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Abstract. In [1] a Niederreiter-type public-key cryptosystem based on
subcodes of generalized Reed-Solomon codes is presented. In this paper
an algorithm is proposed which is able to recover the private key of the
aforementioned system from the public key and which is considerably
faster than a brute force attack. It is shown that the example parame-
ters proposed in [1] are insecure.
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1 Introduction

The McEliece [2] and Niederreiter [3] encryption scheme are the most well-known
code-based public key cryptosystems. Their security rests on two intractability
assumptions: on the one hand it is difficult to decode an arbitrary linear code,
on the other hand it is difficult to recover the structure of the underlying code
from an arbitrary generator matrix which forms the public key in these sys-
tems. Indeed, the general syndrome decoding problem was shown in [4] to be
NP-complete. Moreover there is practical evidence, that it is hard for random
instances, too. Several quite sophisticated algorithms to attack the decoding
problem were published (for example [5, 6]), but their running times remain
exponential.

The hardness of the structural problem crucially depends on the kind of codes
being used. The original Niederreiter scheme made use of generalized Reed-
Solomon (GRS) codes. A polynomial time algorithm reconstrucing the code pa-
rameters from an arbitrary generator matrix was found afterwards by Sidelnikov
and Shestakov [7]. Therefore the original Niederreiter scheme is completely bro-
ken. On the other hand McEliece proposed Goppa codes for his scheme. Up to
now no efficient way is known to compute the parameters of these codes from
the public key.

In [1] Berger and Loidreau propose a variant of the Niederreiter scheme which
is intended to resist the Sidelnikov-Shestakov attack. The idea is to work with
a subcode of a GRS code instead of a complete GRS code in order to hide its
structure. In this paper we develop an attack on the modified system which is
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feasible if the subcode is chosen too large. It can be considered as a generalization
of the Sidelnikov-Shestakov algorithm.

The rest of the article is structured as follows: after having presented the
Berger-Loidreau variant in detail in Sect. 2 we describe the basic attack in Sect.
3. In Sect. 4 we show how to speed up this attack considerably and in Sect. 5
we give some results of a test implementation.

2 The Modified Scheme

First of all let’s recall some basic facts about generalized Reed-Solomon codes.
In the following let F be a finite field.

Definition 1. Let m, k, n ∈ N, k ≤ n, α = (α1, . . . , αn) ∈ Fn, x = (x1, . . . , xn)∈
(F\{0})n, where the αi are pairwise distinct. The generalized Reed-Solomon
code (or GRS code) GRSn,k(α, x) is a linear code over F given by the generator
matrix

Gα,x =

⎛
⎜⎜⎜⎝

x1 x2 · · · xn

x1α1 x2α2 . . . xnαn

...
. . .

x1α
k−1
1 x2α

k−1
2 · · · xnαk−1

n

⎞
⎟⎟⎟⎠ .

Consequently GRSn,k(α, x) consists exactly of those words c in Fn which can be
written c = (x1f(α1), . . . , xnf(αn)) for a polynomial f(x) ∈ F [x] with deg f < k.
GRS codes allow efficient error correction. Given x and α one can apply the
Berlekamp-Massey algorithm which can correct up to

⌊
n−k

2

⌋
errors in polynomial

time. (For details see [8, 9].) In context of cryptography it is always assumed that
GRSn,k(α, x) has full length, i.e. n = #F and char F = 2. For a fixed GRS code
GRSn,k(α, x) the parameters α and x are not uniquely determined:

Proposition 1. Let α, x be defined as above. Then

GRSn,k(α, x) = GRSn,k((aα1 + b, . . . , aαn + b), (cx1, . . . , cxn))

for all a, b, c ∈ F, a, c �= 0.

Proof. See [9]. ��

It follows for example that two of the αi can be chosen arbitrarily. Each of
the different parameters for a given GRS code is equally suited for the above
mentioned decoding algorithm.

Proposition 2. Let α, x be defined as above and u := (u1, . . . un) where ui :=
x−1

i

∏
j �=i(αi − αj)−1. Then the dual code of GRSn,k(α, x) is given by

GRSn,k(α, x)⊥ = GRSn,n−k(α, u) .

Proof. See [9]. ��

Proposition 2 will be helpful later for reconstructing x if α is known.
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The Berger-Loidreau modification of the Niederreiter public-key scheme works
as follows (we present the dual version of the scheme given in [1], which has the
same security, see [10]):

Key creation: Let n = #F, k ∈ N
≤n and a small l ∈ N

≤k be given. Alice
chooses a random GRS code GRSn,k(α, x) with generator matrix Gα,x and a
random (k − l) × k−matrix A over F of rank k − l. Then her public key is given
by T := A · Gα,x. The secret key is (α, x). (A must be kept secret, too.)

Encryption: To encrypt a message m ∈ F k−l Bob chooses a (secret) vector
e ∈ Fn of Hamming weight ≤

⌊
n−k

2

⌋
and computes the cipertext c := mT + e.

Decryption: Using (α, x) Alice applies the decoding algorithm to c getting
mT. By multiplying this with a right-side inverse of T she gets m.

3 The Attack

We fix some additional notation. For a (k × n)−matrix T = (ti,j) let E(T ) be
the echelon form of T and < T > the code generated by T. The i−th row of
T is denoted by ti. Given a permutation π : {1, . . . , n} → {1, . . . , n} let Tπ

denote the matrix (ti,π(j)), i.e. the columns of T are permuted according to π.
Analogically for v = (v1, . . . vn) ∈ Fn we define vπ := (vπ(1), . . . vπ(n)). If T is
a generator matrix of GRSn,k(α, x) then obviously Tπ is a generator matrix of
GRSn,k(απ , xπ).

Now let T be the public key of the aforementioned encryption scheme. Clearly
T is a generator matrix of a (k − l)−dimensional subcode of GRSn,k(α, x). Our
aim is to find the parameters α and x (or equivalent parameters, see Proposition
1) where only T is given. The attack consists of two steps. In the first step (which
is the more expensive one) the permutation of the field elements α is calculated.
In the second step x is recovered.

Let c ∈< T >. Recall that c can be written in the form

c = (x1f(α1), . . . , xnf(αn)) , (1)

where f ∈ F [x] with deg f≤ k − 1. Now let d ∈< T > be another codeword,
d = (x1g(α1), . . . , xng(αn)). For all i = 1, . . . , n we then have

ci

di
=

xif(αi)
xig(αi)

=
f

g
(αi) ,

unless di = 0. The main idea of the attack is based on the following

Proposition 3. Let T be the generator matrix of a (k − l)-dimensional subcode
of GRSn,k(α, x) and E(T ) := (ti,j) = [1k−l|A] the echelon form of T . Then for
each pair (i, b) ∈ {1, . . . , k − l}2 there are polynomials Pi(x), Pb(x) ∈ F [x] of
degree ≤ l such that

ti,j
tb,j

=
(αj − αb)Pi(αj)
(αj − αi)Pb(αj)

(2)

for all j = 1, . . . n with tb,j �= 0.
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Proof. For given i, b let ti, tb the respective rows of E(T ). Since E(T ) is in echelon
form both rows contain (at least) k− l−1 zeros, and there are (at least) k− l−2
positions where ti, tb have common zeros. Let a1, . . . , ak−l−2 ∈ {1, . . . , k − l} be
these positions. According to the properties of a GRS code there are polynomials
fi(x), fb(x) ∈ F [x] of degree ≤ k − 1, s.t.

(tc,1, . . . , tc,n) = (x1fc(α1), . . . , xnfc(αn))

for c = i, b and they must have the form

fi(x) = (x − αb) · Pi(x) ·
k−l−2∏

r=1

(x − αar ) ,

fb(x) = (x − αi) · Pb(x) ·
k−l−2∏

r=1

(x − αar )

with Pi and Pb having degree l at most. So for all j = 1, . . . , n with tb,j �= 0 we
have

ti,j
tb,j

=
fi(αj)
fb(αj)

=
(αj − αb)Pi(αj)
(αj − αi)Pb(αj)

. ��

Note that Pi, Pb in the above proposition may have common factors, so these
polynomials are not unique in general. Since Pi and Pb have low degree we
can now try to reconstruct the coefficients of both polynomials. If we do so for
different rows ti of E(T ) it is possible to recover the αi as we will see below.

First of all we need a simple

Lemma 1. Let f(x) = P (x)
Q(x) be a rational function over F with deg P, Q ≤ i ∈ N,

P, Q relatively prime and Q monic. Let x1, . . . , x2i+1 ∈ F be pairwise distinct
values, for which f is defined. Then the coefficients of P and Q are uniquely
determined by the pairs (xj , f(xj)), j = 1, . . . , 2i + 1 and can be computed in
polynomial time.

Proof. Let P̄ , Q̄ be another pair of relatively prime polynomials over F with
f(x) = P̄ (x)

Q̄(x) , deg P̄ , Q̄ ≤ i and Q̄ monic. Then we have P (xj)Q̄(xj)= P̄ (xj)Q(xj)
for j = 1, . . . , 2i+1. Since PQ̄ and P̄Q are polynomials of degree ≤ 2i it follows
PQ̄ = P̄Q. According to our assumptions P and Q have no common divisiors,
so we have Q|Q̄ and analogically Q̄|Q. Q̄ and Q are monic, so Q̄ = Q. It follows
P̄ = P immediately. This shows the uniqueness of P and Q.

Now let P (x) = pix
i + · · · + p1x + p0, Q(x) = qix

i + · · · + q1x + q0. As the
f(xj) are defined, we get

f(xj)qix
i
j + · · · + f(xj)q1xj + f(xj)q0 − pix

i
j − · · · − p1xj − p0 = 0

for j = 1, . . . , 2i+1. This yields a (inhomogenous) linear system in the unknowns
qi, . . . q0, pi, . . . , p0, which can be solved with O(i3) operations in F . The solution
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space may have dimension d > 1. In this case the unique solution polynomials
P, Q in the above sense have both degree less than i. To find them one has to
compute the element of the solution space with qi = qi−1 = · · · = qi−(d−2) = 0,
qi−(d−1) = 1. Obviously this can be done in polynomial time, too. ��

Now consider (2) again. We’re fixing an arbitrary b, for example b = k − l =: r,
and put

P̃i(x) := (x − αr)Pi(x), Q̃i(x) := (x − αi)Pr(x) (3)

and gi(x) := P̃i(x)
Q̃i(x)

for i = 1, . . . , r − 1. The first step is to reconstruct the

coefficients of P̃i and Q̃i. These polynomials have degree ≤ l + 1 so according
to the lemma above we need to know 2l + 3 pairs (αj , gi(αj)) to do so. The
gi(αj) = ti,j

tr,j
are given, but the αj are unknown. The strategy is now to guess the

values αr+1, . . . , αr+2l+3 (for example) and sieve out the wrong guesses. W.l.o.g.
we assume that tr,r+1, . . . , tr,r+2l+3 all are nonzero (otherwise we can choose a
different set of 2l + 3 indices i1, . . . , i2l+3 ∈ {r + 1, . . . , n} with ti1 , . . . , ti2l+3 �= 0
and guess the values αi1 , . . . , αi2l+3) and that αr+1 = 0, αr+2 = 1 (by Proposition
1), s.t. in fact only αr+3, . . . , αr+2l+3 have to be guessed. Given the pairs (αj ,

ti,j

tr,j
)

we calculate relatively prime P ∗
i , Q∗

i of degree ≤ l + 1 with P ∗
i

Q∗
i

= gi for i =
1, . . . , r − 1 by solving the appropriate linear systems, see Lemma 1. Note that
P̃i and Q̃i may have a nontrivial common factor, so in general P̃i �= P ∗

i and
Q̃i �= Q∗

i . However, if the guess was correct then the following conditions hold:

C1. The P ∗
i (x) have a common linear factor (namely (x − αr)).

C2. There is a sequence α1, . . . , αr−1 of pairwise distinct elements of F different
from the αr+1, . . . , αr+2l+3, such that (x − αi) divides Q∗

i (x), and the least
common multiple of the Q∗

i (x)
(x−αi)

has degree ≤ l (the least common multiple
divides Pr(x)).

If there are two distinct polynomials P ∗
i , P ∗

j with degree l +1 then Q∗
i = Q̃i and

Q∗
j = Q̃j (assuming that these polynomials are monic), and condition C2 can be

replaced by

C3. Let Q := gcd(Q∗
i , Q

∗
j). Then Q∗

w(x)
gcd(Q∗

w(x),Q(x)) = (x − αw), w = 1, . . . , r − 1 for
pairwise distinct α1, . . . , αr−1 different from αr+1, . . . , αr+2l+3 (it is Q = Pr).

The advantage of C3 is that it is straightforward to check from an algorithmic
point of view, while C2 is more complicated (but also can be checked in polyno-
mial time). So we always assume first that there is such a pair P ∗

i , P ∗
j , which is

the case with high probability. Condition C1 can be verified easily, too, by the
Euclidian algorithm. If the guess was right we can reconstruct the parameter
α = (α1, . . . , αn) of the GRS code from the P ∗

i , Q∗
i : αr can be reconstructed

from condition C1 and the values α1, . . . , αr−1 can be derived from condition
C3. αr+1, . . . , αr+2l+3 are given so it remains to find the αr+2l+4, . . . , αn.

Suppose αi1 , . . . , αir−1 belong to the unknown values. Choose a permutation
π : {1, . . . , n} → {1, . . . , n} with π(j) = ij and π(ij) = j for j = 1, . . . , r − 1 and
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π(b) = b for b = r + 1, . . . , r + 2l + 3. Let β := (β1, . . . , βn) := (απ(1), . . . , απ(n)).
The matrix Tπ is a generator matrix of a subcode of GRSn,k(β, xπ). Since the
βi = αi, i = r + 1, . . . r + 2l + 3 are given, the β1, . . . βr−1 – and thereby the
αi1 , . . . , αir−1– can be determined exactly the same way as described above when
working with E(Tπ) instead of E(T ). This process can be repeated for different
suitable permutations until all αi are found.

We summarize the complete procedure in Algorithm 1. It makes use of the
function getAlpha which is defined in Algorithm 2.

Algorithm 1. Reconstruction of α

Input: Generator matrix T of a subcode of GRSn,k(α, x) of dimension r = k − l
Output: Set B of candidates for α

1: B ← ∅
2: β1 ← 0
3: β2 ← 1
4: for all (β3, . . . , β2l+3) ∈ (F\{0, 1})2l+1 with βi pairwise distinct do
5: I ← {1, . . . , r − 1, r, r + 2l + 4, . . . , n}
6: repeat
7: b ← min(r − 1, #I)
8: for j ← 1, . . . , b do
9: ij ← least element of I

10: I ← I\{ij}
11: end for
12: for j ← 1, . . . , b do
13: π(j) ← ij
14: π(ij) ← j
15: end for
16: for j ← b + 1, . . . , n do
17: if j �= i1, . . . , ib then
18: π(j) ← j
19: end if
20: end for
21: calculate Tπ

22: γ := (γ1, . . . , γr−1) ← getAlpha(β1, . . . , β2l+3, Tπ)
23: if γ �= NULL then
24: for j ← 1, . . . , b do
25: αij ← γj

26: end for
27: end if
28: until I = ∅ or γ = NULL
29: if γ �= NULL and α1, . . . , αn pairwise distinct then
30: B ← B ∪ {(α1, . . . , αn)}
31: end if
32: end for
33: return B
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Algorithm 2. getAlpha(β1, . . . , β2l+3, T )
Input: (r × n)-matrix T over F , β1, . . . , β2l+3 ∈ F pairwise distinct
Output: (α1, . . . , αr−1) ∈ F r−1

1: (ti,j) ← echelon form of T
2: for i ← 1, . . . , r − 1 do
3: calculate relatively prime P ∗

i (x),Q∗
i (x) ∈ F [x] with degree ≤ l+1 and Q∗

i monic
and

P ∗
i (βj)

Q∗
i (βj)

=
ti,r+j

tr,r+j

for all j = 1, . . . , 2l + 3
4: end for
5: if the P ∗

i (x),Q∗
i (x) satisfy conditions C1 and C3 then

6: Q ← gcd(Q∗
i , Q

∗
j ) with i, j such that i �= j and deg P ∗

i = deg P ∗
j = l + 1

7: for i ← 1, . . . , r − 1 do
8: αi ← root( Q∗

i
gcd(Q∗

i ,Q) )
9: end for

10: return (α1, . . . , αr−1)
11: else
12: return NULL
13: end if

Once the set of candidates B is given is remains to check for each α′ ∈ B if
there is a x = (x1, . . . xn), s.t. < T >⊂ GRSn,k(α′, x). (We know that there is at
least one such α′.) This can be done using Algorithm 3.

According to Proposition 2 the dual code of GRSn,k(α, x) is also a GRS code
G = GRSn,n−k(α, x′). Let g be a row of the canonical generator matrix of G.
Since each row vector t of T is an element of GRSn,k(α, x) the inner product
t · g is equal to zero. That’s why x′ = (x′

1, . . . , x
′
n) has to be a solution of the

linear system

ti,1α
j
1x

′
1 + . . . + ti,nαj

nx′
n = 0, i = 1, . . . , r, j = 0, . . . , n − k − 1 .

If such a x′ is found, the vector x can be calculated with help of Proposition 2.
Let’s analyze the running time of the above algorithms in the worst case.

First consider the function getAlpha. It is dominated by the computation of the
echelon form in line 1, which takes O(r2n) operations in F , and the for-loop
in lines 3–4. In each step of the loop a linear system with O(l) equations and
unknowns has to be solved, which can be done with O(l3) operations. Verification
of C1 and C3 and computation of the αi takes O(rl2) operations at most. This
yields a total running time of O(r2n + rl3) for Algorithm 2.

The main loop in lines 4–32 of Algorithm 1 is run (n−2)!
(n−2l−3)! ∈ O(n2l+1) times.

(We assumed n = #F ). The inner loop in lines 6–28 is called
⌈

n−2l−3
r−1

⌉
times.

Since in practice n
3 ≤ r ≤ 2n

3 we can assume that this value is bounded by a
constant. With the above result we get a total running time of O(n2l+1(r2n+rl3))
operations in F. Note that the procedure can be optimized by computing the
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Algorithm 3. Reconstruction of x

Input: T = (vi,j), B as in Algorithm 1
Output: (α, x′) s.t. < T >⊂ GRSn,k(α, x′)

1: while B �= ∅ do
2: (α1, . . . , αn) ← arbitrary element of B
3: X ← solution space of the linear system in x1, . . . , xn given by

vm,1α1x
j
1 + vm,2α2x

j
2 + · · · + vm,nαnxj

n = 0

for j = 0, . . . , k − 1 and m = 1, . . . , r
4: if dim(X) > 0 then
5: (x1, . . . , xn) ← arbitrary nonzero element of X
6: for i ← 1, . . . , n do
7: x′

i ← (xi

�
j �=i(αi − αj))−1

8: end for
9: B ← ∅

10: else
11: B ← B\{(α1, . . . , αn)}
12: end if
13: end while
14: return ((α1, . . . , αn), (x′

1, . . . , x
′
n))

echelon forms E(Tπ) for a fixed set of suitable permutations π in advance instead
of computing them in each call of getAlpha. In this case we get an upper bound
O(r2n + n2l+1rl3).

In Algorithm 3 the main loop is run #B times, and the dominant step in each
loop is the linear system. It has n unknowns and (k − 1)r equations so it takes
at most O(n2kr) operations to find a nontrivial solution. We get a worst case
complexity of O(#B · n2kr) operations. In general #B is expected to be quite
small so that Algorithm 3 is feasible.

In [1] an attack on the cryptosystem is given, which uses the original Sidelni-
kov-Shestakov attack as a black box algorithm. Its average running time is lower
bounded by Ω(nkl) operations, so for practical choices of n, k, l the attack given
here is much faster.

4 Refinement of the Attack

The above algorithm can be improved if there are two rows in the echelon form
E(T ) = (ti,j) which have more than k − l − 2 zeros in common. Suppose the
i-th and the b-th row, i �= b, have k − l − 2 + s zeros in common positions. It is
0 ≤ s ≤ l. With the same argument as in proof of Proposition 3 there are two
polynomials P ∗(x), Q∗(x) ∈ F [x] of degree ≤ l − s + 1 (instead of l + 1) s.t.

ti,j
tb,j

=
P ∗(αj)
Q∗(αj)



22 C. Wieschebrink

for all j = 1, . . . , n with tb,j �= 0. So to find these polynomials only 2(l−s+2)−1 =
2(l−s)+3 of the αj have to be known according to Lemma 1, and the number of
guesses which have to be made is reduced by a factor O(n2s). To check whether
the guess is correct we make use of the following

Definition 2. Let S be a (finite) set, n, k ∈ N, n ≥ k and v = (v1, . . . , vn) ∈
Sn,w = (w1, . . . , wk) ∈ Sk. We say that v dominates w, if

#{i|vi = s} ≥ #{j|wj = s}

for all s ∈ S.

Obviously for given v ∈ Sn, w ∈ Sk it can be checked with O(n) operations if v
dominates w.

Let J ⊂ {1, . . . , n} be the set of those j, where ti,j �= 0 or tb,j �= 0. For
γ ∈ F with γ �= 0 we define γ

0 =: ∞. Suppose the elements of F are ordered
in some way. If the guess of the αj is correct then the vector (P ∗(γ)

Q∗(γ))γ∈F has

to dominate the vector ( ti,j

tb,j
)j∈J . In this case it may be possible to reconstruct

some of the (not yet assigned) αj : suppose the function f(x) := P ∗(x)
Q∗(x) takes the

value δ ∈ F ∪ {∞} for exactly one γ ∈ F , f(γ) = δ, and there is a j ∈ J with
ti,j

tb,j
= δ. Then αj = γ. If we can find at least 2s additional αj with tb,j �= 0 this

way we can try to compute relatively prime polynomials P ∗
i′(x),Q∗

i′ (x) ∈ F [x] of
degree ≤ l + 1 for i′ ∈ {1, . . . k − l}\{i, b} with

ti′,j

tb,j
=

P ∗
i′ (αj)

Q∗
i′(αj)

(4)

for all j = 1, . . . , n with tb,j �= 0. Of course the right polynomials have to comply
with conditions C1 and C2 / C3. This allows us to reconstruct the remaining αj

as seen above.
If there are not enough δ s.t. f(γ) = δ can be solved uniquely, then at least

we can extract a list of candidates for each αj , j ∈ J, which consists of all γ with
f(γ) = ti,j

tb,j
. We can then choose a sufficient number of short candidate lists and

try to solve (4) with the different possible assignments for the αj .
What can we do now, if a pair of rows in E(T ) with more than k−l−2 common

zeros does not exist? In this case we can try to find such a pair in the echelon form
of an equivalent code of <T >⊂ GRSn,k(α, x). Let π : {1, . . . , n} → {1, . . . , n} be
a permutation. Remember that due to the definition of GRS codes the matrix Tπ

is a generator matrix of a subcode of GRSn,k(απ , xπ). So we can replace T by Tπ

for distinct permutations π and look for rows in the echelon form E(Tπ) which
have more than k − l −2 common zeros. When such a pair is found we apply the
above method which eventually finds a set of candidates for απ, which can easily
be transformed to a set of candidates for α. When choosing the permutations
we can restrict ourselves to those π which satisfy π(i) > k − l for at least one
i ∈ {1, . . . , k − l}, since otherwise E(T π) differs from E(T ) only by the order
of rows.
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Note however that such a pair of rows does not necessarily exist in any equiv-
alent code. For example the subcode C can itself be a GRS code of dimension
k − l. As such it is a MDS code and any pair of rows in the echelon form can
have k − l − 2 common zeros at most. But for random instances there should be
a good chance of finding a pair at least for small s.

The improved approach is summarized in Algorithms 4 and 5.
We try to give a rough estimate for the running time of Algorithm 5. The main

loop in lines 12–30 is run O(n2(l−s)+1) times. Solving the linear system in line 13
takes O((l−s)3) operations. If the condition in line 15 is passed (verification takes
O(n(l−s)) operations) the for-loop in lines 21–28 is called O(maxj{Bj}2s) times
at most. Each loop takes O(r2n+rl3) operations. Since maxj{Bj} ≤ l−s+1 we
get an upper bound O(t1 +n2(l−s)+1((l−s)3 +n(l−s)+(l−s+1)2s(r2n+rl3)))
for the complete algorithm, where t1 is the (undetermined) running time of
Algorithm 4. Here we assumed that the condition in line 15 is always passed,
which won’t be the case in practice. The average running time should be well
below the given bound.

Note that there are still several possibilities to improve the presented algo-
rithms but for the sake of clarity we didn’t include them here.

5 Experimental Results

Algorithms 4 and 5 were implemented in JAVA (with some minor modifications)
and executed for different instances of the encryption scheme. We always chose
s such that l − s = 1. Table 1 shows some example running times on a 2.6 GHz
Pentium 4, 512 MB system. In particular we see that findPemutation performs
well for small s.

Algorithm 4. findPermutation(T, s)
Input: (r × n)-matrix T as in Algorithm 1; s ∈ N

≤l

Output: (π, i, b) s.t. i-th and b-th row of E(Tπ) have r + s − 2 common zeros

1: S ← set of all permutations π ∈ Sn with π(i) > r for some i ∈ N
≤r

2: repeat
3: π ← random element of S
4: S ← S\{π}
5: calculate E(Tπ)
6: for all (i, b) ∈ {1, . . . , r}2 with i < b do
7: if rows i and b of E(Tπ) have r + s − 2 common zeros then
8: return (π, i, b)
9: end if

10: end for
11: until S = ∅
12: return NULL
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Algorithm 5. Reconstruction of α, improved version
Input: Generator matrix T of a subcode of GRSn,k(α, x) of dimension r = k − l,

s ∈ N
≤l

Output: Set B of candidates for α

1: (π, i, b) ← findPermutation(T, s)
2: if (π, i, b) = NULL then
3: return NULL
4: end if
5: compute (ti,j) := E(Tπ)
6: (a1, . . . , an) ← i−th row of E(Tπ)
7: (b1, . . . , bn) ← b−th row of E(Tπ)
8: B ← ∅
9: β1 ← 0

10: β2 ← 1
11: find pairwise distinct i1, . . . , i2(l−s)+3 s.t. bij �= 0 for all j
12: for all (β3, . . . , β2(l−s)+3) ∈ (F\{0, 1})2 with βi pairwise distinct do
13: compute relatively prime P ∗(x),Q∗(x) ∈ F [x] with deg P ∗(x), Q∗(x) ≤ l−s+1

s.t.
P ∗(βj)
Q∗(βj)

=
aij

bij

for all j = 1, . . . , 2(l − s) + 3
14: c ← ( ai

bi
)i∈{1,...,n},ai �=0 or bi �=0

15: if ( P ∗(γ)
Q∗(γ) )γ∈F dominates c then

16: I ← {r + 1, . . . , n}\{i1, . . . , i2(l−s)+1}
17: find pairwise distinct i2(l−s)+4, . . . , i2l+3 ∈ I with bij �= 0
18: for j ← 2(l − s) + 4, . . . , 2l + 3 do
19: Bj ← set of all γ ∈ F\{β1, . . . , β2(l−s)+3} with P ∗(γ)

Q∗(γ) =
aij

bij

20: end for
21: for all (β2(l−s)+4, . . . , β2l+3) with pairw. distinct βj ∈ Bj do
22: for all a ∈ {1, . . . , r − 1}\{b} do
23: compute relatively prime P ∗

i (x), Q∗
i (x) ∈ F [x] with degree ≤ l + 1

s.t.
P ∗

i (x)
Q∗

i (x)
=

ta,ij

bij

for all j = 1, . . . , 2l + 3
24: end for
25: if the P ∗

i , Q∗
i suffice conditions C1 and C2/C3 and απ can be computed

as in Algorithms 1,2 then
26: B ← B ∪ {α}
27: end if
28: end for
29: end if
30: end for
31: return B
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Table 1. Perfomance for different key parameters

running time
n k l s findPermutation total
32 16 3 2 3 sec < 1 min
64 32 3 2 2 sec 16 min
64 40 3 2 2 sec 16 min
64 32 4 3 2 min 18 min
128 64 4 3 20 min 5 h 44 min

6 Conclusion

In [1] the values n = 256, k = 133, l = 4 are given as secure example parameters
for the modified Niederreiter encryption scheme. It is claimed that ≈ 22000 exe-
cutions of the Sidelnikov-Shestakov algorithm for a structural break are needed
in a brute force approach. However the above results suggest that these choices
for the modified Niederreiter encryption scheme are highly insecure. Extrapolat-
ing the data above we estimate that an optimized implementation of the above
attack can break such a system in a few days or even hours on a PC.

The encryption scheme is not completely broken though. To thwart the attack
n and l should be chosen sufficiently large. However this has other drawbacks. A
large n leads to large public keys and a large l causes bigger message expansion.
It is unclear if the parameters can be chosen in such a way that it has higher
efficiency and security than the McEliece cryptosystem.
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