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The mammalian cerebrum performs high-level sensory perception, motor control

and cogpnitive functions through highly specialized cortical and subcortical
structures’. Recent surveys of mouse and human brains with single-cell
transcriptomics® ¢ and high-throughput imaging technologies™ have uncovered
hundreds of neural cell types distributed in different brain regions, but the
transcriptional regulatory programs that are responsible for the unique identity and
function of each cell type remain unknown. Here we probe the accessible chromatinin
more than 800,000 individual nuclei from 45 regions that span the adult mouse
isocortex, olfactory bulb, hippocampus and cerebral nuclei, and use the resulting
datato map the state 0of 491,818 candidate cis-regulatory DNA elements in 160 distinct
celltypes. We find high specificity of spatial distribution for not only excitatory
neurons, but also most classes of inhibitory neurons and a subset of glial cell types. We
characterize the gene regulatory sequences associated with the regional specificity
within these cell types. We further link a considerable fraction of the cis-regulatory
elements to putative target genes expressed in diverse cerebral cell types and predict
transcriptional regulators that are involved in a broad spectrum of molecular and
cellular pathways in different neuronal and glial cell populations. Our results provide a
foundation for comprehensive analysis of gene regulatory programs of the
mammalian brain and assist in the interpretation of noncoding risk variants
associated with various neurological diseases and traits in humans.

The cerebral cortex and cerebral nuclei or basal ganglia in adult mice
are made up of tens of millions of neurons and glial cells®. The neurons
are classified into many different types of excitatory projection neurons
and inhibitory interneurons, defined by their distinct morphology,
neurotransmitters, and synaptic connections'® 2, The glial cells include
astrocytes, oligodendrocytes, oligodendrocyte precursor cells, micro-
glia and other less abundant non-neuronal cell types. Understanding
how the identity and function of each neural cell type is established
during development and modified by experience is one of the funda-
mental challengesin brain research. Despite recent advances in analysis
of gene expression patterns using single-cell transcriptomics and spa-
tial transcriptomics assays>®, we still lack comprehensive maps of the
transcriptional regulatory elements in each cell type. Transcriptional
regulatory elementsrecruit DNA-binding transcription factors to exert
control of target gene expressionin cisin a cell-type-dependent man-
ner™, Activation of these elementsis accompanied by open chromatin,

specific histone modifications and DNA hypomethylation™*. To exploit
these epigenetic features, candidate cis-regulatory elements (CCREs)
have been mapped by techniques such as DNase  hypersensitive sites
sequencing (DNase-seq), assay for transposase-accessible chromatin
using sequencing (ATAC-seq), chromatin immunoprecipitation fol-
lowed by sequencing (ChIP-seq) and whole-genome bisulfite sequenc-
ing"'. Conventional assays performed using bulk tissue samples are
unable to resolve the cCREs in individual neural cell types owing to
the extreme cellular heterogeneity of the brain. To overcome this
limitation, single-cell genomic technologies have been developed to
enable detection of open chromatin in individual cells”* and iden-
tify cell-type-specific transcriptional regulatory sequences in several
mouse brain regions'**%,

Aspart ofthe BRAIN Initiative Cell Census Network (BICCN), we per-
formed single-nucleus (sn)ATAC-seq assays using single-cell combi-
natorial indexing (sci)ATAC-seq"* for more than 800,000 cells from
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45 dissected regionsin the adult mouse brain to produce comprehen-
sive maps of cCREs in distinct cerebral cell types. We also integrated
the chromatin accessibility data with brain single-cell RNA sequenc-
ing (scRNA-seq) data to characterize the gene regulatory programs
of different brain cell types, and used the cCREs to interpret genetic
risk variants that are associated with neurological diseases and traits.

snATAC-seq analysis of mouse brain cells

We dissected 45 brainregions fromtheisocortex, olfactory bulb (OLF),
hippocampus (HIP) and cerebral nuclei (including the striatum and
pallidum) in 8-week-old male mice (Fig. 1a, Extended Data Fig. 1, Sup-
plementary Table 1). Each dissection was made from 600-pum-thick
coronal brain slices starting at the frontal pole according to the Allen
Brain Reference Atlas?® (Extended DataFig.1). For each region, we per-
formed snATAC-seqwithtwo independent biological replicates (Fig. 1a,
Extended DataFig.2a-f). Atotal of 813,799 nuclei with amedian number
of 4,929 fragments per nucleus passed rigorous quality control meas-
ures (Supplementary Table 2, Extended Data Fig. 2g-k, Supplementary
Note, Methods). Among them, 381,471 nuclei were from the isocortex,
123,434 were fromthe olfactory area, 147,338 were from cerebral nuclei
and 161,556 were from the hippocampus (Fig.1a, Extended Data Fig. 2I).

We performed iterative clustering with the software package SnapA-
TAC*and classified the 813,799 nucleiinto distinct cell groups (Fig.1b-e,
Extended Data Figs. 3-5, Supplementary Tables 2, 3, Supplementary
Note, Methods). First, we classified the cells into glutamatergic neurons
(387,060 nuclei, 47.6%), GABAergic (y-aminobutyric acid-producing)
neurons (167,181 nuclei, 20.5%) and non-neuronal cells (259,588 nuclei,
31.9%) (Fig.1b—d). Next, the three cell classes were further divided into
43 subclasses (also referred to as major types in the accompanying
paper?) (Fig. 1b, d) and annotated these on the basis of chromatin
accessibility at promoters and the gene bodies of at least three marker
genes of known neural cell types®* (Fig. 1e, Extended Data Fig. 6, Sup-
plementary Table 4). Finally, we performed another round of cluster-
ing for each subclass and identified a total of 160 cell types at optimal
resolutions (alsoreferred to as subtypesin the accompanying paper®)
(Extended DataFigs. 3b-g, 7, Supplementary Table 3, Supplementary
Note, Methods). For example, Lamp5* neurons (LAMGA) and Sst* neu-
rons (SSTGA)*® were further divided into several cell types, including
achandelier-like cell type* and the Chodl cell type® (Fig. 1b, e). Nota-
bly, the detected clusters and cell type proportions from snATAC-seq
were comparable between the combinatorial barcoding (sci) and the
droplet-based 10x Genomics platform?® (Extended Data Fig. 8, Sup-
plementary Note).

We constructed a dendrogram to capture the hierarchical organi-
zation of chromatin landscapes among the 43 subclasses (Fig. 1d,
Extended Data Fig. 9). This dendrogram shows known organizing
principles of mammalian brain cells: the non-neuronal class is sepa-
rated from the neuronal class, which is further separated on the basis
of the neurotransmitter types (GABAergic versus glutamatergic) and
developmental origins* (Fig. 1d). These chromatin-defined cell types
matched well with the taxonomy based on transcriptomes? and DNA
methylomes® (Extended Data Fig. 10, Supplementary Note, Supple-
mentary Table 5).

Regional specificity of brain cell types

Taking advantage of our high-resolutionbrain dissections, we examined
theregional specificity of each brain cell type (Extended Data Figs. 11,
12). We calculated a regional specificity score for each subclass and
cell type based on the contribution from different brain regions and
showed that this score is highly consistent between biological repli-
cates (Fig. 1f, g, Extended Data Fig. 12d, Methods). Overall, we found
good agreement between the regional specificity of most neuronal cell
types defined using snATAC-seq datasets and the normalized in situ
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hybridization (ISH) signals of marker genes in each cell type (Extended
Data Fig. 13, Supplementary Table 6, Methods). As expected, most
glial cell types were ubiquitously distributed throughout the different
brain dissections and showed very low regional specificity (Fig. 1f),
except for neuronal intermediate progenitor cells (NIPCs) and radial
glia-like cells in the dentate gyrus or subventricular zone (labelled as
subclass RGL in Fig. 1f). In contrast to the glial cell types, most GABAe-
rgic and glutamatergic neurons showed notable regional specificity
(Fig. 1f, g). We found a marked separation on the basis of brain sub-
regions for distinct neuron types such as granule cells in the dentate
gyrus and matrix D1 neurons (MXD) in the pallidum. Glutamatergic
neurons showed slightly higher regional specificity than GABAergic
neurons, consistent with previous single-cell transcriptomic analysis*
(Fig. 1g, bottom). We also observed distinct types of Pvalb* neuron
(PVGA), intra-telencephalic-projection neuron, and hippocampal
cornu ammonis (CA1) neuron (CAIGL) that were highly restricted to
individual brain regions or dissections (Extended Data Fig. 14, Sup-
plementary Note).

Mapping of cCREs in mouse brain cells

To delineate the generegulatory programs that underlie the identity
and function of each brain cell type, we next identified cCREs in each
ofthe 160 brain cell types from the accessible chromatin landscapes.
To account for different sequencing depth and/or the number of nuclei
inindividual clusters, we identified reproducible peaks based on a
corrected integer score calculated by model-based analysis of ChIP-
seq data (MACS2)*° (Extended Data Fig. 15a-c, Supplementary Note,
Methods). We further selected the elements that were determined
as open chromatin regions in a significant fraction of cells in each
subtype (false discovery rate (FDR) < 0.01, zero-inflated beta model)
(Extended Data Fig. 15d, Supplementary Note, Methods), resulting
inaunion of 491,818 open chromatin regions. These cCREs together
made up 14.8% of the mouse genome (Supplementary Tables 7, 8). Of
these cCREs, 96.3% were located at least 1 kb away from annotated
promoter regions of protein-coding and long noncoding RNA genes
(Fig. 2a, Extended Data Fig. 15e). Several lines of evidence support
the authenticity of the identified cCREs. First, they strongly (70.1%)
overlapped with the DNase hypersensitive sites (DHSs) that were
previously mapped in a broad spectrum of bulk mouse tissues and
developmental stages™ (Fig. 2b, Extended Data Fig. 15f). Second, they
generally showed higher levels of sequence conservation than random
shuffled genomic regions with similar GC content (Fig. 2c, Extended
DataFig.15g). Third, they were enriched for active chromatin states or
potential insulator protein-binding sites that were previously mapped
by bulk analysis of mouse brain tissues® (Fig. 2d, Extended Data
Fig. 15h).

To define the cell type specificity of the cCREs, we first plotted the
median levels of chromatin accessibility against the range of variation
foreachelement (Fig.2e). We found that most cCREs exhibited highly
variable chromatin accessibility across the brain cell types identified,
except for 8,188 regions that showed accessible chromatin in almost
all cell clusters (Fig. 2e). The invariant cCREs were highly enriched
for promoters (81%), with the remainder including CCCTC-binding
factor (CTCF)-binding sites (9%) and strong enhancers (Fig. 2f). To
characterize the cell type specificity of the cCREs more explicitly, we
used non-negative matrix factorization to group them into 42 mod-
ules, with elements in each module sharing similar cell type speci-
ficity profiles. Aside from the first module (M1) that included mostly
cell type invariant cCREs, the remaining 41 modules showed high
cell-type-restricted accessibility (Fig. 2g, Supplementary Tables 9,
10). These cell-type-restricted modules were enriched for distinct sets
of motifsrecognized by known transcriptional regulators (Supplemen-
tary Table11), laying a foundation for investigating the gene regulatory
programs in different brain cell types and regions.
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Differential chromatin states at cCREs

Because most neuronal types showed highly restricted distributionin
the mouse cerebral cortex and basal ganglia, we hypothesized that the
regional specificity of different cell types is accompanied by differences
in chromatin accessibility at the cCREs, which drive cell-specific gene
expression patterns. We performed integrative analysis to delineate
these differentially accessible cCREs among different neuronal and glial
celltypes. We compared the open chromatin landscapes among differ-
ent cell types using a likelihood ratio test (Methods), and identified a
median number of 11,683 cCREs that exhibited differential accessibil-
ity (range: 360-31,608) (Extended Data Fig.16a, b). We characterized
the most diverse GABAergic neuron types inthe medial septal nucleus
(MSGA) (Extended DataFig.17, Supplementary Table 12, Supplementary
Note). For SSTGA, we detected a total of 50,079 cCREs, 98% of which
were promoter distal, that exhibited cell-type-restricted accessibility
withinthe subclass (Figs.1,3a, b, Extended DataFig. 17a-c, Supplemen-
tary Table 13). We found a strong motif enrichment of the zinc-finger
transcription factor family KLF in cCREs in SSTGA10 cells (also known
as Sst-Chodl cells) compared with other SST neurons (Fig. 3¢c). This
observation, coupled with the finding that KIf5, amember of the KLF
family, was expressed in Chodl cells, implicates KLF5 in the transcrip-
tional control of Chodl cells (Fig. 3d).

Wealsoidentified three astrocyte cell types and performed differen-
tial chromatin accessibility analysis for cCREs between these (Fig. 3e,
Extended Data Fig. 18a). Two cell types were predominantly found in
the cortex and hippocampus, whereas the third cell type (ASCN) was
detected mostly inthe pallidum and lateral septum complex®* (Fig. 3f).
The cortical or hippocampal astrocyte cell types resembled previously
defined fibrous astrocytes in white matter (ASCW) and protoplasmic
astrocytes in grey matter (ASCG)>* (Extended Data Fig. 18b-d). Con-
sistent with the previous findings that astrocytes were organized into
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distinct lineage-associated laminae®, we detected a spatial gradient
in ASCG based on chromatin accessibility at several gene lociin ASCG
(Extended DataFig.18e). We further performed motif analysis for dif-
ferentially accessible regionsinthe ASCN cell type, finding enrichment
of the binding motif for the GLI family of zinc-finger transcription fac-
tors (Fig.3g, h, Extended Data Fig. 18f, Supplementary Table 14), which
mediate the sonic hedgehog (Shh) signalling pathway that maintains
neural stem-cell and astrocyte functions®. Notably, we found a cCRE
that contained the GLI motif upstream of the Olig2 promoter. This is
consistent with a potential role for Shh signalling in regulating Olig2
expression (Fig. 3i, Extended Data Fig. 18g, h) in OLIG2-lineage-derived
mature astrocytes in the globus pallidus®*. We found that a high frac-
tion of genes specific to OLIG2-lineage astrocytes were predominantly
expressed in the pallidum (Fig. 3j). For example, Itih3, Slc6all** and
Agtwere predominantly expressed in the pallidum, and cCREs at the
gene locus were specifically accessible in ASCNs (Fig. 3k, I, Extended
Data Fig. 18h-j). We also found enrichment of distinct transcription
factor motifs from regional-specific cCREs in ASCGs sampled from
different brainregions (Extended DataFig.18k, I, Supplementary Note,
Supplementary Table 15).

Integrative analysis of gene regulation

Toinvestigate the transcriptional regulatory programs that are respon-
sible for cell-type-specific gene expression patterns in the mouse cere-
brum, we carried out integrative analysis that combines the snATAC-seq
datacollectedinthe current study with previously published scRNA-seq
data from matched brain regions?. We first connected 261,204 distal
cCREsto12,722 putative target genes by measuring the co-accessibility
using Cicero®* (Fig. 4a, Methods). This analysis identified a total of
813,638 gene-cCRE pairs within 500 kb of each other (Supplementary
Table16). Next, weidentified the subset of cCREs that mightincrease the
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Fig.3|Regional specificity of cell types correlates with chromatin
accessibility at cCREs.aUMAP*® embedding of SSTGA cell types.

b, Normalized chromatin accessibility of 50,079 cell-type-specific cCREs.

¢, Motifenrichmentanalysis for cell-type-specific cCREs. d, Expression level
of genes encoding members of the KLF transcription factor family in SSTGA10.
Expression values of Sst-Chodl cells were extracted from the Allen Brain Atlas
(atlas.brain-map.org)**. e, UMAP*® embedding of astrocyte cell types.

f, Contribution of brainregionsto each astrocyte celltype. CNU, cerebral
nuclei; OLF, olfactory area; HPF, hippocampus. g, Normalized accessibility
ofastrocyte cell-type-specific cCREs. h, Motif enrichmentinastrocyte
cell-type-specific cCCREs. Hox, homeobox; HTH, helix-turn-helix; Zf,
zinc-finger. i, Genome browser view®® showing ASCN-specific cCREs at the
Olig2locus. j, Heat map showing the fraction of overlap between spatially
mapped genes fromISHin different brain structures and genes specific to
astrocyte celltypes.***P<0.0001, Fisher’s exact test. k, Bar plot showing
log,-transformed expression value of /tih3in each brain region from ISH
experiments. CTXsp, cortical subplate. Images downloaded from © 2004 Allen
Institute for Brain Science. Allen Mouse Brain Atlas. Available from: atlas.
brain-map.org.l, Views of ISH experiment from the Allen Brain Atlas, showing
spatial expression of /tih3in the pallidum.

expression of putative target genes and therefore function as putative
enhancersinneuronal or non-neuronal types. To this end, we firstiden-
tified distal cCREs for which chromatin accessibility was correlated with
transcriptional variation of the linked genes in the RNA-ATAC joint cell
clustersas defined above (Fig.4a, b, Extended Data Fig. 10). This analysis
revealed atotal 0f 129,404 pairs of positively correlated cCRE (putative
enhancers) and genes at an empirically defined significance threshold
of FDR<0.01 (Supplementary Table 16). These included 86,850 putative
enhancers and 10,604 genes (Fig. 4b, Extended Data Fig. 19, Supple-
mentary Note). To investigate how the putative enhancers may direct
cell-type-specific gene expression, we further classified them into 38
modules, by applying non-negative matrix factorization to the matrix
of normalized chromatin accessibility across the RNA-ATAC joint cell
clusters (Supplementary Table17). The putative enhancersin each mod-
ule had asimilar pattern of chromatin accessibility across cell clusters
tothe expression of putative target genes (Fig. 4c¢, Supplementary Table

18). This analysis revealed a large group of 12,740 putative enhancers
thatwere linked to 6,373 genes expressed at a higher level in all neuronal
cell clusters than in all non-neuronal cell types (module M1) (Fig. 4c).
It also uncovered modules of enhancer-gene pairs that were activein
amore restricted manner (modules M2-M38) (Fig. 4c, Extended Data
Fig.19, Supplementary Tables 19, 20, Supplementary Note).

Genes associated with module M1 are preferentially expressed in
both glutamatergic and GABAergic neurons, but notin glial cell types
(Fig.4c).De novo motifenrichment analysis of the 12,740 cCREs or puta-
tive enhancersin this module showed strong enrichment of sequence
motifs recognized by the transcription factors CTCF, RFX and MEF2
(Supplementary Table 21, Extended Data Fig. 19d), as well as many
known motifs for other transcription factors (Fig. 4d, Supplementary
Table 20). CTCF isaubiquitously expressed DNA-binding protein with
awell-established role in transcriptional insulation and chromatin
organization®. CTCF has also been shown to promote neurogenesis by
bindingto promotersand enhancers of the proto-cadherin alphagene
cluster and facilitating enhancer-promoter contacts***!, We found
putative enhancers with one or more CTCF-binding motif's linked to
2,601genes that were broadly expressedinbothinhibitory and excita-
tory neurons (Fig. 4d, Extended Data Fig. 19e), the gene products of
whichareinvolvedinseveral neural processesincluding axon guidance
and synaptic transmission (Extended Data Figs. 19f, 20, Supplementary
Tables 22,23, Supplementary Note).

Neurogenesis in the adult mouse brain

Neurogenesis in the adult mouse brain is spatially restricted to the
subgranularzone (SGZ) inthe dentate gyrus of the hippocampus where
excitatory neurons are generated, and the subventricular zone (SVZ) of
the lateral ventricles that give rise to GABAergic neurons*. The NIPCs
that are involved in adult neurogenesis*>** could be identified as the
cells lined up in trajectories between radial glia-like cells and neuro-
blastsinbothbrainregions (Fig.4e) and their presencein the respective
dissections was supported by ISH data from the Allen Brain Atlas* for
several marker genes (Extended Data Fig.21a,b). We predicted poten-
tial transcription factors that contribute to NIPCs as well as other cell
types by integrating RNA expression and motif enrichment analysis
using the Taiji pipeline* (Fig. 4f, Supplementary Table 24, Methods).
Consistent with previous reports, NR2E1 was predicted to be amaster
regulator in both NIPC populations*¢,and SOX2 was aregulator of the
NIPCs from the SGZ*?, whereas E2F1 contributed to NIPCs from the
SVZ*. Although chromatin landscapesin the NIPCs from both regions
were very similar (Fig. 4g), we identified 200 differentially accessible
regionsinthe NIPC populationbetween the SGZ and the SVZ (Fig. 4h).
Several cCREs at Neurog2, which encodes a protein that is crucial for
glutamatergic granule neuron specification in the SGZ, were found
to beaccessible selectively in the SGZ but not in the SVZ* (Fig. 4i). By
contrast, several cCREs with chromatin accessibility in SVZNIPCs were
located at the DIx2locus—agene thatisimportant for the specification
of GABAergic neurons***¢ (Extended DataFig. 21c). Anactive enhancer
previously validated by mouse transgenics*® was predicted to target
the nearby Trappc9 gene, which encodes a protein that is involved
in nerve growth factor-induced neuronal differentiation* (Fig. 4i, j).
These observations suggest that NIPCs in the SGZ and SVZ give rise to
distinct neuronal cell types by engaging different cCREs involved in
controlling region-specific gene expression of key regulator genes.

Interpreting noncoding risk variants

Genome-wide association studies (GWASs) have identified genetic vari-
antsthatareassociated with many neurological diseases and traits (Sup-
plementary Table 25), butinterpreting the results hasbeen challenging
because most variants are located in noncoding parts of the genome
that often lack functional annotations®. To test whether our maps of

Nature | Vol 598 | 7 October 2021 | 133



Article

(]

a Identify co-accessible

cCREs from snATAC-seq

Chromatin accessibility
of distal cCREs

putative target genes

RNA expression of 235 TF motifs

Ce‘ll type 1 r GABAergic neurons Non-neurons Glutamatergic neurons
Cell type 2

i L
Cell type 3

, r
Cell type N il M1

Compute PCC between cCRE
and gene expression

NeuroD1(bHLH)
ATOH1 (oHLH)
Lhx1(Homeobox)
NEUROG2(bHLH)
FOXA1(Forkhead)
SIX2(Homeobox)

NF1(CTF)
“TCF-NANOG

BRN1(POU)
PITX1:Ebox

W\ (Homeobox,bHLH)
Sox10(HMG)
EOMES(T-box)
CEBP(bZIP)
P73(P53)

OCT4-SOX2
PU.1(ETS)

g

[}
o
=3
8
Zz £ -] I
% u;_l il
0
143 o VI R ] N I
g Q Ml W (i I
© —
o = 1 (1] 1wl |
& 2 = LT e £
9 H 5 2
b RNA expression § = n ||| I | =
= > =
: i i - 1 AR
128 2 -
(et} o I
>2 ] = E [ (BRI TN | | IHII MI |
= o® [e] i
2 T 2 I I \
g g5 8
oy ] i m [ |
- wm |I | | i I
- = I M38
log,(CPM) O 16 log,(UMI), z-score —2 ]2 -log, (P value) 10[___>100
e f
SGZ Candidate driver TFs in adult neurogenesis at SGZ
RGDG uE--EN----- M| PageRank (z-score)
oo 2
1 : : =TT ] RNA expression/
1 gene activity,
ss-mus@EnE [TT 1 g, CPM)
‘—'—'c\_4v—‘-mv—NNw(_')xﬁwzw—rv—o‘—NvNoNNm‘—‘qw
£x23%53 22 Za SIUSSEZTERY m75m100
o w
P4

Candidate driver TFs in adult neurogenesis at SVZ

RGSZ
NIPC

OBNBL
OBGA1

CREB3L2

h i chr3:127,618,559-127,664,664 i
° NIPC (SV2) VISTA [mm1679]
Oll'li PRI R i . forebrain
a NIPC (SG2) o " (4/5 embryos)
o N =
% Q>), S~ - //’/
% o Pos. corr
o
sz
= il
§ Gene Neurog2 o]
Gotoured by rogion § o chr15:72,987,685-73,096,692 %
-« <
o 5§ NIPC (5V2) . L L
2 < NIPC 3
N (se2) — y | 2 ks
5% L % g
o Pos. corr T
o
E P4
L -
: 4 . Gene Trappc9 Chrac1
UMAP 2 l0g,(CPM)
[l cnu [ ouF [l HPF 0 I 6

Fig. 4 |Integrative analysis of gene regulatory programsindifferent
cerebral cell types. a, Schematic overview of the computational strategy used
toidentify cCREs thatare positively correlated with transcription of target
genes. b, Intotal, 129,404 pairs of positively correlated cCRE and genes
(highlightedinred) were identified (FDR < 0.01). Grey filled curve shows
distribution of Pearson’s correlation coefficient (PCC) for randomly shuffled
cCRE-gene pairs. ¢, Heat map showing chromatin accessibility of putative
enhancers (left) and expression of linked genes (right). Genes are shown for
each putative enhancer separately. UMI, unique molecular identifier.
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shown. e, UMAP*® embedding of cell types involved in adult neurogenesis at the
SGZ (top) and SVZ (bottom).f, Predicted transcription factorsin different cell
typesinvolvedinneurogenesisin the SGZ and SVZ.g, UMAP* embedding of
NIPCs and radial glia-like cells coloured by cell type (top) and brain region
(bottom). h, Heat map showing the differential cCREs of NIPCs between the
SGZ and SVZ.i, Genome browser tracks®® showing representative differential
cCREs of NIPCsinthe SGZ (top) and SVZ (bottom). j, Representative images of
transgenic mouse embryos showing LacZ reporter gene expression under the
control of theindicated enhancers that overlapped the differential cCREini
(dottedline). Images were downloaded from the VISTA database (https://
enhancer.lbl.gov)*s.
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Fig.5|Human orthologues of cerebral cCREs are enriched for noncoding
risk variants for neurological diseases and traitsinacell-type-restricted
manner. Heat map showing the results of linkage disequilibrium score
regression®?analysis of the noncoding variants associated with the indicated
traits or diseases in the human orthologues of cCREs identified from 43

cCREs in different mouse brain cell types could assist the interpreta-
tion of noncoding risk variants of neurological diseases, we identified
orthologues of the mouse cCREs in the human genome by performing
reciprocal homology searches® (Methods). For this analysis, we found
that for 69.2% of the mouse brain cCREs, human genome sequences
with high similarity could be identified (more than 50% of bases lifted
over to the human genome) (Extended Data Fig. 22a). Supporting the
function of these human orthologues of the mouse brain cCREs, 83.0%
of them overlapped with representative DNase hypersensitivity sites
inthe human genome™,

We performed linkage disequilibrium score regression® analysis and
found significant associations between 20 neurological traits (Sup-
plementary Table 25) and the open chromatin landscapes in one or
more subclasses of the brain cells we identified (Fig. 5, Methods, Sup-
plementary Note). In particular, we observed widespread and strong
enrichment of genetic variants linked to psychiatric and cognitive traits
such as major depressive disorder, bipolar disorder and schizophre-
nia (SCZ) within accessible cCREs across various neuronal cell types
(Fig. 5). Other neurological traits—such as attention deficit hyperac-
tivity disorder and autism spectrum disorder—were associated with
specific neuronal cell types in cerebral nuclei and the hippocampus
(Fig.5).Risk variants for schizophrenia were not only enriched in cCREs
inallexcitatory neurons, butalso enriched in certain inhibitory neuron
cell types®® (Fig. 5). We also found that more than 25% of homologous
sequences of SCZ causal variants reside in the mouse cCREs defined in
thisstudy (Extended DataFig.22b, Supplementary Note). The strong-
estenrichment of heritability for bipolar disorder was found in cCREs
that mapped in the excitatory neurons fromtheisocortex (Fig. 5). Risk
variants of tobacco use disorder showed significant enrichmentin the
celltypes fromthe striatum—acerebral nucleus previously implicated
inaddiction®* (Fig. 5).

Understanding the cellular and molecular basis of brain circuitsis one
of the grand challenges of the twenty-first century®*. In-depth knowl-
edge ofthe transcriptional regulatory programin brain cells would not
only improve our understanding of the molecular inner workings of
neurons and non-neuronal cells, but could also shed light on the patho-
genesis of a spectrum of neuropsychiatric diseases”. Here, we report
a comprehensive profiling of chromatin accessibility at single-cell

£ | Allergy
| Crohn’s disease

subclasses of mouse cerebral cell. *FDR < 0.05, **FDR < 0.01, ***FDR < 0.001.
Displayed are all the 43 subclasses and traits or diseases with atleast one

significant association by linkage disequilibrium score regression analysis
(FDR<0.05).

resolutioninthe mouse cerebrum. The chromatin accessibility maps of
491,818 cCREs, probed in 813,799 nucleiand 160 cell types, span several
cerebral cortical areas and subcortical structures. Taking advantage of
our high-resolution brain dissections, we examined the regional speci-
ficity in chromatinaccessibility of cell typesin the mouse cerebrum and
showed that most brain cell types exhibit strong regional specificity.
The described cCRE atlas (http://catlas.org/mousebrain) represents
arichresource for the neuroscience community to understand the
molecular patterns that underlie diversification of brain cell types in
complementation to other molecular and anatomical data.
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Methods

Tissue preparation and nucleiisolation

Allexperimental procedures using live animals were approved by the
SALK Institute Animal Care and Use Committee under protocol number
18-00006. Adult C57BL/6) male mice were purchased from Jackson
Laboratories. Brains were extracted from 56-63-day-old mice and
sectioned into 600-pum coronal sections along the anterior-posterior
axis in ice-cold dissection media®*, by using a brain slicer from CNS
musSlice LLC. Specific brain regions were dissected according to the
Allen Brain Reference Atlas®® (Extended Data Fig. 1) and nuclei isolated
as previously described®. Regions were pooled from 3-31 of the same
sex to obtain enough nucleifor snATAC-seq for each biological replica,
and two biological replicas were processed for each dissection region.

SnATAC-seq using combinatorial indexing

SnATAC-seqwas performed as described with steps optimized for auto-
mation®?, Astep-by-step-protocolfor library preparationisavailableat:
https://www.protocols.io/view/sequencing-open-chromatin-of-single-
cell-nuclei-sn-pjudknw/abstract.

Brainnuclei were pelleted with a swinging bucket centrifuge (500g,
5min, 4 °C; 5920R, Eppendorf). Nuclei pellets were resuspended in
1 ml nuclei permeabilization buffer (5% BSA, 0.2% IGEPAL-CA630,
1mMDTT and cOmpleteTM, EDTA-free protease inhibitor cocktail
(Roche) in PBS) and pelleted again (500g, 5 min, 4 °C; 5920R, Eppen-
dorf). Nucleiwere resuspended in 500 pl high-salt tagmentation buffer
(36.3 mM Tris-acetate (pH 7.8), 72.6 mM potassium-acetate, 11 mM
Mg-acetate, 17.6% dimethylformamide) and counted using a haemo-
cytometer. Concentration was adjusted to 1,000-4,500 nuclei per
9ul,and1,000-4,500 nuclei were dispensed into each well of a 96-well
plate. For tagmentation, 1 pl barcoded Tn5 transposomes® were added
using a BenchSmart 96 (Mettler Toledo, RRID:SCR_018093) (Supple-
mentary Table 26), mixed five times, and incubated for 60 minat 37 °C
with shaking (500 rpm). To inhibit the Tn5 reaction, 10 pl of 40 mM
EDTA was added to each well with a BenchSmart 96 (Mettler Toledo,
RRID:SCR_018093) and the plate wasincubated at 37 °C for 15 min with
shaking (500 rpm). Next, 20 pl 2x sort buffer (2% BSA,2mM EDTA in PBS)
wereadded usingaBenchSmart 96 (Mettler Toledo, RRID:SCR_018093).
Allwells were combinedinto a FACS tube and stained with3 uM Draq7
(CellSignaling) (Extended DataFig. 23). UsingaSH800 (Sony), 20 nuclei
were sorted per wellinto eight 96-well plates (total of 768 wells, 30,720
nucleitotal, 15,360 nuclei per sample) containing 10.5 pl EB (25 pmol
primer i7, 25 pmol primer i5, 200 ng BSA (Sigma). If processing two
samples per day, tagmentation was performed with different sets of
barcodes in separate 96 well plates. After tagmentation nuclei from
individual plates were pooled together. Preparation of sort plates and
all downstream pipetting steps were performed on a Biomek i7 Auto-
mated Workstation (Beckman Coulter, RRID:SCR_018094). After the
additionof 110.2% SDS, samples were incubated at 55 °C for 7 minwith
shaking (500 rpm). Then, 1pu112.5% Triton X-100 was added to each well
to quench theSDS. Next,12.5 il NEBNext High-Fidelity 2 x PCR Master
Mix (NEB) were added and samples were amplified by PCR (72 °C 5min,
98°C30s5,(98°C105s,63°C30s,72°C60s) x12cycles, heldat12 °C).
After PCR, all wells were combined. Libraries were purified according
to the MinElute PCR Purification Kit manual (Qiagen) using avacuum
manifold (QIAvac 24 plus, Qiagen) and size selection was performed
with SPRI Beads (Beckmann Coulter, 0.55x and 1.5x). Libraries were
purified one more time with SPRI Beads (Beckmann Coulter, 1.5x).
Libraries were quantified using a Qubit fluorimeter (Life Technologies,
RRID:SCR_018095) and the nucleosomal pattern was verified using a
Tapestation (High Sensitivity D1000, Agilent). Libraries generated
with indexing version 1 (Supplementary Table 1) were sequenced on
a HiSeq2500 sequencer (RRID:SCR_016383, lllumina) using custom
sequencing primers, 25% spike-in library and following read lengths:
50 +43+37+50 (Readl +Index1+Index2 +Read2). Libraries generated

with indexing version 2 (Supplementary Table 1) were sequenced on
aHiSeq4000 (RRID:SCR_016386, lllumina) using custom sequencing
primers with following read lengths: 50 + 10 +12 + 50 (Readl + Inde
x1+Index2 + Read2). Indexing primers and sequencing primers are
inSupplementary Table 26. The nucleiindexing version (vl orv2) used
for eachlibrary isindicated in Supplementary Table 26.

Nucleiindexing scheme

Togenerate snATAC-seq libraries we used initially anindexing scheme
as previously described (version 1)**%, Here, 16 p5 and 24 p7 indexes
were combined to generate an array of 384 indexes for tagmentation
and 16 i5 as well as 48 i7 indexes were combined for an array of 768
PCRindexes. Owing to this library design, it is required to sequence
all four indexes to assign a read to a specific nucleus with long reads
and a constant base sequence for both indices reads betweeniand p
barcodes. Therefore, the resulting libraries were sequenced with 25%
spike-in library on a HiSeq2500 (RRID:SCR_016383) and these read
lengths: 50 +43 +37+50 (ref. %).

To generate libraries compatible with other sequencers and not
requiring spike-inlibraries or custom sequencing recipes, we modified
thelibrary scheme (Version2). For this, we used 384 individual indices
for T7 and combined with one T5withauniversalindex sequence for tag-
mentation (for atotal of 384 tagmentationindexes). For PCR, we used
768 differenti5indexes and combined with a universali7 primerindex
sequence. Tagmentation indexes were 10 bp and PCR indexes 12-bp
long. We made sure, that the hamming distance between every two
barcodeswas >4, the GC content between 37.5-62.5%, and the number
of repeats<3.Theresulting libraries were sequenced onaHiSeq4000
with custom primers and these read lengths: 50 +10 +12 + 50 (Sup-
plementary Table 26).

SsnATAC-seq data using the 10x Chromium platform

Brain nuclei were pelleted with a swinging bucket centrifuge (500g,
5min, 4 °C; 5920R, Eppendorf). Nuclei pellets were resuspended in
1mlnuclei permeabilization buffer (5% BSA, 0.2% IGEPAL-CA630,1mM
DTT and cOmpleteTM, EDTA-free protease inhibitor cocktail (Roche)
in PBS). Nuclei were pelleted again (500g, 5 min, 4 °C; 5920R, Eppen-
dorf) and washed with wash buffer (10 mM Tris-HCI (pH 7.5), 10mM
NacCl, 3 mM MgCl,, 0.1% Tween-20, and 1% BSA (Proliant 7500804) in
molecular biology-grade water). Nuclei were pelleted (500g, 5 min,
4°C; 5920R, Eppendorf) and resuspended in 30 pl of 1x nuclei Buffer
(10x Genomics). Nuclei were counted using a haemocytometer, and
15,360 nuclei were used for tagmentation. Single-cell ATAC-seq librar-
ieswere generated using the Chromium Single Cell ATAC Library & Gel
Bead Kit (10x Genomics,1000110), Chromium Chip E Single Cell ATAC
kit (10x Genomics, 1000155) and Chromium i7 Multiplex Kit N, Set A
(10x Genomics,1000084) following manufacturer instructions. Final
libraries were quantified using a Qubit fluorimeter (Life Technologies)
and the nucleosomal pattern was verified using a Tapestation (High
Sensitivity D1000, Agilent). Libraries were sequenced on NextSeq 500
and NovaSeq 6000 sequencers (Illumina) with following read lengths:
50 +8+16 + 50 (Read1 + Index1 + Index2 + Read2). After demultiplex-
ing, the Index2 (cellindex) was transferred to the read name, in order
to keep the same fastq format for downstream processing.

Processing and alignment of sequencing reads

Paired-end sequencing reads were demultiplexed and the cell index
transferred to the read name. Sequencing reads were aligned to mm10
reference genome using bwa®*. After alignment, we used the R pack-
age ATACseqQC (1.10.2)% to check for fragment length contribution
which is characteristic for ATAC-seq libraries. Next, we combined the
sequencing reads to fragments, and for each fragment we performed
the following quality control: (1) keep only fragments quality score
MAPQ > 30; (2) keep only the properly paired fragments with length
<1,000 bp; (3) PCR duplicates were further removed with SnapTools
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(https://github.com/r3fang/SnapTools, RRID:SCR_018097)*. Reads
were sorted on the basis of the cell barcode in the read name.

TSS enrichment calculation

Enrichment of ATAC-seq accessibility at TSSs was used to quantify
data quality without the need for a defined peak set. The method
for calculating enrichment at TSS was adapted from previously
described. TSS positions were obtained from the GENCODE database
v16 (RRID:SCR_014966)%*. In brief, Tn5 corrected insertions (reads
aligned to the positive strand were shifted +4 bp and reads aligned to
the negative strand were shifted -5 bp) were aggregated + 2,000 bp
relative (TSS strand-corrected) to each unique TSS genome-wide. Then
this profile was normalized to the mean accessibility +1,900-2,000 bp
from the TSS and smoothed every 11 bp. The max of the smoothed
profile was taken as the TSS enrichment.

Doublet removal

We used amodified version of Scrublet (RRID:SCR_018098)% to remove
potential doublets for every datasetindependently. Peaks were called
using MACS2 scores for aggregate accessibility profileson each sample.
Next, cell-by-peak count matrices were calculated and used as input,
with default parameters. Doublet scores were calculated for both
observed nuclei {x;} and simulated doublets {y;} using Scrublet
(RRID:SCR_018098)%. Next, a threshold fis selected based on the dis-
tribution of {y;}, and observed nuclei with doublet score larger than 6
are predicted as doublets. To determine 6, we fit a two-component
mixture distribution by using function normalmixEM from R package
mixtools®. The lower component contained most embedded doublet
types, and the other component contained majority of neo-typic dou-
blets (collision between nuclei from different clusters. We selected the
threshold 8 where the p,-pdf(x, p, o) =p, - pdf(x, u,,0,) in whichp
denotes probability; pdf denotes probability density function. This
value suggested that the nuclei have same chance of belonging toboth
classes.

Cell clustering
We used an iterative clustering strategy using the snapATAC?® pack-
age (RRID:SCR_018097) with slight modifications as detailed below.
For round 1 clustering, we clustered and finally merged single nuclei
to three main cell classes: non-neurons, GABAergic neurons, and
glutamatergic neurons. For each main cell class, we performed
another round of clustering to identify major cell subclasses. Last,
for each subclass, we performed a third round of clustering to find cell
types.

Detailed description for every step is as follows. (1) Nuclei filtering.
Nuclei with 1,000 uniquely mapped fragments and TSS enrichment
>10 were filtered for individual dataset. Second, potential barcode
collisions were also removed for individual datasets. (2) Feature bin
selection. First, we calculated a cell-by-bin matrix at 5-kb resolution for
every datasetindependently and subsequently merged the matrices.
Second, we converted the cell-by-bin count matrix to abinary matrix.
Third, we filtered out any bins overlapping with the ENCODE blacklist
(mm10, http://mitra.stanford.edu/kundaje/akundaje/release/black-
lists/mm10-mouse/mm10.blacklist.bed.gz). Fourth, we focused on bins
onchromosomes1-19, X and Y. Last, we removed the top 5% bins with
the highest read coverage from the count matrix. (3) Dimensionality
reduction. SnapATAC applies a nonlinear dimensionality reduction
method called diffusion maps, whichis highly robust to noise and per-
turbation®. However, the computational time of the diffusion maps
algorithm scales exponentially with the increase of number of cells.
To overcome this limitation, we combined the Nystrom method (a
sampling technique)®® and diffusion maps to present Nystrém land-
mark diffusion map to generate the low-dimensional embedding for
large-scale dataset.

ANystrom landmark diffusion maps algorithmincludes three major
steps:

(1) Sampling. We sampled a subset of K (K < N) cells from N total
cellsas ‘landmarks’.

(2) Embedding. We computed a diffusion map embedding for K
landmarks.

(3) Extension. We projected the remaining (N - K) cells onto the
low-dimensional embedding as learned from the landmarks to create
ajointembedding space for all cells. Having more than 800,000 single
nuclei at the beginning, we decided to apply this strategy on round 1
and 2 clustering. A total of 10,000 cells were sampled as landmarks
and theremaining query cells were projected onto the diffusion maps
embedding of landmarks. Later for the round 3 clustering, diffusion
map embeddings were directly calculated from all nuclei.

(4) Eigenvector selection. To determine the number of eigenvectors
of diffusion operator toinclude for downstream analysis, we generated
an ‘elbow plot’, to rank all eigenvectors on the basis of the percentage
of variance explained by each one. For each round of clustering, we
selected thetop10-20 eigenvectors that captured most of the variance.

(5) Graph-based clustering. Using the selected significant eigenvec-
tors, we next construct a k-nearest neighbour graph. Each cellisanode
and the k-nearest neighbours of each cell were identified according
to the Euclidian distance and edges were drawn between neighbours
inthe graph. Next, we applied the Leiden algorithm on the k-nearest
neighbour graph using Python package leidenalg (https://github.com/
vtraag/leidenalg)®.

(6) Optimization on cluster resolution. We tested different ‘resolu-
tion_parameter’ parameters (step between 0 and 1by 0.1) to determine
the optimal resolution for different cell populations. For each resolu-
tionvalue, we tested whether there was clear separation between nuclei.
To do so, we generated a cell-by-cell consensus matrix in which each
element represents the fraction of observations two nuclei are part
of the same cluster. A perfectly stable matrix would consist entirely
of zeros and ones, meaning that two nuclei either cluster together or
notin everyiteration. The relative stability of the consensus matrices
can be used to infer the optimal resolution. To this end, we generated
aconsensus matrix based on 300 rounds of Leiden clustering with
randomized starting seed s. Let M° denote the N x N connectivity matrix
resulting fromapplying Leiden algorithmto the dataset D° with differ-
ent seeds. The entries of M’ are defined as follows:

M*(i,j)=f(x)
_ |1, if single nucleus i and j belong to the same cluster
0, otherwise

Let Fbethe N x Nidenticator matrix inwhich the (i,j)-thentryis equal to
lifnucleusiandjareinthe same perturbed dataset D*, and O otherwise.
Then, the consensus matrix Cis defined as the normalized sum of all
connectivity matrices of all the perturbed D’.
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The entry (ij) in the consensus matrix is the number of times single
nucleusiandjwere clustered together divided by the total number of
times they were selected together. The matrix is symmetric, and each
element is defined within the range [0, 1]. We examined the cumulative
distribution function (CDF) curve and calculated proportion of ambig-
uous clustering (PAC) score to quantify stability at each resolution.
The resolution with a local minimum of the PAC scores denotes the
parameters for the optimal clusters. In the case these were multiple
local minimal PACs, we picked the one with higher resolution. Another
measurement is dispersion coefficient, which reflects the dispersion
(ranges from O to1) of the consensus matrix M from the value 0.5. The
closer tolis the dispersion coefficient, the more perfect is consensus
matrix, and thus the more stable is the clustering. In a perfect
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consensus matrix, all entries are O or 1, meaning that all connectivity
matrices are identical. The dispersion coefficient is defined as:

Pz Y Y 4 1)2
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Finally, for every cluster, we tested whether we could identify differen-
tialfeatures comparedto all other nuclei (background) and the nearest
nuclei (local background) using the function ‘findDAR.

(7) Visualization. For visualization, we applied UMAP*, Using the cell
embedding, we applied both k-nearest neighbor batch effect test (kBET)
andlocalinverse Simpson’sindex (LISI) analysis to test the robustness
ofthe clutering results to variation of sequencing depth, signal-to-noise
ratios, and batches.

Clustering for adult neurogenesis lineages
We performed separated cell clustering following above strategy for
two lineages:

1. Adult neurogenesis in the SGZ: we extracted 83,583 nuclei from
8 brain dissections at or surrounding the SGZ, including CA-1, CA-2,
CA-3,CA-4,DG-1,DG-2,DG-3,DG-4 (Supplementary Table1). Then, we
performed cell clustering on 83,583 nucleifor 6 cell types: astrocytes
(ASC); dentate gyrus radial glia-like cells; NIPCs; granule neuroblasts
(DGNBL1/2); and granule neurons.

2. Adult neurogenesis in the SVZ: we extracted 25,923 nuclei from
8 brain dissections at or surrounding the SVZ, including MOB, AON,
ACB-1, ACB-2 CP-1, CP-2, LSX-1and LSX-2 (Supplementary Table 1).
Then, we performed cell clustering on 25,923 nuclei for 5 cell types:
astrocytes; subventricular zone radial glia-like cells; neuronal interme-
diate progenitor cells; neuroblasts (OBNBL); and inhibitory neurons
inolfactory (OBGA1).

Dendrogram construction for mouse brain cell types

First, we calculated for cCRE the median accessibility per cluster and
used this value as cluster centroid. Next, we calculated the coefficient of
variant for the cluster centroid of each element across major cell types.
Finally, we only kept variable elements with coefficient of variants that
were larger than 1.5 for dendrogram construction.

We used the set of variable features defined above to calculate a
correlation-based distance matrix. Next, we performed linkage hierar-
chical clustering using the R package pvclust (v.2.0)”° with parameters
method.dist = “cor” and method.hclust = “ward.D2”. The confidence
foreachbranchofthe tree was estimated by the bootstrap resampling
approach with1,000 rounds.

Regional specificity of cell types

The specificity score is defined as Jensen-Shannon divergence, which
measures the similarity between two probability distributions. For each
celltype, the contribution of different brain regions was first calculated.
Then, we compared this distribution with the contribution of brain
regions calculated from all sampled cells. We used the function JSD’
from R package philentropy for this analysis™.

Identification of reproducible peak sets in each cell cluster

We performed peak calling according to the ENCODE ATAC-seq pipeline
(https://www.encodeproject.org/atac-seq/). Forevery cell cluster, we
combined all properly paired reads to generate a pseudo-bulk ATAC-seq
dataset for individual biological replicates. In addition, we generated
two pseudo-replicates that comprise half of the reads from each bio-
logical replicate. We called peak for each of the four datasetsand a
pool of bothreplicates independently. Peak calling was performed on
the Tn5-corrected single-base insertions using the MACS2 score* with
these parameters:-shift-75-extsize 150-nomodel-call-summits-SPMR
-q 0.01. Finally, we extended peak summits by 250 bp on either sidetoa
final width of 501 bp for merging and downstream analysis. To generate

alistof reproducible peaks, we kept peaks that (1) were detected in the
pooled dataset and overlapped =50% of peak length withapeakin both
individual replicates; or (2) were detected in the pooled dataset and
overlapped >50% of peak length witha peak in both pseudo-replicates.

We found that when cell population varied in read depth or the
number of nuclei, the MACS2 score varied proportionally owing to
the nature of the Poisson distribution test in MACS2 scores™. Ideally,
we would perform areads-in-peaks normalization, butin practice, this
type of normalization was not possible because we did not know how
many peaks we would get. Toaccount for differencesin performance of
MACS2 scores*® on the basis of read depth and/or number of nucleiin
individual clusters, we converted MACS2 peak scores (—-log;,(g-value))
to ‘score per million”%, We filtered reproducible peaks by choosing a
score-per-million cut-off of 2 to filter reproducible peaks.

We only kept reproducible peaks on chromosome1-19 and both sex
chromosomes, and filtered ENCODE mm10 blacklist regions (mm10,
http://mitra.stanford.edu/kundaje/akundaje/release/blacklists/mm10-
mouse/mmi0.blacklist.bed.gz). A union peak list for the whole dataset
was obtained by merging peak sets fromall cell clusters using BEDtools
(RRID:SCR_006646)".

Lastly, because snATAC-seq data are very sparse, we selected only
elementsthat wereidentified as open chromatininasignificant fraction
of the cells in each cluster. To this end, we first randomly selected the
same number of non-DHS regions (approximately 670,000 elements)
from the genome as background and calculated the fraction of nuclei
for each cell type that showed a signal at these sites. Next, we fitted
a zero-inflated beta model, and empirically identified a significance
threshold of FDR < 0.01 to filter potential false positive peaks. Peak
regions with FDR < 0.01in atleast one of the clusters were included in
downstream analysis.

Computing chromatin accessibility scores

Accessibility of cCREs inindividual clusters was quantified by counting
the fragmentsinindividual clusters normalized by read depth (CPM).
For each gene, we summed up the counts within the gene body +2 kb
upstream to calculate the gene activity score. The gene activity score
were used for integrative analysis with scRNA-seq. For better visuali-
zation, we smoothed the gene activity score to 50 nearest neighbour
nuclei using Markov affinity-based graph imputation of cells (MAGIC)™.

Integrative analysis of snATAC-seq and scRNA-seq datasets

For integrative analysis, we downloaded level 5 clustering data from
the Mouse Brain Atlas website (http://mousebrain.org)’. First, we
filtered brain regions that matched samples profiled in this study
using these attributes for ‘region’: ‘CNS’, ‘cortex’, ‘hippocampus’,
‘hippocampus,cortex’, ‘olfactory bulb’, ‘striatum dorsal’, ‘striatum ven-
tral’, ‘dentate gyrus’, ‘striatumdorsal, striatumventral’, ‘striatum dorsal,
striatum ventral, dentate gyrus’, ‘pallidum’, ‘striatum dorsal, striatum
ventral, amygdala’, ‘striatum dorsal, striatum ventral’, ‘telencephalon’,
‘brain’ and ‘sub ventricular zone, dentate gyrus'.

Second, we manually subset cell types into three groups by checking
the attribute in ‘taxonomy_group’: non-neurons: ‘vascular and lep-
tomeningeal cells’, “astrocytes’, ‘oligodendrocytes’, ‘ependymal cells’,
‘microglia’, ‘oligodendrocyte precursor cells’, ‘olfactory ensheathing
cells’, ‘pericytes’, ‘vascular smooth muscle cells’, ‘perivascular mac-
rophages’, ‘dentate gyrus radial glia-like cells’, ‘subventricular zone
radial glia-like cells’, ‘vascular smooth muscle cells’, ‘vascular endothe-
lial cells’, ‘vascular and leptomeningeal cells’; gabaergic neurons:
‘non-glutamatergic neuroblasts’, ‘telencephalon projecting inhibitory
neurons’, ‘olfactory inhibitory neurons’, ‘glutamatergic neuroblasts’,
‘cholinergic and monoaminergic neurons’, ‘di- and mesencephalon
inhibitory neurons’, ‘telencephaloninhibitory interneurons’, ‘peptider-
gicneurons’; glutamatergic neurons: ‘dentate gyrus granule neurons’,
‘di-and mesencephalon excitatory neurons’, ‘telencephalon projecting
excitatory neurons’.
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To directly compare our single-nucleus chromatin
accessibility-derived cell clusters with the single-cell transcriptomics
defined taxonomy of the mouse brain?, we first used the snATAC-seq
data to impute RNA expression levels (gene activity scores) accord-
ing to the chromatin accessibility of gene promoter and gene body
as previously described”. We performed integrative analysis with
scRNA-sequsing Seurat 3.0 (RRID:SCR_016341) to compare cell annota-
tionbetween different modalities™. We randomly selected 200 nuclei
(and used all nuclei for cell cluster with fewer than 200 nuclei) from
each cell cluster for integrative analysis. We first generated a Seurat
object in R by using previously calculated gene activity scores, diffu-
sion map embeddings and cell cluster labels from snATAC-seq. Then,
variable genes were identified from scRNA-seq and used for identifying
anchorsbetween these two modalities. Finally, to visualize all the cells
together, we co-embedded the scRNA-seq and snATAC-seq profilesin
the same low dimensional space.

To quantify the similarity between cell clusters from two modali-
ties, we calculated an overlapping score as the sum of the minimum
proportion of cells or nuclei in each cluster that overlapped within
each co-embedding cluster®. Cluster overlaps varied from O to 1and
were visualized as a heat map with snATAC-seq clusters in rows and
scRNA-seq clusters in columns. We found strong correspondence
between the two modalities, which was evidenced by co-embedding
of both transcriptomic (T-type) and chromatin accessibility (A-type)
cellsin the same RNA-ATAC joint clusters (Extended Data Fig. 10a,
Supplementary Table 5). For this analysis, we examined GABAergic
neurons, glutamatergic neurons and non-neuronal cell classes sepa-
rately (Extended Data Fig. 10, Supplementary Table 5).

Identification of cis-regulatory modules

We used non-negative matrix factorization’ to group cCREs into
cis-regulatory modules onthe basis of their relative accessibility across
major clusters. We adapted non-negative matrix factorization (Python
package: sklearn”) to decompose the cell-by-cCRE matrix V(N x M, N
rows: cCRE, M columns: cell clusters) into a coefficient matrix H (R x M,
R rows: number of modules) and a basis matrix W (N x R), with a given
rank R:

V=WH

The basis matrix defines module related accessible cCREs, and
the coefficient matrix defines the cell cluster components and their
weights in each module. The key issue to decompose the occupancy
profile matrix was to find areasonable value for the rank R (that s, the
number of modules). Several criteria have been proposed to decide
whetheragivenrank R decomposes the occupancy profile matrix into
meaningful clusters. Here we applied two measurements ‘sparseness’”®
and ‘entropy’” to evaluate the clustering result. Average values were
calculated from 100 times for non-negative matrix factorization runs
at each given rank with random seed, which will ensure the measure-
ments are stable.

Next, we used the coefficient matrix to associate modules with distinct
cellclusters. Inthe coefficient matrix, each row representsamodule and
each columnrepresentsacell cluster. The valuesin the matrix indicate
the weights of clusters in their corresponding module. The coefficient
matrix was thenscaled by column (cluster) from O to 1. Subsequently, we
used a coefficient > 0.1 (approximately the 95th percentile of the whole
matrix) as threshold to associate a cluster with a module.

In addition, we associated each module with accessible elements
using the basis matrix. For each element and each module, we derived
a basis coefficient score, which represents the accessible signal con-
tributed by all cluster in the defined module. Inaddition, we also imple-
mented and calculated a basis-specificity score called ‘feature score’
for eachaccessible element using the ‘kim’ method”. The feature score
ranges from O to 1. A high feature score means that a distinct element

is specifically associated with a specific module. Only features that
fulfil both of the following criteria were retained as module specific
elements: (1) feature score greater than median + 3 standard deviations;
(2) the maximum contribution to abasis componentis greater than the
median of all contributions (that is, of all elements of W).

Identification of differentially accessible regions and definition
of specificity score

Toidentify cCREs that were differentially accessible either insubtypes
orinbrainregions, we constructed alogistic regression model predict-
ing cluster/region membership based on each cCRE individually and
compares this to anullmodel withalikelihood ratio test. We used two
functions ‘fit_ models’ and ‘compare_models’ in R package Monocle3
(v.0.2.2)% to perform the differential test. We designed the fullmodel as

logit(P,-j) =4t mtrte;
and areduced mode as
logit(P,-j) =a;+rte;

inwhich P;represents the probability of ith siteis accessiblein the jth
cell, aisthelog,,-transformed total number of sites observed as acces-
sible for thejth cell, mis membership of thejth cell in either cluster or
region being tested, ris the replicate label for jth cell and g is an error
term.

Foreachset of testing, between subtypes or betweenregionsin cell
type, we keptonly cCREs that overlapped with peaks identified in cor-
responding cell types. Alikelihood ratio test was then used to determine
whether the full model (including cell cluster or region membership)
provided asignificantly better fit of the data than the reduced model.
After correcting P values using Benjamini-Hochberg method, we set
an FDR cut-off as 0.001 to filter out significant differential cCREs.

Thelog,-transfomed fold changeis used for two-group comparison,
for multiple groups, we calculated aJensen-Shannon divergence-based
specificity score previously described? to better assign differential
cCREsto celltype or brainregion. The fraction of accessibility of each
cluster fwasfirst calculated for eachith site. We normalized these scores
by multiplying by corresponding scaling factors, which are considering
different overall complexity across groups. To do so, median number
of sites accessible cin individual cells for each cluster was calculated
and followed with log,,-transforming. Then, we took the ratio of the
average of ¢ (across all clusters) over the median accessibility in each
cluster as scaling factor. These corrected fraction of accessibility for
each cCREwasthen converted to probability by scaling by groups. Then,
we calculated Jensen-Shannon divergence between two probability
distributions. For example, the probability distribution for the first
cCREasdl, totest whether this cCRE is specificingroup 1, we assumed
another probability distribution:

|1, groupl
dZ_{O, otherwise

Function JSD’ in R package ‘philentropy’ was used to calculate
Jensen-Shannon divergence between these two probability distribu-
tions, and Jensen-Shannon-based specificity (JSS) scores was defined
as:

JSS=1- Jjensen Shannon divergence

For each group, we calculated the JSS score for every cCRE. To find a
reasonable cut-off to determine restricted or general cCREs, we con-
sider JSS scores from all cCREs that are not identified as differential
accessible (fromlikelihood ratio test) as abackground distribution, and
JSS scores from cCREs that passed our likelihood ratio test threshold



and had positive values to be true positives. We set an empirical FDR
cut-off where the type I error was no more than 5%.

Finally, the differential cCCREs could be aligned to several cell types or
brainregions based onthe]SS score, we named the one can be assigned
toonly onetype or region as region-specific or cell-type-specific cCCREs.

Comparison between the regional specificity of cell types
defined by snATAC-seq data and the spatial ISH signals of
cell-type-specific genes

To validate the regional specificity of cell types, we took advantage
of the spatially mapped quantified ISH expression from ABA** in
five matched major brain structures, isocortex, olfactory areas, hip-
pocampal formation (HPF), striatum (STR), pallidum. We used the
‘differential search’ function to identify 10,269 genes with increased
expression in these five brain regions compared to all brain regions
‘erey matter’ (expression level >1 and fold change >1). We also identi-
fied cell-type-specific genes using Seurat™ with default parameters for
eachjoint cluster fromintegrative analysis (fold change >1and FDR <
0.05) (Extended Data Fig.10). 505 cell-type-specific genes (range from
1to53,150n average) overlapped with the list of genes with increased
expression in the five brain regions. For each cell type, we calculated
theregional specificity score (see previous section: regional specificity
of cell types) on the basis of the relative contribution from five brain
regions estimated from snATAC-seq datasets, and also a coefficient of
variationbased on averaged normalized ISH signals of cell-type-specific
marker genes. For each cell-type-specific gene, we calculated the PCC
between cell compositionin five brain structures and spatial expression
levels across the five brain structures derived from ISH.

Because the astrocyte subtypes identified in our study were not
resolved in scRNA-seq studies, we identified subtype-specific genes
for astrocyte subtypes using chromatin accessibility from snATAC-seq
usingalikelihood ratio test. The cell-type-specific genes were filtered
by FDR less than 0.001 from the likelihood ratio test and empirical
FDR cut-off of no more than 5% for JSS scores. Then, we calculated
the fraction of overlap between spatially mapped ISH genes from
different brain structures and genes with astrocyte subtype-specific
accessibility.

Predicting enhancer-promoter interactions

First, co-accessible regions were identified for all open regions in
each cell cluster (randomly selected 200 nuclei, and using all nuclei
for cell cluster with <200 nuclei) separately, using Cicero® with fol-
lowing parameters: aggregation k=10, window size =500 kb, distance
constraint =250 kb. To find an optimal co-accessibility threshold for
each cluster, we generated a random shuffled cCRE-by-cell matrix as
background and identified co-accessible regions from this shuffled
matrix. We fitted the distribution of co-accessibility scores from ran-
dom shuffled background into a normal distribution model by using
the R package fitdistrplus®. Next, we tested every co-accessibility pairs
and set the cut-off at co-accessibility score with an empirically defined
significance threshold of FDR < 0.01.

CCRE outside of +1 kb of the TSS in GENCODE mm10 (v.16,
RRID:SCR_014966)%. were considered distal. Next, we assigned
co-accessibility pairs to three groups: proximal-to-proximal,
distal-to-distal, and distal-to-proximal. In this study, we focus only
on distal-to-proximal pairs. We further used RNA expression from
matched T-types to filter out pairs that were linked to non-expressed
genes (normalized UMI<5).

We calculated PCC between gene expression and cCRE acces-
sibility across joint RNA-ATAC clusters to examine the relationship
between co-accessibility pairs. To do so, we first aggregated all nuclei
or cells from scRNA-seq and snATAC-seq for every joint cluster to cal-
culate accessibility scores (log,(CPM)) and relative expression levels
(log,(normalized UMI)). Then, PCC was calculated for every cCRE-gene
pair within a1-Mb window centred on the TSS for every gene. We also

generated a set of background pairs by randomly selecting regions
from different chromosomes and shuffling of cluster labels. Finally,
we fit a normal distribution model and defined a cut-off at PCC score
with empirically defined significance threshold of FDR <0.01, to select
significant positively correlated cCRE-gene pairs.

Identification of candidate driver transcription factors

We used the Taiji pipeline® to identify candidate driver transcription
factorsincell clusters. In brief, for each cell type cluster, we constructed
the transcription factor regulatory network by scanning transcription
factor motifs at the accessible chromatin regions and linking them to
the nearest genes. The network is directed with edges from transcrip-
tion factors to target genes. The weights of the genes in the network
were determined on the basis of the RNA expression level (gene activity
score for SGZNIPCs only, because there is no corresponding T-type) of
corresponding T-types. The weights of the edges were calculated by
the relative accessibility of the promoters of the source transcription
factors. We then used the personalized PageRank algorithm to rank
the transcription factorsin the network. The output of Taiji pipeline is
transcription-factor-by-cell type matrix with PageRank scores. From the
output matrix, we calculated coefficient of variation across cell types.
To identify driver transcription factors, we used following criteria:
(1) transcription factors have FDR less than 0.001; (2) transcription
factors have coefficient of variant larger than the mean of coefficient
of variant; (3) PageRank score should be ranked in the top 25% of all
transcription factors for each cell type; (4) RNA expression level (CPM)
islarger than 20, which we consider as an expressed transcription factor
in corresponding cell type.

Motif enrichment

We performed both de novo and known motif enrichment analysis
using Homer (v.4.11, RRID:SCR_010881)°". For cCREs in the consensus
list, we scanned aregion of +250 bp around the centre of the element.
And for proximal or promoter regions, we scanned aregion of +1,000 bp
around the TSS. Randomly selected background regions are used for
motif discovery. To identify motif enriched in different cell types or
brain regions, we use variable cCREs as input and invariable cCREs as
background.

GREAT analysis

Gene Ontology annotation of cCREs was performed using GREAT (ver-
sion4.0.4, RRID:SCR_005807)%? with default parameters. Gene Ontol-
ogy biological process was used for annotations.

Gene Ontology enrichment

We perform Gene Ontology enrichment analysis using the R package
Enrichr (RRID:SCR_001575)%. The gene set library ‘GO_Biological_Pro-
cess_2018 was used with default parameters. The combined score is
defined as the Pvalue computed using the Fisher’s exact test multiplied
with the z-score of the deviation from the expected rank.

GWAS enrichment

To enable comparison to GWASs of human phenotypes, we used lift-
Over with settings ‘-minMatch=0.5" to convert accessible elements
from mm10 to hgl9 genomic coordinates®. Next, we reciprocal lifted
the elements back to mm10 and only kept the regions that mapped
to original loci. We further removed converted regions with lengths
greater than1kb.

We obtained GWAS summary statistics for quantitative traits related
to neurological disease and control traits (Supplementary Table 25):
age first birth and number of children born®*, tiredness®, Crohns
disease®, attention deficit hyperactivity disorder®, allergy®, birth
weight®, bipolar disorder®®, insomnia®, sleep duration®?, neuroti-
cism®, coronary artery disease®*, rheumatoid arthritis®, educational
attainment®®, schizophrenia”, age at menarche®®, tobacco use disorder
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(ftp://share.sph.umich.edu/UKBB_SAIGE_HRC/, Phenotype code: 318)*°,
intelligence'®®, amyotrophic lateral sclerosis'®, anorexia nervosa'®
and height'®,

We prepared summary statistics to the standard format for linkage
disequilibriumscore regression. We used homologous sequences for
each major cell types as a binary annotation, and the superset of all
candidate regulatory peaks as the background control.

For eachtrait, we used cell-type-specific linkage disequilibrium score
regression (https://github.com/bulik/ldsc) to estimate the enrichment
coefficient of each annotation jointly with the background control*.

Fine mapping

We obtained 99% credible sets for schizophrenia from the Psychiat-
ric Genomics Consortium website (https://www.med.unc.edu/pgc/).
Potential causal variants with a posterior probabilities of association
score larger than 1% were used for overlapping with cCREs.

External datasets

The datasets used for intersection analysis area as follows: repre-
sentative DNase hypersensitivity site regions for both hgl9 and mm10
were obtained from SCREEN database (https://screen.encodeproject.
org)'**1% ChromHMM?3"** states for mouse brain were downloaded
from GitHub (https://github.com/gireeshkbogu/chromatin_states_
chromHMM_mm9), and coordinates of ChromHMM states were
mapped using LiftOver (https://genome.ucsc.edu/cgi-bin/hgLift-
Over) to mm10 with default parameters®. PhastCons® conserved
elements were download from the UCSC genome browser (http://
hgdownload.cse.ucsc.edu/goldenpath/mm10/phastCons60way/).
CTCF-binding sites were downloaded from the Mouse Encode
Project® (http://chromosome.sdsc.edu/mouse/). CTCF-binding sites
from the cortex and olfactory bulb were used in this study. Peaks
were extended +500 bp from the loci of peak summits and mapped
using LiftOver to mm10°.,

Statistics

No statistical methods were used to predetermine sample sizes. There
was no randomization of the samples, and investigators were not
blinded to the specimens beinginvestigated. However, the clustering
of single nuclei on the basis of chromatin accessibility was performed
in an unbiased manner, and cell types were assigned after clustering.
Low-quality nuclei and potential barcode collisions were excluded
from downstream analysis as outlined above.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this paper.

Data availability

Demultiplexed data can be accessed via the NEMO archive (NEMO,
RRID:SCR_016152) at: https://assets.nemoarchive.org/dat-wywv153.
Processed data are available on our web portal and can be explored
here: http://catlas.org/mousebrain. Additional data are available in
the NCBI Gene Expression Omnibus (GEO) under accession number
GEO173650 and upon request.

Code availability

Custom code and scripts used for analysis can be accessed at: https://
github.com/yal054/snATACutils and https://github.com/r3fang/Sna-
PATAC.
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Extended DataFig.1|Anatomic maps of the 45 dissectionsin the adult
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Extended DataFig. 2| Quality control metrics of the snATAC-seq datasets.
a, Box plots showing the distribution of mappingratios (the fraction of the
mapped sequencingreads) inreplicates (rep) 1and 2 of snATAC-seq
experiments from eachbrain dissection. b, Box plots showing the distribution
ofthe number of proper read pairs (reads are correctly oriented) inreplicates1
and 2 of snATAC-seq experiments. ¢, Box plots showing the distribution of
numbers of unique chromatin fragments detected inreplicates1and 2 of
snATAC-seq experiments. d, Box plots showing the distribution of number of
unique barcodes capturedinreplicates1and 2 of snATAC-seq experiments.

e, Frequency distribution plot showing the fragment size distribution of each
snATAC-seq dataset. f, Heat map showing the pairwise Spearman correlation

coefficients between snATAC-seq datasets. The column and row names consist
oftwo parts: brainregion name and replicate label. g, Dot plot illustrating
fragments per nucleus and individual TSS enrichment. Nucleiin top right
quadrant were selected for analysis (TSS enrichment >10 and >1,000
fragments per nucleus). h, Fraction of cell collision estimated from species mix
samples. Inset shows the fraction of potential barcode collisions detected in
snATAC-seq libraries using a modified version of Scrublet®. i, Number of nuclei
retained after each step of quality control. j, Distribution of TSS enrichment.

k, Thenumber of uniquely mapped fragments per nucleus for individual
libraries. 1, The number of nuclei passing quality control for subregions. Allbox
plots arestylized asin Fig. 2c.
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Extended DataFig. 3| Cell clustering based on snATAC-seq data.

a, Schematic diagram of the cell clustering pipeline. b, UMAP*® embedding of a
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Leidenalgorithm. ¢, Consensus matrix from 300 iterative clustering runs with
different resolutions. d, Cluster stability at different resolutions was assessed
using a CDF of consensus matrices. High valuesillustrate nuclei that clustered

togetherinmostcases. e, The PAC and dispersion coefficientat different
resolutions. Alow PAC and high dispersion coefficient indicates the best and
most stable clustering. f, Optimal cell clustering result for arepresentative
subclass (resolution =0.5).g, The CDF curve of consensus matrix at an optimal
resolution for every subclass.
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Extended DataFig.4|Summary statistics of snATAC-seq datasetsin the

currentstudy. a, Violin plots showing the log-transformed number of unique
fragments per nucleusin each cell subclass identified. b, Violin plots showing
the TSSenrichmentineach nucleus of each subclass. ¢, Acceptance rate from

k-nearest neighbour batch effect test (kBET)'°° for each subclass of cerebral
cells.d, Distribution of the local inverse Simpson’sindex (LISI) scores'” for
cellsineachsubclass.
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Extended DataFig. 5| Reproducibility ofthe cell type composition ofeach
brainregion estimated from single-cell chromatin accessibility profiles.
a, Bar plot showing the fraction of nuclei from two biological replicates for
eachofthe 43 subclasses of mouse cerebral cells discerned from snATAC-seq
data.b, CDF plot showing the consistency of the estimated fractions of each
subclass of cerebral cellsbetween the two biological replicates. Kolmogorov-
Smirnov test shows nosignificant difference between the biological replicates.
¢, Boxplots of the Pvalues of Kolmogorov-Smirnov testsillustrate consistent
results between the two biological replicates for each subclass of cerebral cells

across major brainregions, sub-regions and brain dissections tested. d, Heat
map showing the pairwise Spearman correlation coefficients of cell type
compositionbetween eachreplicate of braindissections. The column and row
names consist of two parts: brainregion name and replicate label. For example,
MOp-1.1represents thereplicate 1of the first brain dissection of the primary
motor cortex (MOp-1). Theembedded box plot shows the distribution of
Spearman correlation coefficients between two biological replicates,
replicates fromintra-major brain regions and inter-major brain regions.
***P<(0.001, Wilcoxon rank-sum test. Box plots are stylized asin Fig. 2c.
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Extended DataFig. 6 | Maker genes used for annotation of different
subclasses of cerebral cells. a, Gene activity scores for marker genes used for
subclass annotation. The UMAP*® embedding from Fig. 1b is shown for
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Extended DataFig.10|The chromatin-accessibility-based cell clustering
matches transcriptomics-based cell taxonomy. a, Heat map showing the
similarity between A-type (accessibility) and T-type (transcriptomics) based
cellcluster annotations. Each row represents an A-type cluster (atotal of160)
and eachcolumnrepresentsa T-type cluster (a total of 100). Similarity between
original clusters and the joint cluster was calculated as the overlap score, which
defined as the sum of minimal proportion of cells/nucleiin each cluster that
overlapped withineach co-embedding cluster. The overlap score varied from O
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toland wasplotted onthe heatmap.Joint clusters withan overlap score of >0.5
are highlighted using black dashed line and labelled with RNA-ATAC joint
cluster ID.For afulllist of cell type labels and descriptions see Supplementary
Table 4.b, ¢, Bar plotsindicating the number of clusters that matched (dark
grey) or did not match (light grey) clusters from the other modality. b, 155 out of
160 A-types had amatching T-type cluster. ¢, 84 out of 100 T-types had a
matching A-typecluster.
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Extended DataFig.11|Cellular composition of brainregions, subregions
anddissections. a, Cluster dendrogram based on chromatin accessibility asin
EDF8.b-d, Normalized percentages (pct) of each subclass in the four major
regions (b), the subregions (c), and the dissected regions (d) are shown as

different sized dots. The sizes of dots correspond to the percentage, and the
colours ofthe dotsindicate the major brainregions, subregions or dissections.
Bar plotsto theright show the total number of nuclei sampled for each region,
subregion, or dissection.
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Extended DataFig.13|Theregionalspecificity of cerebral cell types
defined onthebasis of snATAC-seq datasets is consistent with ISH patterns
of cell-type-specificgenesinthe mousebrain. a, Bar plots showing regional
specificity of each cell type determined fromrelative contribution from five
differentbrainregions, includingisocortex, olfactory areas, hippocampal
formation, striatum and pallidum. Dot plots showing percentages of each
major brainregion in the subclass of cerebral cells. The size of each dot reflects
therelative contribution of the brainregion asindicated by thelegend to the
right of the panel, and the colour of the dotsindicates the brain region.

b, Bar plots showing the coefficients of variation calculated with the average
normalized ISH signals of cell-type-specific marker genes for the
corresponding cell subclasses across five brain regions. The heat map shows

the average normalized ISH signals of cell subclass-specific marker genes. The
cell subclass-specific marker genes were identified for joint cell subclasses
from RNA-ATAC integrative analysis (Extended Data Fig. 9). For a full list of ISH
dataof cell subclass-specific genes, see Supplementary Table 6. ¢, Scatter plot
shows the correlation between the coefficients of variation of marker gene ISH
signals and the regional specificity score calculated based on snATAC-seq data
for32joint cell subclasses from RNA-ATAC integration analysis (Pearson
correlation coefficients (PCC) = 0.55).d, Box plots show the Pearson
correlation coefficients (PCC) calculated between cell compositionacross
brainregionsbased on snATAC-seq dataand the spatial distribution ISH signals
of cellsubclass-specific genes across the five main brain regions for each major
brain cellsubclass. Box plots are stylized asin Fig. 2c.
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Extended DataFig. 14 |Brainregionspecificity of different subclasses and
cell-types. a, UMAP* embedding of the subclasses of GABAergic neurons.

b, Sub-region composition of dopaminergic neurons, DIMSN and D2MSN, and
MXD illustrates most MXD neurons were detected in the pallidum. ¢, Gene
activity score for gene/sl1in GABAergic neurons predicts expressionin MXD.
d,RNAISH andbar plotillustration of expression levels show the highest
abundance of /sl1in the predicted region, pallidum (blue). Data and images
were downloaded from © 2004 Allen Institute for Brain Science. Allen Mouse
Brain Atlas. Available from: atlas.brain-map.org. e, UMAP* embedding of PVGA
celltypes.f,Sub-region composition for each PVGA cell typeillustrates that
majority of PVGA-7 were detected in nucleus accumbens and caudoputamen.
g, Geneactivity scores for Kitand Pde3a predict expressionin one PVGA cell

type (PVGA-7).h, RNAISH and bar plotillustration of expression levels show
expression of Kitand Pde3ain predicted regions, nucleus accumbens and
caudoputamen. Predicted regioninblue, other sampled regionsingrey and
non-sampled regions in white. i, UMAP*® embedding of CAl glutamatergic
neurons (CAIGL) cell types.j, Dissection compositionineach CA1GL cell type.
k, Geneactivity of gene Dcnin CA1GL cell types.1, Density of expression level of
Dcnviewed in BrainExplorer (https://mouse.brain-map.org/static/
brainexplorer) shows expression cornuammonis field1(CA1).m, RNAISH and
bar plot show highest expression of Dcn CAland hippocampal formation. The
predictedregionis colouredinblue, other sampled regionsingrey and non-
sampled regions in white.
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Extended DataFig.15]|Statistics of peak calling from snATAC-seq datafrom
each celltype. a, Schematic diagram of peak calling and filtering pipeline.

b, Number of peaksretained after each peak calling and filtering step. ¢, Scatter
plots showing the relationship between the number of nucleiin each cluster
and the number of peaks before score-per-million (SPM) correction (left) and
after SPM correction (right). d, Density distribution plot showing the fraction
of cells per cell type in which a peak was accessible and a corresponding
background foreach celltypes. Foreach cell type, the backgroundis defined as

same number of non-DHS and non-peak regions randomly picked from
genome.e, Fraction of different peak sets that overlap with annotated
transcriptional startsites, introns, exons, transcriptional termination sites
(TTS), and intergenicregions inthe mouse genome. f, Fraction of different
peak sets that overlap with DHSs™. g, Box plot showing sequence conservation
indifferent peak sets and the control set. h, Enrichment analysis of different
peaksetswith al5-state ChromHMM modelin the mouse brain chromatin. All
boxplotsarestylized asin Fig. 2c.



250 - colored by cell types
12 [[] oifferential ccRES etk s
|:| Invariable cCREs
2 200
=4
%
: &
150
z g
2 3]
o ©
a = 100+ ]
4 o
i H
©
S 50+
o
k * E H H
]
. §=== =N __B=ll=-EEinEs ==
0.0 0.2 0.4 06 08 2 Z 4 € € € 0 L € € L 4 4 90 a g LSS S a0 a0 <
i @ 5 o 19 o0 o) T
Jensen-Shannon-based specificity 225%288%58&25%5};’%%%%%%%@&2—§8m§g
53883%49=3 @5 >3350 EgEEES o >
Cell subclass
Cc
SeemmE HEusnl =::=sl EEE== [OF i 1.0
> x
& ] [ BN FEE | KR HE ] F Isocortex 3 " 15
s/ EE=-Essml = N W -HPF T >H 20
9 = o
S mE-Eemsnl- . FCNU E’g.zs
L e e e I S e e L e S e R I s S | o )
CeRee83339 829 s83IYLeIza =
%%8%%%%838000000005358626 s W
S "z S2EEL88Q8K52222>22853 5
3 3edJocgssaaads + [ 35
Cell type
] [ | ORB
[ ] | | cam =m L[] | ACA
. [ ] . . [ ACAPL,ILA
- | | ] MOs
n = | | MOp
: ™ . | | rSSp
S ssms =N = m s sssmmnmm ull smm SSs
g LAl
& U PR FMOB,AON
o) = u Eussl | N | ] W+-AON
a PR
= @ Es-ml | | | B | - o [ ] CA w
o
rDG %
Ace  ° .,
= =N . um (] ] *mECP S 24,
o
" m-E [ . = ] 1 WLSX SO "B
" = EN um = am - - mmEfPAL @V
Cell type
Extended DataFig.16 | Differentially accessible cCREs across different cell shows the numbers of differential cCREs in each major brainregion.d, Agraph
typesand brainregions. a, Distribution plot of the Jensen-Shannon shows the numbers of differential cCREs across subregions. The sizes of dots
specificity scores of the differentially accessible cCREs and invariable cCREs. correspond to the number of differential cCREs (log,,-transformed) foundin

The verticalline shows the cutoffat FDR of 0.05. b, Stacked bar charts showing eachcelltype betweenbrainregions, and the colours of the dotsindicate the
the number of differential cCREs between cell types for subclasses. ¢, Agraph majorbrainregionsinc, subregionsind.



Article

a b c
Cell types of SSTGA - differential cCREs # of specific cCREs (x 10°)
colored by type Gene actitity score shared by # of clusters 108 6 4 2 0
Chodl %01 6326 103] SSTGA1
7 % 40 2,916[[59) SSTGA2
: a 2,952[[45] SSTGA3
A 8 & ol 3,277[_33| SSTGA4
9 y " o 5 2,305 42| SSTGA5
5 % %20_ gl 2,585[_ 26| SSTGA6
&' o § o 5259 58| SSTGA7
~ ¥ = 10- o 8 10.927 5742 58| SSTGA8
a, 10l S o T16] SSTGA9
5 <
£ Chodl? = U0 7,058 [____192] SSTGA10
um'ap 1 smoothed acc. 0 EEETTI60 123 4 W Proximal © Distal
d e f g
Cell types of MSGA — # of unique cCREs 46,453 specific cCREs
colored by type 50 10¢ 108 102 10 (log, CPM)
4 S
\Z’ " \:_,40,
S 2 8 "
s O 304|[I5
3 . = Sl
4 = 51
12 5 13 § 2049 o
9] >
3 i St | {35
g 3 10 ks lﬁl 9
S I #*+ ol
umap 1 0 12345 B Proximal © Distal normalized accessibility O HEEET] 4
shared by # of clusters
h i L
Motif enrichment
I | Meis2 8
L] ' Prdm16 1
Nr2f1
Zfp503 2
"j | gels‘l o 3
EE [ EEED Prdmi2 g4
s I\Ellab§1|1 >5
mXx. =
samd3 0 8 3
N 5o S8
m
bee8s 2
ic1/al
Chat S .
|_E ' Sp8 el =)
éll?r5344 82
Slc18a3 &
Slc10a4 i<l
-
n [ Chila § é
NOONMN®«Q© EmvSSt < %
3533335353353 -
1230 RORORORT R R, R RORY R R}
SSQ22255522333 DZ:
-log (p-value)
. 0100
1

Chat Slc18a3 Slc17a6 i Slc10a4

Extended DataFig.17|See next page for caption.



Extended DataFig.17| Variation of chromatin accessibility across
different cell types within the subclasses of cerebral neurons. a, UMAP%®
embeddingand geneactivity scores of Chodlshow specificity for one SSTGA
celltype.b, Bar chart showing the number of differentially accessible cCREs
sharedby1,2,30r4 celltypes of SSTGA. ¢, Bar chart showing the number of
cell-type-specific cCREs, categorized by proximal (black) and distal regions
(lightgrey).d, UMAP*® embedding of MSGA cell types. e, Bar chart showing the
number of differentially accessible cCREs shared by, 2, 3,4 and 5subtypes of
MSGA. f, Number of specific accessible proximal and distal cCREs for each

MSGA celltype. g, Heat map showing the normalized accessibility of the cell-
type-specific cCREs across different MSGA cell types. h, Heat map showing the
promoter accessibility at selected marker genesineach MSGA cell type. i, ISH
data (https://portal.brain-map.org)** of the marker genes of each MSGA cell
type.j, Motifenrichment of uniquely accessible cCREs and expression level of
transcription factorsincholinergic neurons (MSGA10). The RNA expression of
cholinergic neurons was downloaded from mouse brain atlas (http://
mousebrain.org).
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Extended DataFig.18|Astrocyte cell types exhibit regional specificity and
differential chromatin accessibility. a, UMAP*® embedding of astrocytes,
coloured by cell type (left), fragment depth (middle), and replicate (right).
b,Heat mapillustrating the overlap between A-type and T-type cell cluster
annotations. Each row represents asnATAC-seq subtype and each column
represents scCRNA-seq cluster? (http://mousebrain.org). The overlap between
original clusters and the joint cluster was calculated (overlap score) and
plotted on the heat map. ¢, Heat map showing overlap score with cell type
defined by integration of multiple transcriptomic and epigenomic
modalities®®. d, Smoothed gene activity scores of marker genes for astrocytes
fromwhite and grey matter. e, Smoothed gene activity scores of representative
corticallayer-specific marker genes for astrocyte. f, Upset plot showing
intersections of differentially accessible cCREs between cell types. cCREs only

presentedinone celltypeare defined as cell-type-specific cCREs. g, Gene
activity score for GLItranscription factor family membersinastrocyte cell
types.h, Smoothed geneactivity scores of Oligo2, Itih3, Agt and Slc6all in
astrocytes show stronger activity in ASCN. i, Genome browser tracks®® of
aggregate chromatinaccessibility profiles for each astrocyte cell type at gene
Itih3, Slc6all and Agtlocus. j, Views of ISH experiments from Allen Brain Atlas
(atlas.brain-map.org) showing predominant expression of Slc6alland Agtin
the pallidum. Bar plot showing expression values from ISH experiments in
brainstructures. Dataand images were downloaded from © 2004 Allen
Institute for Brain Science**. Allen Mouse Brain Atlas. Available from: atlas.
brain-map.org.k, UMAP embedding of astrocyte coloured by brain subregions.
I, Motif enrichmentin cCREsin ASCG with regional specificity.
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Extended DataFig.19|Characterization of predicted cCRE-target gene
pairs. a, Histogramillustrating the 1-D genomic distances between positively
correlated distal cCRE and putative target gene promoters. b, Box plot showing
that genes were linked with a median of 7 putative enhancers. Box plot is
stylized asinFig.2c. ¢, Accessibility at promoter regions across RNA-
ATACjoint cell types; orderisasinFig. 4c.d, Enrichment of sequence motif's for
CTCF, MEF2 and RFX from de novo motif searchin the putative enhancers of
module M1using HOMER®.. For a full list, see Supplementary Table 21. e, Venn
diagramillustrating the overlap of putative target genes of cCREs containing

chr15:77,969,072-78,160,088

bindingsites for MEF2, RFX and CTCF, respectively. f, Gene Ontology (GO)
analysis of the putative target genes of each factorinmodule M1was
performed using Enrichr®, The combined score is the product of the computed
Pvalue using the Fisher exact test and the z-score of the deviation from the
expected rank®. g, h, Examples of distal cCRE overlapping aRFX motif (g) ora
MEF2 motif (h) and positively correlated putative target genes. Motifs were
identified using de novo motif searchin HOMER®'. Genome browser tracks®®
showing chromatin accessibility, mCG methylation levels (see accompanying
manuscript®’) and positively correlated cCRE and gene pairs.
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Potential causal variants in schizophrenia
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Extended DataFig.22|Mouse cerebral cCREsmapshelp tointerpret
potential casual risk variants of neurological diseases. a, Bar plot showing
the percentage of cCREs identified in the current study with homologous
sequencesin the humangenome (using reciprocalhomology search)
(Methods). b, Chromatin accessibility profiles for several neuronal and
non-neuronal cell types, and posterior probabilities of association (PPA) for

potential casual variants surrounding the homologous region in the mouse
genome toaschizophrenia-associated locus. Grey bars highlight cCREs
overlapping potential causal variants. rsID or hgl9 coordinates of overlapped
variants are labelled. :D’ denotes that the alternative allele is a deletion;
“I’denotes aninsertion. Predicted positively correlated cCCRE-gene pairs are
showninredarcs.
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Next, potential doublets were removed based on BSC and FSC signal width (two
middle dot plots). Finally, 20 diploid nuclei (2n) were sorted into each well of
eight 96-wells plates (right dot plot).

Extended DataFig.23|Nucleigating strategy. After tagmentation, nuclei
were pooled and stained with DRAQ?7. First, potential nuclei were identified
using forward scatter (FSC) area and back scatter (BSC) area (left dot plot).
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[X] Life sciences [ ] Behavioural & social sciences [ | Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/documents/nr-reporting-summary-flat.pdf

Life sciences study design

All studies must disclose on these points even when the disclosure is negative.
Sample size No statistical methods were used to predetermine sample sizes.
Data exclusions  No samples were excluded.

For analysis only nuclei with > 1,000 reads/nucleus and transcriptional start site enrichment > 10 were selected.
Potential barcode collisions were excluded from analysis
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Replication Experiments were performed for 2 biological replicates for each dissected region
Randomization  There was no randomization of the samples

Blinding Investigators were not blinded to the specimens being investigated.

Reporting for specific materials, systems and methods

We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material,
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response.

Materials & experimental systems Methods
Involved in the study n/a | Involved in the study
[ ] Antibodies X[ ] chip-seq

[] Eukaryotic cell lines [ 1IIX Flow cytometry
[] palaeontology X[ ] MRI-based neuroimaging
X Animals and other organisms

Human research participants

XXOXXX &

[] clinical data

Animals and other organisms

Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Adult C57BL/6) male mice were purchased from Jackson Laboratories.

Wild animals No wild animals were used in this study

Field-collected samples No filed-collected samples were used in this study

Ethics oversight All experimental procedures using live animals were approved by the SALK Institute Animal Care and Use Committee under

protocol number 18-00006.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

810 1990100




Flow Cytometry

Plots
Confirm that:
|X| The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

|X| The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).
|X| All plots are contour plots with outliers or pseudocolor plots.

|X| A numerical value for number of cells or percentage (with statistics) is provided.

Methodology
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Sample preparation Nuclei were stained with DRAQ7 (#7406, Cell Signaling)
Instrument Sony SH800
Software SH800S software

Cell population abundance  NA

Gating strategy Potential nuclei were first identified using FSC-Area and BSC-Area. Next doublets were removed based on BSC and FSC signal
width. DRAQQ7 postive nuclei with 2n count were sorted

|X| Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.
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