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ABSTRACT 15 

To obtain the fundamental information on using ambient temperature information in 16 

developing the model for routine swine genetic evaluation in Japan, we analyzed total number 17 

born (TNB), number born alive (NBA), and number stillborn (NSB) collected at a Japanese 18 

farm, together with off-farm ambient temperature measured at a nearest Automated 19 

Meteorological Data Acquisition System station. Five repeatability animal models were 20 

exploited, considering the effects of farrowing season (model 1), farrowing month (model 2), 21 

quadratic regressions of daily maximum ambient temperature of farrowing day (model 3), 22 

season and temperature (model 4), or month and temperature (model 5). Patterns of the effects 23 

of daily maximum temperature of farrowing day estimated using model 3 was similar to those 24 

of farrowing season by model 1 and those of farrowing month by model 2. Adding the effect 25 

of daily maximum temperature of farrowing day (models 4 and 5) could explain phenotypic 26 

variability greater than only considering either of farrowing season and month (models 1 and 27 

2). Estimated heritability was stable among the models and the rank correlation of predicted 28 

breeding values between models was >0.98 for all traits. The results indicate the possibility 29 

that using public ambient temperature can capture a large part of the phenotypic variability in 30 

litter size traits at birth caused by the seasonality in Japan and do not harm, at least, the 31 

performance of genetic evaluation. This study could support the availability of public 32 

meteorological data in flexible developing operational models for future swine genetic 33 

evaluation in Japan. 34 

KEYWORDS: genetic parameter estimation, litter size traits at birth, meteorological 35 

observation data, pig breeding, temperature  36 
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1. INTRODUCTION 37 

In Japan, pork production traits, including average daily gain, longissimus muscle area, and 38 

intramuscular fat content with middle to high heritabilities, have been genetically improved by 39 

selection (e.g., Suzuki et al. 2005; Kadowaki et al. 2012; Ohnishi and Satoh 2018). Now, 40 

improving sow lifetime productivity is a pressing challenge to efficient pork production, 41 

although the heritabilities of litter size traits at birth have been estimated to be low (e.g., 42 

Tomiyama et al. 2011; Ogawa et al. 2019a; Ogawa et al. 2020). Potentials have been assessed 43 

of several approaches, such as choosing a statistical model more appropriate to estimate 44 

breeding values for number born alive (NBA) in terms of the parity order of dam (Ogawa et al. 45 

2019b; Konta et al. 2020), exploring a preferable trait to assist in genetically improving NBA 46 

(Konta et al. 2019; Ogawa et al. 2019a; Ogawa et al. 2020), and investigating the possibility 47 

of genetically improving sow longevity (Ogawa et al. 2021a). A possible different approach is 48 

to perform a large-scale genetic evaluation across farms because this might predict breeding 49 

values that have higher accuracies by using more phenotypic information obtained from 50 

relatives reared on different farms and that can be directly compared between individuals on 51 

different farms. Therefore, it is important to provide an operational model suitable for a large-52 

scale routine genetic evaluation by simultaneously using data collected from around Japan. 53 

Japan is an island country that has four distinct seasons with a climate ranging from 54 

subarctic in the north to subtropical in the south, and the conditions are different between the 55 

Pacific side and the Sea of Japan side 56 

(https://www.data.jma.go.jp/gmd/cpd/longfcst/en/tourist.html). Japanese pig farms are widely 57 

distributed in Japan (e.g., Koike et al. 2018; Ogawa et al. 2019c; Fujimoto et al. 2021). 58 
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Previous studies have reported that seasons affect the meat production and reproductive 59 

performance of pigs reared in Japan (e.g., Harada et al. 1992; Saito and Koketsu 2009; Kakuma 60 

2018), and statistical models considering the effects of season at measuring phenotypic 61 

information have been widely used in the genetic evaluation of traits that can be recorded 62 

throughout the year (e.g., Tomiyama et al. 2011; Kadowaki et al. 2019; Ogawa et al. 2019a; 63 

Ogawa et al. 2020). The scale of national swine genetic evaluation is getting larger 64 

(http://www.nlbc.go.jp/kachikukairyo/iden/buta/chiikinai.html), and the current evaluation 65 

uses operational models including the fixed cross-classified effects of the combination of 66 

region and season at measuring 67 

(http://www.nlbc.go.jp/kachikukairyo/iden/buta/hyokaho.html). However, these models could 68 

not explain the variation by the time of year within each season. 69 

Effects of the time of year on pigs’ trait expression could be associated with ambient 70 

climate conditions, including thermal environment. Using information on thermal environment, 71 

such as ambient temperature, might explain not only the variation across seasons but also that 72 

within each season. However, full details of thermal environment for farm animals are rarely 73 

available. On the other hand, the utility of public meteorological data has been studied 74 

worldwide. For instance, by using off-farm temperature data measured at weather stations, 75 

Zumbach et al. (2008) analyzed carcass weight of pigs raised on 2 farms in North Carolina, 76 

USA; Lewis and Bunter (2011) analyzed several production traits of gilts and litter traits of 77 

sows on a farm in Australia; Tummaruk (2012) analyzed age at first observed estrus in gilts in 78 

4 commercial herds in Thailand; Wegner et al. (2014) and Wegner et al. (2016) analyzed the 79 

numbers of total born, liveborn piglets, stillborn piglets, and weaned piglets of sows on several 80 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted February 14, 2022. ; https://doi.org/10.1101/2022.02.09.479814doi: bioRxiv preprint 

https://doi.org/10.1101/2022.02.09.479814
http://creativecommons.org/licenses/by/4.0/


5 

 

farms in Germany; and Mellado et al. (2018) analyzed the numbers of live pigs, stillborn pigs, 81 

and mummified pigs of gilts and sows on a single farm in central west Mexico. Freitas et al. 82 

(2006) reported that correlations between the temperature humidity index (THI) according to 83 

on-farm temperature and humidity records on a Holstein farm in Tifton, Georgia, USA, and 84 

THI according to records measured at several weather stations (up to 300 km apart) were > 85 

0.92. Following this, Bloemhof et al. (2013) showed the utility of daily maximum temperature 86 

from weather stations as a heat stress indicator for farrowing rate and total number born on 16 87 

farms in Spain and Portugal. Using public meteorological data, other studies reported the 88 

results of epidemiological investigations of total number born, weaning-to-first-mating interval, 89 

adjusted 21-day litter weight, peripartum pig deaths, and farrowing rates of gilts and sows 90 

(mainly crossbred) reared in Japanese commercial farms, in terms of herd management (e.g., 91 

Iida and Koketsu 2013; Iida and Koketsu 2014a; Iida and Koketsu 2014b; Sasaki et al. 2018). 92 

Previous studies used information on daily maximum temperature to investigate the effect of 93 

ambient temperature on reproductive traits of pig (e.g., Lewis and Bunter 2011; Bloemhof et 94 

al. 2013; Iida and Koketsu 2013; Iida and Koketsu 2014a; Iida and Koketsu 2014b; Sasaki et 95 

al. 2018). 96 

No study has been investigated in detail about the performance of genetic evaluation 97 

of Japanese purebred pig population using public ambient temperature information. This is a 98 

challenging task, and as a first step, it seems reasonable to start from assessing the performance 99 

of using public meteorological data in swine genetic evaluation by analyzing data from a single 100 

farm, owing to secure the interpretability of the results. Total number born (TNB), NBA, and 101 

number stillborn (NSB) at birth are the traits having been repeatedly investigated for foreign 102 
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pig populations (e.g., Lewis and Bunter 2011; Bloemhof et al. 2013; Wegner et al. 2014; 103 

Wegner et al. 2016), this could give more opportunities to make a meaningful discussion. This 104 

study, aiming at obtaining fundamental information for establishing a more efficient swine 105 

breeding scheme in Japan, compared on-farm temperature data measured on a single swine 106 

farm and off-farm data acquired at the nearest Automated Meteorological Data Acquisition 107 

System (AMeDAS) station (https://www.jma.go.jp/jma/en/Activities/amedas/amedas.html), 108 

and estimated genetic parameters of TNB, NBA, and NSB and predicted breeding values for 109 

these traits using the public temperature data. 110 

 111 

2. MATERIALS AND METHODS 112 

2.1 Ethics statement 113 

All procedures involving animals were performed in accordance with the National Livestock 114 

Breeding Center's guidelines for the care and use of laboratory animals. 115 

2.2 Phenotypic information and pedigree data 116 

We used 1,161 records for TNB, NBA, and NSB of 437 purebred Duroc dams obtained between 117 

24 April 2010 and 8 August 2017 at the National Livestock Breeding Center’s Miyazaki Station 118 

(31°56′ N, 130°56′ E, 462 m a.s.l.) in Miyazaki Prefecture (Ogawa et al. 2020; Yazaki et al. 119 

2020; Ogawa et al. 2021). Miyazaki Prefecture is located along the southeastern coast of the 120 

island of Kyusyu in Japan and has a subtropical climate. Artificial insemination was used for 121 

all service events. NBA was determined by the next day of the farrowing and included the 122 

number of piglets dead when checking to determine NBA but seemed to be alive at farrowing. 123 

The number of mummified piglets was not included in NSB. TNB was calculated as the sum 124 
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of NBA and NSB. The pedigree data included information on 11,631 individuals. Basic 125 

statistics from the phenotypic records for the studied traits are listed in Table 1. 126 

2.3 On- and off-farm ambient temperature data 127 

As on-farm ambient temperature data, temperatures within two sire barns and two growing 128 

barns recorded at intervals of 5 or 10 minutes from 4 October 2016 to 24 August 2017 were 129 

available. As off-farm ambient temperature data, the daily maximum temperatures acquired by 130 

the Kobayashi AMeDAS station (32°00′ N, 130°57′ E, 276 m a.s.l.), about 6 km from the farm, 131 

from 28 December 2009 to 24 August 2017 were obtained from the Japan Meteorological 132 

Agency’s homepage (https://www.data.jma.go.jp/gmd/risk/obsdl/). 133 

2.4 Numerical analyses 134 

The following single-trait linear animal model was used: 135 

= + + +y Xb Za Wpe e , 136 

where y is the vector of phenotypic records; b is the vector of macro-environment effects (fixed 137 

effect); a is the vector of breeding values (random effect); pe is the vector of permanent 138 

environment effects (random effect); e is the vector of random errors (random effect); and Ⅹ, 139 

W, and Z are the design matrices relating y to b, a, and pe, respectively. Macro-environment 140 

effects included farrowing year (2010 to 2017), parity of dam (1st to 8th), mating sire breed 141 

(Duroc, Large White), and the time of year as one of farrowing season (spring [March–May], 142 

summer [June–August], autumn [September–November], winter [December–February]; 143 

model 1), farrowing month (January to December; model 2), daily maximum temperature of 144 

farrowing day at Kobayashi AMeDAS station (quadratic regression; model 3), farrowing 145 

season and daily maximum temperature of farrowing day (model 4), or farrowing month and 146 
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daily maximum temperature of farrowing day (model 5). The mean and variance–covariance 147 

of the random effects were as follows: 148 

E

   
   

=
   
      

a 0

pe 0

e 0

 and 

2

2

2

var

a

pe

e







  
  

=   
     

a A 0 0

pe 0 I 0

e 0 0 I

, 149 

where 2

a   is the additive genetic variance; 
2

pe   is the permanent environmental variance; 150 

 is the error variance; A is the additive genetic relationship matrix; and I is the identity 151 

matrix. Variance components were estimated in AIREMLF90 program (Misztal et al. 2002). 152 

Standard errors of the estimated heritability and repeatability were calculated using the 153 

elements of the inverse of the average-information matrix at convergence (Klei and Tsuruta 154 

2008). Default setting was used as convergence criteria in the iteration procedure, that is, an 155 

iteration was stopped when at least one of the following conditions was first satisfied: 156 
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, 157 

where ,
ˆ
i k  is the estimated value of parameter i in iteration k and n is the number of parameters 158 

to be estimated. 159 

 160 

3. RESULTS AND DISCUSSION 161 

3.1 Comparing on- and off-farm temperature data 162 

Fig. 1 illustrates the relationship of on- and off-farm daily maximum temperatures. Values of 163 

Pearson’s correlation coefficients between the temperatures were very high, ranging from 0.92 164 

to 0.96, and therefore it is reasonable to assume that off-farm daily maximum temperatures 165 

corresponded 1:1 with on-farm daily maximum temperatures in this study. The reason for such 166 

2

e
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high correlations might be that the distance between the farm and the AMeDAS station is only 167 

6 km, with no obvious geographical barrier between the farm and station (Freitas et al. 2006). 168 

Sasaki et al. (2018) used meteorological data measured at weather stations nearest each of 25 169 

swine farms and found that the coefficient of determination between on- and off-farm 170 

temperatures was high (0.85). Our coefficients of determination ranged from 0.84 to 0.93, equal 171 

to or higher than that found by Sasaki et al. (2018). 172 

Nevertheless, the ranges of the values of on-farm temperatures in all barns were 173 

narrower than that of off-farm temperatures, and the distributions were slightly different 174 

between boar barns and growing barns (Fig. 1). These differences could be due to factors 175 

controlling on-farm environmental conditions. Apparent abnormal values of on-farm 176 

temperatures might reflect the effect of installation site or a flaw in the measuring devices. 177 

On-farm temperatures were collected from October 2016, whereas most farrowing 178 

records were obtained before that date. Therefore, we used off-farm temperature data measured 179 

at Kobayashi, supposing that the 1:1 correspondence between on- and off-farm daily maximum 180 

temperatures also held before October 2016. Fig. 2 shows the relationships of off-farm daily 181 

maximum temperature of farrowing day with farrowing seasons and months. Values of the 182 

temperatures varied not only across the seasons and months in average but also within each 183 

season and month. This fact reflects the potential for capturing the phenotypic variation of traits 184 

within each season and month by using ambient temperature data. Previous study reported that 185 

the thermoneutral zone of sow was from 18 to 20℃ (e.g., Curtis 1983; Peltoniemi et al. 1999; 186 

Bloemhof et al. 2013). Therefore, it could be expected that seasons and months with average 187 

values of temperature deviating from sow’ thermoneutral zone, such as summer and winter 188 
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seasons and months within these seasons, might affect their phenotypic performance in this 189 

study. 190 

3.2 Effects of farrowing season, farrowing month, and daily maximum ambient temperature of 191 

farrowing day 192 

Table 2 summarizes the results about the estimated effects of farrowing season, 193 

farrowing month, and off-farm daily maximum temperature of farrowing day. Fig. 3 illustrates 194 

the changes in the effects of off-farm daily maximum temperature of farrowing day estimated 195 

using model 3. Fig. 4 shows the relationships of the effect of off-farm daily maximum 196 

temperature of farrowing day estimated using model 3 with corresponding farrowing seasons 197 

and months. Proportions of variances of phenotypic records explained by the estimated effects 198 

of farrowing season, farrowing month, and off-farm daily maximum temperature of farrowing 199 

day, as well as Pearson’s correlation coefficients between the values explained by those effects, 200 

are listed in Table 3. Fig. 5 shows the relationship between mating and farrowing dates and that 201 

between off-farm daily maximum temperatures of mating and farrowing days. 202 

Values of the effects of spring and summer at farrowing on TNB estimated using 203 

model 1 were similar to each other, that of autumn was slightly lower than those of spring and 204 

summer, and that of winter was the lowest (Table 2). TNB would be largely determined by 205 

ovulation rate, early embryonic mortality, and early fetal death (e.g., Edwards et al. 1968; Wildt 206 

et al. 1975; Nardone et al. 2006). Considering that the average value of gestation length in our 207 

population was 115.9 days, nearly 4 months, and that >90% of the farrowing records exhibited 208 

the gestation length ranging from 114 to 118 days (Fig. S1), most litters farrowed in winter had 209 

been artificially inseminated from August to October, hotter months in this study (Fig. 2). A 210 
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heat-stressed dam before and after insemination could exhibit lower feed intake, diminished 211 

follicle stimulating hormone (FSH) and luteinizing hormone (LH) secretion, and increased 212 

body temperature and oxidative stress, these might cause lower ovarian function and higher 213 

early embryonic mortality (e.g., Flowers et al. 1989; Flowers and Day 1990; Quesnel et al. 214 

1998; Kim et al. 2013). Previous studies have shown that the temperature in the period between 215 

several days prior to and after insemination had greater effects on TNB (Omtvedt et al. 1971; 216 

Bloemhof et al. 2013; Wegner et al. 2016). 217 

Values of the estimated effects of spring and autumn at farrowing on NSB were similar, 218 

that of summer was slightly higher than those of spring and autumn, and that of winter was the 219 

highest (Table 2). It has been reported that heat stress in later pregnancy increased the number 220 

of stillborn piglets (e.g., Edwards et al. 1968; Omtvedt et al. 1971; Wegner et al. 2016). 221 

Therefore, the slightly lower value for summer at farrowing might be due to heat stress in dams. 222 

On the other hand, the lowest value for winter might be caused by cold stress in not only dam 223 

but also piglet. For example, previous studies reported the range of comfortable temperature of 224 

18℃ to 23℃ for lactating sow (Yan and Yamamoto 2000; Brown-Brandl et al. 2001) and the 225 

minimum comfortable temperature of around 34℃ to 35℃ for newborn piglet (Mount 1959; 226 

Manno et al. 2005). Considering the physiological temperature in dam’s utero, between 38℃ 227 

to 40℃, piglets encounter a colder environment immediately, this triggers the reduction of 228 

body temperature soon, known as hypothermia (Tuchscherer et al. 2000; Pandorfi et al. 2005; 229 

Malmkvist et al. 2006). 230 

Values of the estimated effects for NBA were like the difference between those for 231 

TNB and NSB because TNB was the sum of NBA and NSB in this study. From what has been 232 
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discussed above, one can add the effects about the time at mating, such as mating year and 233 

either of mating season, mating month, or temperature of mating day. However, care must be 234 

taken to accurate data collection about the mating and farrowing dates and a characteristic data 235 

structure about these factors (Fig. 5), due to seasonal variation in ambient temperature and less 236 

variability in gestation length. Ogawa et al. (2019c) reported the estimated effects of farrowing 237 

season for NBA in Landrace and Large White dams raised on multiple farms in different 238 

prefectures of a single Japanese pig breeding company. Ogawa et al. (2019c) showed lower 239 

estimated values for winter than for spring, although the difference between the values was 240 

0.30 in Landrace and 0.21 in Large White, both smaller than this study. This inconsistency 241 

might be due to differences in breed, farm location, and rearing condition. Our population was 242 

reared in Miyazaki Prefecture, in southern Japan, and analyzing data obtained at different 243 

locations, such as northern Japan, might yield different effects of the time of year. Tummaruk 244 

et al. (2004) estimated the effects of farrowing month on NBA in Landrace and Large White 245 

populations in Thailand, showing that NBA was significantly lower in August and September 246 

than from November to June. The inconsistency might be due in part to the difference in climate 247 

conditions between countries. Bertoldo et al. (2012) observed that the estimated effects of 248 

season on litter size varied among studies, possibly owing to confounding factors, including 249 

parity of dam and semen characteristics. Tummaruk et al. (2004) and Tummaruk et al. (2010) 250 

reported that the effect of season on litter size was more prominent in gilts than in sows, 251 

although it is possible that their results were affected by culling for reproductive performance 252 

at earlier parities (Sasaki et al. 2018). 253 

Variations in phenotypic records explained by farrowing season in model 1 and that 254 
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by farrowing month in model 2 was largely in common, although the proportion on variance 255 

explained by farrowing month was greater than that explained by farrowing season for all traits 256 

(Table 3). Considering the effect of the time of year as farrowing month could explain 257 

additional variations which are not explained by farrowing season, though the statistical model 258 

becomes more complicated, that is, the number of levels increases from 4 to 12, and thus the 259 

average number of records per level is decreased. Therefore, in terms of data connectedness 260 

and reliability of the results, more careful consideration is required to interpret the results 261 

obtained using more complicated model, especially when the data structure is severely 262 

unbalanced and the data size is small. We assumed no interaction between farrowing year and 263 

farrowing season or month, and the average number of records per level decreases further when 264 

considering farrowing year-by-season and year-by-month effects. 265 

The quadratic curve for the effect of off-farm daily maximum temperature of 266 

farrowing day estimated using model 3 was convex upward for TNB and NBA and downward 267 

for NSB (Fig. 3), although the value of the effect for TNB became stable when the temperature 268 

was >20℃. Phenotypic variation explained by the temperature in model 3 was partly in 269 

common with those explained by farrowing season in model 1 and farrowing month in model 270 

2 (Table 3). The proportions of variances explained by the temperature were the lowest for 271 

TNB and NBA, while it was lower than that explained by farrowing month but greater than 272 

that explained by farrowing season for NSB. 273 

Model 3 assumes that the effect of the time of year is the same when the daily 274 

maximum temperatures are the same on different days. However, sows farrowed in spring and 275 

sows farrowed in autumn might be differently affected, partly because of different responses 276 
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to daylight hours, daily temperature range, and relative humidity, even if the daily maximum 277 

temperatures are the same. Therefore, we performed the analyses using models 4 and 5. For 278 

TNB and NSB, simultaneous considering the effects of the temperature and season or month 279 

(models 4 and 5) could explain more proportions of variance than considering only one of the 280 

effects of season, month, and temperature (models 1, 2, and 3) (Table 3). This indicates the 281 

availability of using temperature data to explain additional variation which could not capture 282 

by considering the effects of season and month. On the other hand, interpretating the respective 283 

values of effects of farrowing season, farrowing month, and daily maximum temperature of 284 

farrowing days estimated using models 4 and 5 were more difficult than those estimated using 285 

the other models (Table 2, Fig. S5). This could be due to confounding; that is, there are overlaps 286 

among the variations explained by farrowing season, month, and daily maximum temperature 287 

of farrowing day. Lewis and Bunter (2011) discussed the possibility of confounding when 288 

dissociating the effects of contemporary group and daily maximum temperature. 289 

 We adopted the quadratic regression of phenotypic values on temperatures, according 290 

to the results from the preliminary analysis and aiming to prevent over-fitting (Figs. S1, S2, S3, 291 

and S4). Including quadratic regression of daily maximum temperature of farrowing day lost 2 292 

degrees of freedom, whereas including discrete effects of farrowing season and farrowing 293 

month lost 4 and 12 degrees of freedom, respectively. Furthermore, considering farrowing 294 

season and month would reduce both the average number of records per level the 295 

connectedness with other effects. On the other hand, considering daily maximum temperature 296 

as covariates in the model restricts the expression of the effect of the time of year. Therefore, 297 

modeling should be flexible in response to the structure and size of the data analyzed. 298 
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3.3 Genetic parameter estimation and breeding value prediction 299 

Results of estimating genetic parameters are listed in Table 4. Values of Spearman’s rank 300 

correlation coefficients of predicted breeding values the 437 sows with their own records 301 

between the models are shown in Table 5. Values of estimated heritability and repeatability 302 

were stable across the models for all traits, mainly due to the small proportions of variance in 303 

phenotypic records explained by farrowing month, farrowing year, and daily maximum 304 

temperature of farrowing day (Table 3). Values of Spearman’s rank correlation coefficients 305 

were >0.98. These results could imply the possibility that including temperature information 306 

into the analytical model at least did not harm the performance of breeding value prediction. 307 

3.4 General discussion 308 

With the aim of increasing the rate of genetic improvement, it is important to develop an 309 

operational model suitable for routine large-scale genetic evaluation that can handle integrated 310 

data collected around Japan. In this study, we used public meteorological data as a source of 311 

climate information to analyze phenotypic records of TNB, NBA, and NSB. This is the first 312 

study to assess the performance of using public ambient temperature data in swine genetic 313 

evaluation in Japan. We revealed that adding the effect of temperature could explain additional 314 

variations that did not explain by considering only the effect of season (Table 3). Possible 315 

reasons for our results would be that high one-to-one correspondence of off-farm temperature 316 

data with on-farm temperature (Fig. 1) and that the values of temperature varied within each 317 

season (Fig. 2). On the other hand, it should be noted that such correspondence might not be 318 

guaranteed on other farms, depending on physical and management characteristics. Therefore, 319 

it is important to investigate factors affecting the relationship between on- and off-farm ambient 320 
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temperatures. Exploring a more appropriate use of temperature data, such as daily average and 321 

minimum temperatures, daily temperature range, and other factors including relative humidity, 322 

as well as choosing a different expression of the effect of ambient temperature, including linear-323 

plateau regression and smoothing spline, might explain more phenotypic variation (Zumbach 324 

et al. 2008; Lewis and Bunter 2011; Bloemhof et al. 2013; Guy et al. 2017; Tiezzi et al. 2020). 325 

Moreover, AMeDAS relative humidity data and mesh climate data are now available as 326 

different sources of climate information. Effects of time of year, and even those of year, might 327 

vary among regions and farms. If an interaction of region and farm with time could be 328 

explained by using public meteorological data, the statistical modelling might become simpler 329 

and more objective. To tackle these challenging issues, further analysis should be performed to 330 

investigate the performance of the integrated use of different kinds of public meteorological 331 

data with a larger data set with a more complex structure. 332 

Recently, studies have investigated the methodology for efficient breeding using 333 

information obtained from public databases; for example, genomic prediction incorporating 334 

biological information (e.g., Melzer et al. 2013; Ogawa et al. 2015; Okada et al. 2018) and 335 

prediction of breeding value by exploiting public meteorological data (e.g., Zumbach et al. 336 

2008; Fragomeni et al. 2016a; Tiezzi et al. 2020). For the letter, it is likely that a sow’s response 337 

to high ambient temperature is somewhat heritable and that the genetic correlations of sow 338 

reproductive traits among seasons and ambient temperatures are not unity (e.g., Bloemhof et 339 

al. 2008; Lewis and Bunter 2011; Tiezzi et al. 2020). Similar results were also reported for 340 

production traits (e.g., Lewis and Bunter 2011; Fragomeni et al. 2016b; Usala et al. 2021). In 341 

pig breeding, selection has been performed to improve meat production and number of piglets 342 
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weaned both in Japan (e.g., Suzuki et al. 2005; Tomiyama et al. 2011; Ohnishi and Satoh 2018) 343 

and overseas (e.g., Merks 2000; Hill 2016; Zak et al. 2017). Genetic improvement of 344 

productivity has brought about a large increase in total metabolic heat production (e.g., 345 

Cabezón et al. 2016; Johnson 2018; Johnson et al. 2019), reducing individual animals’ ability 346 

to cope with high ambient temperatures (e.g., Brown-Brandl et al. 2001; Renaudeau et al. 2011; 347 

Robbins et al. 2021). Pork production in Japan is anticipated to be affected by global warming 348 

(Takada et al. 2008; Sakatani 2014). Therefore, it is an urgent priority to establish new pig 349 

breeding schemes to confront global warming (e.g., Bloemhof et al. 2012; Schauberger et al. 350 

2019; Tiezzi et al. 2020). In this regard, public meteorological data might offer a powerful 351 

resource, and therefore, it is important to develop a future breeding scheme to genetically 352 

improve heat tolerance of pigs in Japan (Carabaño et al. 2019; Mayorga et al. 2019; Rauw et 353 

al. 2020). 354 
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TABLE 1 Descriptive statistics of phenotypic measurements of the studied traits 605 

Trait Abbreviation Mean SD Min Max 

Total number born TNB 8.8 2.8 1 17 

Number born alive NBA 7.7 2.8 1 15 

Number stillborn NSB 1.1 1.5 0 10 

Abbreviations: Max, maximum value; Min, minimum value; SD, standard deviation. 606 
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TABLE 2 Estimated values of effects of farrowing season, farrowing month, and off-farm daily maximum temperature of farrowing day 607 

Factor Level 

Total number born 

 

Number born alive 

 

Number stillborn 

Model 

 

Model 

 

Model 

1 2 3 4 5 

 

1 2 3 4 5 

 

1 2 3 4 5 

Season Spring 0.91 - - 0.97 - 

 

1.37 - - 1.20 - 

 

-0.45 - - -0.22 - 

 

Summer 0.87 - - 0.97 - 

 

1.12 - - 0.95 - 

 

-0.23 - - 0.05 - 

 

Autumn 0.62 - - 0.69 - 

 

1.03 - - 0.84 - 

 

-0.43 - - -0.16 - 

  Winter 0.00 - - 0.00 - 

 

0.00 - - 0.00 - 

 

0.00 - - 0.00 - 

Month January - 0.00 - - 0.00 

 

- 0.00 - - 0.00 

 

- 0.00 - - 0.00 

 

February - 0.58 - - 0.69 

 

- 0.24 - - 0.20 

 

- 0.34 - - 0.48 

 

March - 1.07 - - 1.26 

 

- 1.52 - - 1.45 

 

- -0.43 - - -0.17 

 

April - 1.14 - - 1.47 

 

- 1.60 - - 1.49 

 

- -0.49 - - -0.05 

 

May - 1.32 - - 1.72 

 

- 1.72 - - 1.58 

 

- -0.39 - - 0.14 

 

June - 1.40 - - 1.80 

 

- 1.71 - - 1.57 

 

- -0.29 - - 0.24 
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July - 1.34 - - 1.71 

 

- 1.63 - - 1.49 

 

- -0.26 - - 0.24 

 

August - 0.76 - - 1.14 

 

- 0.82 - - 0.68 

 

- -0.05 - - 0.46 

 

September - 1.21 - - 1.61 

 

- 1.75 - - 1.61 

 

- -0.53 - - 0.01 

 

October - 0.62 - - 1.00 

 

- 1.09 - - 0.96 

 

- -0.50 - - 0.01 

 

November - 1.03 - - 1.34 

 

- 1.28 - - 1.18 

 

- -0.28 - - 0.13 

  December - 0.46 - - 0.58 

 

- 0.62 - - 0.58 

 

- -0.17 - - -0.02 

Temperature Linear - - 0.08 -0.02 -0.08 

 

- - 0.19 0.06 0.02 

 

- - -0.12 -0.08 -0.10 

  Quadratic (×102) - - -0.13 0.03 0.14 

 

- - 0.37 0.13 0.04 

 

- - 0.25 0.16 0.18 

Note: Values were adjusted so that the estimated values of winter were 0 for Models 1 and 4 and those of January were 0 for Models 2 and 5.  608 
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TABLE 3 Proportions of variances of phenotypic records explained by the estimated effects of farrowing season, farrowing month, and off-farm 609 

maximum temperature of farrowing day (diagonal) and Pearson’s correlation coefficients between the values explained by those effects (below 610 

diagonal) 611 

  Total number born 

 

Number born alive 

 

Number stillborn 

Model 1 2 3 4 5 

 

1 2 3 4 5 

 

1 2 3 4 5 

1 1.40% 

     

2.87% 

     

1.33% 

    

2 0.827 2.06% 

    

0.880 3.66% 

    

0.842 1.94% 

   

3 0.642 0.574 0.53% 

   

0.619 0.601 1.62% 

   

0.579 0.524 1.41% 

  

4 0.977 0.821 0.769 2.31% 

  

0.987 0.883 0.723 2.91% 

  

0.854 0.743 0.885 1.82% 

 

5 0.863 0.972 0.727 0.889 3.71% 

 

0.879 0.999 0.631 0.889 3.66% 

 

0.730 0.873 0.760 0.857 2.55% 

612 
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TABLE 4 Estimated values of genetic parameters (standard errors in parentheses) 613 

Model 𝝈𝒂
𝟐 𝝈𝒑𝒆

𝟐  𝝈𝒆
𝟐 𝒉𝟐 𝒓𝒆𝒑𝟐 

Total number born 

1 0.76 (0.43) 0.62 (0.38) 6.31 (0.31) 0.10 (0.05) 0.18 (0.03) 

2 0.88 (0.45) 0.56 (0.39) 6.29 (0.32) 0.11 (0.06) 0.19 (0.03) 

3 0.69 (0.43) 0.67 (0.39) 6.38 (0.32) 0.09 (0.05) 0.18 (0.03) 

4 0.77 (0.43) 0.62 (0.38) 6.32 (0.32) 0.10 (0.05) 0.18 (0.03) 

5 0.88 (0.45) 0.57 (0.39) 6.29 (0.32) 0.11 (0.06) 0.19 (0.04) 

Number born alive 

1 1.20 (0.52) 0.42 (0.40) 6.27 (0.32) 0.15 (0.06) 0.20 (0.04) 

2 1.32 (0.50) 0.30 (0.40) 6.27 (0.31) 0.17 (0.06) 0.21 (0.04) 

3 1.16 (0.50) 0.38 (0.40) 6.40 (0.32) 0.15 (0.06) 0.19 (0.04) 

4 1.19 (0.50) 0.41 (0.40) 6.28 (0.32) 0.15 (0.06) 0.20 (0.04) 

5 1.33 (0.52) 0.29 (0.40) 6.29 (0.32) 0.15 (0.06) 0.20 (0.04) 

Number stillborn 

1 0.17 (0.10) 0.12 (0.10) 1.90 (0.09) 0.08 (0.05) 0.13 (0.03) 

2 0.18 (0.10) 0.12 (0.10) 1.90 (0.09) 0.08 (0.05) 0.13 (0.03) 

3 0.17 (0.10) 0.11 (0.10) 1.90 (0.09) 0.08 (0.05) 0.13 (0.03) 

4 0.18 (0.10) 0.11 (0.10) 1.90 (0.09) 0.08 (0.05) 0.13 (0.03) 

5 0.18 (0.10) 0.11 (0.10) 1.89 (0.09) 0.08 (0.05) 0.13 (0.03) 

Note: 𝜎𝑎
2, additive genetic variance; 𝜎𝑝𝑒

2 , permanent environmental variance; 𝜎𝑒
2, error 614 

variance;  ℎ2, heritability; 𝑟𝑒𝑝2, repeatability.615 
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TABLE 5 Spearman’s rank correlations of predicted breeding values of 437 sows with their own records between different models 616 

 

Total number born 

 

Number born alive 

 

Number stillborn 

Model 1 2 3 4 

 

1 2 3 4 

 

1 2 3 4 

2 0.997 

    

0.997 

    

0.993 

   

3 0.996 0.991 

   

0.991 0.990 

   

0.994 0.990 

  

4 >0.999 0.997 0.996 

  

>0.999 0.997 0.993 

  

0.995 0.996 0.997 

 

5 0.996 >0.999 0.990 0.996 

 

0.997 >0.999 0.990 0.997 

 

0.987 0.997 0.991 0.996 

 617 
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 618 

FIGURE 1 Scatter plots for on- and off-farm daily maximum temperatures. (a, b) Boar barns; 619 

(c, d) growing barns.  620 
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 621 

FIGURE 2 Relationships between off-farm daily maximum temperature of farrowing day and 622 

farrowing seasons and months. Black dots show the average values within each level of seasons 623 

and months.  624 
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 625 

FIGURE 3 Changes in the effects of off-farm maximum temperature of farrowing day 626 

estimated using model 3. Values were adjusted so that their minimum value was equal to zero.  627 
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 628 

FIGURE 4 Relationships between the effect of off-farm maximum temperature of farrowing 629 

day estimated using model 3 and corresponding farrowing seasons and months for total number 630 

born (a and b), number born alive (c and d), and number stillborn (e and f). Black dots show 631 

the average values within each level of seasons and months. Values were adjusted so that their 632 

minimum value was equal to zero.  633 
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 634 

FIGURE 5 Relationship between mating and farrowing seasons (a), mating and farrowing 635 

months (b), off-farm maximum temperatures of mating and farrowing days (c), and mating and 636 

farrowing years (d) for each of farrowing records. Some records showed same month 637 

(November in autumn) as mating and farrowing months, possibly due to errors in mating dates. 638 
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