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Abstract 
Osteoporosis is a common debilitating chronic disease diagnosed primarily using bone mineral 
density (BMD). We undertook a comprehensive assessment of human genetic determinants of 
bone density in 426,824 individuals, identifying a total of 518 genome-wide significant loci, (301 
novel), explaining 20% of the total variance in BMD—as estimated by heel quantitative 
ultrasound (eBMD). Next, meta-analysis identified 13 bone fracture loci in ~1.2M individuals, 
which were also associated with BMD. We then identified target genes from cell-specific 
genomic landscape features, including chromatin conformation and accessible chromatin sites, 
that were strongly enriched for genes known to influence bone density and strength (maximum 
odds ratio = 58, P = 10-75). We next performed rapid throughput skeletal phenotyping of 126 
knockout mice lacking eBMD Target Genes and showed that these mice had an increased 
frequency of abnormal skeletal phenotypes compared to 526 unselected lines (P < 0.0001). In-
depth analysis of one such Target Gene, DAAM2, showed a disproportionate decrease in bone 
strength relative to mineralization. This comprehensive human and murine genetic atlas 
provides empirical evidence testing how to link associated SNPs to causal genes, offers new 
insights into osteoporosis pathophysiology and highlights opportunities for drug development.   



 

 4 

Introduction 
Osteoporosis is a common, aging-related disease characterized by decreased bone strength 
and consequent increased risk of fracture.1 Bone mineral density (BMD), the most clinically 
relevant risk factor when diagnosing osteoporosis, is highly heritable2 and is a strong risk factor 
for fracture.3 While there have been no large-scale genome-wide association studies (GWAS) 
for fracture to date, previous GWAS for BMD have demonstrated that BMD is a highly polygenic 
trait.2 Recently, we identified 203 loci associated with estimated BMD by measuring quantitative 
heel ultrasound (eBMD), explaining 12% of its variance, demonstrating this polygenicity.4  
 
eBMD is predictive of fracture and is highly heritable (50-80%).5–9 While BMD measured from 
dual-energy X-ray absorptiometry (DXA)-scanning is most often used in clinical settings, our 
recent GWAS for eBMD identified 84% of all currently known genome-wide significant loci for 
DXA-BMD4 and effect sizes were concordant between the two traits (Pearson’s r = 0.69 for 
lumbar spine and 0.64 for femoral neck).4 The largest GWAS to date for DXA-derived BMD 
measures contained only 66,628 individuals.10 Both ultrasound and DXA-derived BMD are 
strongly associated with fracture risk where a standard deviation decrease in either metric is 
associated with approximately a ~1.5-fold increase in the risk of osteoporotic fracture,3,11 and 
both traits are highly polygenic. 
 
Little is known about how to reliably map associated genomic loci to their causal genes. 
However, highly polygenic traits such as bone density offer the opportunity to empirically test 
which methods link associated SNPs to genes enriched for causal proteins. Causal proteins can 
be identified in human clinical trials when their manipulation by medications leads to changes in 
BMD.2 Another source of causal proteins is Mendelian genetic conditions, which may constitute 
human knockouts and can also strongly implicate key genes that underlie bone physiology.12 
Given a sufficient number of associated loci, the different genomic characteristics that link a 
SNP to these causal proteins can be tested. These include genomic landscape characteristics 
such as cell-specific 3-dimensional (3D) contact domains, cell-specific open chromatin states, 
physical proximity and the presence of coding variation. Furthermore, samples from knockout 
mice generated by large-scale programs, such as the International Knockout Mouse Consortium 
(IKMC), can be used to identify genes whose deletion results in an abnormal skeletal 
phenotype. This rapid-throughput phenotyping data can then be used to determine whether 
outlier bone phenotypes are enriched in mice harboring deletions of genes identified by GWAS 
in humans. 
 
Here, we present the most comprehensive investigation of human and murine genetic 
influences on bone density and fracture to date. We not only undertook a GWAS of 426,824 
individuals for eBMD in the UK Biobank, explaining 20% of its variance and identifying 301 
novel loci, but also identified the genetic determinants of fracture in up to 1.2 million individuals 
combining the UK Biobank and 23andMe cohorts. We then assessed the SNP-level and 
genomic landscape characteristics that mapped associated SNPs to genes that were enriched 
for known bone density proteins. We identified Target Genes that were enriched up to 58-fold 
for known causal genes and for genes differentially expressed in in vivo osteocytes compared to 
bone marrow cell models. Finally, we investigated whether deletion of GWAS-identified genes 
resulted in skeletal abnormalities in vivo by undertaking rapid-throughput phenotyping of 
knockout mice, which included 126 Target Genes. Mice harboring deletions of these 126 Target 
Genes were strongly enriched for outlier skeletal phenotypes. A convergence of human genetic, 
murine genetic, in vivo bone-cell expression and in vitro cell culture data all pointed to a role for 
DAAM2 in osteoporosis. This was further investigated by detailed analysis of mice with a 
hypomorphic allele of Daam2. Daam2 knockdown resulted in a marked decrease in bone 
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strength and increase in cortical bone porosity. CRISPR/Cas9-mediated edits of DAAM2 in 
osteoblast cell lines demonstrated a reduction in mineralization, compared to un-edited cells. 
 
These newly discovered loci will empower future clinical and pharmacological research on 
osteoporosis, spanning from a better understanding of its genetic susceptibility to, potentially, 
biomarker discovery and drug targets. Moreover, to maximize the utility of these results to the 
community, all data are made freely available via web resources (see URLs). Below we 
summarize the key results from our investigations.  
 
Results 
GWAS for eBMD and Fracture 
We selected 426,824 White-British individuals (55% female) for the eBMD GWAS from the UK 
Biobank full release (Online Methods, Table S1 and Figure S1). We analyzed 13,737,936 
autosomal and X-chromosomal SNPs for their association with eBMD. Although there was 
substantial inflation of the test statistics relative to the null for eBMD (λGC = 2.26, Figure S2), 
linkage disequilibrium (LD) score regression indicated that the majority of inflation was due to 
polygenicity rather than population stratification (LD score regression intercept = 1.06 [0.063], 
ratio = 0.017 [0.018]). 
 
We identified 1,103 conditionally independent signals (423 novel) at a genome-wide significant 
threshold (P < 6.6x10-9 see Online Methods) mapping to 515 loci (301 novel) (Table S2 and 
Figure 1). Of the conditionally independent lead SNPs at each locus, 4.6% were rare, having a 
minor allele frequency (MAF) ≤ 1%, whereas 9.3% were low-frequency (MAF ≤ 5% but > 1%) 
and 86.1% were common (MAF > 5%) (Figure S3 shows the relationship between MAF and 
absolute effect size). The average absolute conditional effect sizes for these three categories of 
SNPs were 0.14, 0.04 and 0.02 standard deviations, respectively. The total variance explained 
by conditionally independent genome-wide significant lead SNPs for eBMD was 20.3%. When 
partitioning the variance explained by genome-wide significant lead SNPs into the three MAF 
categories, we found that rare variants explained 0.8% of the variance, whereas low-frequency 
and common variants explained 1.7% and 17.8% of the variance in eBMD, respectively. We 
found strong correlations between effect sizes for eBMD when compared to effect sizes from 
the interim release of UK Biobank data (r = 0.93, Figure S4, Table S3). 
 
We identified 53,184 fracture cases (60% female) and 373,611 controls (54% female), totalling 
426,795 individuals in UK Biobank (Table S1). We assessed 13,977,204 autosomal and X-
chromosomal SNPs for their effects on fracture and identified 14 conditionally independent 
signals associated with fracture mapping to 13 loci (Table S4 and Figure S5). Once again, we 
observed inflation of the test statistics, (λGC = 1.15). However, this was also likely due to 
polygenicity, rather than population stratification (LD score regression intercept = 1.00 [0.008], 
ratio = 0.017 [0.038]). Conditionally independent genome-wide significant lead SNPs were 
tested for replication in a cohort of research participants from 23andMe, Inc., a personal 
genetics company (N = 367,900 cases and 363, 919 controls). All 14 SNPs showed strong 
evidence of replication (Table S4). All genome-wide significant fracture SNPs were also found 
to be genome-wide significant in their association with eBMD in the expected direction of effect 
(i.e. alleles lowering eBMD were related to higher risk of fracture). Further, there was a high 
correlation between the effect sizes of eBMD associated variants and their effects on fracture 
were highly negatively correlated (r = −0.77 [−0.79, −0.74], Figure S4).  
 
Sex Heterogeneity 
To investigate whether the genetic aetiology of eBMD differed between the sexes, we 
performed tests of sex heterogeneity across the genome. We identified 45 variants at 7 loci that 
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displayed strong evidence of a sex difference (P < 6.6×10-9, Table S5). Variants at two of these 
7 loci did not reach genome-wide significance in males, females or the main eBMD GWAS, and 
were therefore not followed up further (Figure S6 and Table S5). Of the five remaining loci 
(Table S5), we detected evidence of a sex difference at FAM9B, a known male-only eBMD 
associated locus that may mediate its effect on bone through both serum testosterone levels 
and estradiol levels in men.13,14 Alleles at this locus associated with increased testosterone 
levels were also associated with increased eBMD in males only. For the remaining loci, male-
only effects were detected at FKBP4 and RNU6ATAC. FKBP4 codes for a tetratricopeptide 
repeat protein found in steroid receptor complexes that has been implicated in androgen 
receptor mediated signalling and function.15 Variants at the LOC105370177 (upstream of the 
OPG gene) and ABO loci were associated with eBMD in both sexes, but were more strongly 
related in males. Finally, variants within MCM8 were associated with eBMD in females only 
(Table S6). The same variants are known to be associated with onset of menopause16 in the 
predicted direction (i.e. alleles which increase age at menopause associate with increased 
eBMD). Interestingly, 164 loci that reached genome-wide significance in the main analysis 
showed evidence of sex-heterogeneity in effect size far above expectation (164 out of 1106 
SNPs had P < 0.05, Table S7). LD score regression analyses suggested that the genetic 
architecture influencing male and female eBMD was largely shared but that there were some 
significant differences between the sexes (rG = 0.91, SE=0.012, P < 0.001).17 The total number 
of genome-wide significant conditionally independent lead SNPs becomes 1,106 mapping to 
518 loci when including our sex heterogeneity analyses, however, we focus on results from the 
main GWAS for the rest of our study. 
 
Coding Variants 
Most genome-wide significant associations to date have arisen from non-coding variants, which 
has made the identification of causal genes difficult.12 Genetic association signals at coding 
variation can more directly highlight a potentially causal gene. We identified 1,237 coding 
variants, based on the Variant Effect Predictor18, meeting genome-wide levels of significance in 
their association with eBMD, prior to conditioning on other the lead SNPs in LD at each locus. 
This represents 1.0% of the total count of genome-wide significant variants (Table S8). The 
average absolute effect size for coding variants was 0.025 standard deviations (interquartile 
range: 0.014 – 0.027), which was approximately equal to the absolute effect size for genome-
wide significant common variants. These coding variants do not necessarily directly implicate a 
gene but may reflect non-causal associations through linkage disequilibrium with other common 
non-coding causal variants. 
 
Fine-Mapping Associated Loci 
In order to map SNPs to potentially causal genes, we first refined the set of associated SNPs at 
each locus to a smaller set using two statistical fine-mapping methods, GCTA-COJO19 and 
FINEMAP20. These methods identify sets of SNPs based on their conditional independence and 
posterior probability for causality, respectively. We generated such sets for each genome-wide 
significant autosomal locus by identifying conditionally independent lead SNPs, or those SNPs 
having a high posterior probability of causality, as determined by log10 Bayes factor > 3 (Figure 
2a). Here we refer to the set of “fine-mapped SNPs” as those SNPs achieving either conditional 
independence or a high posterior probability for causality. 
 
Prior to fine-mapping, we identified on average 235 genome-wide significant SNPs per locus. 
After this fine-mapping exercise, an average of two conditionally independent SNPs and five 
SNPs with a log10 Bayes factor > 3 remained per locus (Tables S9 and S10). The number of 
fine-mapped SNPs per locus ranged between 1 to 81. As a sensitivity test, we also considered a 
more lenient inclusion criterion for inclusion of SNPs based on a log10 Bayes factor > 2, which 
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resulted in a sharp increase in the average number of SNPs per locus to 27, which in total 
comprised 13,742 unique SNPs (Table S11).  
 
Comparing Fine-Mapped SNPs for Biological Activity 
Given the large number of associated SNPs per locus, downstream analyses should focus on 
those SNPs most likely to have a biological function. We used accessible chromatin sites 
surveyed in a relevant cellular context as a proxy for biological activity. We generated ATAC-
seq maps in the human osteosarcoma cell line SaOS-2. SaOS-2 cells possess osteoblastic 
features and can be fully differentiated into osteoblast-like cells. We also analyzed DNase I 
hypersensitive site (DHS) maps from human primary osteoblasts generated by the ENCODE 
project.21 Both ATAC-seq and DHS data were analyzed using a uniform mapping and peak-
calling algorithm (Online Methods). 
 
We then analyzed the fine-mapped SNPs for enrichment of these functional signatures relative 
to all SNPs in the 1 Mbp surrounding each genome-wide significant association locus. Fine-
mapped SNPs, including the set of conditionally independent SNPs and SNPs with log10 Bayes 
factors > 3, were strongly enriched for both missense variants in protein coding regions and 
osteoblast accessible chromatin sites (Figure 3a). As the log10 Bayes factor threshold 
increased, fold-enrichment increased as well (Figure 3b). This indicates that the fine-mapped 
set of SNPs is highly enriched for genomic signatures of function, which can inform the choice 
of statistical cut-off for selection of SNPs for follow-up functional studies. 
 
Mapping Fine-Mapped SNPs to Target Genes & Enrichment for Positive Control Genes 
Human genetic associations have rarely been translated to improved clinical care, primarily 
because causal genes at associated loci have not been indisputably identified. We therefore 
sought to test which genomic features link associated SNPs to genes known to influence bone 
biology in humans. We identified a set of proteins whose perturbation through 
pharmacotherapy2 or Mendelian disease leads to changes in bone density or strength. 
Mendelian disease genes were defined as monogenic disorders characterized with altered bone 
mass or abnormal skeletal mineralization, osteolysis and/or skeletal fragility or osteogenesis 
imperfecta (Table S12) and constitute an informative human knockout resource.22 We 
considered such proteins to be products of “positive control” genes influencing bone density and 
likely critical to bone biology. 
 
Next, we investigated which genomic features linked the fine-mapped set of SNPs to positive 
control genes for bone density. We tested whether positive control genes were enriched among 
six types of genomic characteristics that can link a SNP to a gene: 1) Genes that were most 
proximal to the fine-mapped set SNPs; 2) Genes that contained fine-mapped SNPs overlapping 
their gene bodies; 3) Genes containing fine-mapped SNPs that are coding variants; 4) Genes 
identified to be in 3D contact with fine-mapped sets in human osteoblasts or osteocytes through 
high-throughput chromatin conformation capture (Hi-C) experiments; 5) The closest gene to 
fine-mapped SNPs, which also mapped to ATAC-seq peaks in human osteoblast SaOS-2 cell 
lines; and 6) Those genes within 100 kbp of fine-mapped SNPs (Figure 2b emphasizes the 
target gene selection and Figure 4 details this entire pipeline). Coding annotations, ATAC-seq 
peaks, and Hi-C interaction peaks were not combined but kept separate to enable different 
sources of data to provide converging and confirmatory evidence. Distance from a fine-mapped 
SNP to a gene was considering the closer of the 3’ and 5’ ends, not the transcription start site. 
We named these genes “Target Genes” and tested which of the above 6 methods to define 
Target Genes was most strongly enriched for positive control genes.  
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The set of Target Genes that were most strongly enriched for positive control genes, arose from 
genes targeted by SNPs that were conditionally independent and by SNPs identified to be 
plausibly causal with a log10 Bayes factor > 3 (Table 1 and Table S13). This set of Target 
Genes featured 556 genes total, approximately one gene per locus. All six different methods for 
linking these fine-mapped set of SNPs to Target Genes yielded strong enrichment for positive 
control genes. The odds ratios ranged from 5.1 (95% CI: 3.0-8.6, P = 10-11) for Target Genes 
within 100 kbp of the fine-mapped SNPs to an odds ratio of 58.5 (95% CI: 26.4-129.31, P = 10-

75) for Target Genes closest to fine-mapped SNPs that were in an osteoblast-derived ATAC-seq 
peak (Table 1). In addition, we used FUMA23 to assess which pathways from the 
WikiPathways24 database were identified by the set of Target Genes most strongly enriched for 
positive control genes. We observed that well known pathways such as Wnt signalling, 
endochondral ossification, osteoclast and osteoblast signalling, as well as novel pathways were 
highlighted by this approach (Figure S7). 
 
These results suggest that our Target Gene identification methods lead to strong enrichment for 
positive control genes known to be central to bone biology. Such methods may help to prioritize 
genes at associated loci for functional testing, which are more likely to influence bone biology 
and therefore, have clinical relevance. The full list of mapped Target Genes and the method 
through which they were identified is presented in Table S14. 
 
Mapping Fine-Mapped SNPs to Osteocyte-Signature Genes 
An alternative method to assess the biological plausibility of Target Genes is to test whether 
their expression is enriched in bone cells. Osteocytes are the most abundant cell type in bone 
and are key regulators of bone mass, bone formation and bone resorption.25 We therefore 
assessed the transcriptome of primary murine osteocytes derived from three bone types in 
vivo.26 Genes enriched for expression in osteocytes and expressed in all bone types defined an 
osteocyte transcriptome signature.26 We then tested which of the methods used to identify 
eBMD Target Genes resulted in the greatest enrichment for osteocyte-signature genes. 
 
Again, we found that Target Genes were strongly enriched for osteocyte signature genes, with 
odds ratios for enrichment ranging from 2.1 (95% CI: 1.7-2.5, P = 2x10-17) for Target Genes 
within 100 kbp of the fine mapped set of SNPs, to 7.4 (95% CI: 3.8-14.5, P = 5x10-12) for Target 
Genes mapped through fine-mapped coding SNPs (Table 2 and Table S15 and S16). This 
again suggests our methods result in enrichment for biologically relevant genes. 
 
A Large-Scale High Throughput Murine Knockout Screening Program 
The Origins of Bone and Cartilage Disease (OBCD) program (www.boneandcartilage.com) is 
determining 19 structural and functional parameters in all unselected knockout mouse lines 
generated at the Wellcome Trust Sanger Institute for the IKMC and IMPC. These parameters 
evaluate bone mineral content (BMC), 3D trabecular and cortical bone structure, bone 
mineralization and femoral and vertebral bone strength. To date, the OBCD program has 
included the analysis of 126 knockout lines with mutations of Target Genes (Table S17). Outlier 
phenotypes were defined as structural or strength parameters > 2 standard deviations away 
from the reference mean, determined from over 300 age-matched, sex-matched and genetically 
identical C57BL/6N wild-type controls (Online Methods). We investigated whether deletion of 
these 126 Target Genes resulted in enrichment of outlier skeletal phenotypes. Outlier cortical 
and trabecular bone phenotypes were more frequent in mice with disruptions of the 126 Target 
Genes compared against 526 unselected knockout lines (Tables S17 and S18, OR 3.2 [95% 
CI: 1.9-5.6], P < 0.0001). Therefore, enrichment of abnormal skeletal phenotypes in mice with 
disruption of Target Genes provides clear functional validation that our fine-mapping approach 
identifies critical and biologically-relevant skeletal genes. Our fine-mapping in vivo and in vitro 

http://www.boneandcartilage.com/


 

 9 

data converged to identify DAAM2 as a highly credible and novel osteoporosis gene, therefore 
we undertook detailed analyses of mice with a hypomorphic Daam2 allele to illustrate the 
potential of this approach. 
 
In-Depth Characterization of DAAM2 
Numerous lines of evidence identified DAAM2 as an important gene for further functional 
investigation. First, a conditionally independent lead SNP, rs2504101, mapped directly to 
DAAM2 (Pconditional = 4.3 x 10-10) and second, fine-mapping revealed two coding missense 
variants with high posterior probabilities for causality, rs201229313 in its 19th exon (log10 BF = 
3.7), and rs61748650 in its 21st exon (log10 BF = 2.5). Third, a rare variant, rs772843886, near 
DAAM2 was suggestively associated with risk of fracture (P = 2x10-3). Fourth, the Daam2tm1a/tm1a 
mouse was identified to have an outlier skeletal phenotype in our rapid throughput murine 
knockout screening program (Table S17). Fifth, although DAAM2 has not previously been 
implicated in osteoporosis, it has been predicted to have a role in canonical Wnt signaling.27,28  
 
To investigate the role of DAAM2 in bone biology, we first tested its expression in bone cells. 
We performed RNA-seq and ATAC-seq experiments in four different human osteoblast cell lines 
and found it was expressed in all cell lines (Online Methods, Figure S8). Staining experiments 
in the SaOS-2 cell line revealed DAAM2 localized specifically in the cell nuclei (Figures S9 and 
S10). This functional evidence from human bone cells also led us to characterize Daam2 in 
mouse bone cells. Daam2 was identified as an osteocyte signature gene (Table S16) and was 
expressed in mouse calvarial osteoblasts and bone marrow-derived osteoclasts (Table S19).  
 
Next using CRISPR/Cas9, we tested the effect on bone mineralization of double-stranded 
breaks (DSBs) in the second exon of DAAM2 in SaOS-2 osteoblast cell lines (Online 
Methods). We found that after 14 days of treatment with osteogenic factors, control cells 
transfected with the intact plasmid, but not undergoing an DSB of the DAAM2 gene, had a 9-fold 
increase in mineralization. After the introduction of a DSB in the second exon of DAAM2, 
induced mineralization was severely impaired (Figure 5). These CRISPR/Cas9-based findings 
suggest that DAAM2 influences mineralization capacity in human osteoblasts. 
 
We next analyzed the skeletal phenotypes of Daam2tm1a/tm1a, Daam2+/tm1a and wild-type 
littermate mice in detail. Adult male Daam2tm1a/tm1a mice had reduced femur and vertebral bone 
mineral content (BMC), while male Daam2+/tm1a and female Daam2tm1a/tm1a mice also had 
reduced vertebral BMC. These changes were accompanied by a small reduction in femur length 
in Daam2tm1a/tm1a mice (males, 2.7%; females, 3.5%). Despite otherwise normal trabecular and 
cortical bone structural parameters, cortical porosity was increased in both male and female 
Daam2tm1a/tm1a mice (Figure S11).   
 
Consistent with their increased cortical porosity, Daam2tm1a/tm1a mice had markedly reduced 
bone strength (Figure 6) even though all other cortical bone parameters, including BMD, were 
normal (Figure S11). Bone composition and structure were thus investigated in Daam2tm1a/tm1a 
mice by comparing Daam2tm1a/tm1a mineralization and biomechanical parameters with values 
predicted by linear regression analysis of over 300 wild-type age, sex and genetic background 
matched wild-type controls. Measures of bone composition and structure in Daam2tm1a/tm1a mice 
were reduced compared to wild-type mice, and vertebral stiffness was > 2 standard deviations 
below that predicted even after accounting for reduced BMC (Figure 6c and Table S20). To 
investigate the role of Daam2 on bone turnover, we measured markers of bone resorption 
(TRAP) and formation (P1NP) in 10-week-old Daam2tm1a/tm1a and Daam2+/tm1a mice, and these 
did not differ from wild-type (Figure S12). Furthermore, primary cultures of bone marrow 



 

 10 

mononuclear cells from Daam2tm1a/tm1a mice showed no difference in osteoclastogenesis, and 
primary osteoblast mineralization was also similar to wild-type (Figure S12). 
 
Male Daam2tm1a/tm1a mice had decreased mineral content per unit matrix protein and increased 
carbonate substitution (Figure S13). This decrease in mineral to matrix ratio explains the overall 
decrease in bone mineral content observed in the absence of a decrease in cortical bone size. 
While bone size and geometry play a major role in controlling bone strength, decreases in 
mineral to matrix ratio are associated with decreased bone stiffness and decreased bending 
moment.29 These decreases likely contributed to the poor bone composition and structure 
observed in the Daam2tm1a/tm1a mice. 
 
Taken together, these data suggest the decreased bone strength in Daam2tm1a/tm1a mice is not 
simply a result of abnormal bone turnover, but also a consequence of increased porosity and 
impaired bone composition and structure. If DAAM2 proves to be a tractable drug target, such 
an agent would represent a complementary therapeutic strategy for prevention and treatment of 
osteoporosis and fragility fracture.  
 
Additional Novel Candidate Bone Genes 
While DAAM2 represents the detailed validation of a novel Target Gene and the rapid-
throughput knockout mouse skeletal phenotyping pipeline, we also highlight five additional 
eBMD Target Genes that result in contrasting abnormalities of bone structure and strength 
when deleted in mice, thus emphasising their functional role in skeletal physiology and 
importance for further study. 
 
CBX1 encodes Chromobox 1, a highly conserved non-histone member of the heterochromatin 
protein family that mediates gene silencing but has no reported role in the skeleton30. 
Homozygous deletion of Cbx1 resulted in embryonic lethality whereas adult heterozygous mice 
had increased bone mineral content and trabecular thickness resulting in increased stiffness 
and strength (Table S17, Figure S14). CBX1 was identified by five SNPs with log10 BFs > 2 
mapping directly to its gene body (Table S11) and rs208016 (70 kbp upstream) suggested an 
association with fracture (P = 1.5x10-5). 
 
WAC encodes WW Domain Containing Adaptor with Coiled-Coil, a protein of unknown function 
that is associated with global developmental delay and dysmorphic features in Desanto-Shinawi 
syndrome31. Homozygous deletion of Wac resulted in prenatal lethality whereas adult 
heterozygous mice had increased bone length, mass and strength (Table S17, Figure S15). 
Seven fine-mapped SNPs mapped proximally or directly to WAC (Table S11), with two fine-
mapped SNPs, rs17686203 (log10 BF = 3.1) and rs61848479 (log10 BF = 3.9) mapping to 
WAC promoter Hi-C interaction peaks in primary human osteoblasts, and for the latter SNP in 
primary human osteocytes (Table S14). We also identified rs17753457 (60 kbp downstream) 
that had a suggestive association with fracture (P = 4.3x10-5). 
 
DSCC1 encodes DNA Replication and Sister Chromatid Cohesion 1, a component of an 
alternative replication factor that facilitates binding of proliferating cell nuclear antigen to DNA 
during S phase but has no known role in bone32. Homozygous knockout mice had reduced 
viability and adult Dscc1+/- heterozygotes had increased bone mineral content and strength 
(Table S17, Figure S16). DSCC1 was identified by rs62526622 (log10 BF = 2.0) mapping to an 
intronic DSCC1 Hi-C promoter interaction peak in primary human osteoblasts. rs546691328 
(180 kbp downstream) was also found to have a suggestive association with fracture (P = 
2.9x10-4). 
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RGCC encodes Regulator of Cell Cycle, a p53 Target Gene that interacts with polo-like kinase 
1, which regulates cell proliferation and apoptosis but has no documented role in the skeleton33. 
Nevertheless, Rgcc-/- knockout mice displayed increased bone mineral content and strength 
(Table S17, Figure S17). RGCC was identified by rs145922919 (log10 BF = 3.3) mapping 
approximately 30 kbp upstream of RGCC to a Hi-C promoter interaction peak in primary human 
osteoblasts and rs545753481 (32 kbp upstream) also had a suggestive association with fracture 
(P = 3.4x10-3). 
 
YWHAE encodes Tyrosine 3-Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein, 
Epsilon Isoform, a pro-inflammatory cytokine that mediates signal transduction by binding to 

phosphoserine-containing proteins. YWHAE (14-3-3) binds to aminopeptidase N (CD13) to 
regulate chondrocyte homeostasis and has been implicated as a novel therapeutic target in 
osteoarthritis34. Rare YWHAE deletions have been reported in Miller-Dieker Lissencephaly 
syndrome which includes craniofacial abnormalities and growth retardation together with diverse 
neurodevelopmental abnormalities35. Consistent with this, homozygous deletion of Ywhae 
resulted in reduced bone length, and increased bone mass and mineral content resulting in 
brittle bones (Table S17, Figure S18). YWHAE was identified in our target gene approach by 
22 SNPs with log10 BFs > 2 (Table S11) all mapping directly to YWHAE introns and an 
additional SNP, rs181451348 (1 kbp downstream) showed suggestive association with fracture 
(P = 7.1x10-5). 
 
CBX1, DSCC1, RGCC, WAC, and YWHAE represent strong candidates for further in-depth 
functional characterization as we have performed for DAAM2. Bone composition and structure 
screens identified WAC and DSCC1 as femur outliers due to Wac+/- and Dscc1+/- knockout mice 
being at least two standard deviations from the expected range (Figure S19). Our data also 
support functional experiments in human cells as all five genes were expressed in all four 
human osteoblast cell lines we profiled with RNA-seq and ATAC-seq (Online Methods), except 
for RGCC which was highly expressed in SaOS-2 with low expression levels in U2OS, MG63, 
and HOS, three other human osteoblast cell lines for which we generated RNA-seq data 
(Online Methods). In addition, we observed suggestive association at each locus with fracture 
(Table S21), further supporting evidence for these five genes having roles in human bone 
biology. 
 
Discussion 
In this, the most comprehensive human and murine study on the genetic determinants of bone 
density and fracture performed to date, we have identified a total of 518 genome-wide 
significant loci, of which 301 are novel and together explain 20% of the total variance in eBMD. 
In a GWAS meta-analysis of up to 1.2 million individuals, 13 fracture loci were identified, all of 
which were also associated with eBMD. Taking advantage of the polygenicity of eBMD, we 
demonstrated strong biological enrichment for fine-mapped SNPs in bone cell open chromatin. 
Using fine-mapped SNPs we found that Target Genes were strongly enriched for genes that are 
known to play central roles in bone biology through Mendelian genetics, or as targets for 
clinically-validated osteoporosis therapies. High throughput skeletal phenotyping of mice with 
deletions of 126 Target Genes revealed enrichment of outlier skeletal phenotypes compared to 
analysis of 526 unselected knockout lines. Last, we identified DAAM2 as a protein with critical 
effects on bone strength, porosity and composition. These findings will enable on-going and 
future studies to better understand the genomic characteristics that link fine-mapped SNPs to 
sets of genes enriched for causal proteins. Further, this comprehensive study of the genetic 
variants associated with osteoporosis will provide opportunities for biomarker and drug 
development 
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The polygenicity of eBMD is striking. Few traits and diseases currently have hundreds of loci 
associated at genome-wide levels of significance.12,36 This has led to a large proportion of total 
variance in eBMD being explained by now known genetic determinants, which will facilitate 
future exploration of bone biology and enable drug development for osteoporosis.37, Yet, despite 
the large number of genetic and biological inputs into eBMD determination, pharmacological 
perturbation of even only one protein identified in our GWAS can have clinically relevant effects. 
For example, RANKL inhibition has been shown to increase bone density by up to 21% after ten 
years of therapy.38 Interestingly, the genetic variants near RANKL have small effects on eBMD. 
Thus, despite the small effect sizes for most identified variants, these do not necessarily reflect 
the effect sizes to be anticipated by pharmacological manipulation of the protein. This is 
because common genetic variants tend to have small effects on protein function, whereas 
pharmacotherapies tend to have large effects on protein function. Consequently, the dose-
response curve describing the effect of small and large genetic perturbations on eBMD is 
needed to decide which proteins to target for drug development.12 
 
Polygenicity has also improved our statistical power to validate linking an associated locus with 
a potentially causal gene. We found that fine-mapped sets of SNPs were able to identify Target 
Genes that were strongly enriched for positive control genes—particularly when the approach 
implemented relatively simple strategies, such as the nearest gene, or the gene nearest a fine-
mapped SNP in cell-relevant open chromatin. We also observed that fine-mapped SNPs were 
often in 3D contact with Target Genes in human osteoblasts and osteocytes. These rich data, 
surveying many genomic landscape features provide guidance for investigators attempting to 
identify causal genes from GWAS-associated SNPs and all human genetic and murine results 
are available for download (see URLs). 
 
The marked reduction in bone strength in Daam2tm1a/tm1a mice, despite minimal changes in bone 
morphology and mineral content, indicates that Daam2tm1a/tm1a mice have abnormal bone 
composition and structure, which can be explained in part by increased cortical porosity. 
Further, CRISPR/Cas9-mediated knockouts of DAAM2 in osteoblast cells lines resulted in a 
marked reduction in inducible mineralization. Few such genes have been identified and further 
investigations will be required to determine whether DAAM2 represents a tractable drug target 
in humans. Nevertheless, previous studies have suggested that DAAM2 indirectly regulates 
canonical Wnt signalling across several developmental processes.27,28 Using different sources 
of data to identify DAAM2, allowed for greater confidence in results. While each type of data has 
its own biases, these biases are partially orthogonal, and consequently, concordant evidence 
from different sources of data increases the quality of the evidence, an approach known as 
triangulation.39 
 
Our GWAS for fracture risk identified 13 loci associated with this common disease. All these loci 
have been associated with BMD and/or eBMD, highlighting the importance of BMD as a 
determinant of fracture risk, at least in the age range assessed within the UK Biobank. While 
BMD-independent loci for fracture likely exist, these were not identified despite a well-powered 
study. This suggests that screening for fracture drug targets should also include understanding 
the effect of the protein on BMD.  
 
Our study has important limitations. First, we have measured eBMD, rather than DXA-derived 
BMD, which is typically measured in the clinic. Nonetheless, beyond their phenotypic 
correlation, these two traits also demonstrate high genetic concordance in terms of their 
genome-wide significant loci, suggesting that the biological properties that underpin these two 
traits are similar. Importantly, however, eBMD is a strong predictor of fracture risk in its own 
right, and contributes to risk assessment over and above DXA-derived BMD at the hip.40 While 
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our target gene approach has identified a set of candidate genes enriched for genes with known 
effects on bone density, it is important to note that there is no gold-standard set of genes known 
to influence BMD. While our rapid throughput mouse knockout program is on-going and will 
investigate many of the Target Genes implicated by our study, further efforts will be required to 
functionally validate (or exclude) these genes in bone biology. Our target gene approach did not 
include human gene expression quantitative trait loci (eQTL) data. This is because the largest 
available eQTL experiments for human osteoblasts involve only 95 individuals,41 and larger 
sample sizes with RNA-sequencing data will be required to properly investigate our method of 
linking fine-mapped sets of SNPs to genes. Finally, our program was limited to individuals of 
White-British genetic ethnicity and the effect of most of the genome-wide significant SNPs in 
other populations remains to be assessed. It is likely that on-going studies in non-British 
ancestries will address this question. 
 
In summary, we have generated an atlas of human and murine genetic influences on 
osteoporosis. This comprehensive study has more fully described the genetic architecture of 
eBMD and fracture and has identified a set of Target Genes strongly enriched for genes with 
known roles in bone biology. We used human genetics, functional genomics, animal models and 
genome editing to demonstrate the relevance of this approach, formally known as 
triangulation39, by identifying DAAM2. Disruption of DAAM2 in mice leads to an increase in 
cortical porosity and marked reductions in bone composition and strength, and in human 
osteoblasts leads to a decrease in mineralization. This set of Target Genes is expected to 
include new drug targets for the treatment of osteoporosis, a common disease for which novel 
therapeutic options are a health priority.  
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Online Methods 
Curating osteoporosis associated outcomes in the UK Biobank study 
During the period from 2006 - 2010, half a million British adults were recruited by the UK 
Biobank study (http://www.ukbiobank.ac.uk/).42 Subjects provided biological samples, consented 
to physical measurements and answered questionnaires relating to general health and lifestyle. 
Ethical approval was granted by the Northwest Multi-Centre Research Ethics Committee, and 
informed consent was obtained from all participants prior to participation. Heel bone quality was 
evaluated in 487,428 subjects by quantitative ultrasound speed of sound (SOS) and broadband 
ultrasound attenuation (BUA) using a Sahara Clinical Bone Sonometer (Hologic Corporation, 
Bedford, Massachusetts, USA). Further information regarding the assessment protocols are 
publicly available on the UK Biobank website. Participants were initially measured at baseline (N 
= 487,428) and had their left calcaneus (N = 317,815), right calcaneus (N = 4,102) or both 
calcanei (N = 165,511) measured. A subset of these subjects was followed up at two further 
time points (N = 20,104 and N = 7,988), during which both heels were measured. A detailed 
description of the ascertainment procedure is provided in Figure S1. Prior to quality control, 
ultrasound data were available for 488,683 individuals at either baseline and/or follow-up 
assessment. To reduce the impact of outlying measurements we first identified subjects that 
had both heels measured and removed those with highly discrepant (i.e. left vs. right) SOS 
and/or BUA measurements. To achieve this, subjects were stratified by sex and bivariate scatter 
plots comparing left and right heel measures of SOS and BUA were generated separately. 
Outliers were identified by manual inspection and removed. The same method was used to 
identify and remove individuals with highly discordant SOS v BUA measured for each heel. 
Strict quality control was thereafter applied to male and female subjects separately using the 
following exclusion thresholds: SOS [Male: (≤ 1,450 and ≥ 1,750 m/s), Female (≤ 1,455 and ≥ 
1,700 m/s)] and BUA [Male: (≤ 27 and ≥ 138 dB/MHz), Female (≤ 22 and ≥ 138 dB/MHz)]. 
Individuals exceeding the threshold for SOS or BUA or both were removed from the analysis. 
Estimated bone mineral density [eBMD, (g/cm2)] was derived as a linear combination of SOS 
and BUA (i.e. eBMD = 0.002592 * (BUA + SOS) − 3.687). Individuals exceeding the following 
thresholds for eBMD were further excluded: [Male: (≤ 0.18 and ≥ 1.06 g/cm2), Female (≤ 0.12 
and ≥ 1.025 g/cm2)]. A unique list of individuals with a valid measure for the left calcaneus (N = 
477,380) and/or right (N = 181,953) were identified separately across the three time points. 
Individuals with a valid right calcaneus measure were included in the final data set when no left 
measures were available, giving a preliminary working dataset of N=481,100, (left = 475,724 
and right = 5,376) unique individuals. Bivariate scatter plots of eBMD, BUA and SOS were again 
visually inspected and 723 additional outliers were removed, leaving a total of 480,377 valid 
QUS measures for SOS, BUA and BMD (264,304 females and 216,073 males). The R script 
used to curate the raw data is available on request, together with all supporting summary data 
and plots. Descriptive statistics of the cohort, after quality control, are detailed in Table S1. 
 
Fracture cases were identified using two mutually non-exclusive methods: Hospital Episodes 
Statistics linked through NHS Digital (http://content.digital.nhs.uk/hes) with a hospital-based 
fracture diagnosis irrespective of mechanism within the primary (N = 392,292) or secondary (N 
= 320,448) diagnosis field, and questionnaire-based self-reported fracture within the past five 
years (N = 501,694). We defined a set of International Classification of Diseases codes, 10th 
revision (ICD10), to separate fracture cases from controls with the Hospital Episodes Statistics 
data. We excluded fractures of the skull, face, hands and feet, pathological fractures due to 
malignancy, atypical femoral fractures, periprosthetic and healed fracture codes. A full list of 
ICD10 codes used can be found in Table S22. We did not exclude any self-reported fracture 
cases by fracture site, since participants were only asked if they sustained a fracture at ankle, 
leg, hip, spine, write, arm, other or unknown. We identified 20,122 fractures using ICD10 codes 

http://www.ukbiobank.ac.uk/
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and 48,818 using questionnaire-based self-reported data. Descriptive statistics of the cohort, 
after quality control and ancestry selection, are detailed in Table S1.  
 
Ancestry assignment 
Genotype array data were imputed by the UK Biobank using the Haplotype Reference 
Consortium (HRC) panel43. A comprehensive description of the imputation protocol is described 
elsewhere44. A sample of 409,728 White-British individuals was identified centrally by the UK 
Biobank, using a combination of self-reported ethnicity and genetic information. However, the 
reliance on self-reported information was deemed too conservative and we chose to redefine a 
White-British sample (N = 440,414) using genetic information only. We projected the UK 
Biobank sample onto the first 20 principal components estimated from the 1000 Genomes 
Phase 3 (1000G) project data45 (where ancestry was known) using FastPCA version 2.46 
Projections used a curated set of 38,551 LD-pruned HapMap 3 Release 3 (HM3)47 bi-allelic 
SNPs that were shared between the 1000G and UK Biobank datasets (i.e. MAF > 1%, minor 
allele count > 5, genotyping call rate > 95%, Hardy-Weinberg P > 1x10-6, and regions of 
extensive LD removed). Expectation Maximization (EM) clustering (as implemented in R using 
EMCluster48) was used to compute probabilities of cluster membership based on a finite mixture 
of multivariate Gaussian distributions with unstructured dispersion. Eigenvectors 1, 2 and 5 
were used for clustering as they represented the smallest number of eigenvectors that were 
able to resolve the British 1000G sub-population (GBR) from other ethnicities (Figure S20). 
Twelve predefined clusters were chosen for EM clustering as sensitivity analyses suggested 
that this number provided a good compromise between model fit (as quantified by log likelihood, 
Bayesian information criterion, and Akaike information criterion) and computational burden 
(Figure S21). UK Biobank participants (N = 440,414) that clustered together with the 1000G 
GBR sub-population were termed White-British and used for downstream genetic analyses 
(Figure S22).  
 
Identification of unrelated samples for LD reference estimation and X chromosome 
analyses 
Genome-wide complex trait analysis (GCTA)49 was used to construct a genetic relatedness 
matrix (GRM) using the White-British sample and a curated set of LD non-pruned HM3 
autosomal genome-wide variants (N = 497,687). Unrelated individuals were defined using the 
genome-wide relatedness measure defined by Yang et al.49 where the pairwise relatedness 
between individuals j and k (Ajk) was estimated by: 
 

𝐴𝑗𝑘 =
1

𝑁
∑
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𝑁
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where xij is the number of copies of the reference allele for the ith SNP of the jth and kth 
individuals and pi is the frequency of the reference allele across the N individuals.  
 
Two samples of unrelated individuals were defined from the White-British UK Biobank 
population: A sample used for X chromosome association analysis (pairwise relatedness < 0.1, 
N = 374,559) and a random sample for LD reference estimation (pairwise relatedness < 0.025, 
N = 50,000).  
 
Genome-wide association analysis 
A maximum of 426,824 White-British individuals (233,185 females and 193,639 males) with 
genotype and valid QUS measures were analyzed (Table S1). For fracture, a maximum of 
426,795 White-British individuals, comprising 53,184 fracture cases (60% female) and 373,611 
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controls (54% female) were analyzed. We note that the sample sizes between the two assessed 
traits are similar but different, due to not all fracture cases and controls having eBMD measured, 
and vice-versa. We tested autosomal genetic variants for association with eBMD and fracture, 
separately, assuming an additive allelic effect, using a linear mixed non-infinitesimal model 
implemented in the BOLT-LMM v2 software package50 to account for population structure and 
cryptic relatedness. The following covariates were included as fixed effects in all models: age, 
sex, genotyping array, assessment center and ancestry informative principal components 1 to 
20. Autosomal analysis was restricted to up to 13,977,204 high quality HRC imputed variants 
with a MAF > 0.05%, minor allele count > 5, info score > 0.3, genotype hard call rate > 0.95, and 
Hardy-Weinberg equilibrium P > 1x10-6. We also analyzed the association between eBMD and 
fracture and directly genotyped SNPs on the X chromosome, adjusting for the same covariates, 
using the Plink2 (October 2017) software package51 and a nested sample of unrelated 
participants (N = 362,926 for eBMD and N = 45,087 cases and 317,775 controls for fracture). As 
the analyses for the X chromosome data were based upon observed genotypes, we excluded 
SNPs with evidence of deviation from Hardy-Weinberg Equilibrium (P < 1×10-6), MAF < 0.05%, 
minor allele count < 5, and overall missing rate > 5%, resulting in up to 15,466 X chromosome 
SNPs for analysis. Heterogeneity in effect size coefficients between sexes was tested in 
EasyStrata52, using Cochran’s test of heterogeneity53   

𝑋ℎ𝑒𝑡 = ∑[(𝛽𝑖 − 𝛽𝑂𝑣𝑒𝑟𝑎𝑙𝑙)2𝑤𝑖]

𝑖

~𝜒2(𝑚 − 1) 

 

i effect size estimates of stratum i 

SEi standard error of stratum i 

𝑤𝑖 = 1/𝑆𝐸𝑖
2 

i = 1..m 

 
Manhattan plots of our genome-wide association scans were generated using the same 
software. We have previously estimated the genome-wide significance threshold α = 6.6x10-9 for 
analyzing data from the UK Biobank using the above critera.4 
 
Fracture replication meta-analysis 
14 genome-wide significant conditionally independent lead SNPs identified from our fracture 
analyses were tested for replication in the 23andMe cohort. Genetic associations were tested 
against the fracture phenotype on a set of unrelated individuals of European ancestry. Analyses 
were adjusted for age, sex, principal components 1 to 5, and the genotyping platform. There 
were 367,900 cases and 363,919 controls. Meta-analysis of UK Biobank discovery and 
23andMe replication data was performed using METAL.54 In order to compare the effect 
estimates and standard errors of the UK Biobank discovery and 23andMe replication data, we 
had to transform the UK Biobank discovery effect estimates and standard errors as per the 
manual specifications in the BOLT-LMM50 documentation, specifically: 

log OR =
𝛽

𝜇 ∗ (1 − 𝜇)
 

where 𝜇 = case fraction and standard errors of SNP effect estimates should also be divided by 
(𝜇 ∗ (1 − 𝜇)). 
 
Approximate conditional association analysis 
To detect multiple independent association signals at each of the genome-wide significant 
eBMD and fracture loci, we applied approximate conditional and joint genome-wide association 
analysis using the software package GCTA v1.91.19 Variants with high collinearity (multiple 
regression R2 > 0.9) were ignored and those situated more than 20 Mbp away were assumed to 
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be independent. A reference sample of 50,000 unrelated White-British individuals randomly 
selected from the UK Biobank was used to model patterns of linkage disequilibrium (LD) 
between variants. The reference genotyping dataset consisted of the same variants assessed in 
our GWAS. Conditionally independent variants reaching genome-wide significance were 
annotated to the physically closest gene using Bedtools v2.26.055 and the hg19 gene range list 
(www.cog-genomics.org/plink2). 
 
Estimation of variance explained by significant variants and SNP heritability 
We estimated the proportion of eBMD phenotypic variance tagged by all SNPs on the 
genotyping array (i.e. the SNP heritability) using BOLT-REML50 and Linkage Disequilibrium 
Score Regression (LDSC)56. To calculate the variance explained by independent genome-wide 
significant SNPs, i.e. all 1,103 genome-wide significant conditionally independent lead SNPs, 
we summed the variance explained per SNP using the formula: 2p(1 – p)β2, where p is the 
effect allele frequency and β is the effect of the allele on a standardized phenotype (mean = 0, 
variance = 1).57–59  
 
Estimating genomic inflation with LD Score Regression (LDSC) 
To estimate the amount of genomic inflation present in the data that was due to residual 
population stratification, cryptic relatedness, and other latent sources of bias, we used stratified 
LDSC60 in conjunction with partitioned LD scores that were calculated for high quality HM3 
SNPs derived from a sample of unrelated 1000G EUR individuals.  
 
Fine-Mapping SNPs 
Fine-mapped SNPs were defined as those being conditionally independent, as identified by 
GCTA-COJO or exceeding our threshold for posterior probability of causality, as defined by 
FINEMAP. Here we describe the generation of this set of fine-mapped SNPs. 
 
First, SNPs were defined as being conditionally independent using GCTA-COJO.19,20 We next 
calculated the posterior probability of causality. To do so, we defined each conditionally-
independent lead SNP as a signal around which, we would undertake posterior probability 
testing. We used all imputed SNPs within 500 kbp of a conditionally independent lead SNP and 
treated each signal independently. We used FINEMAP20, which approximates, per input region, 
genotype-phenotype data with correlation matrices and summary statistics, and then 
implements a shotgun stochastic search algorithm to test causal configurations of SNPs rapidly 
and identify the most likely number of causal SNPs per signal in a Bayesian framework. We 
generated correlation matrices for each fine-mapped region from a subset of randomly selected 
50,000 White-British UK Biobank participants with the LDSTORE software61. FINEMAP was run 
with default parameters except for the number of maximum causal configurations tested, which 
we set to 10.20 For the causal configuration with the highest posterior probability, each SNP was 
assigned a log10 Bayes factor as a measure of its posterior probability for being in the causal 
configuration. For example, if a tested region had a causal configuration of six SNPs with the 
highest posterior probability, all tested SNPs were assigned a Bayes factor for their marginal 
posterior probabilities of being in that causal configuration. Based on this information we 
constructed our sets of fine-mapped SNPs, including only the SNPs with the highest posterior 
probabilities. After testing each signal at a locus, the set of fine-mapped SNPs were collapsed 
into the same locus, due to the high amount of redundancy between credible sets for each 
signal, given that the approximation of genotype-phenotype data with correlation matrices and 
summary statistics implemented by FINEMAP is identical to GCTA-COJO.19,20 We used a log10 
Bayes factor > 3 threshold to only consider SNPs with the strongest posterior probabilities for 
causality, and those SNPs that were identified as genome-wide significant conditionally 
independent lead SNPs, as being fine-mapped SNPs. 



 

 18 

 
RNA sequencing for mouse osteocytes 
We performed an analysis of whole transcriptome sequencing data of three distinct bone types 
from the mouse skeleton to measure osteocyte expression4. The three sites were the tibia, 
femur and humerus, and in each, the bone marrow was removed (N = 8 per site). The 
distribution of normalized gene expression for each sample was used to calculate a threshold of 
gene expression62, with genes above this threshold for 8 out of 8 replicates in any bone type 
deemed to be expressed. Osteocyte enriched genes were determined by comparing the 
transcriptomes of matched bone sample controls, one with the marrow removed and the other 
with the marrow left intact (N = 5 per site). Genes significantly enriched in osteocytes and 
expressed in all bone types were defined as osteocyte transcriptome signature genes. 
 
Mapping accessible chromatin 
ATAC-seq libraries were generated by the McGill University and Genome Quebec Innovation 
Centre on 100,000 SaOS-2 cells, using a modified protocol to that previously described63. The 
modifications included: reducing the transposase reaction volume from 50 µl to 25 µl, increasing 
the transposase concentration from 1x to 40x, and using 12 cycles of PCR to enrich each 
library. Libraries were quantified by Q-PCR, Picogreen and LabChip, then were sequenced on 
the Illumina HiSeq 2500 to 125 bp in pair-ended mode, using the Nextera sequencing primers. 
DNase-seq data from primary osteoblast samples21 were obtained from http://encodeproject.org 
under accessions ENCLB776DWN and ENCLB906BCL. 
 
Reads were processed using a uniform pipeline to produce both ATAC-seq and DNase-seq 
peaks. Illumina adapters were trimmed using Trimmomatic v. 0.3664. Reads were aligned to the 
hg38 human reference using BWA v.0.7.15 65. Peak calling was performed using hotspot2 
(https://github.com/Altius/hotspot2) with a cutoff of 1% FDR and converted to hg19 reference 
coordinates using UCSC liftOver. 
 
RNA sequencing for human osteoblast cell lines 
RNA library preparations were carried out on 500 ng of RNA from SaOS-2, U2OS, MG63 and 
HOS cells with RNA integrity number (RIN) > 7 using the Illumina TruSeq Stranded Total RNA 
Sample preparation kit, according to manufacturer's protocol. Final libraries were analyzed on a 
Bioanalyzer and sequenced on the Illumina HiSeq4000 (pair-ended 100 bp sequences). Raw 
reads were trimmed for quality (phred33 ≥ 30) and length (n ≥ 32), and Illumina adapters were 
clipped off using Trimmomatic v. 0.3564. Filtered reads were aligned to the GRCh37 human 
reference using STAR v. 2.5.1b65. Raw read counts of genes were obtained using HTseq-count 
v.0.6.166. 
 
RNA sequencing for murine calvarial osteoblasts 
We used whole transcriptome sequencing on mouse osteoblasts post-differentiation to obtain 
expression profiles of the maturing osteoblast4. We obtained pre-osteoblast-like cells from the 
neonatal calvaria of C57BL/6J mice carrying a Cyan Fluorescent Protein (CFP) transgene under 
the control of the Col 3.6 kbp promoter67. Specifically, we removed cells not expressing CFP by 
FACS sorting after culturing for four days in growth media. The remaining cell set was 
considered enriched for pre-osteoblast cells and was re-plated and subjected to an osteoblast 
differential cocktail, with RNA being collected every two days from days two to 18 post-
differentiation. We used whole transcriptome sequencing with three technical replicates per 
sample and calculated a normalized expression level per gene. 
 
High-throughput chromosome conformation capture 
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High-throughput chromosome conformation capture (Hi-C) was performed on primary human 
osteoblasts and osteocytes from human bone biopsies of non-fracture subjects. Hi-C libraries 
were prepared as described previously.68 Instead of using HindIII restriction enzyme, we used 
DpnII69 which increased coverage and insensitivity of CpG methylation70. The Hi-C libraries 
were sequenced on Illumina HiSeq4000 instruments to 2 billion pair-end reads. Biological 
replicates were independently generated and sequenced. HiC-Pro was used to process the 
HiC-Pro pipeline71 beginning with aligning each read end to hg38 reference genomes. The 
Chimeric read ends were filtered to keep only 5′ alignments with MAPQ > 10, and then read-
ends were paired and de-duplicated. Contact matrices were constructed, and significant 
interactions were estimated with Homer,72 GOTHiC73 and Juicer.74 We defined significant 
interactions as P < 10-15 (comparing observed interactions to estimated expected interactions 
and taking into account DNA fragment size, GC content, and other genomic features). Only 
interaction pairs that were significant (P < 10-15) from all three tools were considered significant. 
The resolution of Hi-C interactions was from 1.5 to 2 kbp with average 1.8 kbp. ATAC-seq 
experiments were also performed in primary osteoblasts and osteocytes that were used for HI-C 
experiments. We only considered and reported chromatin interactions that mapped to open 
chromatin 
 
Target Gene identification 
We identified Target Genes for the autosomal fine-mapped sets by annotating fine-mapped sets 
of SNPs to the closest protein-coding gene, making additional note if the SNP mapped directly 
to the gene’s introns or exons, or was coding. We identified Target Genes on the X 
chromosome by the closest gene to a conditionally independent lead SNP, as we did not 
calculate log10 Bayes factors for SNPs on the X chromosome. Additionally, we annotated Target 
Genes that may be functional in bone cells by marking which fine-mapped SNPs mapped to 
open chromatin in human bone cells, identified by SaOS-2 ATAC-seq peaks, and we mapped 
chromosomal positions of fine-mapped SNPs to significant Hi-C interactions of primary 
osteoblast and osteocytes. When the interaction chromatin mapped to multiple isoforms of 
protein coding genes, we selected the one with the most significant interaction (usually with 
highest interaction counts). When the interaction chromatin mapped to multiple bins, we 
selected the one(s) with looping domains. We further annotated Target Genes using the 
osteocyte signature gene set where genes within this set are enriched for osteocyte activity.4  
 
Target Gene enrichment analyses 
We performed a series of enrichment analyses by calculating the odds of Target Genes being 
either positive control genes or osteocyte signature genes. We identified a set of 57 proteins 
whose perturbation through pharmacotherapy,2 or Mendelian disease leads to changes in bone 
density, monogenic disorders presenting with abnormal skeletal mineralization or low bone 
mass, osteolysis and/or skeletal fragility and osteogenesis imperfecta and abnormal skeletal 
mineralization (Table S12).22 For all protein-coding genes in the genome, which were identified 
using refGene (N = 19,455), we annotated whether they were found to be Target Genes and/or 
positive control genes. These annotations allowed us to construct contingency tables and 
calculate an odds ratio for enrichment of Target Genes amongst positive control genes. We 
used multiple genomic features to test which methods of identifying Target Genes enriched for 
positive control genes. To do so, we tested if positive control genes were enriched amongst 
targeted genes identified by four different methods: 1) Genes that were most proximal to the 
fine-mapped set SNPs; 2) Genes that contained fine-mapped SNPs overlapping their gene 
bodies; 3) Genes containing fine-mapped SNPs that are coding variants; 4) Genes identified to 
be in 3D contact with fine-mapped sets in human osteoblasts or osteocytes through Hi-C 
experiments; 5) The closest gene to fine-mapped SNPs, which also mapped to ATAC-seq 
peaks in human osteoblast SaOS-2 cell lines; and 6) Those genes within 100 kbp of fine-
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mapped SNPs (Figures 2 and 4). We then repeated this analysis using the osteocyte signature 
gene set (N = 1,240) instead of the positive control set, to calculate the odds of Target Genes 
being active in the osteocyte. 
 
Target Gene pathway analysis 
We used the Functional Mapping and Annotation of GWAS tool (FUMA)23 to annotate our lists 
of Target Genes for their most enriched biological pathways with data from the WikiPathways24 
database. WikiPathways is an openly curated database for biological pathways and provides 
information on the roles of specific genes or proteins in their respective pathways. FUMA uses 
WikiPathways data to compare a list of given genes against a background gene set (e.g. all 
protein coding genes) with hypergeometric testing. The output is then a list of enriched 
biological pathways based on the input gene lists. We have presented these data graphically in 
the Figure S7. 
 
CRISPR/Cas9 Methods 
SaOS-2 cells were obtained from ATCC (#ATCC HTB-85) and cultured in McCoy5A medium 
(ATCC) supplemented with 15% of FBS (Wisent inc) and 1% of penicillin and streptomycin 
(Wisent Inc.) according to the manufacturer. Three different guide RNAs (gRNA) targeting the 
second exon of DAAM2 were cloned in the PX458 plasmid (pSpCas9(BB)-2A-GFP; Addgene 
#48138). The gRNA sequences were: gRNA 1-CAGAGGGTGGTTGTCCCGG; gRNA 2-
CAGCCCCATCCCGAACGCAG; and gRNA 3-TGTCCCGGAGGTTGATTTCG. We observed 
the cutting frequency determination (CFD) scores75 for each gRNA was < 0.1, therefore we did 
not consider off-target effects to merit testing76. The construct plasmids were purified using the 
QIAGEN filter midi prep kit (QIAGEN #12243) according to manufacturer instructions. SaOS-2 
cells were cultured to 80% confluence in a 100-mm2 petri dish. Cells were then transfected with 
one of the three different plasmids generated, or with the intact plasmid as a control, using 
TransIT LT1 transfection reagent (Mirus #MIR2304) with a reagent-to-DNA ratio of 3:1. 48 hours 
post-transfection, GFP positive cells were sorted by FACS in a single cell model. The remaining 
colonies were expanded and then assessed for the presence of DAAM2 protein using 
immunofluorescence technique (Anti-DAAM2 antibody, Sigma-Aldrich #HPA051300). PCR 
primers were designed against regions of DAAM2 flanking the three gRNA target sequences 
(forward: 5′-tcctcttgtccagATCACAATG-3′ and reverse: 5′-ccaagaggagttttgagagatgga-3′) to 
generate an amplicon of 355 bp. PCR products of the identified clones were sequenced using 
MiSeq (Genome Quebec). 
 
To generate DAAM2 Western blots (Figure S23), total protein was extracted from SaOS-2 cells 
using a RIPA buffer. Denatured proteins (20 µg) were separated by 10% sodium dodecylsulfate 
(SDS) polyacrylamide gel electrophoresis followed by transfer to nitrocellulose membranes. The 
membranes were blocked in 5% skim milk for one hour at room temperature followed by 
incubation with an anti-DAAM2 antibody (Abcam #ab169527) at 1/1,000 overnight at 4°C and 
the secondary antibody goat anti-rabbit IgG at 1/10,000 for one hour at room temperature 
(Abcam #ab205718). The band densities were quantified by densitometry using Image Lab 5.1 
software (Bio-Rad). Protein levels were expressed as a ratio of protein-specific band density 
and that of total protein stained using MemCode Staining Solution (Thermofisher #24580). 
Figure S23 shows that DAAM2 protein expression was reduced to 17.5% and 33.5% in the 
gRNA1 and gRNA2 edited clones, respectively.  
 
To induce mineralization (Figure 5), cells were then cultured to 90% confluence in a 6-well plate 
and then treated, or left untreated for a control, with osteogenic factors (Ascorbic acid 50 µg/ml 
and ß-Gycerophosphate 10 mM). Fresh media containing osteogenic factors was added every 
2-3 days over 13 days. At day 14, mineralization was quantified using the osteogenesis assay 
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kit according to manufacturer instructions (Millipore #ECM815). The Alizarin red concentration 
(µM) was normalized with the protein content assessed in the media in each culture (Pierce 
BCA Protein assay kit; Thermo Fisher #23227). 
 
Rapid throughput murine knockout program 
The Origins of Bone and Cartilage Disease (OBCD) program (www.boneandcartilage.com) is 
undertaking rapid-throughput structural and functional skeletal phenotype analyses of all 
unselected knockout mice generated at the Wellcome Trust Sanger Institute as part of the 
International Knockout Mouse and International Mouse Phenotyping Consortia (IKMC and 
IMPC). Anonymized samples from 16-week-old female wild-type and mutant mice (N = 2 to 6 
per mutant genotype) were stored in 70% ethanol and assigned to batches for rapid throughput 
analysis. Mice were fed either a Breeder’s Chow (Mouse Breeder Diet 5021, 21% kcal as fat, 
Labdiet, London, UK) or a Western diet (Western RD, 829100, 42% kcal as fat, Special Diet 
Services, Witham, UK) from 4 weeks of age. The relative bone mineral content and length of the 
femur and caudal vertebrae are determined by digital X-ray microradiography (Faxitron MX20, 
10μm pixel resolution)77–79. Micro-CT (Scanco uCT50, 70kV, 200μA, 0.5mm aluminium filter) is 
used to determine trabecular parameters (bone volume BV/TV, trabecular number Tb.N, 
thickness Tb.Th, spacing Tb.Sp) at a 5μm voxel resolution in a 1mm region beginning 100μm 
proximal to the distal femoral growth plate and cortical bone parameters (thickness Ct.Th, BMD, 
medullary diameter) at a 10μm voxel resolution in a 1.5mm region centered in the mid-shaft 
region 56% along the length of the femur distal to the femoral head.77,80,81 Biomechanical 
variables of bone strength and toughness (yield load, maximum load, fracture load, % energy 
dissipated prior to fracture) are derived from destructive 3-point bend testing of the femur and 
compression testing of caudal vertebra 6 and 7 (Instron 5543 load frame, 100N and 500N load 
cells).77,79 Overall, 19 skeletal parameters were reported for each individual mouse studied and 
compared to reference data obtained from 320 16-week-old wild-type C57BL/6 female mice. 
Outlier phenotypes were defined by parameters > 2 standard deviations away from the 
reference mean determined from the 320 age, sex and genetically identical C57BL/6N wild-type 
controls. Enrichment of outlier skeletal parameters in mice with deletion of eBMD Target Genes 
was determined by comparison with the frequency of outlier parameters in 526 unselected 
knockout lines using Fisher's Exact Test (Table S18, Prism, GraphPad Software, La Jolla, 
USA). The 526 unselected knockout lines were generated by the WTSI and phenotyped by the 
OBCD program; these lines included 56 Target Genes. Five Target Genes had previously been 
phenotyped in an OBCD pilot study77 and knockout lines for an additional 65 Target Genes, that 
had already been generated by WTSI, were prioritized for rapid-throughput skeletal 
phenotyping. In total, our analyses included 596 knockout lines. 
 
Additional skeletal samples from 16-week-old WT (n=5 female, n=5 male), Daam2+/tm1a (n=7 
female, n=5 male) and Daam2tm1a/tm1a (n=7 female, n=5 male) mice were analyzed as described 
above. Supplementary cortical bone parameters (total cross-sectional area Tt.Ar, cortical bone 
area Ct.Ar, medullary area M.Ar, periosteal perimeter Ps.Pm, endocortical perimeter Ec.Pm, 
cortical porosity Ct.Po, polar moment of inertia (J) and maximum and minimum moments of 
inertia (Imax and Imin)) were determined by micro-CT (at 10μm voxel resolution, except for 
Ct.Po which was determined at 1μm voxel resolution using the Scanco uCT50 at 70kV, 57µA, 
0.5mm aluminium filter).  Correlation between bone mineral content and biomechanical 
parameters was determined by linear regression analysis using 320 16-week-old WT femur and 
vertebra samples from C57BL/6 female mice.  Bone composition and structure was investigated 
in Daam2tm1a/tm1a mice by comparing observed biomechanical parameters with values predicted 
by linear regression analysis of femoral and vertebral BMC and biomechanical parameters 
obtained from 320 WT age and sex matched controls. 
 

http://www.boneandcartilage.com/
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Daam2 knockout mice 
Mouse studies undertaken at the Garvan Institute of Medical Research (Darlinghurst, NSW, 
Australia) were approved by the Garvan Institute / St Vincent’s Hospital Animal Ethics 
Committee in accordance with New South Wales (Australia) State Government legislation. 
Daam2tm1a(KOMP)Wtsi mice (designated Daam2tm1a/tm1a) were obtained from the Wellcome 
Trust/Sanger Institute (Cambridge, UK) where the mice were generated as part of the 
International Mouse Phenotyping Consortium (http://www.sanger.ac.uk/mouseportal), using ES 
cells produced by the Knockout Mouse Project 
(https://www.komp.org/geneinfo.php?Symbol=Daam2). The Daam2 gene in these mice was 
disrupted by a cassette containing an insertion with an additional splice acceptor site between 
exons 5 and 6 
(http://www.mousephenotype.org/data/alleles/MGI:1923691/tm1a%28KOMP%29Wtsi?). The 
success of this strategy was confirmed with an 80% knockdown of Daam2 in Daam2tm1a/tm1a and 
50% knockdown in Daam2+/tm1a. Age and sex matched 16-week old mice were used for detailed 
skeletal phenotyping, as described above. 
 
In vitro assays of osteoclast formation 
Osteoclasts were generated from primary BMCs flushed from mouse long bones of 8-10 week 
old WT, Daam2+/tm1a and Daam2tm1a/tm1a mice, resuspended in MEM/FBS then added (105 
cells/well) to 6mm diameter culture wells.  These were stimulated with 10, 20, 50 and 100 ng/ml 
RANKL, plus 50 ng/mL M-CSF. Medium and cytokines were replaced at day 3, and on day 6 
cultures were fixed with 4% paraformaldehyde and histochemically stained for TRAP using as 
previously described.82 TRAP positive multinucleated cells (MNCs) containing 3 or more nuclei 
were counted as osteoclasts and quantified under inverted light microscopy. 
 
In vitro osteoblast mineralization 
Plastic-adherent bone marrow stromal cells (BMSCs) were isolated from 8-10 week old WT, 
Daam2+/tm1a and Daam2tm1a/tm1a  mice as described previously. 83 Briefly, marrow cells were 
flushed from mouse long bones and plated in MEM containing 20% FBS in 25cm2 tissue culture 
flask. Non-adherent cells were removed by medium changes 3 and 5 days later. After 7 days in 
culture, cells were trypsinized, scraped and re-plated at 3 x 104 cells/cm2 in 24-well plates in 

MEM with 10% FBS containing osteoblast differentiating factors (50 g/ml ascorbic acid, 2.5nM 

dexamethasone and 10 mM -glycerolphosphate; Sigma-Aldrich), which was added and 
changed every 3 days for 21 days. Cells were washed with PBS and fixed with 4% 
paraformaldehyde for 15 mins then ethanol (80%) for 30 mins, rinsed and stained with 0.5% 
Alizarin Red (Sigma Aldrich) in water for 30 mins, washed, dried and images of the plates taken 
with a flat-bed scanner (model v800, Epson, North Ryde, NSW Australia). Alizarin red was then 
eluted with 10% cetyl pyridinium chloride (CTP; Sigma-Aldrich) in PBS overnight and quantified 
by measuring 562 nm absorbance (Clariostar plate reader, BMG Labtech, Offenburg, Germany) 
relative to standard alizarin red solutions.  
 
Detection of serum markers of bone resorption and formation 
Serum levels of bone resorption marker tartrate-resistant acid phosphatase (TRAP) and bone 
formation marker procollagen type 1 N-terminal propeptide (P1NP) were measured using a 
Rat/Mouse TRAP enzyme immunoassay kit and a Rat/Mouse P1NP enzyme immunoassay kit 
(Immunodiagnostic Systems, Gaithersburg, MD, USA) respectively. 
 
Fourier-Transform Infrared Spectroscopy 
The humeri from Daam2 WT, Daam2+/tm1a and Daam2tm1a/tm1a male and female mice were 
collected at 16 weeks of age. 21 male samples (11 WT, 4 Daam2+/tm1a and 6 Daam2tm1a/tm1a) and 
19 female samples (8 WT, 5 Daam2+/tm1a and 6 Daam2tm1a/tm1a) were examined. The bones were 

http://www.sanger.ac.uk/mouseportal/search?query=spns2
https://www.komp.org/geneinfo.php?Symbol=Daam2
http://www.mousephenotype.org/data/alleles/MGI:1923691/tm1a%28KOMP%29Wtsi?


 

 23 

frozen immediately and were kept at a stable temperature until analysis. All bones were 
processed at the same time and all analyzed on the same day to reduce batch effects. The 
humeri were thawed, stripped of soft tissue with epiphyses removed and the marrow cavity was 
flushed. Specimens were then refrozen in liquid nitrogen and pulverized at -80°C using a SPEX 
Sample Prep 6870 Freezer/Mill. Each sample was subjected to three rounds of pulverization at 
15 cycles per second for one minute with a two-minute cool-down between each round.  The 
samples were lyophilized under vacuum at -51°C overnight to ensure they were completely 
dehydrated. Anhydrous potassium bromide (KBr) was then added until the final concentration of 
bone in the samples was between 2.50-2.56% by mass. KBr pellets were formed by 
compressing 20 mg of mixed KBr and bone samples in a 7 mm die under 4 tons of force.  The 
formed pellets were loaded into a Nicolet iS50 FT-IR spectrophotometer (Thermo Fisher 
Scientific). The collection chamber was continuously purged with dry nitrogen gas to minimize 
noise from moisture and carbon dioxide. Background noise was collected on KBr-only pellets 
and subtracted at the beginning of each cohort or after 30min of continuous measurements 
(whichever occurred first). For each sample, 128 scans between 400-2200 cm-1 (wave numbers) 
were collected at a resolution of 4.0cm-1 using Happ-Genzel apodization. The wave number 
data was curve fit to absorbance, with baselining and spectral analyses performed using custom 
algorithms and scripts written in the R programming language (R version 3.4.2). The scripts 
were built on top of the ChemoSpec (version 4.2.8) and MESS (version 0.3-2) packages. Local 
minima were used as limits of integration to calculate areas under the curve for the carbonate, 
phosphate and amide I peaks; the mineral to matrix ratio, carbonate to phosphate ratio were 
then calculated using these areas in the appropriate ratios. Collagen maturity and crystallinity 
were calculated from the spectral data using absorbance values at literature-reported and 
validated wavenumbers.84 Between two and four technical replicates were run for each sample, 
based on the amount of material available. Two samples (both from WT males) were removed 
from all subsequent statistical analyses as the signal to noise ratio was excessive for the 
spectral data for all technical replicates, thus precluding obtaining meaningful information from 
those samples. Values for technical replicates where averaged for each specimen. Differences 
between genotypes were determined by ANOVA, followed by a Tukey’s post hoc test. Data from 
male and female mice were analyzed separately. 
 
URLs 
URLs to download the genome-wide association summary statistics for eBMD and fracture, as 
well as RNA-seq and ATAC-seq data generated for human osteoblast cell lines, will be made 
available after peer-reviewed publication.  
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Figure Legends 
Figure 1. Manhattan plot of genome-wide association results for eBMD in the UK 
Biobank. The dashed red line denotes the threshold for declaring genome-wide significance 
(6.6x10-9). 1,103 conditionally independent SNPs at 515 loci passed the criteria for genome-
wide significance. 301 novel loci (defined as > 1 Mbp from previously reported genome-wide 
significant BMD variants) reaching genome-wide significance are displayed in blue. Previously 
reported loci that reached genome-wide significance are displayed in red, and previously 
reported loci failing to reach genome-wide significance in our study are shown in black.  
 
Figure 2. Fine-mapping SNPs and target gene selection diagram. A) For each 500 Mbp 
region around a conditionally independent lead SNP, we applied statistical fine-mapping to 
calculate log10 Bayes factors for each SNP as a measure of their posterior probability for 
causality. SNPs that were conditionally independent lead SNPs or that had log10 Bayes factors > 
3 were considered our fine-mapped SNPs that we then used for target gene identification. B) 
Target Genes were identified if: 1) It was the gene closest to a fine-mapped SNP. 2) A fine-
mapped SNP was in its gene body. 3) A fine-mapped SNP was coding. 4) The gene mapped 
closest to a fine-mapped SNP which resided in an SaOS-2 ATAC-seq peak. 5) A fine-mapped 
SNP was present in a Hi-C osteoblast or osteocyte promoter interaction peak, therefore being 
closer to a target gene in three-dimensions than linearly on the genome. 
 
Figure 3. SNPs at genome-wide significant loci are enriched for osteoblast 
open chromatin sites. A) Odds ratio for missense, osteoblast DHSs and SaOS-2 ATAC-seq 
peaks for SNPs that are conditionally independent or achieving a log10 Bayes factor > 3. Note 
the log10 Bayes factor > 3 set contains nearly twice the number of SNPs. B) Ranking SNPs by 
log10 Bayes factor (x-axis) shows increasing enrichment of missense SNPs and of SNPs at 
accessible chromatin sites. 
 
Figure 4. Target Gene Identification Workflow. 
 
Figure 5. Reduction in DAAM2 protein resulted in decreased mineralization in SaOS-2 
cells. Mineralization quantification in control cells and DAAM2 exon 2 double-stranded break 
(DSB) induced cells in either the presence of osteogenic factors (treated) or absence 
(untreated). Bars in (a) represent the mean of six independent experiments ± SEM from Alizarin 
red staining in (b) to quantify mineralization. *** P < 0.001 compared to untreated control cells 
and &&& P < 0.001 compared to treated control cells determined by one-way Anova and a 
Bonferroni post-hoc test.  
 
Figure 6. Biomechanical Analyses of mice with Daam2 knockdown. A) Femur 
biomechanical analysis. Destructive 3-point bend testing (Instron 5543 load frame) of femurs 
from WT (NFemale = 3, NMale = 4), Daam2+/tm1a (NFemale = 6, NMale = 4), Daam2tm1a/tm1a (NFemale = 5, 
NMale = 9) mice. Graphs showing yield load, maximum load, fracture load, stiffness (gradient of 
the linear elastic phase) and toughness (energy dissipated prior to fracture). Data are shown as 
mean ± SEM; ANOVA and Tukey’s post hoc test; (i) Daam2+/tm1a vs WT and Daam2tm1a/tm1a vs 
WT, **P<0.01; ***P<0.001 and (ii) Daam2+/tm1a vs Daam2tm1a/tm1a, #P<0.05; ##P<0.01; ###P<0.001. 
B) Vertebra biomechanical analyses. Destructive compression testing (Instron 5543 load 
frame) of caudal vertebrae from WT (NFemale = 3, NMale = 4), Daam2+/tm1a (NFemale = 6, NMale = 4), 
Daam2tm1a/tm1a (NFemale = 5, NMale = 9) mice.  Graphs showing yield load, maximum load, and 
stiffness. Data are shown as mean ± SEM; ANOVA and Tukey’s post hoc test; (i) Daam2tm1a/tm1a 
vs WT, *P<0.05 and **P<0.01 and (ii) Daam2+/tm1a vs Daam2tm1a/tm1a, #P<0.05. Females are on 
left and males on right. C) Bone composition and structure analysis from rapid throughput 
screening murine knockouts. The graph demonstrates the physiological relationship between 
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bone mineral content and stiffness in caudal vertebrae from P112 female WT mice (N = 320).  
The blue line shows the linear regression (P = 0.0001) and the grey box indicates ± 2SD.  The 
mean value for female Daam2tm1a/tm1a (N = 2 from initial OBCD screen) mice is shown in orange 
(-2.14 SD). 
 
Figure S1. Flow diagram illustrating calcaneal quantitative ultrasound (QUS) data 
collection by the UK Biobank. QUS data were collected at three time points: Baseline (2007 - 
2010), Follow-up 1 (2012 - 2013) and Follow-up 2 (2014 - 2016). At baseline, QUS was 
performed using two protocols (denoted protocol 1 and 2). Protocol 1 was implemented from 
2007 to mid-2009 and involved measuring the left calcaneus. Only in cases where the left was 
missing or deemed unsuitable was the right calcaneus measured. Protocol 2 was introduced 
from mid-2009, (replacing protocol 1) and differed only in that it involved measuring both the left 
and right calcanei. Protocol 2 was further used for both follow up assessments. For all three 
time points, calcaneal QUS was performed with the Sahara Clinical Bone Sonometer [Hologic 
Corporation (Bedford, Massachusetts, USA)]. Vox software was used to automatically collect 
data from the sonometer (denoted direct input). In cases where direct input failed, QUS 
outcomes were manually keyed into Vox by the attending healthcare technician or nurse (i.e. 
manual input). The number of individuals with non-missing measures for speed of sound (SOS) 
and broadband ultrasound attenuation (BUA) recorded at each assessment period are indicated 
in light grey. Further details on these methods are publicly available on the UK Biobank website 
(UK Biobank document #100248 
https://biobank.ctsu.ox.ac.uk/crystal/docs/Ultrasoundbonedensitometry.pdf). To reduce the 
impact of outlying measurements, Individuals with highly discordant left vs. right calcaneal 
measures were excluded from the analysis. Furthermore, quality control was applied to male 
and female subjects separately using the following exclusion thresholds: SOS [Male: (≤ 1,450 
and ≥ 1,750 m/s), Female (≤ 1,455 and ≥ 1,700 m/s)] and BUA [Male: (≤ 27 and ≥ 138 dB/MHz), 
Female (≤ 22 and ≥ 138 dB/MHz)]. Individuals exceeding the threshold for SOS or BUA or both 
were removed from the analysis. Estimated bone mineral density [eBMD, (g/cm2)] was derived 
as a linear combination of SOS and BUA (i.e. eBMD = 0.002592 * (BUA + SOS) − 3.687). 
Individuals exceeding the following thresholds for eBMD were further excluded: [Male: (≤ 0.18 
and ≥ 1.06 g/cm2), Female (≤ 0.12 and ≥ 1.025 g/cm2)]. The number of individuals with non-
missing measures for SOS, BUA and eBMD after QC are indicated in black. A unique list of 
individuals with a valid measure for the left calcaneus (N=477,380) and/or right (N=181,953) 
were identified separately across all three time points. Individuals with a valid right calcaneus 
measure were included in the final data set when no left measures were available, giving a 
preliminary working dataset of N=481,100, (left=475,724 and right=5,376) unique individuals. 
Bivariate scatter plots of eBMD, BUA and SOS were visually inspected and 723 additional 
outliers were removed, leaving a total of 480,377 valid QUS measures for SOS, BUA and BMD 
(264,304 females and 216,073 males). 
 
Figure S2. QQ plot of GWAS for eBMD.  Results are from the entire genome and not 
conditionally independent SNPs. 
 
Figure S3. Relationship between absolute effect size (y-axis) and minor allele frequency 
(x-axis) for 1,103 conditionally independent SNPs. Red dots represent SNPs at previously 
reported BMD loci. Blue dots represent SNPs at novel loci. The named gene is that closest to 
the SNP that has the smallest P-value of all conditionally independent SNPs present in the 
same locus. We emphasize that proximity is not necessarily indicative of causality. 
 
Figure S4. Effect size in standard deviations for eBMD (y-axis) from the current UK 
Biobank Study plotted against effect size in standard deviations from the previous 
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GEFOS studies for BMD at the (A) femoral neck, (B) lumbar spine, (C) forearm, (D) total-
body, (E) heel and (F) fracture as per the full UK Biobank cohort (x-axis). Only conditionally 
independent variants that reach genome-wide significance (P < 6.6 x10-9) for eBMD in the UK 
Biobank are plotted. Minus log10 P-value for the fracture analysis in UK Biobank is represented 
by the shading of the data points (black for robust evidence of association with fracture and 
white for poor evidence of association). The blue dashed trend line shows a moderate to strong 
correlation between estimated effect sizes at the heel and femoral neck [r=0.53 95%-CI 
(0.49,0.57)], lumbar spine [0.59 (0.55,0.63)], forearm [0.46 (0.41, 0.50)], total-body [0.70 
(0.67,0.73)], interim heel [0.93 (0.92,0.94)] and fracture [−0.77 (−0.79, −0.74)]. SNPs that reach 
genome-wide significance for fracture look-up (P < 6.6 x10-9) are labelled in black. 
 
Figure S5. Manhattan plot of genome-wide association results for fracture in the UK 
Biobank. Manhattan plot showing genome-wide association results for fracture in the UK 
Biobank. The dashed red line denotes the threshold for declaring genome-wide significance 
(6.6x10-9). In total, 14 conditionally independent SNPs at 13 loci passed the criteria for genome-
wide significance in the discovery analysis. Blue dots represent a locus identified from the 
eBMD GWAS that was novel in this analysis. Red dots represent a locus associated with eBMD 
which was known from previous studies. Previously reported BMD loci failing to reach genome-
wide significance in our study are shown in black. 
 
Figure S6. Analysis of sex heterogeneity for eBMD. The top-most figure is a Miami plot of 
genome-wide association results for females (top panel) and males (bottom panel). The bottom 
graph is a Manhattan plot for the test for sex heterogeneity in eBMD regression coefficients 
between males and females. Previously reported loci that reached genome-wide significance (P 
< 6.6 x10-9) are displayed in red, and previously reported loci failing to reach genome-wide 
significance in our study are shown in black. Loci containing ABO, FKBP4, LOC105370177 and 
FAM9B had stronger effects on eBMD in males, whereas MCM8 had a larger effect in females. 
Loci demonstrating significant heterogeneity (P < 6.6 x10-9) but were not robustly associated at 
genome-wide significance with eBMD in the males and/or females are in green (i.e. MCCD1 and 
ZNF398).  
 
Figure S7. WikiPathways pathway analysis results from FUMA for (A) genes closest to a fine-
mapped SNP, (B) genes with fine-mapped SNPs mapping to its gene body, (C) genes with 
coding fine-mapped SNPs, (D) genes mapped closest to a fine-mapped SNP which resided in 
an SaOS-2 ATAC-seq peak, and genes identified by fine-mapped SNP was present in a (E) Hi-
C osteoblast or (F) osteocyte promoter interaction peak. Well known pathways for bone biology 
were highlighted by FUMA, such as Wnt signalling, endochondral ossification, osteoclast and 
osteoblast signalling. 
 
Figure S8. Expression of DAAM2 in osteoblast cell lines from RNA Sequencing 
experiments and open chromatin profiles from ATAC-seq experiments. Blue shows 
forward strand expression, while red shows reverse strand expression. Dark purple shows 
ATAC-seq open chromatin peaks. RNA of DAAM2 is present in all cell lines, but particularly, 
SaOS-2, HOS and U-2_OS cell lines.  
 
Figure S9: No unspecific labeling of the secondary antibody in the SaOS-2 osteoblast cell 
line. Representative immunofluorescence of SaOS-2 cell lines stained with goat anti-rabbit IgG 
Alexa Fluor 488 secondary antibody (Abcam, ab150077; 1/1000), counterstained with DAPI 
(blue) and observed by confocal microscopy. 
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Figure S10. DAAM2 is localized to the nucleus of SaOS-2 osteoblast cell lines. 
Representative immunofluorescence of SaOS-2 cell lines stained with anti-DAAM2 antibody 
(Sigma Aldrich, HPA051300; 1/200) followed by goat anti-rabbit IgG Alexa Fluor 488 secondary 
antibody (Abcam, ab150077; 1/1000), counterstained with DAPI (blue) and observed by 
confocal microscopy. 
 
Figure S11. Additional skeletal phenotyping of Daam2 knockdown at postnatal day 112. 
A) Bone mineral content and length. X-ray microradiography images (Faxitron MX20) 
showing femur and caudal vertebrae from female (left) and male (right) wild-type (WT; female 
n=5, male=5), heterozygous (Daam2+/tm1a female n=7, male n=5) and homozygous 
(Daam2tm1a/tm1a; female n=7, male n= 9) knockout mice. Gray scale images of femur and caudal 
vertebrae are pseudocoloured according to a 16-colour palette in which low mineral content is 
green and high mineral content is pink.  Relative frequency plots showing bone mineral content 
in femur and caudal vertebrae from WT, Daam2+/tm1a and Daam2tm1a/tm1a mice; Kolmogorov–
Smirnov test, *P<0.05.  Graphs demonstrate femur and caudal vertebra length in WT, 
Daam2+/tm1a and Daam2tm1a/tm1a mice. Data are shown as mean ± SEM; ANOVA and Tukey’s 
post hoc test; *P<0.05; **P<0.01. B) Trabecular bone parameters. Micro-CT images (Scanco 
MicroCT-50) showing proximal femur trabecular bone from WT, Daam2+/tm1a, Daam2tm1a/tm1a 
mice.  Graphs showing trabecular bone volume/tissue volume (BV/TV), trabecular number 
(Tb.N), trabecular thickness (Tb.Th) and trabecular spacing (Tb.Sp). Data are shown as mean ± 
SEM. C) Cortical bone parameters. Micro-CT images of mid-diaphysis cortical bone from WT, 
Daam2+/tm1a, Daam2tm1a/tm1a mice. Graphs showing total cross-sectional area inside the 
periosteal envelope (Tt.Ar), cortical bone area (Ct.Ar), cortical area fraction (Ct.Ar/Tt.Ar), 
medullary (marrow cavity) area (M.Ar), periosteal perimeter (Ps.Pm), endocortical perimeter 
(Ec.Pm), cortical thickness (Ct.Th), cortical bone mineral density (BMD), cortical porosity 
(Ct.Po), polar moment of inertia (J), maximum moment of inertia (Imax) and minimum moment 
of inertia (Imin). Data are shown as mean ± SEM. 
 
Figure S12: Bone resorption and formation are not affected by Daam2 knockdown. A) No 
difference in the number of bone marrow-derived TRAP+ multinucleated cells was observed 
between WT and Daam2tm1a/tm1a male mice (Scale bar = 100 μM; n = 4; mean ± SEM). B) No 
difference was observed in the mineralization of bone marrow stromal cells between WT and 
Daam2tm1a/tm1a mice. No difference in bone resorption marker TRAP (C) and bone formation 
marker P1NP (D) was detected in the sera of WT and Daam2tm1a/tm1a mice. Data in (C) and (D) 
are shown as mean ± SEM; Females are on left and males on right. 

 
Figure S13. Bone composition of Daam2 knockdown and wildtype mice. Bone composition 
was measured in humeri from 16 week old male and female mice by Fourier Transformed 
Infrared Spectroscopy (FTIR). A) Mineral to matrix ratio was determined as the ratio of the 
integrated areas of the phosphate peak/amide I peak. B) Carbonate substitution was defined as 
the ratio of the integrated areas of the carbonate/phosphate peaks. C) Collagen maturity or 
collagen crosslinking was calculated as the ratio of the peak spectral intensities at 1660 and 
1690 cm-1 respectively. D) Crystallinity or crystal maturity was calculated as the ratio of the peak 
spectral intensities at 1030 and 1020 cm-1 respectively. 
 
Figure S14. Increased bone mass, stiffness and strength in adult Chromobox 1 heterozygous 
deficient mice (Cbx1+/-) (a) X-ray microradiography images of femur and caudal vertebrae from 
female wild-type (WT) and Cbx1+/- mice at postnatal day 112 (P112). Graphs show reference 
ranges derived from 320 WT mice, mean (solid line), 1.0SD (dotted lines) and 2.0SD (grey box). 
Parameters from individual Cbx1+/- mice are shown as red dots and mean values as a black line 
(n=2 animals).  (b) Micro-CT images of proximal femur trabecular bone (left) and mid-diaphysis 
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cortical bone (right). Graphs showing trabecular bone volume/tissue volume (BV/TV), trabecular 
number (Tb.N), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), cortical thickness 
(Ct.Th), internal cortical diameter and cortical bone mineral density (BMD). (c) Graphs showing 
yield load, maximum load, fracture load, stiffness and energy dissipated prior to fracture derived 
from 3-point bend testing of femurs. (d) Graphs showing yield load, maximum load and stiffness 
derived from compression testing of vertebra. Scale bars: a, 1mm and b, 0.5mm. 
 
Figure S15. Increased bone mass and strength in adult WW Domain Containing Adaptor with 
Coiled-Coil heterozygous deficient mice (Wac+/-) (a) X-ray microradiography images of femur 
and caudal vertebrae from female wild-type (WT) and Wac+/- mice at postnatal day 112 (P112). 
Graphs show reference ranges derived from 320 WT mice, mean (solid line), 1.0SD (dotted 
lines) and 2.0SD (grey box). Parameters from individual Wac+/- mice are shown as red dots and 
mean values as a black line (n=2 animals).  (b) Micro-CT images of proximal femur trabecular 
bone (left) and mid-diaphysis cortical bone (right). Graphs showing trabecular bone 
volume/tissue volume (BV/TV), trabecular number (Tb.N), trabecular thickness (Tb.Th), 
trabecular spacing (Tb.Sp), cortical thickness (Ct.Th), internal cortical diameter and cortical 
bone mineral density (BMD). (c) Graphs showing yield load, maximum load, fracture load, 
stiffness and energy dissipated prior to fracture derived from 3-point bend testing of femurs. (d)  
Graphs showing yield load, maximum load and stiffness derived from compression testing of 
vertebra. Scale bars: a, 1mm and b, 0.5mm. 
 
Figure S16. Increased bone mineral content and strength in adult DNA Replication and Sister 
Chromatid Cohesion 1 heterozygous deficient mice (Dscc1+/-) (a) X-ray microradiography 
images of femur and caudal vertebrae from female wild-type (WT) and Dscc1+/- mice at 
postnatal day 112 (P112). Graphs show reference ranges derived from 320 WT mice, mean 
(solid line), 1.0SD (dotted lines) and 2.0SD (grey box). Parameters from individual Dscc1+/- mice 
are shown as red dots and mean values as a black line (n=2 animals).  (b) Micro-CT images of 
proximal femur trabecular bone (left) and mid-diaphysis cortical bone (right). Graphs showing 
trabecular bone volume/tissue volume (BV/TV), trabecular number (Tb.N), trabecular thickness 
(Tb.Th), trabecular spacing (Tb.Sp), cortical thickness (Ct.Th), internal cortical diameter and 
cortical bone mineral density (BMD). (c) Graphs showing yield load, maximum load, fracture 
load, stiffness and energy dissipated prior to fracture derived from 3-point bend testing of 

femurs. (d)  Graphs showing yield load, maximum load and stiffness derived from compression 
testing of vertebra. Scale bars: a, 1mm and b, 0.5mm. 
 
Figure S17. Increased bone mineral content and strength in adult DNA Regulator of Cell Cycle 
knockout mice (Rgcc-/-) (a) X-ray microradiography images of femur and caudal vertebrae from 
female wild-type (WT) and Rgcc-/- mice at postnatal day 112 (P112). Graphs show reference 
ranges derived from 320 WT mice, mean (solid line), 1.0SD (dotted lines) and 2.0SD (grey box). 
Parameters from individual Rgcc-/- mice are shown as red dots and mean values as a black line 
(n=2 animals).  (b) Micro-CT images of proximal femur trabecular bone (left) and mid-diaphysis 
cortical bone (right). Graphs showing trabecular bone volume/tissue volume (BV/TV), trabecular 
number (Tb.N), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), cortical thickness 
(Ct.Th), internal cortical diameter and cortical bone mineral density (BMD). (c) Graphs showing 
yield load, maximum load, fracture load, stiffness and energy dissipated prior to fracture derived 
from 3-point bend testing of femurs. (d)  Graphs showing yield load, maximum load and stiffness 
derived from compression testing of vertebra. Scale bars: a, 1mm and b, 0.5mm. 
 
Figure S18. Increased bone mass and brittle bones in adult Tyrosine 3-
Monooxygenase/Tryptophan 5-Monooxygenase Activation Protein Epsilon knockout mice 
(Ywhae-/-) (a) X-ray microradiography images of femur and caudal vertebrae from female wild-
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type (WT) and Ywhae-/- mice at postnatal day 112 (P112). Graphs show reference ranges 
derived from 320 WT mice, mean (solid line), 1.0SD (dotted lines) and 2.0SD (grey box). 
Parameters from individual Ywhae-/- mice are shown as red dots and mean values as a black 
line (n=2 animals).  (b) Micro-CT images of proximal femur trabecular bone (left) and mid-
diaphysis cortical bone (right). Graphs showing trabecular bone volume/tissue volume (BV/TV), 
trabecular number (Tb.N), trabecular thickness (Tb.Th), trabecular spacing (Tb.Sp), cortical 
thickness (Ct.Th), internal cortical diameter and cortical bone mineral density (BMD). (c) Graphs 
showing yield load, maximum load, fracture load, stiffness and energy dissipated prior to 
fracture derived from 3-point bend testing of femurs. (d)  Graphs showing yield load, maximum 
load and stiffness derived from compression testing of vertebra. Scale bars: a, 1mm and b, 
0.5mm. 
 
Figure S19. Bone composition and structure analysis from rapid throughput screening murine 
knockouts. (a) The graphs demonstrate the relationship between bone mineral content and yield 
load, maximum load, fracture load and stiffness in femurs from P112 female WT mice (N = 320).  
For yield load, maximum load, and stiffness the blue line shows the linear regression (P = 
0.005, P < 0.00001, P = 0.003 respectively) and the grey box indicates ± 2SD.  For fracture load 
the blue line shows the linear regression (P = 0.00003) and the grey box indicates ± 95% 
confidence intervals. The mean values for Cbx1+/-, Dscc1+/-, Rgcc-/-, Wac+/- and Ywhae-/- (N = 2 
from OBCD screen) mice are shown in orange.  The Wac+/- femur yield load was 2.8 SD above 
the wild type reference range and Dscc1+/- fracture load was on the 1.7th centile. (b) The graph 
demonstrates the relationship between bone mineral content and yield load, maximum load and 
stiffness in vertebrae from P112 female WT mice (N = 320). For yield and maximum loads the 
blue line shows the linear regression (P = <0.00001) and the grey box indicates ± 95% 
confidence intervals. For stiffness the blue line shows the linear regression (P = 0.0001) and the 
grey box indicates ± 2SD.  The mean values for Cbx1+/-, Dscc1+/-, Rgcc-/-, Wac+/- and Ywhae-/- (N 
= 2 from OBCD screen) mice are shown in orange.  

 
Figure S20. Bivariate scatterplots describing pairwise comparisons of each of the first 20 
ancestry informative principal components derived from unrelated subjects of the 1000 
Genomes study. Data points represent subjects that are coloured according to their predefined 
1000 genomes study population*.  Pairwise combinations involving eigenvectors 1,2 and 5 
represented the smallest number of eigenvectors that were able to adequately resolve the 
British sub-population (GBR) from other ethnicities and were subsequently used to for clustering 
and ancestry assignment of the UK Biobank sample. *CHB=Han Chinese in Beijing, China, 
JPT=Japanese in Tokyo, Japan, CHS=Southern Han Chinese, CDX=Chinese Dai in 
Xishuangbanna, China, KHV=Kinh in Ho Chi Minh City, Vietnam, CEU=Utah Residents (CEPH) 
with Northern and Western European Ancestry,TSI=Toscani in Italia, FIN=Finnish in Finland, 
GBR=British in England and Scotland, IBS=Iberian Population in Spain, YRI=Yoruba in Ibadan, 
Nigeria, LWK=Luhya in Webuye, Kenya, GWD=Gambian in Western Divisions in the Gambia, 
MSL=Mende in Sierra Leone, ESN=Esan in Nigeria, ASW=Americans of African Ancestry in SW 
USA, ACB=African Caribbeans in Barbados, MXL=Mexican Ancestry from Los Angeles USA, 
PUR=Puerto Ricans from Puerto Rico, CLM=Colombians from Medellin, Colombia, 
PEL=Peruvians from Lima, Peru, GIH=Gujarati Indian from Houston, Texas, PJL=Punjabi from 
Lahore, Pakistan, BEB=Bengali from Bangladesh, STU=Sri Lankan Tamil from the UK, 
ITU=Indian Telugu from the UK  
 
Figure S21. Evaluating expectation maximization clustering model fit. The number of 
predefined clusters is described on the x-axis and model fit on the y-axis [Inferred by three 
model selection criteria:  i.e. log-likelihood (LogL), Akaike information criteria (AIC), and 
Bayesian information criterion (BIC)]. Twelve predefined clusters were chosen for clustering as 
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sensitivity analyses suggested that this number provided a good compromise between model fit 
and computational burden (i.e. more clusters requires more computation). 
 
Figure S22. Bivariate scatterplots describing pairwise comparisons of ancestry 
informative principal components 1,2 and 5 derived from unrelated subjects of the 1000 
genomes study and all subjects from the UK Biobank sample. Data points represent 
subjects that are coloured according to their allocated cluster, as estimated by Expectation 
Maximization (EM) clustering. Samples from the UK-Biobank sample are annotated using 
“UKB”. Other 1000 genomes poulations are annotated using the following: CHB=Han Chinese 
in Beijing, China, JPT=Japanese in Tokyo, Japan, CHS=Southern Han Chinese, CDX=Chinese 
Dai in Xishuangbanna, China, KHV=Kinh in Ho Chi Minh City, Vietnam, CEU=Utah Residents 
(CEPH) with Northern and Western European Ancestry,TSI=Toscani in Italia, FIN=Finnish in 
Finland, GBR=British in England and Scotland, IBS=Iberian Population in Spain, YRI=Yoruba in 
Ibadan, Nigeria, LWK=Luhya in Webuye, Kenya, GWD=Gambian in Western Divisions in the 
Gambia, MSL=Mende in Sierra Leone, ESN=Esan in Nigeria, ASW=Americans of African 
Ancestry in SW USA, ACB=African Caribbeans in Barbados, MXL=Mexican Ancestry from Los 
Angeles USA, PUR=Puerto Ricans from Puerto Rico, CLM=Colombians from Medellin, 
Colombia, PEL=Peruvians from Lima, Peru, GIH=Gujarati Indian from Houston, Texas, 
PJL=Punjabi from Lahore, Pakistan, BEB=Bengali from Bangladesh, STU=Sri Lankan Tamil 
from the UK, ITU=Indian Telugu from the UK. 
 
Figure S23. Targeting DAAM2 exon 2 with CRISPR/Cas9 induced double stranded breaks 
reduced DAAM2 protein level in SaOS-2 cells. A) DAAM2 protein level quantification in 
control cells and edited DAAM2 cells (gRNA1 and gRNA2). Bars represent the mean of six 
independent experiments ± SEM. *** represent P < 0.001 compared to control cells determined 
by one-way Anova and Bonferroni post-hoc tests. B) Bands from representative Western Blots 
of DAAM2 (upper panel) and total protein (lower panel) of at least six independent experiments 
from different cell line passages. Ct: controls; gRNA1: DAAM2 edited cells with gRNA1; gRNA2: 
DAAM2 edited cells with gRNA2.  
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Tables 
Table 1. Target gene identification methods enrichment for 57 positive control genes. No 

positive control genes were identified by osteocyte Hi-C interactions therefore we did not 
calculate its enrichment. Distance to gene was determined using 3’ and 5’ ends, instead 
of the transcription start site. 

 
Target Gene Set OR (95% CI) P 

SaOS-2 ATAC-seq Peak Gene 58.5 (26.4 – 129.3) 1.3x10-75 

Coding SNP Gene 41.8 (14.3 – 121.6) 1.0x10-30 

Osteoblast Hi-C Interaction Gene 21.1 (6.4 – 69.6) 7.8x10-13 

Closest Gene 12.9 (7.1 – 23.4) 1.8x10-27 

Overlapping Gene Body 11.2 (5.2 – 23.8) 3.4x10-15 

All Genes Within 100 kbp 6.8 (3.9 – 11.7) 2.1x10-15 

Osteocyte Hi-C Interaction Gene NA NA 

 
Table 2. Target gene identification methods enrichment for 1,240 osteocyte signature genes. 

Distance to gene was determined using 3’ and 5’ ends, instead of the transcription start 
site. 

 
Target Gene Set OR (95% CI) P 

Coding SNP Gene 7.4 (3.8 - 14.5) 5.2x10-12 

SaOS-2 ATAC-seq Peak Gene 6.1 (3.5 - 10.6) 2.6x10-13 

Overlapping Gene Body 5.1 (3.8 - 6.7) 1.1x10-37 

Closest Gene 4.6 (3.7 - 5.6) 4.1x10-53 

Osteoblast Hi-C Interaction Gene 3.8 (1.9 – 7.4) 2.5x10-5 

Osteocyte Hi-C Interaction Gene 2.9 (1.0 – 8.6) 4.0.x10-2 

All Genes Within 100 kbp 2.1 (1.7 - 2.5) 1.8x10-17 
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