (at least in terms of global genomic patterns) 

are highly reproducible.

Identifying the optimal number of chromatin states. We devised 

two strategies to identify the minimal number of states that captures 

the combinations of histone modifications present in the data, both 

of which converged on a 15-state model. First, the ChromHMM Com-

pareModels function was run separately on the two series. This func-

tion compares the emission parameters of a selected model to a set of 

models (in terms of Pearson’s correlation), and outputs the maximum 

correlation of each state in the selected model with its best matching 

state in each other model. We used this function to compare the ‘full’ 

model (the one that considers 24 states) to the states in the simpler 

models. We then calculated the median correlation of all the 24 states 

against the simpler models, plotted these numbers against the number 

of states in the model and looked at the number of states at which both 

series reached a plateau. As a complementary strategy, the emission 

probabilities from all the 23 models (considering 2–24 states) from both 

replicates were clustered together. The rationale behind this strategy 

is that very similar states across models will tend to cluster together, 

so there must be an optimal number of clusters corresponding to the 

optimal number of states in the model. To this end, we applied k-means 

https://www.ebi.ac.uk/gwas/api/search/downloads/full
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clustering with k between 2 and 24, and evaluated the goodness of the 

separation for each k as the ratio between the ‘between sum of squares’ 

(referred to as Between SS) and the ‘total sum of squares’ (Total SS). Very 

cohesive, well-separated clusters tend to approach a ratio of 1. Given a 

value of k, the ratio was averaged over one hundred realizations of the 

clustering. The ratio observed for k = 24 was used as a maximum, and 

the optimal number of states was then defined by the smallest value of k 

that showed a ratio equal to or higher than 95% of the maximum. To com-

pare the eight-mark model to a six-mark model (Extended Data Fig. 7) 

we used the 66 tissue-stages for which we had the full complement of 

eight marks, then downsampled to six marks (H3K4me1, H3K4me3, 

H3K27ac, H3K27me3, H3K9me3 and H3K26me3), and repeated the 

analyses described above to arrive at an optimal number of states. We 

then compared the 8-mark 15-state model to 6-mark models with two 

different numbers of states (11 states and 16 states) representing the 

minimum and maximum of the optimal range, respectively.

Genome segmentation and chromatin state tracking across 

genomic positions. The segmentation was run separately for each 

sample, using the MakeSegmentation function of ChromHMM (default 

parameters) and the model derived from the first replicate. For the 

final set of replicated state calls we required that a region was assigned 

to the same state in both biological replicates (within a given tissue 

and stage). Regions that were not assigned to the same state in both 

replicates were reclassified as ‘no reproducible signal’ (distinct from 

state 15: no signal in both replicates). The unionbedg functionality of 

BEDTools67 v2.17.0 was used to keep track of the chromatin state of 

genomic intervals across a defined set of samples. The total coverage of 

annotated sequence is 2,725,535,600 bp. This number was used as the 

denominator to calculate per cent genome coverage from ChromHMM 

states in the text and figures.

Chromatin state trajectories along developmental time. Given a 

replicate for a defined tissue, all those genomic intervals classified in 

a specified state (for example, number 5, strong enhancers) at one or 

more time points were tracked using the approach described above. 

Considering each pair of adjacent developmental time points, the 

genomic coverage of each transition between each pair of states was 

then calculated. The resulting numbers were then normalized on the 

coverage of the largest transition in the time series under investigation 

(for example, liver, replicate number 2) and shown as a directed graph.

Clustering on enhancer states. After tracking the changes in chro-

matin state of each genomic base pair in the genome across multiple 

stages and tissues, the resulting matrix was binarized according to 

each segment being classified in a specified state (1) or any other state 

(0). The binary distances between all the pairs of samples considered 

in each specific analysis were then calculated. These were used either 

for comparisons or hierarchical clustering (Ward’s method).

GO analysis. Functional enrichments through GREAT68 were ob-

tained using the greatBatchQuery.py script. The resulting lists were 

first filtered for the relevant ontologies. After that, only the terms 

showing a binomial FDR ≤ 0.05 and a regional enrichment equal or 

higher than twofold were considered. VISTA validated elements 

were downloaded from https://enhancer.lbl.gov on 17 June 2016. 

Mm9 and hg19 coordinates were converted to mm10 using liftOver 

(setting -minMatch to 0.95 and 0.1, respectively). VISTA positive 

elements with any of the following annotations: forebrain, mid-

brain, hindbrain, neuraltube, limb, facial mesenchyme or heart were 

considered for the following analysis. Liver was not considered in 

this enrichment analysis since there are currently fewer than 10 

validated elements in VISTA that show reproducible staining in the 

liver. coverageBed from BEDTools v2.17.0 was used to calculate the 

coverage of the regions in each state in the E11.5 predictions with 

each tissue-specific group of VISTA elements. The fraction of bases 

covered was then normalized to the expected overlap, based on the 

overall genome-wide coverage of each state. The enrichment for 

repetitive elements was calculated using the OverlapEnrichment 

function of ChromHMM.

Classification of genes as putative PcG targets. A 2-kb window was 

defined around the TSS coordinates of all protein coding transcripts in 

GENCODE69 vM9. These 2-kb windows were overlapped with ChromH-

MM calls (‘pooled’ set) to determine their chromatin state in each tissue 

and stage. A TSS was classified as active in a given tissue-stage if this 2-kb 

window overlapped the active promoter state (state no. 1, Fig. 1a), and 

did not overlap any repressive states (states 3, 13, 14). A TSS was classi-

fied as repressed in a given tissue-stage if this 2-kb window overlapped 

the state characteristic of polycomb-mediated repression state (state 

13), and did not overlap any active states (states 1, 2, 4, 5, 6, 7, 10, 12). TSSs 

that did not meet the criteria for either active or repressed in a given 

tissue-stage were left unclassified. A gene was classified as a putative 

PcG target if it had at least one repressed TSS in at least one tissue-stage. 

To determine whether the genes we identified as putative PcG targets 

had been identified previously, we compared our data to five published 

studies examining the genome-wide distribution of H3K27me3 and/or 

PcG proteins13,29–32, including the NIH Epigenome Roadmap data set, 

which examined at more than 100 human sample types. For refs. 29,30, 

any gene with a TSS annotated as H3K27me3-positive in any sample 

(irrespective of other marks) was considered a previously identified 

PcG target. For refs. 31,32, any gene classified in one of the ‘PRC’ states 

in any sample was considered a previously identified PcG target. For 

ref. 13, ChromHMM state calls for 127 human samples were downloaded 

on 31 March 2018 (‘15_coreMarks_mnemonics’ call set). Putative PcG 

target genes in this data set were identified as described above for 

our mouse ChromHMM calls, with the following modifications: the 

GENCODE v27 annotation set was used for human (gencode.v27lift37.

annotation.gtf.gz), and the Polycomb-associated heterochromatin 

states considered were ‘13_ReprPC’, ‘14_ReprPCWk’, and ‘10_TssBiv’. Any 

gene with at least one TSS overlapping one of these states in at least one 

sample was considered a previously identified PcG target. Ensembl v84 

was used to match mouse gene IDs with human orthologous gene IDs 

(attribute = hsapiens_homolog_ensembl_gene). For CpG analyses, a list 

of CpG Islands with corresponding values (length GC#, CpG#, GC%, 

CpG%) was downloaded from UCSC Table Browser on 8 January 2018, 

and overlapped with the list of TSSs using bedtools v2.20.1. If a TSS 

overlapped more than one CGI, the corresponding values of all over-

lapping CGIs were combined and associated with the overlapping TSS.

Classification of genes as MDG and/or TF. We obtained a list of Men-

delian disease genes from https://www.omim.org/70 (genemap2.txt, ac-

cessed on 14 January 2018). To filter out genes associated with complex 

diseases or non-disease phenotypes, we performed the following filter 

steps. 1) We required that the genes be classified as type 3 (the molecular 

basis of the disorder is known). 2) We required that the gene have at 

least one associated phenotype that is not in brackets (nondiseases) 

or braces (multifactorial disorders), or containing a question mark 

(relationship between the phenotype and gene is provisional). 3) We 

further required that the human gene Ensembl ID mapped uniquely 

to one mouse Ensembl ID. 4) Finally, we considered only autosomes, 

because of the mixed-gender litter pools used for ChIP–seq. These 

filtering steps led to a set of 3,281 genes that we classified as MDGs. To 

identify TF genes, we downloaded a list of mouse TFs from the TFClass 

database71 (accessed 18 February 2017). As alternative sources of TF 

genes to support the TFClass results, we used the DBD: transcription 

factor prediction database72, and genes associated with one or more 

GO terms containing the phrase ‘TF’ as determined by AmiGO73 (ac-

cessed on 14 January 2018, taxon_subset_closure_label: Mus musculus, 

document_category: bioentity). AmiGO was also used in this way to 
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identify genes associated with one or more GO terms containing the 

word ‘development’ (Extended Data Fig. 12). Genes with at least one 

transcript tagged as a consensus coding sequence (CCDS) in GENCODE 

were classified as CCDSs in Extended Data Fig. 12.

Characterization of dynamic enhancer elements. The temporal 

dynamic analysis was performed for each tissue separately. First, 1-kb 

genomic bins that overlapped with regions defined as ChromHMM 

strong enhancer states in at least one stage were identified. Then we 

selected dynamic elements (bins) from these strong enhancer bins us-

ing the bioconductor LIMMA package74 v3.28.21. LIMMA is a package 

developed for calling differentially expressed genes for microarray but 

was also adapted for sequencing data with the LOOM functionality. 

LIMMA was used to call differential enrichment between each adjacent 

stage comparison (for example, E11.5 versus E12.5, E12.5 versus E13.5, 

and so on). P values were calculated with the eBayes function within 

LIMMA with trend parameter disabled, and were adjusted using the 

Benjamini–Hochberg method. A bin was called overall dynamic if its 

adjusted P value was less than 0.05 in any adjacent stage comparison; 

otherwise it was called a non-dynamic bin. Non-dynamic bins were 

not included in the following analysis to reduce noise. We performed 

k-means clustering on dynamic bins across stages. The rows (bins) 

were normalized by dividing by a common value so that the squares 

of the values sum to 1. The optimal k was determined using the elbow 

method to cut off at the k value where percentage of ‘withinness’ values 

transition from increasing quickly to increasing steadily with larger k. 

The resulting heatmaps of the k-means clusters are shown in Fig. 4a 

and Extended Data Fig. 16. For each of the identified clusters, we per-

formed enrichment testing of GO Biological Processes using GREAT. 

Over-represented motifs for each dynamic cluster were identified as 

follows: first, all vertebrate motif position weight matrices (PWMs) were 

downloaded from the JASPAR TF database and used to scan the peak-

bins for motif occurrences with FIMO, MEME suite v4.11.275. For each 

motif, we computed the odds ratio and the significance of enrichment in 

each cluster, comparing to a non-dynamic bin pool using Fisher’s exact 

test. The non-dynamic bin pool was sampled with replacement to match 

the distribution of average signal strength from the dynamic bins.  

Following that, significant TF PWMs were grouped in subfamilies using 

the structural information from TFClass71 because they share similar 

if not identical binding motifs. The top significantly over-represented 

TFs and their associated subfamilies were reported.

Identification of super-enhancers. Super-enhancers were identified 

using rose v0.176,77 with default parameters for each tissue-stage with 

H3K27ac signals. Super-enhancers were then combined within the 

same tissue and across all tissues to generate a non-redundant set of 

super-enhancers (Extended Data Fig. 14c, Supplementary Table 6).

A TAD-constrained map of enhancer–promoter associations

Generating the map. The reproducible strong enhancer calls (state 

no. 5) were merged using the mergeBed utility from BEDTools v2.17.0. 

After that, those regions or sub-regions that overlapped the intervals 

±2.5 kb from the TSSs of genes in Gencode were excluded from the 

merged regions using subtractBed from BEDTools v2.17.0. Regions 

smaller than 2 kb were enlarged to 2 kb from their central coordinate 

(to allow more robust signal estimation). This resulted in 66,556 puta-

tive enhancers. H3K27ac signals at these regions were then quantified 

using uniquely aligned, de-duplicated reads. These measurements were 

carried out using the coverageBed utility from BEDTools v2.17.0, then 

normalized to RPKM according to the sequencing depth of each sample, 

and log2-transformed (zeros were replaced by the smallest detectable 

value larger than zero). The mRNA expression of protein-coding genes 

was tracked across the 66 samples. Small and non-coding RNAs were 

excluded from any subsequent step by considering only those genes 

with a GENCODE biotype supporting protein-coding functionality. 

FPKM were log2-transformed (zeros were replaced by the smallest de-

tectable value larger than zero). For each TAD defined in the genome of 

mouse ES cells45, the putative enhancers and genes were retrieved. All 

the enhancer–gene pairs within the TAD were then evaluated in terms 

of SCC between the H3K27ac pattern of enrichment and the mRNA 

expression across the samples. Each gene was assigned to the putative 

enhancer showing the highest value of SCC. To attach P values to these 

correlations, a null distribution was estimated empirically, by calculat-

ing the SCC of the enhancer with all the genes on the chromosome. Two 

strategies were used to estimate a P value: 1) a z-score was calculated by 

subtracting the mean and dividing by the standard deviation of the null, 

and the corresponding P value was then calculated using the pnorm 

function in R; 2) an empirical P value was defined as the number of times 

an equal or better than the observed SCC was found in the null. Only 

those putative enhancers showing a P value ≤ 0.05 (for both strategies) 

and an SCC ≥ 0.25 were retained. Two maps were independently derived 

from the two biological replicates. Only these overlapping associations 

were used for further evaluation and analyses.

Validation of the enhancer–gene map using published chromatin 

conformation data. Capture-C interaction data from the developing 

limb and brain48 were retrieved from the GEO (GSE84792). Chromatin 

interaction analysis by paired-end tag sequencing (ChIA–PET) interac-

tions at sites bound by the cohesion subunit SMC1A in the developing 

limb49 were retrieved from Supplementary Table 2 of the original pub-

lication. Enhancer–gene contacts in fetal liver cells as inferred from 

Capture HiC50 were downloaded from ArrayExpress (E-MTAB-2414). 

In all cases, mm9 coordinates were mapped to mm10 using liftOver. 

For each published data set, only those regions in the enhancer–gene 

map that overlapped any experimentally validated interaction were 

retained. The fraction of interactions showing experimental support 

was then calculated for both the gene assigned by correlation and the 

nearest RefSeq gene.

Mapping of mouse enhancer–gene map to human. The putative 

enhancer regions were mapped to the human genome (hg19) using 

liftOver, with a strategy similar to previous reports78. Each region was 

required to both uniquely map to hg19, and to uniquely map back to 

the original region in mm10, with the requirement that ≥50% of the 

bases in each region were mapped back to mouse after being mapped 

to human. For each enhancer–gene pair, the orthologous human gene 

was inferred using BioMart79 (Ensembl version 87; from http://www.en-

sembl.org/biomart/martview, Filters -> Multiple Species Comparisons 

-> Attributes -> Homologues -> Mouse Orthologues). The orthologous 

pairs were also required to share the same TAD in human (TADs derived 

from human ES cells45). Three thousand, five hundred and seventy of 

the genes in our mouse map had a human orthologue (gene) and at least 

one linked enhancer with an alignable region in the human genome 

(residing in the same human TAD). Of the 17,689 putative enhancers 

that were successfully mapped to hg19, 12,564 were assigned to genes 

with an unambiguous homologue in human.

Validation of the enhancer–gene map using published eQTL–gene 

associations. Single-tissue eQTL–gene associations generated by the 

GTEx consortium80 were downloaded from the GTEx portal (http:// 

gtexportal.org, release v6p). Only those tissues with more than 750,000 

annotated eQTLs were considered. A control set of enhancer–gene 

associations matching the size and the TSS-distance distributions 

of the real enhancer–gene map was generated. In brief, for each en-

hancer–gene pair, the distance between the TSS of the gene and the 

central coordinate of the enhancer was calculated; after that, a region 

the same size of the enhancer centred at the same distance to the TSS 

of the gene but on the opposite side of the enhancer was picked as a 

control set. For the eQTL analysis, the fraction of eQTLs supported 

by enhancer–gene pairs was then calculated for ten equal-sized bins 

http://www.ensembl.org/biomart/martview
http://www.ensembl.org/biomart/martview
http://gtexportal.org
http://gtexportal.org


based on the distance between the enhancer and the TSS of the gene. 

The same procedure was applied to the nearest gene. The fraction of 

associations supported by eQTLs was then calculated, separately for 

the two groups and for each one of the ten bins. These numbers were 

used to derive a P value for each bin using Fisher’s exact test. For this 

analysis, we considered only those eQTLs derived from human tissues 

for which the equivalent tissue was profiled in this study (brain, heart, 

liver, lung, stomach and small intestine).

Comparisons to publicly available maps of enhancer–gene as-

sociations. Data sets from ref. 6, GeneHancer81, JEME82, and RIP-

PLE83 were downloaded and consistently re-mapped to the hg19  

genome using liftOver. Mapping of enhancer–gene associations  

between different maps was performed using closestBed from BED-

Tools v2.17.0.

Transgenic reporter assays

Prospective testing of elements. Names for functionally validated 

enhancers used throughout this work (mm numbers) are the unique 

identifiers from the VISTA Enhancer Browser (https://enhancer.

lbl.gov/)34. Enhancers were selected for testing as follows: The 

H3K27ac peak calls for three tissues (E12.5 heart, forebrain, and 

limb) were taken from the TSS-distal H3K27ac peaks called using 

the uniform processing pipeline (mm10-minimal) by the ENCODE 

DCC (narrow peaks from combined replicates). Peaks for each tis-

sue were ranked by enrichment score (most to least significant). 

We then selected predicted enhancers from three different bins 

within each tissue’s ranked list for testing (bins were approximately 

ranks 1–85, 1,500–1,550, and 3,000–3,050). Loci that were already 

included in the VISTA Enhancer Browser or that appeared to overlap 

unannotated promoters were excluded from testing. In total, 150 

predicted enhancers were tested, including 60 top ranked candi-

dates (20 per tissue), 45 middle ranked (15 per tissue), and 45 lower 

ranked candidates (15 per tissue). Transgenic mouse assays were 

performed in FVB/NCrl strain mice (Charles River) as previously 

described52,84. In brief, predicted enhancers were PCR amplified 

and cloned into a plasmid upstream of a minimal Hsp68 promoter 

and a lacZ reporter gene. Transgenic embryos were generated by 

pronuclear injection of the resulting plasmids into fertilized mouse 

eggs. Embryos were implanted into surrogate mothers, collected 

at E12.5, and stained for β-galactosidase activity. Elements were 

scored as positive enhancers if at least three embryos had identical 

β-galactosidase staining in the same tissue. Elements were scored 

as negative if no reproducible staining was observed and at least 

five embryos harbouring a transgene insertion were obtained. 

Genomic coordinates and results for each element are provided 

in Supplementary Table 10, through the ENCODE project data por-

tal (https://www.encodeproject.org/), and at the VISTA Enhancer 

Browser website (https://enhancer.lbl.gov/).

Retrospective analyses of VISTA elements. Overall, 422, 299 and 

414 elements showing activity in forebrain, limb or heart, respectively, 

were considered. For each ranked list of H3K27ac regions, overlap with 

positive (those elements showing activity in the same tissue from which 

the H3K27ac profile was derived) and negative (in all tissues or posi-

tive in other tissues) elements was calculated. A spline was used to fit 

the overlap (0–1 values) against the rank (smooth.spline R function, 

degrees of freedom (df) = 2), separately for each of the three tissues. 

To derive estimates of the background validation rates for each tissue, 

the VISTA elements missed by the H3K27ac profiles were leveraged. 

Specifically, the number of VISTA elements validated in the tissue and 

part of this set was divided by the total number of VISTA elements in 

this set. Validation rates across ranked forebrain VISTA elements were 

derived using the spline approach described above. Each element was 

annotated to the best overlapping feature (in terms of signal, or LOD 

score of the conserved element), for each one of the following catego-

ries: H3K27ac enrichment, p300 binding, DNaseI-hypersensitive sites 

(DHSs), ATAC and phastCons conservation. When available, biological 

replicates were used to derive separate ranks, then the sum of ranks 

across them was used to re-rank the elements. DHSs were downloaded 

from the ENCODE DCC website (accession: ENCSR014SFF) or GEO 

(accessions: GSM348064, GSM348066, GSM559652). PhastCons con-

served elements were download from the UCSC Genome Browser on 

24 January 2018 (phastConsElements60way and phastConsElement-

s60wayPlacental)85.

Mapping to repeat element families

As the ENCODE analysis pipeline was focused primarily on uniquely 

mapped reads, we used a separate approach to study repetitive regions. 

More specifically, we used a pipeline with two rounds of mapping steps 

to re-process all the fastq files. In the first round of mapping, sample 

reads were aligned to the reference genome mm10 using Bowtie with: 

bowtie hg19 -p 16 -t -m 1 -S–chunkmbs 512–max multimap.fastq input.

fastq output.sam86. –max is used to separate reads mapping to multiple 

locations of the genome from uniquely mapped reads. In the second 

round of mapping, a customized assemblies file was constructed by 

concatenating genomic instances of each repetitive element subfamily, 

their 15-bp flanking genomic sequences and a 200-bp spacer sequence 

in FASTA format87. The annotation file for repetitive elements used in 

this step was downloaded from Repeatmasker.org. A python script was 

used with parameters as follows: python RepEnrich.py /data/mm10_

repeatmasker.txt /data/sample_A sample_A /data/mm10_setup_folder 

sampleA_multimap.fastq sampleA_unique.bam–cpus 1688. The number 

of reads that mapped to repetitive element subfamilies, repetitive 

element families, or repetitive element classes was determined using 

information from both uniquely mapped reads that overlap with repeti-

tive element and non-uniquely mapped reads. As some of the repetitive 

element subfamilies are very similar to each other, a fractional counts 

method was used to classify the reads that map to multiple repetitive 

element subfamilies. It sums reads that map uniquely to a repetitive 

element subfamily once and counts reads that map to multiple sub-

families using a fraction 1/ns, in which ns is the number of repetitive 

element subfamilies with which the read aligns. A table of counts that 

estimate enrichment signal for the repeats classes across different 

tissues is built as the final output for plotting the figures.

Data processing in R

Most of the described data processing steps (plotting, statistical tests, 

calculating correlations and hierarchical clustering) were performed 

in the statistical computing environment R v.3.3.1 (https://www. 

r-project.org/).

Reporting summary

Further information on research design is available in the Nature 

Research Reporting Summary linked to this paper.

Data availability

All raw and processed data can be accessed via the ENCODE Data  

Collection and Coordination (DCC) website: https://www.encodedcc.

org via the experiment IDs listed in Supplementary Table 13.

Code availability

The ENCODE histone ChIP–seq pipeline is among the collection of 

ENCODE Uniform Processing Pipelines that can be found here: https://

github.com/ENCODE-DCC/ChIP-seq-pipeline.
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | ChIP–seq data summary. a, Summary of characteristic 

enrichment patterns for histone modifications surveyed here. Modifications 

are generally categorized as narrow or broad depending on the typical breadth 

of enrichment. H3K9me3 is further distinguished from other broad marks 

because it shows very few regions of enrichment in non-repetitive sequence in 

primary tissues and cells26. b, Metagene plot illustrating the typical patterns of 

histone modification enrichment at active genes (here defined as RPKM >10 in 

all tissue-stages surveyed). ChIP–seq data plotted are from embryonic heart at 

E15.5. c, Sequencing depth plotted for every library reported (n = 1,272 total, 

552 narrow, 432 broad, 144 H3K9me3, 144 input). ENCODE ‘usable’ read depth 

standards (mapping quality scores (mapq) >30, and after PCR duplicate 

removal) are indicated to the right. Read depth standards changed part way 

through our study (increasing from 10M to 20M for narrow marks, 20M to 45M 

for broad marks, and 10M to 30M for input). All narrow mark libraries exceed 

the 10M minimal depth. Broad mark libraries exceed the 20M minimal depth 

with only four exceptions, all of which exceed 19M. Input libraries exceed the 

10M minimal depth with only one exception, which exceeds 9.7M. The read 

depth standard for H3K9me3 is >45M mapped reads of any mapq (because 

H3k9me3 is enriched in repetitive sequence, Extended Data Fig. 10); all 

H3K9me3 libraries exceed this threshold. Box plots: horizontal line, median; 

box, IQR; whiskers, most extreme value within ±1.5 × IQR. d, Mapping quality 

plotted for every library, measured as the fraction of reads with mapq >30. 

Reads with lower mapq scores (that is, non-uniquely mapping reads) were 

eliminated from downstream analysis. e, Three metrics of library complexity 

are plotted (NRF, PBC1, PBC2). See ENCODE data standards90 for detailed 

descriptions and formulas. Tables below each plot show the percentage of 

libraries that exceed the thresholds indicated. f, Two measures of signal-to-

noise ratio are plotted (NSC, RSC). Again, detailed descriptions are available in 

the ENCODE data standards descriptions. These metrics are not well calibrated 

for broad marks or input and thresholds apply only to narrow marks.



Extended Data Fig. 2 | ChIP–seq peak calling. a, Schematic of ChIP–seq peak 

calling pipeline. More information can be found here: https://www.

encodeproject.org/pipelines/. b, Four peak summary statistics plotted for 

every tissue-stage. From top to bottom: 1) number of peaks called (passing IDR 

threshold); 2) total coverage of those peaks; 3) peak coverage as in (2), but 

separated according to tissue; 4) peak coverage as in (2), but separated by 

stage. E10.5 ChIP–seq experiments were performed with a modified protocol, 

and in some cases a different, more sensitive antibody was used (H3K27ac, 

H3K4me1). We suspect that is why E10.5 sometimes appears as an outlier in 

terms of coverage. n = 72 for all marks, expect for H3K4me2 and H3K9ac where 

n = 66. c, Peak reproducibility as measured by the percentage of peaks called 

from the pooled data that were called independently in both individual 

replicates. d, Peak reproducibility as measured by correlation of peak 

strengths (average fold enrichment over input) between biological replicates.

https://www.encodeproject.org/pipelines/
https://www.encodeproject.org/pipelines/
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Extended Data Fig. 3 | ATAC–seq data summary. a, The number of usable read 

pairs per tissue-stage, after filtering for mapping quality and PCR duplicates.  

b, The number of replicated ATAC–seq peaks called per tissue-stage. c, Genome 

coverage of replicated ATAC–seq peaks at each tissue-stage. d, Correlation of 

ATAC–seq signal at replicated peaks between biological replicates (n = 66 

tissue-stages), as measured by Pearson’s correlation coefficient (left) or 

Spearman’s correlation coefficient (right). e, Multidimensional scaling (MDS) 

plot showing that the ATAC–seq signals at d-TACs tend to separate the samples 

first by tissue (indicated by coloured shapes) and then by stage (shade of colour 

within shapes). f, Fraction of usable reads overlapping TSS (measure of signal-

to-noise ratio) for the ATAC–seq data and other reference data. H3K27ac  

ChIP–seq data and input from our ENCODE3 mouse tissues are shown to 

provide additional context for interpreting these numbers.



Extended Data Fig. 4 | Chromatin landscapes across tissues. a, Dendrograms  

from hierarchical clustering based on signal for each histone modification  

and ATAC–seq, as indicated. Note the consistent relationships between  

tissues of similar developmental origin. b, Genome browser view of NeuroD6  

(chr6: 55,637,617–55,708,251; mm10) and Nkx2–5 (chr17: 26,818,483–

26,870,007; mm10), markers of neuronal and cardiomyocyte differentiation, 

respectively. c, Principal component analysis of all tissue-stages based on  

ChIP–seq data for individual histone modifications, as indicated.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | Chromatin landscapes across stages. a, Heatmap 

showing the H3K27ac ChIP–seq signal at H3K27ac ChIP–seq peaks in forebrain. 

Peaks are clustered according to how many stages within forebrain they were 

present at ( y-axis, left). The number of peaks in each cluster is indicated to the 

right. b, Pearson’s correlation coefficients between H3K27ac signal in peaks at 

stages E11.5–P0 in forebrain (top) or heart (bottom). c, The x-axis at the top 

indicates the number of tissues in which a given peak is present (1–12). The top 

line plot shows tissue specificity as the percentage of total peaks for a given 

mark that were called in a given number of tissues. The middle heatmap shows 

stage specificity as the average fraction of stages within a tissue at which a peak 

is present. Peaks that are more restricted to specific tissues are also more 

restricted to specific stages within those tissues. The bottom heatmap shows 

the locations of peaks relative to TSSs by plotting the fraction of peaks that 

overlap an annotated GENCODE TSS. Peaks that are more consistent across 

tissues and across stages also tend to overlap a TSS. d, Genome browser view of 

Gad1 (chr2: 70,547,104–70,615,401; mm10) and NeuroD6 (chr6: 55,637,617–

55,708,251; mm10), neuronal markers, showing the gain of active chromatin 

signatures during forebrain development. e, Genome browser views of Ccnb1 

(chr13: 100,776,802–100,788,423; mm10) and Cdk2 (chr10: 128,693,493–

128,709,497; mm10), key cell cycle regulators, showing the loss of active 

chromatin signatures during forebrain development. f, Genome browser view 

of the Myh6/Myh7 locus (chr14: 54,927,121–55,010,762; mm10), showing a shift 

in activity from Myh7 to Myh6 that is known to occur in cardiomyocytes just 

before birth91.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Fifteen-state ChromHMM model. a, Schematic of the 

ChromHMM strategy applied in this study. b, Heatmaps showing the maximum 

Pearson’s correlation of each state in the full model ( y-axis) with its best 

matching state in each simpler model (x-axis). The median correlation of all 24 

states is shown in the plots on top of the heatmaps. c, Classification of the  

k-means clustering of the emission probabilities from all the models. The 

optimal number of states was defined by the smallest value of k that showed a 

ratio equal to or higher than 95% (orange line) of the maximum clusters’ 

separation (red line). SS, sum of squares. d, The emission probabilities for each 

chromatin mark in each state, as defined by ChromHMM, for both replicates.  

e, Spearman’s correlation of emission probabilities from ChromHMM models 

derived from two biological replicates, colour-coded by state (left) or by 

modification (right). f, Comparison of the ChromHMM model reported here 

with previously published ChromHMM models. Horizontal white bars indicate 

chromatin states identified in our study that did not have a clear counterpart in 

those studies. g, Similarity between replicates from the same tissue-stage 

(n = 66), from the same tissue any stage (n = 702), or from any tissue any stage 

(n = 8,646). Similarity measured as pairwise binary distance. Two-sided  

Mann–Whitney test. h, Enrichment of each mark in state 11 (permissive) relative 

to state 15 (no signal, genomic background). The ChromHMM emission 

probability for H3K36me3 in state 11 is >30-fold higher than genomic 

background. i, Enrichment of chromatin states relative to annotated genes. 

Gene annotations were not considered during model training or genome 

segmentation.
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Extended Data Fig. 7 | Comparing eight-mark ChromHMM model with six-

mark models. a, Median correlations of the 24 states in the full model ( y-axis) 

with its best matching state in each simpler model (x-axis). The box indicates 

that a value close to the maximum is already reached with an 11-state model, 

and a value virtually equal to the maximum is obtained with a 16-state model. 

Shaded area represents confidence intervals of the smoothing line obtained 

using stat_smooth() of ggplot2 (using default parameters, default method is 

LOESS). b, Emission probabilities for each histone modification in each state, as 

defined by ChromHMM, for both replicates (11-state model on top, and 16-state 

model at the bottom). c, Overlap of regions in each of the eight-mark 15-state 

models with the regions classified by the 11- and 16-state models using only 6 

marks. Major differences are indicated by asterisks and explained below.



Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Chromatin state developmental dynamics. 

 a, Enrichment of accessible chromatin within regions segmented into different 

chromatin states. Left, values for a set of ChromHMM annotations made using 

ChIP–seq data pooled from both biological replicates. Right, values for a more 

conservative set of ChromHMM annotations including only those regions 

annotated in the same state independently in both biological replicates. n = 66 

tissue-stages per box. b, Hierarchical relationships among strong enhancers 

(state no. 5) in different tissues during development (clustering according to 

binary distance, Ward’s method). This analysis revealed a strong relationship 

between limb and facial tissue, also observed in clustering of specific histone 

modifications (Extended Data Fig. 4a), and further supporting the hypothesis 

of that facial structures and limbs have a common developmental origin92,93.  

c, Enrichment of functional terms (x-axis, GO biological processes, P values 

from GREAT binomial test; FDR is Benjamini–Hochberg corrected q value) for 

the sets of strong enhancers (state no. 5) across each tissue-stage ( y-axis). 

Sample sizes provided in Supplementary Table 5. The terms were hierarchically 

clustered (average linkage) according to Pearson’s correlation. A subset of the 

terms highly enriched in both limb and face is listed below the main heatmap.  

d, Fraction of bases (x-axis) annotated in the indicated state consistently in up 

to seven stages sampled ( y-axis). Only tissues sampled at seven stages are 

shown here (n = 5). e, Sankey diagram showing the origin and fate of all genomic 

intervals classified as TSS-distal strong enhancers (state no. 5) in E14.5 

forebrain. The chromatin state classification of these regions was tracked 

across the available developmental stages, and the relative genomic coverage 

of each chromatin state at each transition is plotted. The thickness of each 

colour ( y-axis) indicates the coverage of each state.



Extended Data Fig. 9 | Chromatin state dynamics and signature of PcG 

repression at key regulators. a, The most enriched biological processes (GO 

terms) for genes near putative liver enhancers (n = 4,595). The significantly 

enriched terms for each stage were identified and divided into deciles (based 

on statistical significance). The ten most enriched terms for each stage were 

then grouped together and hierarchically clustered. Genes involved in either 

haematopoiesis or metabolic processes are colour-coded, as indicated.  

P values from binomial test (GREAT); FDR is Benjamini–Hochberg corrected  

q value. b, Genome browser views showing tissue-restricted activity patterns at 

Cdx2 (chr5: 147,294,550–147,313,599; mm10), Barx1 (chr13: 48,649,148–

48,680,395; mm10), Nkx2-1 (chr12: 56,507,647–56,560,509; mm10), and Wt1 

(chr2: 105,097,427–105,200,306). c, Left, the number of TSSs marked by Hc-P in 

each tissue-stage. Right, the number of genes with at least one annotated TSS 

marked by Hc-P in each tissue-stage.
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Extended Data Fig. 10 | See next page for caption.



Extended Data Fig. 10 | H3K9me3 heterochromatin. a, Genome browser view 

showing a large region of chromosome 15 (chr15: 87,165,311–104,043,685; 

mm10). Signal tracks (fold enrichment over input) are shown for all marks. 

H3K9me3 looks relatively flat, unlike the other marks. We find very few regions 

of strong H3K9me3 enrichment outside repetitive elements, consistent with 

previous reports of H3K9me3 distribution in primary tissues26. Data shown 

here and in d are from E15.5. b, The fraction of total sequencing reads that map 

to the reference genome (light green), and that map uniquely to the reference 

genome (mapq ≥30; dark green). y-axis is the mean for all ChIP libraries 

reported here separated by mark (n = 72 for all marks except for H3K4me2 and 

H3K9ac where n = 66), and error bars represent s.d. Control bars represent ChIP 

input libraries (no IP step). All marks and input have a high mapping rate (mean 

>90%), but H3K9me3 has a markedly low rate of unique mapping, suggesting 

that this modification is specifically enriched in non-unique (that is, repetitive) 

genomic regions. c, Stacked bar plots show the type of repetitive elements 

from which the non-uniquely mapping reads from b are likely to originate. 

H3K9me3 reads are highly enriched in satellite repeats relative to the input 

controls. d, Genome browser view of ChIP–seq fold enrichment tracks at  

Pchd (chr18: 36,720,767–38,058,585; mm10) and Zfp454 (chr11: 50,774, 

724–50,939,391; mm10) shows significant H3K9me3 enrichment (state 14) 

during development. The 3′ UTRs of Zfp genes marked by H3K9me3 (reported 

previously28) are indicated by pink arrowheads. e, As in d, but showing 

chromatin states across these regions.
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Extended Data Fig. 11 | See next page for caption.



Extended Data Fig. 11 | Properties of putative PcG target genes. a, TSSs are 

binned together according to the number of tissue-stages in which they are 

marked by Hc-P (0–66, x-axis). For each bin, the fraction of TSSs that are 

K4 + K27 (bivalent), K27 (repressed), K4 (active), or has no K4 or K27 in mouse ES 

cells is plotted, as reported previously29. b–d, Similar schema to a, but plotting 

the fraction of TSSs bound by RING1B (PRC1 component), EZH2 (PRC2 

component), or SUZ12 (PRC2 component) in mouse ES cells, as previously 

reported30. e, Comparison of Hc-P regions as reported here and DMVs from  

ref. 7. Left, metrics related to regions annotated as Hc-P in each tissue-stage  

(x-axis). From top to bottom: number of Hc-P regions in each tissue-stage; 

coverage of Hc-P in each tissue-stage; fraction of Hc-P regions that overlap a 

TSS; fraction of Hc-P regions that overlap a DMV. Right, metrics related to 

regions annotated as DMVs in each tissue-stage (x-axis). From top to bottom: 

number of DMVs in each tissue-stage; coverage of DMVs in each tissue-stage; 

fraction of DMV regions that overlap a TSS; fraction of DMV regions that 

overlap a Hc-P region. f, Schema as in a–d, but with axes switched. For each bin, 

the fraction of TSSs that overlap a CGI is plotted on the x-axis. g–j, The 

following properties of CGIs that overlapped Hc-P TSSs are plotted (left to 

right): CGI length; CpG number; CPG percentage; GC percentage. None of 

these properties is strongly correlated with the number of tissue-stages in 

which a given TSS is marked by Hc-P (x-axis), supporting the role of factors 

other than CGIs in recruiting or excluding PcG at target promoters in a tissue- 

and/or stage-restricted fashion94,95. Green line shows LOESS smooth curve, 

span 0.25 and degree 1.
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Extended Data Fig. 12 | See next page for caption.



Extended Data Fig. 12 | Hc-P enrichment at disease-relevant TF genes. 

 a, Enrichment of ‘molecular function’ GO terms in genes near repressed regions 

(state 13, Hc-P) as measured by GREAT binomial test with Benjamini–Hochberg 

correction. GO terms on the y-axis are ordered by average enrichment P value 

across all tissue-stages. The top 20 GO terms are listed below, and are all related 

to TF function. Number of regions for each tissue-stage shown in Extended 

Data Fig. 11e. b, Similar layout to Fig. 2f. The fractions of six gene sets that show 

evidence of PcG repression are plotted: 1) all protein-coding genes (black line); 

2) the subset of protein-coding genes that code for TFs (green line); 3) the 

subset of protein-coding genes that code for TFs and underlie human 

Mendelian diseases (dark blue line); 4) the subset of protein-coding genes that 

code for TFs but do not underlie human Mendelian diseases (light blue line); 5) 

the subset of protein-coding genes that underlie human Mendelian diseases; 6) 

the subset of protein-coding genes that underlie human Mendelian diseases 

but are not TFs. The origin of the TF super-sets is indicated on top of each sub-

panel, from left to right: the TFClass database, the DBD database, and genes 

associated with a GO term containing the phrase ‘TF’. c, P values from χ2 test of 

independence between PcG repression and Mendelian phenotype 

involvement. Different subsets of TF genes were used for this analysis, 

clockwise from top to bottom: All, all genes annotated as TF in the indicated 

database (TFClass or DBD); non-Zf, genes annotated as TF but not as zinc finger, 

to ensure that the enrichment for disease genes is not coming only from this 

large family of TFs; GO term development, genes with a GO term containing 

‘development’, to show that the enrichment for disease genes exists even 

amongst TFs that are all likely to have a role in development; CCDS, genes with 

transcripts annotated by the consensus coding sequence (CCDS) project, 

representing high-confidence gene annotations in both the mouse and human 

genomes. Sample sizes shown over each bar. d, Patterns of PcG repression at 

Sox9 (chr11: 112,766,260–112,803,708; mm10), Shh (chr5: 28,392,703–

28,531,239; mm10), Pax3 (chr1: 78,027,730–78,280,060; mm10), and Wnt6/Ihh 

(chr1: 74,643,751–74,987,517; mm10). This small but well-characterized set of 

genes is known to cause human congenital phenotypes when expressed 

ectopically during development46,96.
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Extended Data Fig. 13 | See next page for caption.



Extended Data Fig. 13 | Dynamic d-TACs. a, Overlapping regions between our 

d-TAC catalogue and the adult single-cell ATAC–seq atlas from ref. 33. b, Fraction 

of tested d-TACs active in each tissue that exhibit positive reporter activity in 

the same tissue. This analysis was performed for three different sets of tissue-

accessible d-TACs: all d-TACs, TSS-distal d-TACs, and TSS-distal d-TACs that 

overlap state 5 (strong TSS-distal enhancers). c, Top, number of dynamic 

d-TACs per tissue. Bottom, number of non-dynamic d-TACs per tissue. If a d-TAC 

was called as significantly dynamic at any stage transition within it a tissue it 

was labelled as dynamic; otherwise it was labelled as non-dynamic. d, Stacked 

bar plot shows the fraction of dynamic d-TACs in each tissue that are dynamic at 

one, two, three, four, five, or six stage transitions. e, The fraction of dynamic 

d-TACs within a tissue that undergo significant changes in accessibility at each 

stage transition. f, Similar schema to Fig. 3h but showing each chromatin state 

separately instead of as supersets. The heatmap shows the chromatin state 

changes that occur at dynamic d-TACs that gain accessibility at a given stage 

transition. Enrichment is relative to the coverage of each state in total d-TAC 

catalogue. g, As in f, but for d-TACs that lose accessibility at a given stage 

transition.
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Extended Data Fig. 14 | Chromatin state-based enhancers. a, Tissue-specific 

enrichments of VISTA enhancers for different chromatin states in E11.5 heart, 

limb and forebrain. b, Top, fraction of dynamic enhancers in each tissue (based 

on H3K27ac) that overlap d-TACs accessible in the matching tissue. Bottom, 

fraction of dynamic enhancers in each tissue that overlap d-TACs that were also 

called as dynamic by ATAC–seq in the matching tissue. c, Top, fraction of 

dynamic d-TACs in each tissue that overlap enhancers called by ChromHMM 

(state 5) in the matching tissue. Bottom, fraction of dynamic d-TACs in each 

tissue that overlap dynamic enhancers called with H3K27ac in the matching 

tissue. Each point represents one tissue-stage (n = 66). d, Top, dynamic 

enhancers that gain H3K27ac at a given stage transition n to n + 1. Lines show the 

log2 fold change in ATAC–seq signal within d-TACs that overlap those dynamic 

enhancers at various stage transitions. Dynamic enhancers that gain H3K27ac 

at a given stage transition tend to gain accessibility as measured by ATAC–seq 

either at or before the stage transition in question (sometimes preceding 

H3K27ac gain by as much as five stage transitions). Mean and s.d., filled circles 

and vertical lines, respectively. Bottom, dynamic enhancers that lose H3K27ac 

at a given stage transition n to n + 1. Dynamic enhancers that lose H3K27ac at a 

given stage transition tend to lose accessibility as measured by ATAC–seq 

either at or after the stage transition in question (sometimes proceeding 

H3K27ac loss by as much as five stage transitions). The number of stage 

comparisons for each offset is: ±0 n = 54, ±1 n = 42, ±2 n = 30, ±3 n = 18, ±4 n = 10, 

±5 n = 5.



Extended Data Fig. 15 | Super-enhancers. a, Distribution of the H3K27ac 

signal (read counts) across all enhancers identified in each tissue. Within each 

tissue, different stages are plotted as separate lines. A subset of the enhancers 

(super-enhancers) show exceptionally high levels of signal, as represented by 

coloured lines. b, Heatmap shows the normalized H3K27ac signal for all super-

enhancers merged across tissues and stages (n = 4,833). The rows are 

hierarchically clustered according to Pearson’s correlation distance.
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Extended Data Fig. 16 | Dynamic chromatin state-based enhancers. a, Same 

layout as Fig. 4a, but for dynamic enhancers in heart. b, As in a, but for liver. GO 

biological process enrichment determined by GREAT69. Motif enrichment  

P values calculated by two-sided Fisher’s exact test. c, k-means clustering of 

dynamic enhancers for all other tissues based on H3K27ac signal at available 

stages from E11.5 to P0. The number of clusters within each tissue, and the 

number of dynamic enhancers within each cluster, are indicated to the left of 

each heatmap. Corresponding GO enrichment and motifs are provided in 

Supplementary Table 7. Sample sizes are indicated the left of each heatmap.



Extended Data Fig. 17 | See next page for caption.
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Extended Data Fig. 17 | Enhancer target gene predictions. a, Schematic of 

the approach to assign enhancers to target genes. b, Genome browser view 

showing the Ascl1 locus, as in Fig. 4c, but showing ChIP–seq fold enrichment 

tracks instead of chromatin states. c, Histogram of the number of enhancers 

per gene. d, For each replicate, the fraction of putative enhancers assigned to 

the same gene using data from the other available replicate. e, Scatter plots 

showing reproducibility of enhancer–gene maps as measured by correlation 

between enhancer–gene pairs (left; n = 21,141 pairs), and the number of 

enhancers per gene (right; n = 5,611 genes). f, Left, fraction of enhancer–gene 

associations that overlap interactions previously reported in ref. 6 

(n = 907/12,655), GeneHancer81 (n = 2,067/12,546), JEME82 (662/36,007), and 

RIPPLE83 (31/37,541). The global level of overlap is low, perhaps in part owing to 

the different sample types used to predict these interactions. Right, 

distribution of scores for the unique and overlapping pairs in GeneHancer, 

JEME and RIPPLE, respectively. Where predictions from those reports overlap 

with ours, their scores are significantly higher. P values calculated using two-

sided Mann–Whitney U test. g, As in Fig. 4d, this plot shows that enhancer–gene 

interactions identified by this correlative approach are generally more likely to 

be supported by chromatin interaction data than associations derived by a 

nearest gene approach. To ensure that this was not due to an artefact of the 

chromatin capture technologies being unable to detect short-range 

interactions, we used different distance cutoffs (10 kb, 100 kb) to define the 

‘nearest’ non-target gene. h, The Bcl11a locus (chr11: 24,044,043–24,197,927; 

mm10) provides an interesting case in which genetic variation in enhancers 

regulating a pleiotropic Mendelian disease gene may contribute to tissue-

restricted phenotypes with lower penetrance. Boxes outline enhancer clusters 

with active chromatin signatures in the CNS (left) and liver (right), and which 

have validated activity in the CNS and erythroid lineage, respectively34,40,97 

(mouse embryonic liver is a site of erythropoiesis). The subpanels on either side 

of the main browser view show regions of the human genome that correspond 

to either the CNS enhancer cluster (left, chr2: 60,752,530–60,767,198; hg19) or 

liver enhancer cluster (right, chr2: 60,711,940–60,741,118; hg19). Thick black 

bars on top represent orthologues of the predicted Bcl11a enhancers, and thin 

green bars below represent GWAS SNPs for the EMBL-EBI GWAS catalogue.



Extended Data Fig. 18 | Transgenic validation results for predicted 

enhancers. a, Representative E12.5 transgenic embryos for each of the 61 

enhancers that validated in the expected tissue (forebrain, limb, or heart). 

Reporter gene expression is indicated by blue staining, and enhancer names 

(mm numbers) are the unique identifiers from the VISTA Enhancer Browser34. 

Reproducibility for each enhancer is available in Supplementary Table 10 and 

through VISTA. Red arrows indicate forebrain, limbs, or heart. See also 

Supplementary Table 10 for results. b, Violin plots show transgenic enhancer 

assay reproducibility (that is, the percentage of embryos with reproducible 

activity) for different rank classes of tested elements. Only those enhancers 

that validated in the correct expected tissue are shown. Reproducibility 

differences between rank classes were not statistically significant (Mann–

Whitney U test). Violin plots as in Fig. 5b, sample sizes shown below each violin. 

c, Same schema as in Fig. 5e, but for heart (left) and limb (right).
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of the ChIP-seq experiments included in this manuscript can be found at the link below:  https://www.encodeproject.org/search/?

type=Experiment&assay_title=ChIP-seq&award.rfa=ENCODE3&lab.title=Bing+Ren%2C+UCSD&limit=all. A fill list of ATAC-seq experiments included in this 

manuscript can be found at the link below:   

https://www.encodeproject.org/search/?type=Experiment&award.rfa=ENCODE3&lab.title=Bing+Ren%2C+UCSD&limit=all.&assay_title=ATAC-seq&limit=all. 

Additional data files including ChromHMM state calls, dynamic d-TACs, and dynamic enhancers can be found here: http://renlab.sdsc.edu/renlab_website//

download/encode3-mouse-histone-atac/. 
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Data exclusions No data points are excluded, except in rare cases of failed ChIP-seq libraries that did not meet ENCODE quality criteria (https://

www.encodeproject.org/chip-seq/histone/), were re-done, and replaced by new libraries from the same biosample.

Replication 2 biological replicates were performed for each experiment, derived from independent embryo pools. Quantitative analyses of reproducibility 

can be found in Extended data figure 2 and 3.

Randomization Not randomized. This was not feasible given the scale of tissue dissections and ChIP-seq data production here.

Blinding Not blinded. This was not feasible given the scale of tissue dissections and ChIP-seq data production here.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 

system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms
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Methods

n/a Involved in the study
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Antibodies

Antibodies used Standard ChIP-seq: 

H3K4me1 Abcam ab8895  

H3K4me2 Millipore 05-1338  

H3K4me3 Millipore 04-745  

H3K27ac Active motif 39133  

H3K27me3 Active motif 61017  

H3K9ac Active motif 39137  

H3K9me3 Abcam ab8898  

H3K36me3 Abcam ab9050  

MicroChIP-seq 

H3K4me1 Abcam ab8895 polyclonal 

H3K4me3 Cell Signaling 9727 polyclonal 

H3K27ac Abcam Ab4729 polyclonal 

H3K27me3 Active motif 61017 monoclonal 

H3K9me3 Abcam ab8898 polyclonal 

H3K36me3 Abcam ab9050 polyclonal 

The specific antibody and lot numbers used for each library can be found in the publicly accessible metadata associated with 
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each experiment at the ENCODE data portal, here: https://www.encodeproject.org/search/?type=Experiment&assay_title=ChIP-

seq&award.rfa=ENCODE3&lab.title=Bing+Ren%2C+UCSD&limit=all

Validation Validation procedure described here :https://www.encodeproject.org/documents/4bb40778-387a-47c4-ab24-cebe64ead5ae/

@@download/attachment/
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Animals and other organisms
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Laboratory animals Mouse tissue collection was performed using C57BL/6NCrl and C57BL/6NTac strain Mus musculus, and breeder mice were 

purchased from Charles River and Taconic, respectively.  Tissue was collected using mouse neonates or embryos for the 

following developmental stages: E10.5, E11.5, E12.5, E13.5, E14.5, E15.5, E16.5, P0.  Biological sex is not visually obvious for 

these developmental stages and was not assessed.  All biological replicates consisted of tissue from multiple embryos and are, 

therefore, expected to consist of roughly equal numbers of males and females. The number of embryos pooled for each 

replicate can be found in the publicly accessible metadata associated with each experiment at the ENCODE data portal, here: 

https://www.encodeproject.org/search/?type=Experiment&assay_title=ChIP-seq&award.rfa=ENCODE3&lab.title=Bing+Ren%2C

+UCSD&limit=allTransgenic mouse assays were performed using FVB strain Mus musculus

Wild animals Study did not involve wild animals.

Field-collected samples No field samples were collected.

Ethics oversight All animal work was reviewed and approved by the Lawrence Berkeley National Laboratory Animal Welfare and Research 

Committee

Note that full information on the approval of the study protocol must also be provided in the manuscript.

ChIP-seq

Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

https://www.encodeproject.org/search/?type=Experiment&assay_slims=DNA+binding&assay_title=ChIP-

seq&award.rfa=ENCODE3&lab.title=Bing+Ren%2C+UCSD&limit=all

Files in database submission Thousands of files, not feasible to list here.

Genome browser session 
(e.g. UCSC)

goo.gl/57GK9P

Methodology

Replicates All ChIP-seq and ATAC-seq experiments were performed on two biological replicates of tissue. For each tissue-stage, we 

harvested tissues from multiple litters of embryos. Tissue was pooled such that each tissue-stage had two biological 

replicates derived from different embryos. Each replicate contains tissue pooled from several embryos (precise numbers are 

provided at encodedcc.org), but the embryos in each replicate are unique to that replicate.

Sequencing depth A detailed list of ENCODE3 ChIP-seq read depth and other standards can be found here: https://www.encodeproject.org/

chip-seq/histone/. 

Antibodies Standard ChIP-seq: 

H3K4me1 Abcam ab8895  

H3K4me2 Millipore 05-1338  

H3K4me3 Millipore 04-745  

H3K27ac Active motif 39133  

H3K27me3 Active motif 61017  

H3K9ac Active motif 39137  

H3K9me3 Abcam ab8898  

H3K36me3 Abcam ab9050  

MicroChIP-seq 

H3K4me1 Abcam ab8895 polyclonal 

H3K4me3 Cell Signaling 9727 polyclonal 

H3K27ac Abcam Ab4729 polyclonal 

H3K27me3 Active motif 61017 monoclonal 

H3K9me3 Abcam ab8898 polyclonal 
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H3K36me3 Abcam ab9050 polyclonal 

The specific antibody and lot numbers used for each library can be found in the publicly accessible metadata associated with 

each experiment at the ENCODE data portal, here: https://www.encodeproject.org/search/?

type=Experiment&assay_title=ChIP-seq&award.rfa=ENCODE3&lab.title=Bing+Ren%2C+UCSD&limit=all

Peak calling parameters The ENCODE histone ChIP-seq pipeline is among the collection of ENCODE Uniform Processing Pipelines that can be found 

here: https://platform.dnanexus.com/projects/featured. The code is open-source, and available here: https://github.com/

ENCODE-DCC/chip-seq-pipeline. ATAC-seq pipeline: Uniform processing pipeline. ATAC-seq data were analyzed using a 

standardized software pipeline implemented by the ENCODE Data Coordinating Center (DCC) for the ENCODE Consortium to 

perform quality-control analysis and read alignment. ATAC-seq reads were trimmed with a custom adapter script and 

mapped to mm10 using bowtie version 2.2.6 and samtools version 1.2 to eliminate PCR duplicates and mitochondrial reads. 

To center peaks on the Tn5 cut site, the paired-end read ends were converted to single-ended read ends and the read end 

was shifted 4bp towards the center of the fragment to account for the Tn5 insertion position by moving the read end 

towards the center of the fragment. MACS2 version 2.1.1.20160309 was used for generating signal tracks and peak calling 

with the following parameters: —nomodel —shift 37 —ext 73 —pval 1e-2 -B —SPMR —call-summits. To produce a set of 

“replicated” ATAC-seq peaks for analysis, the peak calling steps above were performed for each experiment on each pair of 

replicates independently as well as a pooled set of the two replicates. The intersectBed tool from the bedtools v2.27.1 suite 

was used to identify a set of replicated peaks which we define as the subset of peaks called in the pooled set, were also 

present in both of the replicate peak call sets. Any additional code or scripts are available from authors upon request. 

Data quality A detailed list of ENCODE3 ChIP-seq read depth and other standards can be found here: https://www.encodeproject.org/

chip-seq/histone/. 

Software The ENCODE histone ChIP-seq pipeline is among the collection of ENCODE Uniform Processing Pipelines that can be found 

here: https://platform.dnanexus.com/projects/featured. The code is open-source, and available here: https://github.com/

ENCODE-DCC/chip-seq-pipeline. ATAC-seq pipeline: Uniform processing pipeline. ATAC-seq data were analyzed using a 

standardized software pipeline implemented by the ENCODE Data Coordinating Center (DCC) for the ENCODE Consortium to 

perform quality-control analysis and read alignment. ATAC-seq reads were trimmed with a custom adapter script and 

mapped to mm10 using bowtie version 2.2.6 and samtools version 1.2 to eliminate PCR duplicates and mitochondrial reads. 

To center peaks on the Tn5 cut site, the paired-end read ends were converted to single-ended read ends and the read end 

was shifted 4bp towards the center of the fragment to account for the Tn5 insertion position by moving the read end 

towards the center of the fragment. MACS2 version 2.1.1.20160309 was used for generating signal tracks and peak calling 

with the following parameters: —nomodel —shift 37 —ext 73 —pval 1e-2 -B —SPMR —call-summits. To produce a set of 

“replicated” ATAC-seq peaks for analysis, the peak calling steps above were performed for each experiment on each pair of 

replicates independently as well as a pooled set of the two replicates. The intersectBed tool from the bedtools v2.27.1 suite 

was used to identify a set of replicated peaks which we define as the subset of peaks called in the pooled set, were also 

present in both of the replicate peak call sets. Any additional code or scripts are available from authors upon request. 
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