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The interpretation of morphogen gradients is a pivotal concept in developmental biology, and

several mechanisms have been proposed to explain how gene regulatory networks (GRNs) achieve

concentration-dependent responses. However, the number of different mechanisms that may exist

for cells to interpret morphogens, and the importance of design features such as feedback or local

cell–cell communication, is unclear. A complete understanding of such systems will require going

beyond a case-by-case analysis of real morphogen interpretation mechanisms and mapping out a

complete GRN ‘design space.’ Here, we generate a first atlas of design space for GRNs capable of

patterning a homogeneous field of cells into discrete gene expression domains by interpreting a

fixed morphogen gradient. We uncover multiple very distinct mechanisms distributed discretely

across the atlas, thereby expanding the repertoire of morphogen interpretation network motifs.

Analyzing this diverse collection of mechanisms also allows us to predict that local cell–cell

communication will rarely be responsible for the basic dose-dependent response of morphogen

interpretation networks.
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Introduction

Understanding the relationship between gene regulatory

network (GRN) design and function is a central problem in

biology. For simple cellular functions (such as bistability and

oscillations) identifying network motifs has been a productive

approach, providing a ‘conceptual toolkit’ for understanding

network design principles (Shen-Orr et al, 2002; Mangan and

Alon, 2003). However, the relationship between GRN topology

(the wiring design) and biological function may not always be

straightforward (Chouard, 2008). The ability of many different

topologies to encode the same biological function has recently

been explored theoretically through the use of genotype–

phenotype (GP) maps. These studies revealed that a large

number of different topologies could all achieve the same

biological function, but intriguingly they could be explained in

each case by a common underlying dynamical mechanism

(Ma et al, 2006; Hornung and Barkai, 2008).

These previous studies applied the GP map approach to

highly constrained functions. Such a limited repertoire of

dynamical explanations may not be the norm for less

constrained functions for which a GP map may be able to

uncover a more elaborate mechanism space. To explore this

possibility, we applied the GPmap approach to mechanisms of

morphogen interpretation for which at least several different

mechanistic possibilities have been suggested (Lander, 2007).

In this study, therefore, we wished to address the following

questions: Can we map out the range of mechanistic

possibilities that underlie this function? Can such a map serve

as a useful theoretical framework in which to explore the

general patterning principles for this function?

Results

Exploring design space for a realistic model

of development

We chose to explore the mechanisms of morphogen inter-

pretation as multiple mechanistic possibilities have been

suggested for this system and is thus a good candidate for
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possessing an elaborate mechanism space. Morphogen inter-

pretation is the second step in the two-step process of

morphogen-based patterning, the first step being morphogen

gradient formation and maintenance that we do not address in

this study.

To explore the range of possible morphogen interpretation

mechanisms, we sought a biologically verified model of gene

regulation.We therefore adapted the continuousmathematical

model developed over the last 20 years by Reinitz et al

(Mjolsness et al, 1991; Reinitz and Sharp, 1995; Jaeger et al,

2004), which quantitatively captures the spatiotemporal

dynamics of gap gene patterning in response to the Bicoid

morphogen gradient during Drosophila embryogenesis. Our

model includes time delays encoded by synchronized updating

of gene states in discretized time steps. The gene dynamics

depend on the following model parameters: the strength and

sign of the interactions between genes, degradation rates and

importantly also on cell–cell communication (which is

represented by a diffusive process—seeMaterials andmethods

for full details).We have also added a new term into themodel,

to represent stochastic molecular noise. Noise was included in

the simulations as the importance of robustness of develop-

mental mechanisms with respect to stochastic noise has been

highlighted in the past (Kerszberg, 2004). Our noise term

describes temporal fluctuations of molecular concentrations

that generate gene expression variability comparable to that

seen in real patterning systems (Supplementary Data section

S1). We simulated a one-dimensional spatial system compris-

ing 32 nuclei with a fixed morphogen gradient across the field,

and chose a single stripe of expression as the target pattern

(Figure 1A), because it represents a particular example of

morphogen interpretation and is a simplified version of the

well-known and much-studied French Flag problem (Wolpert,

1968). In all, 32 cells were chosen for the simulations because

it represents a typical size for a morphogenetic field found in

many real patterning systems (Briscoe et al, 2001; Wijgerde

et al, 2002; Bayly et al, 2007). As we are searching for the

general design principles of stripe-forming networks, our

criteria allow stripes of varying widths and positions within

the field (see Materials and methods). Furthermore, there are

no restrictions on the gene expression time course taken in

order to arrive at this final gene expression pattern.

We hypothesized that exploring this system using discrete

topologies would serve as a convenient, efficient and mean-

ingful way to represent what is in fact a vast and continuous

multidimensional parameter space (Figure 1B–E). The diffi-

culty of using the full continuous space can be considered in

the following way. Exploring networks with different numbers

of regulatory interactions involves sets of simulations inwhich

certain parameters are kept to zero. In practice, these networks

Figure 1 Combining topology space with a realistic model of gene regulation. (A) Our model of development is derived from a realistic model of Drosophila anterior–
posterior patterning (Mjolsness et al, 1991; Reinitz and Sharp, 1995; Jaeger et al, 2004). This spatial model consists of a one-dimensional row of cells with the GRN
repeated in each cell. Cells can signal to one another by means of diffusible gene products (dashed arrows). Specifically, we look for GRNs that have the ability to generate an
output with a single stripe of gene expression (green line) by interpreting a morphogen input signal in the form of a gradient (black line). An example of a single stripe of gene
expression for the Krüppel gene is shown, the data for which was taken from the FlyEx database (Poustelnikova et al, 2004; Pisarev et al, 2009). (B) A GRN topology where
two of the gene–gene interactions a and b correspond to the parameter space in (C). (C) A parameter space of the two parameters a and b. Dots are random parameter sets
from this space. (D) A topology space is created if all values of a and b that are positive are considered gene–gene activations, those values of a and b that are negative are
considered gene–gene repressions and those values of a and b that are 0 are considered to generate no gene–gene interaction. Regions of parameter space corresponding
to the different topologies are indicated by the different colored circles surrounding the topologies and the different colored dots in (E). Where topologies differ by a single
gene–gene interaction (one Hamming distance) they are linked by a blue line. Such links connect regions of close parameter space.
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have fewer parameters than the more complex ones—in other

words they reside in a parameter spacewith fewer dimensions.

Representing this full range of complexities (with differing

dimensionalities) within a single continuous parameter space

is therefore inefficient. In a sense, dimensions of the system

‘collapse’ as we go from complex networks to simple ones. The

discrete topological representation of a continuous parameter

space is illustrated in Figure 1. Furthermore, we demonstrated

that changes in topology have a greater effect on the resulting

phenotype and dynamics than a corresponding simple

parameter change (that does not change the topology)

(Supplementary Data section S2). Therefore, the topology-

focused approach should bias our sampling of parameter space

towards a greater diversity of mechanisms.

We chose to simulate all possible topologies of gene network

consisting of three genes. The major advantage of choosing

three-gene networks is the ability to perform exhaustive

analysis on all possible topologies. There is much evidence

suggesting that larger biological circuits are comprised of

combinations of small network modules linked together (Milo

et al, 2002; Thieffry and Sanchez, 2003). An example from

development is the modules found for endomesoderm

specification in the sea urchin (Peter and Davidson, 2009).

Furthermore, it has been previously demonstrated that the

dynamics of larger networks can be accurately captured using

models that reduce the system to include only the more

important information processing components (Ingolia and

Murray, 2004). Hence, detailed analysis of the behavior of

small networks has direct relevance to real patterning systems.

To explore the full design space of three-gene networks, we

enumerated every possible unique topology with the condition

that one of the genes was activated by the morphogen. This

resulted in 9710 topologies when including every permutation

by which the morphogen can activate one of the genes (see

Materials and methods). As we use a realistic continuous

model of gene regulation, topology alone is not enough to

define a GRN, andwe define a ‘genotype’ as a specific topology

with a specific set of parameters (dots in Figure 1C and E; the

strengths of gene–gene interaction and also diffusion rates are

variable in this study). We tested 30 000 randomly chosen

parameter sets for each topology. Hence, we assessed B300

million different genotypes (9710 topologies� 30 000 para-

meter sets). Each genotype was simulated four times with a

different series of random molecular fluctuations and the

resulting expression pattern tested against our stripe definition

and noise robustness criteria (stability against random

stochastic fluctuations—see Materials and methods). From

the 300 million genotypes tested, 3379 were able to produce a

stripe in a noise-robust manner. These successful ‘solutions’

mapped to 471 GRN topologies of the fully enumerated set of

9710. Examples of the gene expression time courses of

successful solutions are shown in Supplementary Figure S5.

The complexity atlas reveals that a variety

of distinct dynamical mechanisms can achieve

the same function

A major technical challenge is how to explore the dynamical

mechanisms of so many (3379) different solutions. If we were

not using discrete topologies but instead were simply

exploring the continuous multidimensional parameter space

(Figure 1B and C), then one potential approach would be to

ignore topological information, and to perform unsupervised

clustering on the parameter values for all the 3379 successful

solutions. To explore this approach, we measured the

Euclidean distances between all pairwise combinations of

successful parameter sets that were functional (3379 solu-

tions). For each parameter set pair we measured the Euclidean

distance in all possible permutations of the GRN topology, and

the lowest Euclidean distance for any of the permutations was

taken as the distance for this pairwise combination. The result

of agglomerative hierarchical clustering is shown in Supple-

mentary Figure S6, demonstrating that the algorithm failed to

find any significant groups or clusters within the dataset.

We therefore explored a new topology-focused approach.

Previous studies considered the full collection of functional

topologies as a list or ensemble (Ma et al, 2006; Hornung and

Barkai, 2008). By contrast, we hypothesized that by explicitly

linking topologies together into a non-directed graph based on

topological similarity (similar to neutral networks in the field

of evo-devo; Smith, 1970; Schuster et al, 1994; Ciliberti et al,

2007), the shape of this ‘metagraph’ (Ciliberti et al, 2007)

might provide insight into the underlying mechanisms. To link

our 471 functional GRN topologies into a connected graph, we

defined topologies (nodes) as neighbors (edges) if the addition

or removal of a single gene–gene interaction could change one

GRN topology into the other (Figure 1D). We found that 448

(95%) of the 471 functional topologies form a single connected

graph. We termed the resulting connected graph an ‘atlas’ as

the notion of neighborhood allows the similarity relationships

between all topologies to be mapped-out explicitly. We next

reorganized the layout of this atlas to generate a ‘complexity

atlas’ (Figure 2), which highlights the regions with more

regulatory links (higher complexity) versus fewer links (lower

complexity, where minimal topologies will reside). This

approach immediately revealed a striking asymmetry of the

atlas—whereas the higher levels of complexity show a fairly

uniform distribution of successful stripe-forming topologies,

less complex networks converge onto multiple discrete core

topologies (highlighted by dashed colored lines in Figure 2).

The separation of these ‘stalactites’ suggested that they may

each represent a distinctly different way of achieving a stripe—

islands of related GRN topologies that share a common

mechanism. We identified six-core topologies residing at the

bottom of stalactites for further analysis, based on their

mutational robustness (see Supplementary Figure S7 and

Supplementary Materials andMethods section S3); robustness

to topological changes (‘width’ of the stalactite) and to

parameter variation (shading).

If our six-core topologies employ distinct mechanisms, this

should be reflected by distinctly different gene expression

dynamics over space and time. The gene expression time

course for each successful solution can be represented by a

space–time plot (Figure 3A), and we therefore performed

hierarchical clustering on a simplified version of these plots

(taking into account every permutation of the three genes—see

Materials and methods section Clustering the space-time

plots). We employed a Euclidean distance difference function

between the space–time plots for each solution. To control for
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translation and scaling effects in the stripe pattern, we

compared the gene expression profiles at just three posi-

tions—at the center of each of the low–high–low regions of the

stripe pattern. We compared every permutation of the genes

for each space–time plot comparison, and the smallest

distance of each of these permutation comparisons was taken

as the distance between these two space–time plots. This

revealed that the spatiotemporal dynamics of the gene

expression time courses naturally cluster into six groups

(Figure 3B). Furthermore, these groups display a 1-to-1

correspondence with the six-core topologies, strengthening

the hypothesis that they represent six different mechanisms.

The possibility of six mechanisms to achieve the same

function was intriguing because previous studies with more

restrictive functions found a common dynamical mechanism

to explain them (Ma et al, 2006; Hornung and Barkai, 2008).

Hence, to confirm whether our six stalactites are genuinely

distinct dynamical mechanisms, or just modified versions of

each other, we directly studied the dynamics and mechanistic

requirements of each one in detail (Figure 3C; Box 1). The

distinct nature of these five is highlighted by the variety of

patterning strategies that they employ. The core topologies of

two of these mechanisms are entirely feed-forward networks

(A and F). One of these is the well-known incoherent type 1

feed-forward motif in dose-response mode (Kim et al, 2008),

whereas the other utilizes the twoupstream genes as inhibitors

defining the anterior and posterior boundaries of stripe gene

expression, respectively. Another mechanism (C) depends on

an intrinsic oscillator, which is rapidly ‘frozen’ to produce the

spatial stripe. The core topology of this mechanism has a

modular structure allowing ‘roles’ to be assigned to each of the

modules. One of themodules acts as the oscillator, whereas the

other acts as the repressor that freezes the oscillator after a

period of time. Mechanism (B) employs mutual inhibition

where the two mutually repressing genes have opposite

expression profiles. Finally, mechanism (E) contains a two-

gene bistable module that is modulated by a gradient of

repression to generate a stripe gene expression profile (all

these dynamics are explained in more detail in Box 1).

Strikingly, although cell–cell communication was allowed

for all the genotype assessments, five of the six mechanisms

make no use of this option—they interpret the morphogen

gradient in a completely cell-autonomous manner acting like a

band-pass filter. The prevalence of cell-autonomous mechan-

isms is heightened by the discovery of one mechanism D,

which by contrast is absolutely dependent on local cell–cell

communication. It involves overlapping activator and repres-

sor expression domains to create a zone of net activation for

the stripe gene. Importantly, it does not use cell–cell

communication just to sharpen the stripe or to make it more

robust with respect to stochastic noise—the absence of

communication between neighboring cells renders it comple-

tely unable to respond in a concentration-dependant manner.

Design features of stripe-forming GRNs

Which design features do the stripe-forming GRNs tend to

employ? Can this tell us anything about the functional

significance of design features observed in real morphogen

interpretation systems? In general, the core GRNs rely on three

particular design features, which are over represented in the

complexity landscape compared with what would be expected

by chance; feed-forward, autopositive feedback and negative

feedback (these design features are discussed in more detail in

Figure 2 Creating a complexity atlas reveals the core topologies for single-stripe patterning. Nodes are GRN topologies, and edges link those with a single-topological
change. The GRN topologies are laid out such that topological complexity increases up the y axis (see left-hand key). Spacing along the x axis is organized to reduce
edge crossing. This reveals a striking structure to the network, in which ‘stalactites’ are seen protruding from the bottom of the atlas. These stalactites converge
downwards to individual ‘core’ topologies (which are illustrated below the atlas). Mutational robustness, as measured by the fraction of functional parameter space, is
shown by the shading (darker topologies are more robust). The six-core topologies chosen for further investigation are shown beneath along with their corresponding
color-coded label (A–F). The morphogen input is denoted by ‘M.’ Genes in each core topology have the following color code: green is the stripe gene, red is the gene
receiving the morphogen input (if it is not also the stripe gene) and blue is the default remaining gene. If the gene receiving the morphogen input is also the stripe gene,
it is green and the remaining two genes are randomly assigned a red or blue color.
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Figure 3 The six mechanisms are distinct and (A) How to construct a space–time plot. The concentration of the three genes in each cell (x axis) at each time point
(y axis) is indicated by the intensity of the red, green or blue, respectively. (B) A hierarchical clustering of 300 solution space–time plots, 50 of which were randomly
generated for each core topology. This tree shows that the six mechanisms are distinct as the space–time plots naturally cluster into six separate categories. Branches of
the six main groups are colored according to the core topology from which the solution derives. (C) Gene expression graphs of each mechanism at different stages are
shown below the tree along with a single space–time plot that captures these stages in a single image. A narrative description of each of the mechanisms can be found in
Box 1. The core topologies for each of the mechanisms are also shown beneath the space–time plots.
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Supplementary Data section S4). The feed-forward motif is of

particular interest as it is employed by four of the core

topologies. The prevalence of such mechanisms suggests why

in many morphogen patterning systems there is often more

than one morphogen input that feeds into many genes of the

system by both activation and inhibition. For example,

Drosophila blastoderm patterning, vertebrate hindbrain pat-

terning and neural tube patterning all employ multiple

morphogen inputs (Jaeger et al, 2004; Ulloa and Briscoe,

2007; Tümpel et al, 2009).

Mechanisms show a discrete distribution within

the underlying parameter space

To further explore the distinction between the sixmechanisms,

we asked whether a simple topological description is enough

to specify each mechanism, or whether instead certain

parameter restrictions are also necessary. Extensive analysis

of correlations between parameter values confirmed the latter

to be true, and more importantly that these parameter

restrictions are different for each mechanism (Supplementary

Figure S8). We thus wished to go further and explore the

distribution of mechanisms within underlying continuous

parameter space (Figure 1B–E). Are there continuous transi-

tions between mechanisms or are the mechanisms discretely

different? To address this question, we tested whether it was

possible to smoothly interpolate through parameter space

between all pairs of mechanisms without losing functionality

(illustrated in Figure 4A and B). We specifically looked at the

transition between the solution parameter sets of the core

topologies. We explored all pairwise combinations of transi-

tions between these topologies as shown in Figure 4C. For

certain pairs of core topologies, a smooth transition would be

impossible, as there are topological clashes. In other words,

Box 1 Comparison of the six mechanisms

See Figure 3C for corresponding gene expression profiles of the different stages.

(A) Incoherent type 1 feed-forward
Description: (Stage 1) The red gene is activated by themorphogen and hence starts tomimic its gradient pattern. The red gene activates the
green gene, and switches on the green genes positive feedback above a certain threshold. (Stage 2) Acombination of time and dose leads to
the concentration of the repressing blue gene product building up to a high enough concentration for it to force the green gene product
down, but only on the left-hand side where the concentration is higher. (Stage 3) In the central region, the repression from the blue gene
product is lower allowing the green gene product to reach a high steady state.

(B) Mutual inhibition
Description: One of the real mechanisms found to be involved inDrosophila anterior–posterior patterning. (Stage 1) The red gene product
mimics the expression pattern of the morphogen. The green gene is activated more strongly than the blue gene and hence switches on
earlier on the anterior side where the red activating gene product is higher. (Stage 2) Eventually the blue gene product builds up to a high
enough concentration to start forcing the green gene product down on the very anterior side where the concentration is highest. (Stage 3)
The result is a final gene expression pattern where the blue and green gene products form two mutually exclusive expression zones.

(C) Frozen oscillator
Description: (Stage 1) The morphogen sets the green gene and the blue gene products oscillating because they are in a negative feedback
loop. The phase of the oscillation is different in different cells because of the difference in the strength of the morphogen activation.
(Stage 2) The red gene product starts to build up everywhere in a uniform distribution because of its positive feedback. (Stage 3) It
represses both the green and blue gene and stops the oscillations forcing both genes off, except in the central region,which are in a phase of
the oscillation allowing the concentrations to reach a high steady state.

(D) Overlapping domains
Description: Thismechanism is completely dependent upon diffusion. The stripe gene is activated and inhibited by the two genes. Because
of the activator having a higher diffusion constant than the inhibitor, the expression domain of the activator extends further than that of the
inhibitor allowing a region for a stripe to form. (Stage 1) The red gene product starts to form a gradient as it is activated by themorphogen.
The red gene strongly activates the blue gene giving it a similar expression profile though at a higher concentration. The blue gene product
activates the green gene, and the red gene inhibits the green gene meaning the green gene product can only start to increase in
concentration on the right-hand side. The green gene inhibits the red gene, which causes the sharp threshold break in the red gradient.
(Stage 2) The green gene forces the red gene completely off on the right-hand side, in turn leading to decay of the blue gene product and
then the green gene product. (Stage 3) Only in the overlap region where the blue gene is activating the green gene and where there is no
repression from the red gene can a stripe form.

(E) Bistable
Description: (Stage 1) The red gene is activated by themorphogen, and thus its product also forms a gradient. The blue gene activates itself
and thus starts to switch on everywhere. The blue gene also activates the green gene whose product will thus start to increase in
concentration, but only on the right-hand side as it is repressed by the red gene on the left-hand side. (Stage 2) The green gene product can
build up to a high enough concentration on the right-hand side to start to force down the blue gene product. (Stage 3) The green gene,
however, is also dependent upon the blue gene for activation and thus after a delay its product concentration also starts to fall. The result is
a single stripe of gene expression.

(F) Classical
Description: One of the real mechanisms found to be involved in Drosophila anterior–posterior patterning. (Stage 1) The red gene is
activated by the morphogen, and thus its product also forms a gradient. (Stage 2) The blue and the green genes activate themselves and
they start to switch onwhere the repression from the red gene is lowest. (Stage 3) The blue gene also represses the green genemeaning it is
forced off at the very right. Only in the central zone where the repression from the red and the blue gene is lowest can the green gene
product reach a high steady state.
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Figure 4 Interpolating between parameter sets reveals the mechanisms to be discrete. (A) Illustration of the method of interpolating directly through parameter space
using functional parameter sets from core topologies. Gene–gene interactions that are present in one-core topology and not the other are reduced to 0 as the
interpolation moves away from that topology. (B) Showing two interpolations through continuous parameter space from A-to-B and B-to-C (whose positions on the
complexity atlas are indicated). The horizontal black line represents the linear interpolation between the parameter combinations. They gray bar above illustrates where
an interpolation was functional. Example of space–time plots from various points of the interpolation are shown beneath. (Left) In the first example (A-to-B), some
interpolations are possible without losing the stripe-forming functionality, as illustrated by the continuous gray bar and space–time plots with a stripe at each stage of the
interpolation. (Right) By contrast, the interpolation from B-to-C passes through a large non-functional region of parameter space (broken gray bar). (C) A triangular matrix
describing whether it is possible to interpolate between the core topologies for each mechanism. Where there is a topological contradiction (one-core topology requires a
repression, whereas the other requires an activation) squares are colored black, and an interpolation was never tested. For each case where an interpolation was
possible, we attempted 625 interpolations between randomly selected parameter sets, the results of which are shown in (D). If a single interpolation was successful,
squares are colored yellow. When every interpolation was not successful, the square was colored gray. (D) Histograms of 625 attempted interpolations between
functional parameter sets from non-topologically contradictory core topologies. For each interpolation, 20 direct equidistant steps were taken. The gap size is the number
of non-functional steps within that interpolation. Only the transition A-to-B is possible as indicated by gap sizes of 0. (E) The modular nature of mechanisms A and B. The
two mechanisms share an X module and only differ depending on which Y module they utilize.
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where one core topology requires an activation, the other

requires a repression. As a core GRN topology contains only

the essential gene–gene interactions for a particular mecha-

nism, a change from activation to a repression or vice versawill

by definition break the mechanism. Hence, there is a

guaranteed non-functional gap between the two functional

parameter domains of these core GRN topologies. In situations

where there were no topological clashes, we chose to explore

what happened as we interpolated between 25 randomly

chosen parameter sets responsible for one mechanism to 25 of

those responsible for the other. By doing this, we could

measure the ‘gap size’ between the solutions. The gap size is

the length of the non-functional region along the interpolation.

We could then plot a histogram of the gap size for each of the

625 pairwise parameter interpolations. The results are shown

in Figure 4D.

The majority of attempted interpolations have a gap. For six

out of the seven mechanisms pairs, we find no interpolations

from one mechanism to the other that preserve functionality

all the way. The exception to this finding is the interpolation

between the incoherent type 1 feed-forward and mutual

inhibition mechanisms (A and B), where there are a

substantial proportion of interpolations with no gap. As a

control, we performed interpolations between parameter sets

from topologies of the same mechanism categories each of

which had at least some interpolations with no gap (Supple-

mentary Data section S6). Hence, this result strongly suggests

that, in general, the nature of mechanism space is discrete as

illustrated in Supplementary Figure S10. To our knowledge,

this is the first time that the discrete nature of mechanism

space has been demonstrated by a concrete example.

This exception of (A-to-B) is due to the inherent modularity

of the incoherent type 1 feed-forward and mutual inhibition

mechanisms (as illustrated in Figure 4E). Both motifs can be

considered as the combination of twomodules: a feed-forward

module (X), which is the same for both motifs, and a positive-

feedback on C (Y), which is either a direct positive feedback

(for mechanism A) or an indirect double-negative feedback

(for mechanism B). This is reminiscent of the result found in

Ma et al (2006) for the segment polarity GRN, whereby

inherent modularity allowed for ‘combinatorial variability’ in

the GRN topologies able to achieve the ‘stripe-sharpening’

function.

Mapping design space for morphogen

interpretation

To generate a first explicit map of mechanisms of morphogen

interpretation, we explored the distribution of themechanisms

across the range of more complex topologies in the full

complexity atlas. By comparing the spatiotemporal dynamics

of gene expression for each genotype, we were able to assign

the majority of solutions to one of the six mechanisms. This

was confirmed by an automatic method that resulted in the

assignment of 93% of the 3379 solutions (see Materials and

methods). In all, 76% of the GRN topologies were found to

work via a single mechanism and 2% were found to have the

potential to work via two different mechanisms depending on

the exact parameter values (Figure 5A; in these cases, the

topology contains the core topology of both mechanisms).

This result demonstrates the value of the spatial nature of our

atlas—it reveals the explicit mapping of the positions, domains

and topological overlaps of the mechanisms relative to each

other in ‘design space’ (Kitano, 2007). Our comparison with

real known systems shows that the atlas can serve as a new

conceptual framework within which to explore and under-

stand the possible mechanisms of metazoan pattern formation

and their relationships to each other.

The atlas uncovers known motifs for morphogen

interpretation and also predicts new ones

We next explored whether our atlas of dynamical mechanisms

had revealed any real known morphogen interpretation

systems (Figure 5B). Within the currently accepted gap gene

network (which interprets the Bicoid morphogen in Drosophi-

la), we find motifs corresponding to two of our core GRN

topologies (Jäckle et al, 1986; Kraut and Levine, 1991; Clyde

et al, 2003). The mutual inhibition in B reflects either the

‘alternating cushions’ or ‘mutually exclusive domains’ model

of gap gene expression that occurs between kni and hb and

between gt and Kr (Kraut and Levine, 1991; Clyde et al, 2003;

Vakulenko et al, 2009). In Drosophila, it is believed that this

model is also complemented by a more hierarchical mechan-

ism like F, in which different genes define the anterior and

posterior boundaries of each gap gene, for example hb and kni

defining the anterior and posterior boundary of Kr (Clyde et al,

2003). The core topology of A is found within the GRN that

controls the mesoderm inducer Xenopus Brachyury (XBra)

expression (Green, 2002). XBra is strongly expressed only at

intermediate levels of activin signaling (Latinkić et al, 1997).

This correspondence between three of our motifs and real

developmental networks in both vertebrates and invertebrates

suggests that the remaining topologies are also likely to be

biologically realistic (such as C, D and E), and can now be

added to the repertoire of possible stripe-forming networks.

The identification of real developmental motifs emphasizes

the power of our technique to complement the motif approach

of previous studies (Shen-Orr et al, 2002; Mangan and Alon,

2003). Rather than searching for overrepresentedmotifs in real

network data and then studyingwhat dynamical behavior they

are capable of, here we perform the reverse—we start by

identifying theoretically functional motifs and then search for

their occurrence within real networks.

Performance features of the six mechanisms

We next explored the dynamical performance of the six

mechanisms to investigate why certain motifs are observed in

real biological systems and the likelihood of employment of

the non-observed mechanisms in real biological systems. A

summary of performance features of the six mechanisms is

shown in Table I, and a more extensive discussion can be

found in Supplementary Data section S8.We analyzed features

including mutational and noise robustness, how fast equili-

brium is reached, the number of cell types generated and the

typical features of stripes produced by the six-core mecha-

nisms. Two mechanisms deserve special attention following
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Figure 5 Mapping the six mechanisms to the complexity atlas provides the first explicit map of mechanisms for morphogen interpretation. (A) The topologies of the
complexity atlas are colored according to the mechanism by which they produce the single stripe of gene expression (as shown in Figures 2 and 3). Topologies that are
capable of performing multiple mechanisms are shown in yellow. Mechanisms occupy locally connected regions of the complexity atlas, and together cover 78% of the
topologies. (B) The known biological systems that each morphogen interpretation mechanism is associated with are illustrated by the core topologies and the images
beneath. Morphogen interpretation mechanisms from diverse contexts including Drosophila and Xenopus can be seen. Two of the mechanisms
(B and F) are involved in Drosophila axial patterning. The gap gene subnetworks that correspond to our mechanisms are shown in the bounded region along with
the real quantified gene expression patterns for the corresponding genes (from the FlyEx database; Poustelnikova et al, 2004; Pisarev et al, 2009). The core topology of
A is found within the GRN that controls the mesoderm inducer Xenopus Brachyury (XBra) expression (Green, 2002). Schematic versions of the gene expression pattern
of the three genes in the XBra control network are shown beneath. Those mechanisms labeled with a ‘?’ are those that have not been observed in real biological
contexts. These can be added to our repertoire of morphogen interpreting mechanisms.

Table I A summary of the performance features of the six-core mechanisms

Mechanism Robustness Patterning speed
(min)

Number of cell
types generated

Irreversibility

To parameter changes
(mutational) rank

To noise
rank

To dynamic
morphogen

IFF 3 1 Fragile 125 2/3 Yes (without cell–cell communication)
MI 4 4 Robust 75 2/3 No
FO 1 2 Robust 45 2 Yes
OD 5 5 Robust 215 3 No
BI 2 6 Robust 80 3 No
Classical 6 3 Robust 110 3 Yes (without cell–cell communication)

Details of each of the individual analysis can be found in Supplementary Data section 8. Noise robustness rank is that measured at the 1% per time step noise level.
Mutational robustness is measured as the number of solutions found for each of the core topologies. Patterning speed was converted to minutes from number of
iterations using the assumption of 25 s per iteration as described in Supplementary Data section 1.
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the analysis of these features; the frozen oscillator and mutual

inhibition mechanisms.

The undescribed frozen oscillator mechanism is a strong

candidate for employment in real biological systems given its

robustness to noise and mutation, and its invariance with

respect to changes in the morphogen input. It is also of modular

design and can pattern fast to produce a stripe almost anywhere

in a field of cells. Indeed in some respects, it resembles the clock

and wavefront mechanism proposed and favored for somito-

genesis (Pourquié, 2003), as it involves the spatialmanifestation

of a temporal phenomenon. It is still unclear how the clock of

the clock and wavefront mechanism is stopped at themolecular

level (Kulesa et al, 2007). The frozen oscillator mechanism

suggests oneway by which such oscillations can be stopped; by

means of a repressor that acts like a timer and shuts down

oscillations after a particular amount of time has passed.

The mutual inhibition type core topology is observed in a

number of different patterning contexts including Drosophila

blastoderm and dorsal–ventral patterning of the vertebrate

neural tube, which both involve activating gradients of

morphogen and cross-repressions between the downstream

genes.Why then is this type of configuration often observed in

real patterning systems? The answer could lie in the fact that

the mutual inhibition mechanism allows equilibrium to be

reached particularly fast and is thus suitable to contexts where

fast patterning is required.

Another key feature of the mutual inhibition mechanism

could endow a major advantage in terms of the evolvability of

mechanisms is the symmetrical nature of themutual inhibition

motif. Such a motif can be used multiple times to produce

multiple stripes with minor pleitropic constraints. This final

point is an important consideration when such small networks

appear in the context of a larger gene network, as they may

have other functions to perform. Thus, certain mechanisms

may be favored over others in larger network contexts. The

mechanism of network evolution also has an important

bearing on the utilization of different motifs in larger gene

networks.

In summary then, different mechanisms have different

features that will be of use in different patterning contexts.

Exploring the design space of possible mechanisms can be

used to suggest why some mechanisms are observed more

often than others in real biological contexts and give insights

into specific patterning processes.

Role of cell–cell communication in morphogen

interpretation

Can the design space tell us anything about the general

features of morphogen interpretation? Recently, it has been

demonstrated in the Wingless system of the Drosophila wing

imaginal disc that local cell–cell communication is essential

for proper morphogen interpretation (Piddini and Vincent,

2009). This observation highlights the question of the role of

cell–cell communication in morphogen interpretation. Our

results so far from the complexity atlas strongly suggest that

cell–cell communicationwill not generally be necessary for the

underlying morphogen interpretation mechanisms. Does cell–

cell communication thus have some secondary role such as

providing robustness to noise or ‘fine tuning’ the features of

the gene expression domains such as stripe position or width?

In order to explore this question, we performed a series of

simulations using the core topologies of the six mechanisms

with and without the presence of noise in the upstream

morphogen input and with and without diffusion (Supple-

mentary Data section S9). These results show that cell–cell

communication can provide a small but significant increase in

the robustness to noise in the morphogen input.

We next explored the role of diffusion in fine tuning the

morphogen interpretation process. We analyzed the effects on

stripe position andwidth generated by the core topologies with

and without diffusion. Furthermore, we analyzed how the

features of the stripes changed when we adjusted the diffusion

parameter for solution parameter sets of the core topologies.

These results revealed that diffusion can serve as a fine-tuning

parameter allowing the adjustment of stripe width and

position. For example, increasing diffusion results in thinner

stripes for the incoherent feed-forward type 1 and mutual

inhibition mechanisms but instead results in a larger stripe for

the frozen oscillator, bistable and classical mechanisms.

Increasing diffusion for the overlapping domains mechanisms

has the effect of moving the stripe towards the source of the

morphogen with no significant size change.

Generality of the model

Would the same results hold if we changed the underlying

modeling formalism? In order to explore this question, we

performed extensive further tests changing various aspects of

the model (see Supplementary Data section S10 for full

details). These parameters included the amount of noise, the

size of the spatial field, the functional criteria of the stripe of

gene expression, shape of the morphogen gradient and the

initial conditions. In each case, a whole new complexity

landscape was created by resampling many thousand para-

meter combinations per topology, and the results show that the

structure of the complexity landscape changes very little when

each of these features are changed.

However, the result changes more markedly when we

expand the model space by changing the gene regulatory input

function for the model. In particular, we changed the

Michaelis–Menten input function described in Equation (3)

to a sigmoid input function described in Equation (4). Most of

themain stalactites can be observed though somemechanisms

can function with less gene–gene interactions. By expanding

the model even further and including features such as explicit

delays, varying decay or more complex regulatory input–out-

put functions (our study utilizes simple addition of inputs), we

would expect the results to change further. However, these

changes would only be expected to increase the repertoire of

morphogen interpretation mechanisms further thus not

changing the general message that for some biological

functions a variety of distinct underlying strategies exists.

Discussion

In this study, we have combined the approaches from two

previously separate lines of research. The neutral network
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concept has been used to address evolutionary questions such

as the relationship between mutational robustness and

innovation (Smith, 1970; Schuster et al, 1994; Ciliberti et al,

2007). Here, we have adapted the approach to focus on a

different question: the relationship between network design

(motif topology) and dynamical mechanism (Ma et al, 2006;

Hornung and Barkai, 2008). Rather than considering topolo-

gies as a list or ensemble, we created a complexity atlas by

utilizing the notion of neighborhood and the concept that

minimal topologies represent core mechanisms (Salazar-

Ciudad et al, 2000; Munteanu and Solé, 2008). Stalactites

naturally emerge from this approach, and we have shown that

although core topology alone is insufficient to define a

dynamical mechanism (Supplementary Figure S8), never-

theless stalactites can correspond to a classification of

mechanisms. Although the different mechanisms map to

separate regions of the underlying parameter space, more

conventional methods failed to find these mechanistic classes

(Supplementary Figure S6). We therefore believe the complex-

ity atlas to be a powerful concept, which will be applicable to

many other studies of network mechanism.

Using this new tool, we have discovered the first case

of a well-defined biological function for which at least six

different three-gene mechanisms exist. These likely represent

major classes of network design (dynamical systems)

important to the problem of morphogen gradient interpreta-

tion (Figure 5), and can be added to the repertoire of possible

stripe-forming mechanisms, to aid our understanding of

real model systems (Lander, 2007). We predict that those

undescribed mechanisms for morphogen interpretation

namely (C, D and E) will also underlie real biological systems.

The discovery that five of the six mechanisms are cell

autonomous strengthens the emerging view that networks of

cross-regulatory transcription factors may be at the heart

of many real systems, as has been proposed for SHH

(Dessaud et al, 2008). Interestingly, it has recently been

demonstrated in the Wingless system of the Drosophila wing

imaginal disc that local cell–cell communication is essential

for proper morphogen interpretation (Piddini and Vincent,

2009). Our study predicts that local cell–cell communication

will rarely be responsible for the dose-dependent response of

morphogen interpretation networks. We demonstrate that it is

more likely to be involved in providing noise robustness

or precision to the system, rather than its underlying

functionality.

Finally, the power of such function-topologymaps to discern

the underlying network topology and mechanism for a

function was previously demonstrated (Ma et al, 2009).

However, such maps thus far have only demonstrated the

existence of one or two mechanisms that are capable of

generating a given function. In contrast, the results presented

here caution that some well-defined biological functions may

instead possess a wide range of alternative dynamical

explanations (even for relatively simple three-gene networks

and a limited modeling formalism) as demonstrated in

Figure 5. This predicted feature has potential benefits as well

as caveats. It suggests that in synthetic biology, there will exist

a range of different ways to design a circuit to perform a

desired function—thereby giving a greater range of options

from which to choose the most practical design.

Materials and methods

Enumerating all GRN topologies

A topology can be represented in the form of a matrixwij, where i and j
represent the position in those matrices and values 1, �1 and 0
represent activation, repression and no interaction, respectively. We
generated all possible matrices that correspond to unlabeled topolo-
gies and then removed isometric equivalents by comparing them in all
possible permutations. There are 19 683 gene network matrices before
non-isometric topologies have been removed, and this is reduced to
3284 topologies in the fully enumerated set.

The morphogen gene is a gene that activates one of the genes of the
GRN but is not affected by the GRN. Each GRN topology is represented
multiple timeswith themorphogen feeding into the different genes (exact
number depends on the amount of symmetry in the GRN topology). The
morphogen is taken account of in the topology generation by extending
the GRNmatrix (i¼iþ 1) to include the input frommorphogen (which is
permutated independently). When the morphogen is included, the
number of isometric topologies increases from 3284 to 9710.

Creating an Atlas of GRNs by including explicit

neighbor definitions

Two GRN topologies are considered neighbors in the atlas if the two
GRN topologies are one Hamming distance apart (a single gene–gene
interaction change). The Hamming distance can be measured by the
following equation where

Dðw; w
0

Þ ¼
X

i;j

sgnðwijÞ � sgnðw
0

ijÞ
�

�

�

�

�

�; ð1Þ

D is the Hamming distance between the matrices of two GRN
topologies w and w0 and i and j represent the position in those
matrices. The matrices are compared in every permutation and the
lowest D of those permutations is taken as the Hamming distance.
Hence, two GRN topologies are neighbors if the gain or removal of any
one interaction can transform one of the GRN topologies into the other.

The gene regulation model

We employed a biologically verified model of gene regulation for this
problem, and therefore adapted the continuous mathematical model
developed over the last 20 years by Reinitz et al (Mjolsness et al, 1991;
Reinitz and Sharp, 1995; Jaeger et al, 2004), which quantitatively
captures the spatiotemporal dynamics of gap gene patterning in
response to the Bicoid morphogen gradient during Drosophila
embryogenesis. The model is described by

dgij

dt
¼ w F

X

Ng

l¼1

Wliglj þM

" #" #

þ Dir
2gij � lgij þ ZðtÞgij; ð2Þ

where gij is the concentration of the ith gene in the jth cell, F(x) is a
function defining the interaction among genes (which can take the
form of a Michaelis–Menten, sigmoid or other non-linear input
function), Wli is a matrix containing the strength of gene-to-gene
regulation parameters, M is the morphogen input described in more
detail in the section ‘configuration of the spatial domain’ below, w(x) is
the Heaviside function (to prevent negative gene product production
rates), Di is the diffusion constant for the ith gene, which we use to
represent local cell–cell signaling, l is the decay rate (set to 0.05) and
Z(t) is a noise term, which adds uniformly distributed fluctuations
(±1%) to the concentration of every gene in every cell at every time
step. There is zero autocorrelation in the noise term. The parameters
that could vary in the model were regulationWil and diffusion Di. Full
details of the model are described in Supplementary Materials and
Methods section S1. The input function describes the relationship
between the activation and inhibition of a gene and its actual
expression. The main input function used in this work took the form
of a Michaelis–Menten function, which is defined by

O ¼
1

ð1þ IÞ
; ð3Þ
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where I is the total input into the gene and O is the output of the
function. The alternative function used to test the dependence of the
results on the exact gene regulation model used was a sigmoid
function.

O ¼
1

ð1þ ðeð5�5IÞÞÞ
; ð4Þ

where I is the total input into the gene and O is the output of the
function.

Parameter range distributions
For each GRN topology, 30 000 different parameter sets were tested
(a GRN topology with a specific set of parameters we called a
genotype). There are up to 12 variable parameters for a three-gene
network; diffusion for each individual gene and then the strengths of
the interaction values between the genes. The parameters are chosen
randomly though biased towards lower numbers through a logarith-
mic probability distribution. The logarithmic probability distribution
was implemented in order to take account of the fact that a small
change in a small parameter value will have a greater effect on a
network’s behavior than a small change in a larger parameter value.
The logarithmic probability distribution is described by

V ¼ 0:9995iR; ð5Þ

where i is a random number between 0 and 10 000 and R is the
parameter range and V is the resulting parameter value. Parameter
ranges are as follows: regulation 0–10 and diffusion 0–0.05.

Configuration of the spatial domain
The simulations take place on a theoretical one-dimensional row of 32
cells. Zero-flux boundary conditions are used throughout this work.
The simulation starts with every gene in every cell set to have a
concentration of 0.1. This was necessary because the noise term used
is a percentage noise term and thus if the concentrationwas always 0 at
the start of the simulation, then the products of any geneswith positive
feedbacks without any other input would remain at 0. The simulation
is also initiated by the positive input from themorphogen gradient that
does not change throughout the simulation.

The morphogen was chosen to give an approximate input range to
the gene that it affects 10–50% of the maximal activation. The
morphogen input is defined by

M ¼ Idc; ð6Þ

whereM is the morphogen input, I is the morphogen concentration in
the left-most cell of the field, d is the reduction of morphogen
concentration in each subsequent cell of the morphogen gradient and c
is the cell position. For the 10–50% input range, I¼1 and d¼0.93 was
used for the Michaelis–Menten function and I¼1 and d¼0.98 was used
for the sigmoid function.

Stripe-forming functional definition

For a genotype (GRN topology with a specific parameter set) to be
considered functional, it had to produce a stripe of gene expression for
at least one of the genes. For each gene, wemeasured an abstraction of
its gene expression of the one-dimensional field, where each cell was
defined as low or high. We defined a cell as low if the gene expression
was below 10% of the maximum possible allowed by the model. We
defined a cell as high if the gene expression was above 10% of the
maximum gene expression allowed by the model. A gene was
considered to have a stripe pattern if it had a single region of low for
two consecutive cells followed by a single region of high for a
maximumof 16 consecutive cells followed by a single region of low for
at least two consecutive cells. The two low regions must occur at the
extremities of the field. The definition is intentionally loose in the
sense that the single stripe can be of any width up to 16 cells and be in
any position in the spatial domain. This is becausewe are interested in
the basic design principles of the system, not the details of how to
control a specific width. Functional parameter sets that can produce
the single stripe of gene expression are termed ‘solutions.’ Hence, a

single topology has multiple genotypes and can have multiple
solutions. The number of solutions that each topology has is a
measure of its mutational robustness. A GRN topology must have at
least one solution to be considered functional. Furthermore, solutions
had to be robust with respect to developmental noise and have reached
equilibrium to be considered functional (full details are in Supple-
mentary Materials and Methods section S2).

Clustering the space–time plots

In order to cluster the space–time plots, we needed a suitable
difference function. The difference function used is a measure of the
Euclidean distance between the gene expression values of any two
plots over space and time. In order to control for differences in the
position and size of the stripe, we only compare three cells from each
space–time plot. These three cells are the cell in the middle of the
defined stripe (high) region and the two cells directly in the middle of
the defined low regions. Thus, the difference function is

Di;j ¼
SC
1S

T
0S

G
1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðYi;c;t;g � Yj;c;t;gÞ
2

q

CTG
; ð7Þ

where D is the Euclidean distance, i and j are the indices of the
respective space–time plots. Y is the array containing the values of the
space–time plot, where c is the cell, t is the time step and g is the gene.
C is the number of cells being compared, in this case three for the low–
high–low regions. T is the number of time points being compared. If
the two space–time plots have different numbers of time points, then
they are compared up to the length of the shortest time of the two plots.
G is the number of genes. Plots are compared for all permutations of
the genes, and the smallest difference of all of the permutations is
taken as the final difference.

A hierarchical clustering algorithm then generates a tree in an
agglomerative manner, starting with the most similar pair of space–
time plots increasing the difference value until all space–time plots
have been assigned to the tree. The y distance on the tree corresponds
to theminimal difference between any two space–time plots each from
a different branch.

Interpolating between randomly chosen parameter

sets for each mechanism

For each topologically compatible pairwise combination of core
topologies from Figure 4C, we performed the following analysis. We
randomly collected 25 solutions from each core topology. For each
pairwise combination of solutions (25� 25¼625), we interpolated the
parameter values (in all viable permutations). We used a linear
diagonal interpolation through parameter space, consisting of 20
interpolation steps. For each step, we resimulated the interpolated
topology and asked if it could produce the single stripe of gene
expression.

Mapping mechanisms to the complexity atlas

Individual solutions for generating a single stripe of gene expression
were assigned to mechanism categories based on a combination of
topological and gene expression dynamic properties. For a particular
solution to be assigned to a particular mechanism category, the GRN
topology responsible for the solution must contain the core GRN
topology of that mechanism. If a particular solution does not meet the
topological criteria for any of the mechanism categories, then it is not
assigned a category. If the solution meets the topological criteria of a
single-mechanism category, then it is assigned to that category. If,
however, it meets the topological criteria of multiple mechanism
categories, then gene expression dynamic information is taken into
account to decide which category it belongs to. The space–time plot of
the solution is comparedwith all of the solution space–time plots of the
‘core GRN topologies’ (when the core topology is simulated with a
million parameter sets).

The three landmark cells are compared between the solution
and each of the space–time plots in the ‘core GRN topologies’ dataset
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for every permutation of the genes. The Euclidean distance is
measured between the solution and each core GRN topology space–
time plot. The solution is placed in the mechanism category that has
a core GRN topology space–time plot with the smallest Euclidean
distance to the solution. Using this approach, 3147 solutions out of the
total 3379 (93%) were assigned to at least one of these mechanism
groups.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (http://www.nature.com/msb).
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