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The small RNAs associated with the protein Hfq constitute

one of the largest classes of post-transcriptional regulators

known to date. Most previously investigated members of

this class are encoded by conserved free-standing genes.

Here, deep sequencing of Hfq-bound transcripts from multi-

ple stages of growth of Salmonella typhimurium revealed a

plethora of new small RNA species from within mRNA loci,

including DapZ, which overlaps with the 30 region of the

biosynthetic gene, dapB. Synthesis of the DapZ small RNA is

independent of DapB protein synthesis, and is controlled by

HilD, the master regulator of Salmonella invasion genes.

DapZ carries a short G/U-rich domain similar to that of the

globally acting GcvB small RNA, and uses GcvB-like seed

pairing to repress translation of the major ABC transporters,

DppA and OppA. This exemplifies double functional output

from an mRNA locus by the production of both a protein and

an Hfq-dependent trans-acting RNA. Our atlas of Hfq targets

suggests that the 30 regions of mRNA genes constitute a rich

reservoir that provides the Hfq network with new regula-

tory small RNAs.
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Introduction

The small non-coding RNAs (sRNAs) that associate with the

bacterial RNA-binding protein Hfq have over the recent years

emerged as one of the largest class of post-transcriptional

regulators (Storz et al, 2011). These sRNAs commonly

regulate trans-encoded mRNAs by short base pairing, and

require Hfq for both their own intracellular stability and their

efficient annealing to target mRNAs (Vogel and Luisi, 2011).

While the majority of sRNAs negatively regulate their targets

by translational repression or destabilization of the mRNA,

several examples of mRNA activation have been described

(Fröhlich and Vogel, 2009).

Similarly to eukaryotic microRNAs, Hfq-associated sRNAs

commonly regulate multiple targets to extensively modulate

gene expression at the post-transcriptional level. For example,

the widely conserved GcvB sRNA targets up to B1% of all

mRNAs in the Gram-negative model species Salmonella

typhimurium and Escherichia coli (Sharma et al, 2007;

Pulvermacher et al, 2009; Sharma et al, 2011). Many of the

GcvB targets encode ABC transporters of small peptides and

amino acids, as well as proteins involved in amino-acid

biosynthesis pathways. Comparable pervasive control by

sRNAs has been reported in other branches of physiology,

e.g., iron usage (Masse and Gottesman, 2002), catabolite

repression (Beisel and Storz, 2011) and envelope homeo-

stasis (Gogol et al, 2011). Together with the extensive list

of validated mRNA targets, the regulatory scope of Hfq-

associated sRNAs has begun to rival that of transcription

factors, as illustrated by recently identified new functions

in physiological circuits as diverse as biofilm formation

(Jorgensen et al, 2012; Mika et al, 2012; Thomason et al,

2012), cell surface modulation (Moon and Gottesman, 2009),

amino-acid starvation (Corcoran et al, 2012; Holmqvist et al,

2012), sugar import (Maki et al, 2010; Rice and Vanderpool,

2011), quorum sensing behaviour (Sonnleitner et al, 2011;

Shao and Bassler, 2012), switch to anaerobic growth (Boysen

et al, 2010; Durand and Storz, 2010) or virulence factor

expression (Papenfort et al, 2012).

Nonetheless, although Hfq governs one of the most

complex post-transcriptional networks known to date, the

true number and nature of the involved sRNAs have largely

remained elusive, even in the intensely investigated model

species E. coli and Salmonella. Thus far, roughly two-dozen

sRNAs from these two species have been studied in more

detail. Almost all of them are transcribed from free-standing

sRNA genes located in intergenic regions (IGRs) between

annotated protein-coding genes. Yet, there are few common-

alities among the sRNAs, as they vary dramatically in length

(from 50 to 250nt), sequence and secondary structure. Short

stretches of sequence conservation at the 50 end or within an

sRNA sequence typically reveal the base-pairing regions for

mRNA selection, which in loose analogy to microRNAs, have

been referred to as ‘seed’ regions (Guillier and Gottesman,

2008; Balbontin et al, 2010; Papenfort et al, 2010). Hfq-

binding sites in sRNAs are much less conserved; they have

traditionally been seen in A/U-rich single-stranded regions

next to a stem-loop structure which often coincides with the

r-independent transcription terminator found at the 30 end of

many sRNAs (Vogel and Luisi, 2011). Arguably, the above

features are not limited to transcripts from sRNA genes in

IGRs, but can also be envisaged in other types of cellular

transcripts, including mRNAs. This complexity is increased

by the fact that the r-independent terminator itself, i.e.,

the 30 stem-loop with a poly(U) tail, has been implicated

as an additional Hfq-binding site (Otaka et al, 2011; Sauer

and Weichenrieder, 2011; Ishikawa et al, 2012). Of note,

hundreds of mRNA loci also possess r-independent terminators

*Corresponding author. Institute for Molecular Infection Biology,
University of Würzburg, Josef-Schneider-Strasse 2, 97080 Würzburg,
Germany. Tel.: þ 49 931 3182 576; Fax: þ 49 931 3182 578;
E-mail: joerg.vogel@uni-wuerzburg.de

Received: 9 May 2012; accepted: 19 July 2012; published online:

24 August 2012

The EMBO Journal (2012) 31, 4005–4019 | & 2012 European Molecular Biology Organization |All Rights Reserved 0261-4189/12

www.embojournal.org
 

EMBO
 

THE

EMBO
JOURNAL

THE

EMBO
JOURNAL

4005&2012 European Molecular Biology Organization The EMBO Journal VOL 31 | NO 20 | 2012

http://dx.doi.org/10.1038/emboj.2012.229
http://dx.doi.org/10.1038/emboj.2012.229
mailto:joerg.vogel@un-wuerzburg.de
http://www.embojournal.org


(Lesnik et al, 2001; Kingsford et al, 2007), and many mRNA

30 regions are highly enriched by co-immunoprecipitation with

Hfq (Zhang et al, 2003; Sittka et al, 2008). Thus, one may

speculate that by virtue of binding to Hfq, such transcripts

may attain a regulatory function that is independent of the

protein encoded by the mRNA of a given locus.

In this study, we have harnessed RNA deep sequencing to

reveal a dynamic landscape of Hfq-bound transcripts in

Salmonella at various stages of growth. We report dramatic

changes in the profiles of Hfq-associated sRNAs, including

the transient appearance of some sRNAs between the expo-

nential and stationary phases of growth. The profiles reveal

many sRNAs from the 30 regions of mRNA loci that are

produced by either mRNA processing or overlapping sense

transcription with a shared terminator.

One of these novel sRNAs is DapZ, which we have inves-

tigated in detail with respect to the mechanisms of its biogen-

esis and physiological function. This sRNA overlaps in sense

with the 30 UTR of the wide-spread biosynthetic dapB gene,

and is transcribed from a conserved gene-internal promoter

which in Salmonella evolved to be co-activated with major

virulence genes. By employing a G/U-rich seed domain remi-

niscent of the globally acting GcvB sRNA (Sharma et al, 2011),

DapZ represses the mRNAs of major ABC transporters under

conditions of Salmonella host cell invasion. Our results

suggest that the 30 regions of mRNA genes constitute a large

reservoir from which the Hfq network recruits new sRNAs to

rewire gene expression at the post-transcriptional level.

Results

A dynamic landscape of Hfq-associated sRNAs

We profiled Hfq-associated transcripts in Salmonella using

Solexa sequencing of RNA enriched by co-immunoprecipita-

tion (coIP) with the chromosomally encoded, epitope-tagged

Hfq protein (Sittka et al, 2008). Samples were collected at

several time points along the growth curve of a shaking

culture within 1 day of inoculation (Figure 1A), and covered

the exponential phase of growth (OD600 of 0.15 or 0.5), the

early stationary phase (OD600 of 2) when the Salmonella

invasion genes are transiently activated, and the stationary

phase at four subsequent time points including overnight

culture.

Figure 1B depicts the individual sRNA species enriched by

pull-down with Hfq protein at the selected seven points of

growth, as a proportion of the experimentally validated

sRNAs of Salmonella annotated in this (Supplementary

Table S1) and previous studies (Padalon-Brauch et al, 2008;

Sittka et al, 2008; Sittka et al, 2009; Kröger et al, 2012). We

observed a dramatic change in the profiles along the axis of

growth, with some sRNAs dominating in individual growth

phases. For example, the catabolite repression-associated

Spot42 (Spf) sRNA prevails in fast growing cells, whereas a

different set of sRNAs including RprA, SdsR and RybB

become prominent partners of Hfq as bacteria progress into

the stationary phase. There are only two abundant sRNAs—

ArcZ (activator of sS and repressor of serine uptake and

oxidative stress related functions) and ChiX (repressor of

chitoporin synthesis)—which significantly occupy Hfq

throughout growth, and both are well-known examples of

growth phase-independent sRNA expression (Argaman et al,

2001; Vogel et al, 2003; Figueroa-Bossi et al, 2009; Papenfort

et al, 2009; Mandin and Gottesman, 2010; Rasmussen et al,

2009). For other well-studied sRNAs, Hfq occupancy was also

in excellent agreement with previously determined expres-

sion profiles in Salmonella. For example, GcvB accumulates

in fast growing cells only (Argaman et al, 2001; Sharma et al,

2007), whereas SdsR and RybB are not expressed until

stationary phase when their transcription is activated by the

alternative sS and sE factors, respectively (Vogel et al, 2003;

Papenfort et al, 2006; Fröhlich et al, 2012).

A distinct set of sRNAs mark the transition from exponential

to stationary phase, as exemplified by the invasion gene-asso-

ciated InvR sRNA of Salmonella pathogenicity island 1 (SPI-1).

The SPI-1 locus is transiently transcribed as aerobic cultures

reach an OD600 of 2 (Pfeiffer et al, 2007), and it is this cDNA

library that contains the vast majority of InvR reads. Other

prominent sRNAs in the transition phase are RybD, STnc440

and DapZ; the latter was here renamed from candidate STnc820

due to a genetic association with dapB (see below).

Regarding protein-coding transcripts, a total of 3517

mRNAs were detected (represented by X10 reads) at the

different stages of growth, and 1253 of them were enriched at

least three-fold by coIP with Hfq (Supplementary Table S2),

which expands the putative Hfq regulon to more than a

quarter of all Salmonella genes. All in all, the new Hfq

profiles reveal that the well-studied changes of primary

gene expression over growth are accompanied by consistent

and dynamic changes of RNA binding to Hfq, the major hub

of post-transcriptional control.

Hfq-bound 3 0 regions of mRNA genes accumulate as

discrete sRNAs

While many of the abundantly recovered sRNAs are tran-

scribed from free-standing genes, e.g., ArcZ, ChiX, InvR,

RprA, RybB, SdsR and Spot42, we noticed that libraries

from all growth phases contained ample cDNA reads that

overlapped in sense with the 30 UTR of mRNAs, e.g., DapZ,

STnc840, STnc850 and STnc870 (Figures 1B and 2;

Supplementary Table S1). Note that for simplicity, we refer

to 30 UTR as either the RNA or DNA region that follows the

coding sequence of the respective gene down to the transcrip-

tion terminator. In other words, 30 UTR can denote either the

transcribed 30 part of the mRNA or its corresponding DNA in

the genome, depending on context. To test whether these

cDNAs represent discrete RNA species, rather than premature

termination products of cDNA synthesis at the 30 end of

mRNA, we selected candidate regions with both a high

cDNA count and a predicted r-independent terminator for

northern blot analysis (Supplementary Table S1).

Of 22 candidates tested, 8 yielded discrete hybridization

signals (Figure 2) that agreed well with the respective tran-

script sizes predicted by Solexa sequencing (Supplementary

Table S1). We observed excellent correlations between the

northern blot signals of individual sRNAs and their relative

coverage in the cDNA libraries. For example, DapZ and

STnc840 whose expression sharply peaks at OD600 of 2 also

show highest recovery in the corresponding cDNA library

(compare Figures 2 and 1B, or Supplementary Table S3).

Similarly, the northern blots confirmed that STnc850 and

STnc870 strongly accumulate in late stationary phase, as

predicted by the fact that these sRNAs together constitute

10–25% of all reads in the corresponding cDNA libraries. In

several cases, we also detected the mRNA of the same locus,

Hfq-dependent small RNAs from 30 UTRs
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with expression patterns that either matched (STnc850/ycfJ

or STnc2090/yfiA) or deviated from (DapZ/dapB or STnc870/

cpxP) the sRNA in its 30 region. We consistently observed

much stronger sRNA signals than mRNA signals, supporting

the notion that these 30-derived sRNAs may accumulate to

fulfill an mRNA-independent function.

An Hfq-dependent sRNA from the 3 0 region of the dapB

gene

For proof-of-principle that 30 UTR-derived sRNAs are functional

regulators, we focussed on theB80-nt DapZ sRNA that coincided

with the 30 UTR of dapB (Figure 2). The dapB gene encodes

dihydrodipicolinate reductase, an essential protein that

catalyses the second step of lysine biosynthesis (Bouvier

et al, 2008a). Intriguingly, whereas the coding sequence of

dapB is highly conserved in g-proteobacteria (Supplementary

Figure S1), the 30 UTR is not, except for the r-independent

terminator (Figure 3A).

We considered that DapZ may be either a stable intermedi-

ate of mRNA decay, as suggested by its mutually exclusive

accumulation with the full-length dapB transcript (Figure 2;

Supplementary Figure S2), or the product of a hidden sRNA

gene. Three experimental results confirmed the latter scenario,

i.e., that DapZ is an independently transcribed sRNA,
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encoded within the 30 region of dapB. First, the presence of a

50 truncated, promoterless dapB gene on a multi-copy plasmid

(pdapZ) caused overexpression of DapZ (Figure 3B), indicat-

ing that DapZ synthesis did not require transcription of dapB.

Second, using a specialized 50 RACE protocol we detected a

transcriptional start site (TSS) immediately downstream of

the dapB stop codon that coincided with the 50 flank of reads

in the cDNA libraries (Figure 3C), and was preceded by well-

conserved putative � 10 and � 35 boxes in the dapB CDS

(Figure 3A). Assuming that DapZ transcription terminates at

the dapB terminator, this TSS perfectly matches the observed

sRNA size on the northern blot (Figure 2). Third, the main

DapZ transcript is resistant to treatment with a 50 monopho-

sphate-dependent exonuclease (Kröger et al, 2012), which

is consistent with DapZ being a primary transcript that

possesses a 50 triphosphate.

A comparison of RNA abundance and stability between

Salmonella wild-type and an isogenic Dhfq mutant in early

stationary phase confirmed that DapZ is an abundant Hfq-

dependent sRNA. At the height of its expression, DapZ

accumulates to B100 copies/cell, but the lack of Hfq reduces

the in vivo copy number to less than one (Supplementary

Figure S3). The RNA half-life was reduced from B2.5min to

o30 s in the Dhfq strain, suggesting that as with many other

sRNAs (Andrade et al, 2012), Hfq protects DapZ from

degradation. Note that we also observed shorter, processed

DapZ species in both the RACE and northern blot

experiments. However, these partially or fully lack the seed

region of DapZ (as defined below) and so are likely non-

functional decay intermediates of the sRNA. Altogether, these

results established that DapZ is an Hfq-dependent sRNA

that shares the 30 region and terminator of the dapB mRNA
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Figure 2 Expression analysis of 30 UTR-derived sRNAs. Total RNA was prepared from wild-type Salmonella grown in LB at the time points
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A

SB  A C C T G T G G A A A AAC A G C G G GG TA GGA--CC

ET  A C C A C A GC G T T G T A ATC AGG T T TA C C A GT--T

CN  A G G T A T T A C T A AGGACGCG CA C A A A T G GA G TT--T

SE  G T C GC G AC GG G A CA T GC TAACC TG T A G G A C CA T AG CC G TTGAT

PA  C C A T T T G A G T AAGC T AGAC A TC C A T T ATCGATG G G GTG--

KP  C C A T C TC T A A A G AGGC A C G T G AGT CGA--

  G T CC T T T AG T CA T TGGTAA C TG T CT G T A A T C AC T TGCTT A

ER  C C C G A A TC TG A AGAC T A GCAC CGTA GCA T A AAGC T A T AG T GTG--

CR  G T C T C A A C GC T TTCTGC C C C A C T A CA T CGC--GA

SF  C A T C T A G T G T G GTGGT G G T A T C A T G CCA-CAA

EC  T A T C A G T G T G GTGGT G GC T A A T C A T G CCA-CAA

Con . . . . . . . . . ... . . . . . .....

ST  AT T - G GG -AG TAA C A - A G GC------------CCCCCGG TA CGG

SB  GAT T - AG -AG GAG C A GC A A TA------------TCAGCGA TA CAG

ET  T AC T - G G - G TCC C C - A AC ------------ C GATGATG AAA

CN  T AC - AC - GT TA GA -G - A C TCT TTTTTAAC A C AACCTG AAA

  TAT T- G AT G - ACTA AT-- A T T AACA-CA AAAACATG G TATG GT AT

PA  GTGA - TC GG GACA GA T T A A ACC --A AAAAAGTC G T GG TAAAAT

KP  T AC - GCT A GT A -GC A T - G A T GCG -------- T ACGG GGA GT

YP  T A C A G T T - CAT --A T T T AT AT T A AAATT AAAATAAGCGAT AG GTC TT

ER  GTGC - TC - GG TC GG C T A T AATAAT------CC G CT GAG TAA

CR  T T T - G T-C C A C T T - A AG-------------CCAT ACGAG ACT

SF  GTTT T-A CAAAAG AAC- CATT T A A T A TT - T A --A T G-G -------- T A GC T- AAA

EC  ATTTG T-A G CAAAA AAC- CATT T A T A TT - T G --A T G-G -------- T A GT T- AAA

Con .  . . . . . . . . ... ........ . . .. .. ..

ST  C G A T T GC G G A A AAC A G A C G GG GG TA GCGA--CATGAC TT GC AA GG GC T C GC TGG T A GG CT T TGA ATGCG GA GT CT T A TT T

ATGAC TT GC AA GG GC T C GC TGG T A GG CT T TGA ATGCG GA GT CT A T A TT T A

ATGAC TT GC AA GG GC T C GC TGG T GG CT T TGA ATGCG GA GT CT A T A TT T A

ATGAC TT GC AA GG GC T C GC TGG T A GG CT T TGA ATGCG GA GT CT A T A TT T A

ATGAC TT GC A GG GC T C GC TGG T A GG CT T TGA ATGCG GA GT CT A T A TT T A

ATGAC TT GC AA GG GC T C GC TGG T A GG CT T TGA ATGCG GA GT CT A T TT T A

ATGAC TT GC AA GG GC T C GC TGG T A GG CT T TGA ATGCG GA GT CT A T A TT T A

ATGAC TT GC A GG GC T C GC TGG T A GG T T TGA ATGCG GA GT CT A T A T T A

ATGAC TT GC AA GG GC T C GC TGG T A GG CT T TGA ATGCG GT T A T A TT T A

ATGAC TT GC AA GG GC T C GC TGG T A GG CT T TGA ATGCG GA GT CT A T A TT T A

ATGAC TT GC AA GG GC T C GC TGG T A GG CT T TGA ATGCG GA GT CT A T A TT T A

ATGAC TT GC AA GG GC T C GC TGG T A GG CT T TGA ATGCG GA GT CT A T A TT T A

ATGAC TT GC AA GG GC T C GC TGG T A GG CT T TGA ATGCG GA GT CT A T A TT T A

T TGATG T A A TGAT A GGGC TA T TT T GCCCTTTT T

T TGATG T A A TGAT A GGGC TA T T T GCCCTT T T

T TGATG T TGAT A GGGC TA T TT T GCCCTTTT T

T TGATG T A A TGAT A GGGC TA T TT T GCCCTTTT T

T TGATG T A A TGAT GG C TA T TT T G CCTTTT T

T TGATG T A A TGAT A GGGC TA T TT T GCCCTTT T

T TGATG T A A TGAT A GGGC TA T TT T GCCCTTTT T

TGATG T A A TGAT A GGGC TA T T T CC TTTT T

T TGATG T A A TGAT A GGGC TA T TT T GCCCTTTT T

T TGATG T A A TGAT A GGGC TA T TT T GCCCTTTT T

T TGATG T A A T AT A GGGC TA T TT T GCCCTTTT T

T TG TG T A A TGAT A GGGC TA T TT T GCCCTTTT T

T TGATG T A A TGAT A GGGC TA T TT T GCCCTTTT T

T C G GAT TT C AA GAAG AAAT T T G GG C TG A A T

T G AGAT TT C AA GAAG AAAT T T T G GG C TG A A

C G G T TT AA GAA AAAT T T T T G TC A GA A A TT

T C G AGAT TT AA AA T T T G G T A TG A TT

T GG G T A A AA T T G T A A A TT

T G A A C AA AAG A T T T T G GG T TT

T C G G T TT C AA AAG AAAT T T T G GG TC A T A A TT

T GG A T T C G A AAT T T T G TC A GA A T

C G G A G A T T G G T TGA A A TT

GG AGAT T C GAAG AAA T T T G GG T A A A A

T GG AGAT TT A AAG AA T T T T T G G TC A T A A

T C GG AGAT TT A AAG AA T T T T G TC A T A A

t c gg agat tt c aa gaag aaat t t t t g gg tc a tga a a tt
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Figure 3 Promoter and sequence analysis of DapZ sRNA. (A) Sequence alignment of the dapB 30 coding sequence (CDS, grey box) and 30 UTR
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gene (Figure 3D). Remarkably, both its proximity to the

dapB reading frame and its low degree of sequence conserva-

tion would prevent faithful prediction of this sRNA by

biocomputational methods.

The master regulator of virulence HilD regulates dapZ

Although their genes partly overlap, the dapB mRNA and

DapZ sRNA are clearly differentially expressed (Figure 2;

Supplementary Figure S2). Expression of dapB, which accord-

ing to E. coli data may be regulated by lysine and the LysR-type

regulator ArgP (Bouvier et al, 2008a), was highest during

exponential growth. By contrast, DapZ sharply accumulated

in the transition to the stationary phase, matching the profile

of the SPI-1-associated InvR sRNA (Figure 1B; Pfeiffer et al,

2007), which raised the intriguing possibility that DapZ was

co-activated with the SPI-1 invasion genes. This hypothesis

was supported by northern blot analysis of Salmonella strains

with genomic deletions of the major virulence islands.

Figure 4A shows that a DSPI-1 mutation diminished DapZ

expression, whereas a DSPI-2 mutation, affecting the genes for

intracellular survival, did not affect DapZ expression.

Next, to identify the responsible transcription factor, we

investigated DapZ expression in strains with individual dis-

ruptions of the hilA, hilC, hilD, invF and rtsAB genes, which

encode transcriptional activators that control the SPI-1 genes

in a hierarchical manner (Ellermeier and Slauch, 2007).

These experiments suggested HilD, which acts at the very

top of the SPI-1 cascade, as the cognate activator of DapZ

expression (Figure 4A). The regulation is also observed with

a reporter gene fusion to the dapZ promoter, arguing that

HilD indeed regulates DapZ at the level of transcription

(Supplementary Figure S4).

Ectopic expression of HilD restored DapZ levels in

Salmonella DhilD or DSPI-1 strains (Figure 4B). Again, this

was specific to HilD, since the downstream acting HilA factor

could not restore DapZ levels in these mutant backgrounds.

Most importantly, however, HilD protein also activated

the Salmonella dapZ promoter after transfer to E. coli, an

organism that lacks SPI-1 and all of its associated transcrip-

tion factors (Figure 4C). Although a molecular interaction

remains to be proven, this trans-complementation strongly

argues that HilD activates the dapZ promoter directly.

The results of additional trans-complementation experi-

ments in E. coli predict that the control of the widely conserved

dapZ gene by the Salmonella-specific factor HilD evolved very

recently, i.e., after Salmonella diverged from the E. coli lineage.

That is, of five selected enterobacterial dapZ promoters tested

in this assay (Figure 4C), the Salmonella promoter was the

only one to respond to HilD, but did so as strongly as the hilA

promoter, a positive control and well-established direct target

of HilD (Schechter and Lee, 2001). By contrast, the other

four dapZ promoters were invariably insensitive to HilD

expression, and either showed intermediate (Citrobacter,

Klebsiella and Yersinia) or very high basal expression

(E. coli). Thus, closely related enterobacteria may use

different factors to control the dapZ promoter.

DapZ sRNA regulates major ABC transporters with a

GcvB-like seed domain

Hfq-associated sRNAs typically regulate gene expression by

base pairing with mRNAs. To identify targets of DapZ in

Salmonella, we took a pulse-expression approach (Masse

et al, 2005; Papenfort et al, 2006) analysing global mRNA

level changes after a transient overexpression of DapZ from

an inducible plasmid. Within 10min of induction, DapZ

downregulated the conserved dpp and opp operons, which

encode major ABC transporters, and the yahO and STM1513

genes of unknown function X2-fold (Figure 5A). This rapid

downregulation suggests that DapZ regulates these mRNAs

directly.

Intriguingly, the DapZ candidate targets appeared to be a

subset of the many targets of the widely conserved Hfq-

associated sRNA, GcvB (Figure 5B). Moreover, the putative

DapZ targets overlapped specifically with those mRNAs that

GcvB recognizes by its G/U-rich seed domain (Sharma et al,

2011), which suggested that DapZ may select targets by a

similar mechanism. Indeed, inspection of the DapZ sequence
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revealed a single-stranded GUGAUGUGGUU (nucleotides

11–21) stretch that is conserved in enterobacteria except for

E. coli and Shigella (Figure 3A). In analogy to its counterpart

in GcvB, this G/U-rich stretch will be referred to as domain

R1 of DapZ (Figure 3A). By repeating the pulse-expression

experiment with an R1 mutant of DapZ (internal deletion of

nucleotides G13A14U15G16), we observed that this domain

was indeed essential for the repression of dpp and opp

operons (Figure 5B).

GcvB represses the dpp and opp operon mRNAs through

base-paring interactions with the first cistrons, dppA and

oppA, respectively (Sharma et al, 2007; Pulvermacher et al,

2008). Using translational lacZ fusions to the chromosomal

dppA and oppA genes of Salmonella, we found that DapZ also

exerts negative regulation at the 50 end of these operons.

A DdapZ mutation activated the oppA::lacZ reporter, both

alone and further with a DgcvB mutation. The dppA::lacZ

reporter was also upregulated upon deletion of dapZ,

although this required prior inactivation of the gcvB gene

(Figure 5C). Perhaps when GcvB is present, it occupies the

dppA target site owing to its more stable binding relative to

DapZ (Sharma et al, 2007), so the dppA target is only bound

and suppressed by DapZ when its competitor GcvB RNA is

absent. Northern blot analysis showed that the two sRNAs

did not influence each other’s expression (Supplementary

Figure S5), suggesting that DapZ is able to regulate dppA and

oppA independently of GcvB. Likewise, the expression of

dapB was not significantly affected by the DdapZ mutation

(Supplementary Figure S6) or DapZ overexpression (Supple-

mentary Figure S7), ruling out the possibility of indirect

effects through an impaired metabolic function of DapB.

Altogether, these experiments showed that the major ABC

transporters are regulated independently of protein output

from the dapBZ locus, and that the DapZ sRNA resembled

GcvB such that it repressed some shared targets, likely via a

similar seed domain.
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Evidence for similar seed pairing by DapZ and GcvB

To elucidate how DapZ recognizes the dppA and oppA

targets, we subjected in vitro transcribed DapZ and the

50 mRNA regions to structure probing with single strand-

specific RNase T1 or lead(II), alone and after mixing sRNA

and target. Preliminary gel-shift assays confirmed that DapZ

formed complexes with the oppA and dppA RNA fragments

(Supplementary Figure S8). Probing of the 50 labelled DapZ

RNA showed that presence of either the dppA and oppA

RNAs protected the G/U-rich R1 domain of the sRNA from

cleavage, which was most pronounced with lead(II) back-

bone cleavage (Figure 6A). Reciprocally, probing of the

targets identified DapZ-induced protection of C/A-rich sites

around the start codon of oppA, or upstream of the Shine-

Dalgarno sequence in dppA, as well as a structural rearrange-

ment in dppA (Figure 6B and C). In other words, although the

target interactions of DapZ and GcvB slightly differ with

respect to helix length and continuity (Figure 6E), the two

sRNAs essentially recognize the same regions in each of the

two mRNAs.

To prove that the predicted RNA duplexes guided DapZ-

mediated mRNA repression in vivo, we introduced compen-

satory point mutations in DapZ and the dppA or oppA

mRNAs (Figure 6D and E). DapZ was constitutively ex-

pressed from a plasmid in a DdapZDgcvB strain, and target

regulation was monitored using translational dppA::gfp or

oppA::gfp fusions, respectively, on compatible plasmids

(Sharma et al, 2007; Urban and Vogel, 2007). Flow

cytometry-based measurements of GFP fluorescence showed

that DapZ repressed the oppA::gfp and dppA::gfp reporters 6-

fold and 2.3-fold, respectively. Repression was abolished with

DapZ-M1, a mutant sRNAwith a single G13-C change in the

G/U-rich seed (Figure 6D and E). Likewise, M10 variants of

the dppA::gfp and oppA::gfp reporters containing the oppo-

site C-G point mutation were insensitive to wild-type DapZ.

However, restoration of the predicted RNA interactions by

combining DapZ-M1 with the M10 reporters of dppA or oppA

fully restored repression, which validates that DapZ employs

its G/U-rich seed to repress dppA and oppA by direct base

pairing in vivo.

Discussion

Expression of a bacterial mRNA gene is generally assumed to

culminate in a single functional gene product, which is the

protein to be translated from its reading frame. This simple

structure–function relationship is regarded as a characteristic

feature of bacterial mRNA loci, in contrast with their eukar-

yotic counterparts which can produce multiple protein iso-

forms through mRNA splicing as well as non-coding RNAs

with independent functions (Rodriguez et al, 2004). However,

this study suggests that bacterial mRNA loci offer greater

functional output than assumed, and furnish evidence for the

hypothesis that UTRs can evolve to produce sRNAs that

regulate gene expression in trans (Vogel et al, 2003).

Our deep-sequencing experiments reveal a dynamic re-

patterning of Hfq-associated sRNAs at multiple stages of

growth, and the single-nucleotide resolution of the technique

allowed us to precisely map several novel Hfq-bound species

derived from the 30 regions of mRNA genes. We have shown

that the 30 UTR-encoded DapZ sRNA is a trans-acting regu-

lator with a GcvB-like seed domain that is transcriptionally

activated by the horizontally acquired transcription factor

HilD to repress ABC transporter synthesis under conditions

that favour host cell invasion. The discovery of DapZ argues

that transiently accumulating sRNA species from the 30 end of

mRNA loci must not be generally dismissed as noise resulting

from spurious transcription or incomplete transcript degrada-

tion. Since the 30 UTR is a genomic element that is present in

most if not all bacteria (Kingsford et al, 2007), it should be

systematically explored for new regulatory small RNAs.

Discovery of sRNAs via Hfq profiling

Biocomputational searches have traditionally focussed on the

discovery of free-standing sRNA genes in the IGRs of bacterial

chromosomes, and relied much on the conservation of tran-

scription elements including the 30 terminal r-independent

terminators (Vogel and Sharma, 2005; Backofen and Hess,

2010). However, 30 UTR-derived sRNAs such as DapZ pose a

challenge to in-silico prediction owing to their close proximity

or even overlap with mRNA sequences. The dapZ gene

indeed escaped detection in biocomputational sRNA screens

(Argaman et al, 2001; Rivas and Eddy, 2001; Wassarman et al,

2001; Chen et al, 2002; Livny et al, 2006; Pfeiffer et al, 2007),

which we attribute to both its poorly conserved primary

sequence and proximity to the dapB reading frame.

Interestingly, DapZ was also not recognized in cDNA

cloning-based screens (Vogel et al, 2003; Kawano et al,

2005) or earlier analyses of Hfq-bound transcripts by tiling

arrays (Zhang et al, 2003) or deep sequencing (Sittka et al,

2008). By contrast, our present study builds upon deep

profiling of Hfq ligands over growth and dedicated

inspection of UTR-derived transcripts (Figure 1B). In addi-

tion, since Hfq is a limiting factor in vivo (Lease and

Woodson, 2004; Fender et al, 2010; Moon and Gottesman,

2011), the high recovery of DapZ (B12% of reads in the

transition phase library) was a strong predictor of a

physiological function. That is, other sRNAs that dominate

the Hfq profile at this condition are known to be functional:

ChiX and InvR repress porin synthesis (Pfeiffer et al, 2007;

Figueroa-Bossi et al, 2009; Rasmussen et al, 2009), and ArcZ

and RprA regulate the rpoS mRNA and additional targets

(Papenfort et al, 2009; Mandin and Gottesman, 2010). By the

same token, prominent Hfq-binding sRNAs from 30 UTRs

which accumulate in different growth phases may similarly

turn out as bona fide regulators of gene expression.

The general trends of sRNA expression are well reflected by

our Hfq profiling over growth, as clearly seen for the abun-

dant marker sRNAs such as GcvB, DapZ/InvR and RprA/

SdsR/RybB, which accumulate in early, middle or late growth

stages, respectively (Figure 1B). Copy numbers are available

for several Salmonella sRNAs, and often match the relative

recovery of a given sRNA. For instance, both DapZ and

InvR accumulate to B100 copies/cell in early stationary

phase (Supplementary Figure S3; Pfeiffer et al, 2007), and

are equally represented in the corresponding library

(Figure 1B). Under the same condition, ArcZ and SdsR are

present in B20 copies/cell, respectively (Papenfort et al,

2009; Fröhlich et al, 2012), and irrespective of deviations

from expected numbers, these sRNAs generally exhibit lower

recovery than DapZ and InvR (Figure 1B). Nonetheless, many

factors may influence the recovery rate, ranging from non-

linear binding to Hfq to sRNA-specific biases during cDNA

preparation and sequencing. Thus, low abundance cannot be
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oppA leaders. Nucleotides in bold in oppA and dppA were previously shown to be involved in binding to GcvB sRNA (Sharma et al, 2007);
the GcvB-dppA and GcvB-oppA interactions are shown for comparison below. Point mutations introduced for compensatory base-pair
exchange experiments are indicated. The ribosome binding site and the start codon are marked in orange.
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used to rule out physiological activity. For example, although

SgrS RNA constitutes o0.1% of all reads in early stationary

phase, it strongly regulates the mRNA of the secreted viru-

lence factor SopD under this condition (Papenfort et al, 2012).

Our investigation into the narrow expression timing of DapZ

uncovered a recently evolved transcriptional control by HilD

(Figure 4). HilD is the master transcriptional activator of the

SPI-1 invasion genes, and additional targets outside SPI-1 are

typically among those B25% of Salmonella genes that were

horizontally acquired since Salmonella and E. coli diverged

from a common ancestor (Porwollik and McClelland, 2003;

Ellermeier and Slauch, 2004). Importantly, HilD activation of

the dapZ promoter within dapB provides Salmonella with a

selective repressor of major ABC transporter synthesis under

invasion conditions, as compared to recruiting the GcvB sRNA

whose activity would impact amino-acid uptake and synthesis

in a much broader fashion. In more general terms, HilD and

DapZ constitute a novel paradigm of how the core and

accessory parts of the Salmonella genome are intermeshed

by Hfq-dependent regulation at the RNA level. Contrasting

previously reported sRNA-mediated mRNA control across the

conserved and virulence regions (Pfeiffer et al, 2007; Papenfort

et al, 2012), this study reveals novel cross-wiring wherein a

horizontally acquired transcription factor (HilD) employs a

conserved Hfq-dependent sRNA (DapZ) to regulate Salmonella

core gene (dpp and opp) expression. Considering that

Salmonella expresses 4140 sRNAs (Pfeiffer et al, 2007;

Padalon-Brauch et al, 2008; Sittka et al, 2008; Kröger et al,

2012), additional Hfq-dependent regulation connecting the two

parts of the Salmonella genome will surely be discovered.

We present the most comprehensive profiling of Hfq-asso-

ciated RNAs for any organism to date. This atlas of Hfq

targets must now be expanded by the integration of more

growth and stress conditions, and genome-wide maps of

transcription start and RNA polymerase binding sites (Cho

et al, 2009; Mooney et al, 2009; Kröger et al, 2012), to unravel

the full scope of the Hfq network.

3 0 UTR-derived sRNAs and dual output from mRNA loci

Most mRNAs and sRNAs are encoded by loci with single

output function, but exceptions from simplicity have been

known. Some small genes give rise to a dual-function mRNA

which both serves as the template for synthesis of a short

peptide and acts as an antisense regulator on other mRNAs

in trans (Wadler and Vanderpool, 2007; Sonnleitner et al,

2008; Gimpel et al, 2010; Romby and Charpentier, 2010). In

addition, earlier studies in E. coli detected abundant sRNAs

from UTRs (Tjaden et al, 2002; Vogel et al, 2003; Zhang et al,

2003; Kawano et al, 2005). These observations were

conceptualized in a model of ‘parallel transcriptional

output’ wherein some protein-coding genes may produce

both an mRNA template for translation and a regulatory

RNA, by dual use of either the promoter or terminator

(Vogel et al, 2003). While this model recently received

support by the discovery of 50 UTR (riboswitch)-derived

sRNAs in Listeria monocytogenes that regulate a virulence

factor in trans (Loh et al, 2009), DapZ represents the first

example of dual output via the 30 UTR of a widely conserved

gene.

30 UTR-derived sRNAs may be generated by two major

biogenesis pathways (Figure 7). The first is exemplified by

DapZ, which is transcribed from an mRNA-internal promoter

and thus expressed and functions independently of the host

mRNA gene despite a partial overlap in sequence. In the other

pathway, the sRNA is generated by mRNA processing in the

30 region. Inspection of 50 end status in available dRNA-seq

data sets wherein primary and processed transcripts can be

differentiated (Sharma et al, 2010; Kröger et al, 2012)

supports a notion that the 30 derived sRNAs shown in

Figure 2 represent examples of both pathways: Aside from

DapZ, the STnc860 sRNA (RyeF) is a primary transcript, with

its promoter being locatedB260 bp upstream of the cutC stop

codon (Supplementary Figure S9). RyeF was originally dis-

covered by Hfq coIP in E. coli (Zhang et al, 2003) but it was

previously not annotated in Salmonella due to poorly

conserved flanking genes and lack of expression in early

stationary phase (Figure 2; Sittka et al, 2008, 2009).

Overall, these sRNAs with mRNA-internal promoters bolster

recent findings that transcription start sites within the coding

sequences of E. coli and Salmonella may be common

(Kawano et al, 2005; Mendoza-Vargas et al, 2009; Kröger

et al, 2012).

Processing in the mRNA 30 region likely underlies the

generation of STnc840, STnc870 and STnc2090, because

these sRNAs seem to carry a 50 monophosphate end (accord-

ing to dRNA-seq data by Kröger et al, 2012) and lack obvious

motifs for RNAP binding in the respective upstream DNA

regions. The processing must come with a cost given that

these cleavages collectively occur in the coding sequence and

so render the respective mRNA inactive for further rounds of

translation. The RybD sRNA, which was originally detected at

the 30 end of the conserved sucABCD operon in E. coli (Zhang

et al, 2003), also belongs to this category. Salmonella RybD is

prominent in the early stationary phase (Figure 1B) and likely

generated by mRNA cleavage 12 nucleotides upstream of the

sucD stop codon (Supplementary Figure S10). A promising

candidate for the responsible nuclease is RNase E, the major

endoribonuclease in Gram-negative bacteria (Belasco, 2010;

CDS

mRNA

3′UTR

HfqHfq

3′UTR

sRNA

Regulation of target mRNA in trans 

sRNA biogenesis from 3′ region

CDS

+

5′ PPP 5′ PPP

5′ PPP

5′ PPP

5′ P

Figure 7 Biogenesis of sRNAs from bacterial UTRs. A 30 UTR-
derived small RNA can be either transcribed from its own promoter
in the upstream coding sequence, or generated by internal proces-
sing of the associated mRNA. The common denominator is the
shared use of the r-independent terminator of the mRNA. Hfq plays
a seminal role in either pathway such that it facilitates the base
pairing of the 30 UTR-derived sRNA with trans-encoded target
mRNA(s), but it may also participate in recruiting a nuclease
(such as RNase E) to the 30 end of the mRNA in the case of
processing.
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Bouvier and Carpousis, 2011) which can cleave in the

30 regions of mRNAs by either processive action from the

50 end (Mackie, 1998) or direct internal entry (Kime et al,

2010). Of note, RNase E was proposed to process MicX sRNA

from a long 30 UTR in Vibrio cholerae (Davis and Waldor,

2007). RNase E and Hfq can form a complex (Morita et al,

2005; Ikeda et al, 2011), which could then be guided to the

30 end of mRNAs by the recently discovered propensity of Hfq

to bind to r-independent terminators (Otaka et al, 2011; Sauer

and Weichenrieder, 2011; Ishikawa et al, 2012). While

experiments are in progress to map Hfq sites and RNase

E-dependent cleavage in the new 30 derived sRNAs, we

note that many Hfq-associated mRNAs show enrichment

in the putative terminator region. Of the predicted 770 r-

independent terminators of Salmonella mRNA genes, 291

were significantly enriched by coIP with Hfq (Supple-

mentary Table S4), which illustrates a vast array of candidate

regions for new 30 UTR-derived sRNAs.

Functional classification of sRNA by seed

An exciting finding of this paper is the discovery of a GcvB-

like seed region in DapZ, with potential ramifications for

sRNA ontology. Except for E. coli and Shigella where the R1

region is mutated, all predicted DapZ RNAs contain this

B15 nt long G/U-rich seed which, according to our probing

experiments, targets the same C/A-rich sites in dppA and

oppA as does the longer R1 domain of GcvB (Figure 6;

(Sharma et al, 2007). Inferring from the proven inhibition

of ribosome loading by GcvB at these sites (Sharma et al,

2007), we posit that DapZ represses the dppA and oppA

mRNAs primarily at the level of translation initiation.

The concept of bacterial seed domains is recent (Storz et al,

2011; Vogel and Luisi, 2011), and arose through observations

that the nucleotides involved in binding to target mRNAs are

usually conserved (Vanderpool and Gottesman, 2004;

Udekwu et al, 2005; Sharma et al, 2007) and that seed

regions as small as 13 nucleotides retain their function

upon transplantation to unrelated sRNAs (Bouvier et al,

2008b; Pfeiffer et al, 2009; Papenfort et al, 2010). The R1

domains of DapZ and GcvB strongly support the concept of

independent seed regions in sRNAs, and may even constitute

a case of convergent evolution. The coinciding binding

regions of DapZ and GcvB in dppA and oppA may indicate

that these mRNAs are constrained with respect to where

sRNAs can operate effectively, e.g., in terms of target site

accessibility and the presence of an Hfq site (Busch et al,

2008; Link et al, 2009; Peer and Margalit, 2011; Beisel et al,

2012). This observation adds to recent reports of clustered

sRNA sites in the rpoS (Mandin and Gottesman, 2010), csgD

(Holmqvist et al, 2010; Jorgensen et al, 2012; Mika et al, 2012;

Thomason et al, 2012), ompD (Balbontin et al, 2010; Gogol

et al, 2011; Fröhlich et al, 2012) and sdhC mRNAs (Desnoyers

and Masse, 2012).

We presently tend to classify Hfq-associated sRNAs accord-

ing to their cognate transcription factors (Corcoran et al,

2011). As more sRNAs are discovered, one may want to

consider an alternative nomenclature that is based on the

seed. Accordingly, DapZ would be a GcvB-like sRNA, that is

similar to referring to HilD as an AraC-like transcription

factor because it carries the same DNA-binding domain as

the ancestral AraC protein (Schechter et al, 1999). Note,

however, that while ‘domain’ in a transcription factor

denotes a structurally recognizable, self-folding entity of a

protein that confers a specific function for DNA binding,

the seed region is defined primarily by the specific mRNA

interactions it bestows on an sRNA. A nomenclature that

follows the seed would seem particularly appropriate for

sRNAs like DapZ whose Salmonella-specific control by HilD

rejects the cognate transcription factor as a useful classifier.

Materials and methods

Bacterial strains, media and growth conditions
Salmonella enterica serovar Typhimurium strain SL1344 (JVS-1574)
was used as wild-type strain and for mutant construction. The
complete list of bacterial strains used in this study is provided in
Supplementary Table S6. Bacteria were grown in Luria Bertani (LB)
medium at 371C at 220 r.p.m. When appropriate, 100 mg/ml ampi-
cillin, 50 mg/ml kanamycin or 20 mg/ml chloramphenicol (final
concentrations) were added to the medium, or used in agar plates.

Strain construction
Chromosomal mutagenesis of Salmonella SL1344 was performed as
previously described (Datsenko and Wanner, 2000). To construct
the dapZ deletion strain (JVS-9207), 30 UTR of dapBwas replaced by
the ‘scar’ sequence while the r-independent terminator was kept
intact. Wild-type Salmonella containing pKD46 was electroporated
with 300–500ng DNA amplified from pKD4 with oligonucleotides
JVO-7698/-5641 (see Supplementary Table S8 for sequences of
deoxyoligonucleotides). The kanamycin resistance cassette was
eliminated using the FLP helper plasmid pCP20 at 421C (Datsenko
and Wanner, 2000). The same strategy was applied constructing the
DrtsAB strain using primer pair JVO-5604/-5605 (verified by PCR
with JVO-5606/-5607).
For construction of translational oppA-17aa-lacZ (JVS-8992) and

dppA-10aa-lacZ (JVS-8996) fusions in the chromosome, the 30 part
of the oppA or dppA coding sequences were first replaced by
kanamycin resistance cassette amplified with oligonucleotides
JVO-7322/-7323, or JVO-7324/-7325 from pKD13. The resulting
mutants were ‘healed’ by pCP20, and then transformed with
pCE40 to generate translational lacZ fusions (Ellermeier et al,
2002). The insertion of lacZ gene was verified by colony PCR
using oligonucleotides pMC874-lac and JVO-0421(oppA) or JVO-
0423(dppA). All mutations were transduced into fresh wild-type or
desired Salmonella background using phage P22 (Sternberg and
Maurer, 1991).

Plasmid construction
A complete list of plasmids used in this study can be found in
Supplementary Table S7. In order to make the pdapZ (pYC20)
construct, dapZ and B800 bp upstream sequence (until the start
codon of dapB CDS) was amplified using oligonucleotides JVO-
5373/-5374, digested with XbaI and XhoI and ligated plasmid
pZE12-luc digested with the same enzymes. To construct an
L-arabinose inducible dapZ construct (pBAD-dapZ, pYC39), the
dapZ gene amplified by oligonucleotides JVO-5646/-5374 was
inserted into pBAD-His-myc (Invitrogen) backbone which was
amplified by oligonucleotides JVO-0900/-0901. To generate the
constitutive dapZ overexpression plasmid (pYC40-2) driven by the
PLlacO promoter, the very same insert was cloned into pZE12-luc
backbone, which was prepared by PCR amplification with oligonu-
cleotides PlacB and PlacD with Phusion DNA polymerase
(Finnzymes, Finland).
The 4 bp (GATG) in dapZ R1 region was deleted from pYC39 by

overlapping PCR with oligonucleotides JVO-8992/-8993. After DpnI
digest, the PCR product was transformed into E. coli TOP10 for
generating plasmid PBAD-dapZ-DR1 (pYC108). Likewise, the point
mutation in dapZ was introduced in pYC40-2 by overlapping PCR
with JVO-7197/-7198 resulting in plasmid dapZ-M1(pYC73-2); the
compensatory point mutation in oppA was introduced in pJL19-1
by overlapping PCR with JVO-7199/-7200 resulting in plasmid
oppA-M1’(pYC74). The compensatory point mutation in dppA was
introduced in pJL18-1 with JVO-7201/-7202 resulting in plasmid
dppA-M1’ (pYC75-3).
Transcriptional PdapZ–gfp fusion plasmids were constructed by

cloning DNA sequences containing putative promoter elements into
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plasmid pAS0046 via AatII/NheI sites as previously described
(Pfeiffer et al, 2007). DNA sequences containing putative dapZ
promoters in enterobacteria species (B110 to þ 5 bp relative to
the þ 1 site of Salmonella dapZ) were amplified from genomic
DNA of wild-type Salmonella with JVO-7635/-7636, E. coli K-12
with JVO-7637/-7638, Yersinia pestis KUMA with JVO-7639/-7640,
Klebsiella pneumonia MGH78578 with JVO-7641/-7642 and
Citrobacter rodentium with JVO-7643/-7644.

coIP of Hfq and deep sequencing analysis
Wild-type Salmonella SL1344 and the 3� FLAG-tagged Hfq strain
(hfqFLAG, JVS-1338) were grown in LB overnight for about 16 h
(220 r.p.m., 371C). Cells equivalent to an OD of 50 were collected for
coIP, and another 5ml overnight culture was washed by PBS twice,
diluted 1:200 to 1 l fresh LB and grown for 9 h after reaching OD600

of 2. At several time points during growth (Figure 1A), a 50 OD
culture of wild-type and hfqFLAG strain were collected by centrifuga-
tion (4000 r.p.m., 41C) and subjected to coIP according to the
protocol previously described by Pfeiffer et al (2007) and Sittka
et al (2008), with slight modifications. Briefly, bacteria were
resuspended in 0.8ml of lysis buffer (20mM Tris pH 8, 150mM
KCl, 1mM MgCl2, 1mM DTT), and disrupted with 0.8ml glass
beads (Roth, 0.1mm diameter) by rigorous vortexing (30 s burst
followed by 30 s chill on ice) for 5min. The cleared lysate was
incubated with 35 ml anti-FLAG antibody (Sigma; #F1804) at 41C for
30min and incubated with 75 ml of Protein A sepharose (Sigma;
P-6649-5ML) for another 30min. After five washes in lysis buffer,
the sepharose was subjected to RNA and protein preparation by
Phenol:Chloroform:Isopropanol extraction. After DNase I digestion,
the RNA was used to construct cDNA libraries by Vertis
Biotechnologie AG (Munich, Germany), and sequenced on a
Solexa GAIIx machine. Raw cDNA reads were quality trimmed
(cutoff Phread score of 20) and poly-A clipped. Solexa reads
(X20nt) were mapped to the Salmonella SL1344 genome (http://
www.sanger.ac.uk/Projects/Salmonella/) using segemehl with a
minimal accuracy of 95% (Hoffmann et al, 2009). The per
nucleotide coverage was calculated, normalized by the number of
total number of mapped of reads for each library and visualized
in the Integrated Genome Browser (Nicol et al, 2009). Gene-wise
quantity analysis was performed by counting the number of
reads which overlap at least for 10 nt with genes annotations in
the set recently generated by Kröger et al (2012). The sequencing
data have been deposited in the GEO database (accession no.
GSE38884). To calculate the enrichment of RNAs, the number
of reads from Hfq coIP library was divided by that from control
coIP library, followed by normalization to the total number of
mapped reads.

RNA isolation and northern hybridization
RNA isolation and northern hybridization experiments were per-
formed as previously described (Pfeiffer et al, 2007; Sittka et al,
2008). Briefly, samples were collected with addition of 0.2 vol/vol
of STOP solution (95% ethanol, 5% phenol) before the RNA was
prepared with Trizol reagent (Invitrogen). 5–10 mg total RNA was
denatured for 5min at 951C in RNA loading buffer (95% forma-
mide, 0.1% xylene cyanole, 0.1% bromophenol blue and 10mM
EDTA), separated on 7M urea/ 6% polyacrylamide gels, and
transferred onto Hybond-XL membranes (GE Healthcare) by
electroblotting (50V) for 1 h at 41C. Oligos were 50 end-labelled
with g-32P by PNK (Fermentas). All oligonucleotides used for
detection of DapZ, newly identified 30 UTR sRNAs (Figure 2) and
5S rRNA are listed in Supplementary Table S8. The 50 end-labelled
oligos were hybridized to membranes overnight at 421C, before
washing with 5� SSC/0.1% SDS, 1� SSC/0.1%SDS and 0.5� SSC/
0.1% SDS for 15min each. Signals were visualized on a phosphoi-
mager (Typhoon FLA 7000, GE Healthcare) and quantified using the
AIDA software (Raytest).

5 0 RACE
Primary transcription start sites were determined with a modified 50

RACE protocol (Bensing et al, 1996) as described in detail by Pfeiffer
et al (2007). Briefly, 12 mg total RNA was split in two parts while
only one was treated with Tobacco Acid Pyrophosphatase (TAP;
Epicentre) at 371C for 30min. Subsequently, RNAwas ligated to a 50

RNA oligonucleotide adaptor using T4 RNA ligase at 171C
overnight. Following purification, half of the ligated RNA was

used for reverse transcription with a random hexamer oligo-
nucleotide primer mix using Superscript III RT (200U final;
Invitrogen) with the following programme: 251C for 5min, 501C
for 60min, 701C for 15min. Oligonucleotides JVO-4661 and JVO-
0367 (antisense to the RNA linker) were used to amplify the 50 end
DapZ by PCR with Taq polymerase (New England Biolabs),
following 35 cycles of: 951C for 20 s, 561C for 20 s, 721C for 20 s.
The PCR products were separated on a 4% agarose gel and the
sequence of the TAP-specific band was determined by Sanger
sequencing.

Microarray analysis
Microarray analysis of pBAD-induced sRNAs expression has been
described previously (Papenfort et al, 2006, 2009, 2012). In brief,
wild-type Salmonella was transformed with plasmid pKP8-35
(pBAD control), pYC39 (pBAD-DapZ) or pYC108 (pBAD-DapZ-
DR1), and grown in LB until OD600 of 1.5. The expression of
sRNA was induced for 10min with 0.2% L-arabinose, and total
RNA was prepared for microarray analysis with Trizol reagent as
described above. Differential expression was considered when
genes displayed X2-fold changes in all replicates and were
statistically significantly different (Student’s t-test). Statistical
analysis, data visualization and data mining were analysed using
GeneSpring 7.3 (Agilent). The microarray data have been deposited
in the GEO database (accession no. GSE38523).

Western blot and antibodies
Bacteria culture were collected by centrifugation for 2min at
16100 g at 41C, and pellets were resuspended in 1� protein loading
buffer to a final concentration of 0.01OD/ml. After incubation for
5min at 951C, 0.05 OD equivalents of samples were separated on
12% SDS–PAGE. GFP fusion and GroEL proteins were detected as
described in Urban and Vogel (2007). HilD was detected with a
polyclonal anti-HilD antibody.

b-galactosidase and GFP reporter assays
b-Galactosidase activity was determined with ortho-Nitrophenyl-b-
galactoside (ONPG) as substrate and the CHCl3-SDS permeabiliza-
tion procedure (Miller, 1972). To assay GFP reporters, bacteria were
grown in LB in presence of ampicillin and chloramphenicol
overnight. Bacterial cells corresponding to 1 OD were pelleted and
fixed with 4% paraformaldehyde. The GFP fluorescence intensity
was quantified by flow cytometry with FACS Calibur (BD
Bioscience). All experiments were performed in triplicates.

In-vitro structure mapping and foot-printing
DNA templates carrying a T7 promoter sequence for in-vitro tran-
scription were generated by PCR. Primers and sequences of the T7
transcripts have been deposited in Supplementary Table S7. RNA
was in vitro transcribed and quality checked as described (Sharma
et al, 2007; Sittka et al, 2007). The protocol for 50 end labelling of
RNA has been described previously (Papenfort et al, 2006).
Secondary structure probing and mapping of RNA duplexes were

conducted with B0.1 pmol 50 end-labelled RNA in 10ml reactions.
RNA was denatured for 1min at 951C and chilled on ice for 5min,
upon which 1mg of yeast tRNA and 10� structure buffer (0.1M Tris
at pH 7.0, 1M KCl, 0.1M MgCl2; Ambion), and unlabelled mRNA/
sRNA were added to anneal at 371C for 10min. Thereafter, 2ml of
RNase T1 (0.05U/ml; Ambion, #AM2283) or 2 ml of a fresh solution
of lead(II) acetate (25mM; Fluka #15319) wsd added and incubated
for additional 3 or 1min at 371C, respectively. Reactions were
stopped by adding 12ml cold loading buffer II (95% Formamide;
18mM EDTA; 0.025% SDS, Xylene Cyanol and Bromophenol Blue;
Ambion). RNase T1 ladders were obtained by incubating labelled
RNA (B0.2 pmol) in 1� sequencing buffer (Ambion) for 1min at
951C. Subsequently, 1 ml of RNase T1 (0.1U/ml) was added, and
incubation was continued for 5min at 371C. The OH ladder was
generated by incubation of 0.2 pmol of labelled RNA for 5min in
alkaline hydrolysis buffer (Ambion) at 951C. Samples were dena-
tured for 3min at 951C prior to separation on 6% polyacrylamide/
7M urea sequencing gels in 1� TBE. Gels were dried and analysed
using PhosphorImager FLA-7000 and AIDA software.
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Supplementary data are available at The EMBO Journal Online
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