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Abstract

Motivation: In biomedical research, chemical is an important class of entities, and chemical named

entity recognition (NER) is an important task in the field of biomedical information extraction.

However, most popular chemical NER methods are based on traditional machine learning and their

performances are heavily dependent on the feature engineering. Moreover, these methods are

sentence-level ones which have the tagging inconsistency problem.

Results: In this paper, we propose a neural network approach, i.e. attention-based bidirectional

Long Short-Term Memory with a conditional random field layer (Att-BiLSTM-CRF), to document-

level chemical NER. The approach leverages document-level global information obtained by atten-

tion mechanism to enforce tagging consistency across multiple instances of the same token in a

document. It achieves better performances with little feature engineering than other state-of-the-art

methods on the BioCreative IV chemical compound and drug name recognition (CHEMDNER) cor-

pus and the BioCreative V chemical-disease relation (CDR) task corpus (the F-scores of 91.14 and

92.57%, respectively).

Availability and implementation: Data and code are available at https://github.com/lingluodlut/Att-

ChemdNER.

Contact: yangzh@dlut.edu.cn or wangleibihami@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Chemical named entity recognition (NER) aims to automatically

detect the chemical mentions in biomedical literature, which is a

fundamental step for further biomedical text mining and has

received much attention recently. It is particularly challenging due

to the following reasons: various ways of naming chemical, ambigu-

ities caused by the frequent occurrences of abbreviations and acro-

nyms, new chemical constantly and rapidly reported in scientific

publications, and a number of symbols mixed with common words

(Liu et al., 2015). To promote the performance of chemical NER

systems, chemical NER has been the subtasks of several public

challenges in the biomedical domain such as the chemical and drug

named entity recognition (CHEMDNER) task in the BioCreative IV

(Krallinger et al., 2015) and the drug-drug interaction

(DDIExtraction) challenge (Segura Bedmar et al., 2013).

In the previous works, the state-of-the-art CRF-based chemical

NER methods (Leaman et al., 2015; Lu et al., 2015; Rocktäschel

et al., 2012; Usié et al., 2014) depend on effective feature engineering,

i.e. the design of effective features using various NLP tools and knowl-

edge resources, which is still a labor-intensive and skill-dependent

task. Recently, deep learning has become prevalent in the machine

learning research community. For the NER task in general domain
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(such as news), several neural network architectures have been pro-

posed (Collobert et al., 2011; Huang et al., 2015; Lample et al., 2016;

Ma and Hovy, 2016). Furthermore, they have also been used to iden-

tify the biomedical entities, including genes and proteins (Li et al.,

2015), diseases (Sahu and Anand, 2016) and chemicals (Chalapathy

et al., 2016). Among others, the model of bidirectional Long Short-

Term Memory with a conditional random field layer (BiLSTM-CRF),

exhibits promising results (Huang et al., 2015; Lample et al., 2016).

Both the above-mentioned standard traditional machine learning

methods and deep learning methods in practice treat NER as a

sentence-level task, i.e. they treat each sentence as a separate docu-

ment, with multiple instances of the same token in different sentences

of a document viewed multiple entirely independent tagging prob-

lems. However, these sentence-level NER methods lead to the tagging

inconsistency problem (i.e. the same mentions in a document are

tagged with different labels). As shown in the example of Table 1, the

mentions in italic type were recognized by the sentence-level BiLSTM-

CRF model. In the biomedical abstract, the same chemical mentions

may appear several times in the different sentences (e.g. ‘VK2’, the

abbreviation of the chemical entity ‘Vitamin K2’). Reasonably, these

mentions should be tagged with the same labels. However, the men-

tions ‘VK2’ in bold type were not recognized by the model. This is so-

called the tagging inconsistency problem. To alleviate the problem,

the rule-based post-processing step to enforce tagging consistency is

often employed in NER methods. In addition, there have been some

efforts on enforcing tag consistency with the use of non-local informa-

tion to improve supervised sequential models (Finkel et al., 2005;

Ratinov and Roth, 2009). But the consensus seems to be that the non-

local information has a relatively modest effect on performance.

Our work focuses on the above-mentioned two issues: the per-

formance dependency on the feature engineering for neural network

architecture methods and tagging inconsistency of the sentence-level

NER. And, in this paper we propose a novel attention-based bidirec-

tional Long Short-Term Memory with a conditional random field

layer (Att-BiLSTM-CRF) approach for document-level chemical

NER to mitigate the issues. The main contributions of our work can

be summarized as follows:

• Our neural network architecture relies on a novel attention

mechanism to capture similar entity attention at the document-

level. This allows it to view the related tokens in different senten-

ces of a document as a dependent tagging problem. Moreover,

we consider four different alternatives to compute the score of

attention matrix. The experimental results show that our method

can significantly improve the tagging consistency.
• Domain features used in traditional NER methods [such as part of

speech (POS), chunking and dictionary features] with neural net-

work architectures (including BiLSTM-CRF and our Att-BiLSTM-

CRF) for chemical NER are investigated. The experimental results

show that our method can achieve the state-of-the-art perform-

ance with little feature engineering.

Owing to the above contributions, our method achieves the state-of-

the-art performances for chemical NER on the BioCreative IV

CHEMDNER corpus and the BioCreative V chemical-disease relation

(CDR) corpus (the F-scores of 91.14 and 92.57%, respectively).

2 Materials and methods

In this section, firstly, embedded features used in our neural network

model are described. Secondly, the basic BiLSTM-CRF model is

introduced. At last, our Att-BiLSTM-CRF model is presented.

2.1 Features
Recently distributed feature representation is widely used in the field

of NLP, especially for the deep learning methods. Our method uses

word and character embeddings as basic features. In addition, to

investigate the effects of traditional features (such as POS, chunking

and dictionary features) for deep learning methods, these features

are added into the models as additional features. Details of the fea-

tures are presented as follows.

2.1.1 Word embedding

Word embedding, also known as distributed word representation,

can capture both the semantic and syntactic information of words

from a large unlabeled corpus and has attracted considerable atten-

tion from many researchers (Lai et al., 2016). Compared with the

bag-of-words (BOW) representation, word embedding is low-

dimensional and dense. In recent years, several tools, such as word2-

vec (Mikolov et al., 2013) and GloVe (Pennington et al., 2014) have

been widely used in the field of NLP. To achieve a high-quality

word embedding, we downloaded a total of 1 918 662 MEDLINE

abstracts from the PubMed website with the query string ‘chemical’.

Then these abstracts and CHEMDNER corpus were used to train

word embedding by the word2vec tool using the skip-gram model as

pre-trained word embedding.

2.1.2 Character embedding

In addition to the word-level features, character-level features in an

entity name contain rich structure information of the entity. These

features (such as character n-grams, prefixed and suffixes) are com-

monly employed in the current chemical NER methods (Liu et al.,

2015). Unlike the previous traditional methods in which character

features are based on hand-engineering, character embedding can be

learned while training. They can not only learn interior representa-

tions of the entity names, but also alleviate the out-of-vocabulary

problem (Rei et al., 2016). First, a character lookup table containing

a character embedding for every character was initialized randomly.

Then the character embedding corresponding to every character in a

word was given in both direct and reverse orders to a bidirectional

Long Short-Term Memory (BiLSTM). At last, the concatenation of

the forward and backward representations from the BiLSTM was

used as the character-level feature of the word.

Table 1. An example of the tagging inconsistency problem

Vitamin K2 covalently binds to Bak and induces Bak-mediated apopto-

sis. Vitamin K2 (VK2, menaquinone) is known to have anticancer

activity in vitro and in vivo. Although its effect is thought to be medi-

ated, at least in part, by the induction of apoptosis, the underlying

molecular mechanism remains elusive. Here, we identified Bcl-2

antagonist killer 1 (Bak) as a molecular target of VK2-induced apop-

tosis. VK2 directly interacts with Bak and induces mitochondrial-

mediated apoptosis. Although Bak and Bcl-2-associated X protein

(Bax), another member of the Bcl-2 family, are generally thought to

be functionally redundant, only Bak is necessary and sufficient for

VK2-induced cytochrome c (cyt c) release and cell death. Moreover,

VK2-2, 3 epoxide, an intracellular metabolite of VK2, was shown to

covalently bind to the cysteine-166 residue of Bak. Several lines of evi-

dence suggested that the covalent attachment of VK2 is critical for

apoptosis induction. Thus this study reveals a specific role for Bak in

mitochondria-mediated apoptosis. This study also provides insight

into the anticancer effects of VK2 and suggests that Bak may be a

potential target of cancer therapy.
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2.1.3 Additional features

In our experiments, the effects of two kinds of traditional manually

designed features (i.e. linguistic feature and domain resource fea-

ture) for our neural network model are also explored.

Due to the complexity of the natural language, some linguistic

features are often employed in the chemical NER systems based on

traditional machine learning methods (Eltyeb and Salim, 2014). We

also explored the effect of linguistic features (such as POS and

chunking) for our model. The POS information and chunking infor-

mation of each word were generated by the GENIA tagger (http://

www.nactem.ac.uk/GENIA/tagger/). Then two lookup tables were

used to output 25-dimensional POS embedding and 10-dimensional

chunking embedding, respectively.

To optimize the chemical NER systems, chemical dictionaries as

a form of domain knowledge are often added to the set of features.

In fact, there are a large number of available chemical lexical resour-

ces currently, such as Jochem (Hettne et al., 2009), ChEBI

(Degtyarenko et al., 2008) and CTD (Davis et al., 2009). We used

Jochem dictionary to generate our dictionary feature. Firstly, longest

possible matches between the normalized token sequences and dic-

tionary entries were captured. Then for each token in the match, the

feature was encoded in BIO (Begin, Inside, Outside) tagging scheme.

At last, a lookup table was used to output 5-dimensional dictionary

embedding.

2.2 BiLSTM-CRF model
The architectures of basic BiLSTM-CRF model and our Att-

BiLSTM-CRF model are illustrated in Figure 1A and B, respectively.

The former is similar to the ones presented by Huang et al. (2015),

Lample et al. (2016) and Ma and Hovy (2016).

Given a sentence, the model predicts a label corresponding to

each of the input tokens in the sentence. Firstly, through the embed-

ding layer, the sentence is represented as a sequence of vectors

X ¼ ðx1; . . . ; xt; . . . ; xnÞ where n is the length of the sentence. Next,

the embeddings are given as input to a BiLSTM layer. In the

BiLSTM layer, a forward LSTM computes a representation ht

!
of

the sequence from left to right at every word t, and another back-

ward LSTM computes a representation ht

 
of the same sequence in

reverse. These two distinct networks use different parameters, and

then the representation of a word ht ¼ ½ht

!
; ht

 
� is obtained by concat-

enating its left and right context representations. LSTM memory cell

is implemented as Lample et al. (2016) did.

Then a tanh layer on top of the BiLSTM is used to predict confi-

dence scores for the word having each of the possible labels as the

output scores of the network.

et ¼ tanhðWehtÞ (1)

where the weight matrix We is the parameter of the model to be

learned in training.

Finally, instead of modeling tagging decisions independently, the

CRF layer is added to decode the best tag path in all possible tag

paths. We consider P to be the matrix of scores output by the net-

work. The tth column is the vector et obtained by the Equation (1).

The element Pi, j of the matrix is the score of the jth tag of the ith

word in the sentence. We introduce a tagging transition matrix T,

where Ti, j represents the score of transition from tag i to tag j in suc-

cessive words and T0, j as the initial score for starting from tag j.

This transition matrix will be trained as the parameter of model.

The score of the sentence X along with a sequence of predictions

y ¼ ðy1; . . . ; yt; . . . ; ynÞ is then given by the sum of transition scores

and network scores:

sðX; yÞ ¼
Xn

i¼1

ðTyi�1 ;yi
þ Pi;yi

Þ (2)

Then a softmax function is used to yield the conditional probability

of the path y by normalizing the above score over all possible tag

paths~y:

pðyjXÞ ¼ esðX;yÞ
P

~yesðX;~yÞ (3)

During the training phase, the objective of the model is to maximize

the log-probability of the correct tag sequence. At inference time,

Fig. 1. The architectures of BiLSTM-CRF model and our Att-BiLSTM-CRF model. (A) The basic BiLSTM-CRF model. (B) Our Att-BiLSTM-CRF model. In the models,

the BIO (Begin, Inside, Outside) tagging scheme are used. In the figure (B), only the attention weights of the target word are illustrated for clarity. The attention

weight is larger when the word is more related to the target word, and the color of attention line is darker
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we predict the best tag path that obtains the maximum score

given by:

arg max
~y

sðX; ~yÞ (4)

This can be computed using dynamic programming, and the Viterbi

algorithm (Viterbi, 1967) is chosen for this inference.

2.3 Att-BiLSTM-CRF model
Similar to most traditional machine learning NER methods, the

above-mentioned BiLSTM-CRF method is also a sentence-level NER

method, suffering from the tagging inconsistency problem. To solve

the problem, previous works often employ rule-based post-processing

to enforce tagging consistency. For example, if a mention was tagged

by the NER model at least twice within a document, any of the men-

tion in the document that the model had not identified was also

tagged (Leaman et al., 2015). However, these post-processing meth-

ods do not necessarily improve the performance of the model since if

the entity is mistakenly tagged by the model, the post-processing will

introduce more noise. Therefore, we design an Att-BiLSTM-CRF

model so as to automatically ensure tagging consistency in a docu-

ment. The architecture of our model is illustrated in Figure 1B.

Attention mechanism has gained popularity recently in image,

speech and NLP fields (Bahdanau et al., 2015; Mnih et al., 2014).

For NER task, Bharadwaj et al. (2016) and Rei et al. (2016) intro-

duced the attention mechanism to enhance their model performan-

ces. Though both methods focus on the character-lever

representations by the attention mechanism, they are still the

sentence-level NER methods. More recently, Pandey et al. (2017)

presented a model similar to our Att-BiLSTM-CRF to extract

knowledge of Adverse Drug Reactions (ADRs). However, their

attention mechanism focuses on which encoded elements contribute

to the generation of the current unit or the prediction of an ADR in

sentence-level. Different from them, we apply the attention mecha-

nism to focus on the related tokens in the different sentences of a

document to address the tagging inconsistency problem.

For an input document D ¼ ðX1; . . . ;Xt; . . . ;XmÞ consisting of m

sentences, each sentence is expressed as X ¼ ðx1; . . . ; xt; . . . ; xnÞ
where n is the the number of the words in the sentence. We define N

as the number of the words in the document. Like BiLSTM-CRF

model, the embeddings described in Section 2.1 are firstly given as

input to a BiLSTM layer. Then a new attention layer on top of the

BiLSTM layer is used to capture similar word attention at the

document-level. In the attention layer, we introduce an attention

matrix A to calculate the similarity between the current target word

and all words in the document. The attention weight value at, j in the

attention matrix is derived by comparing the tth current target word

representation xt with the jth word representation xj in the document:

at;j ¼
exp ðscoreðxt;xjÞÞP
k exp ðscoreðxt;xkÞÞ

(5)

Here, the score is referred as an alignment function for which we

define the following four alternatives (manhattan distance, euclil-

dean distance, cosine distance and perceptron):

scoreðxt; xjÞ ¼

Wa j xt � xjj

Waðxt � xjÞTðxt � xjÞ
Waðxt•xjÞ
jxt jj xjj

tanhðWa½xt; xj�Þ

8>>>>>>><
>>>>>>>:

(6)

where the weight matrix Wa is a parameter of the model, and • is

the element-wise product. For the score of alignment function, the

score values of cosine distance and perceptron are larger when the

two vectors xt and xj are more similar. On the contrary, the score

values of manhattan distance and euclidean distance are smaller

when the two vectors are more similar. Therefore, the final scores of

manhattan distance and euclidean distance are calculated by the

maximum scores (the maximum score of the current target word

representation with all word representations in the document) minus

the scores to make their final scores larger when the vectors are

more similar.

Then a document-level global vector gt is computed as a

weighted sum of each BiLSTM output hj:

gt ¼
XN
j¼1

at;jhj (7)

Next, the document-level global vector and the BiLSTM output of

the target word are concatenated as a vector [gt; ht] to be fed to a

tanh function to produce the output of attention layer.

zt ¼ tanhðWg½gt; ht�Þ (8)

Then a tanh layer on top of the attention layer is used to predict con-

fidence scores for the word having each of the possible labels as the

output score of the network:

et ¼ tanhðWeztÞ (9)

At last, similar to BiLSTM-CRF model, the CRF layer is added to

decode the best tag path in all possible tag paths. For an input docu-

ment D, the score of the document along with a tag path y is then

given by the sum of transition scores and network scores:

sðD; yÞ ¼
X

m

Xn

i¼1

ðTyi�1 ;yi
þ Pi;yi

Þ (10)

Compared with the Equation (2), the Equation (10) yields the score

at the document-level instead of sentence-level.

Next, like BiLSMT-CRF model, a softmax function is used to

yield the conditional probability of the path. During the training

phase, the objective of the model is to maximize the log-probability

of the correct tag sequence. Viterbi algorithm is used to compute

optimal tag sequences for inference.

3 Results

3.1 Experimental datasets and settings
In our experiments, two corpora (http://www.biocreative.org/resour

ces/) released by the BioCreative challenge were used: the

CHEMDNER corpus (Krallinger et al., 2015) and the CDR task

corpus (Li et al., 2016). Overall statistics for each dataset are pro-

vided in Supplementary Material: BioCreative Corpora. Like many

teams in the challenge, the original training set and development set

were used as the training set. Then we randomly selected 10% of the

training set as the validation set to tune the hyper-parameters. The

chemical NER performance was measured with an F-score which

attributes equal importance to precision and recall (F1 score) on the

test set.

The parameters of our model in the word embedding are initial-

ized with 50-dimensional pre-trained word embeddings (The per-

formances of the higher dimensional word embeddings were also

tested, but no better performances were achieved. And the results

are provided in Supplementary Material: Performance of Word
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Embeddings.) and other parameters are initialized at random from a

uniform distribution. Then all parameters are optimized using sto-

chastic gradient descent (SGD) (Bottou, 1991) to maximize the log-

probability of the correct tag sequence. In addition, we tuned the

hyper-parameters on the validation set by random search (Bergstra

and Bengio, 2012). The main hyper-parameters of our model are

shown in Supplementary Material: Hyper-parameter Settings. The

number of epochs is chosen by early stopping strategy (Prechelt,

1998) on the validation set. Our models are implemented using

open-source deep learning library Theano (http://deeplearning.net/

software/theano/).

3.2 The effect of alignment functions for the Att-

BiLSTM-CRF model
As described in Section 2.3, four alignment functions (manhattan

distance, euclildean distance, cosine distance and two-layer multi-

layer perceptron) are designed for our Att-BiLSTM-CRF model. To

select the best alignment function, we investigated the effect of these

functions on performance. In the experiments, word and character

embeddings are used as inputs of the model and alignment function.

The performances of the attention-based model with different align-

ment functions on the CHEMDNER corpus are shown in Table 2.

The results show that the model using the euclidean distance

achieves the highest F-score of 90.84%. However, there is no signifi-

cant difference among the F-scores of these alignment functions

except the two-layer multilayer perceptron. The reason may be that

euclildean, manhattan and cosine distances are common similarity

measure methods that are simple and effective in machine learning.

Compared with them, the two-layer multilayer perceptron has more

complex structure so that it is difficult to optimize.

3.3 Performance comparison of document-level and

sentence-level methods
In previous works, most NER methods treat NER as a sentence-

level task. This is often accompanied by the tagging inconsistency

problem as discussed in Section 1. In contrast, our Att-BiLSTM-

CRF model is designed to alleviate this problem by the document-

level attention. In our experiments, the two document-level and two

sentence-level methods were compared (all models only used word

and character embeddings as inputs).

The performance comparisons of various models on the

CHEMDNER corpus are shown in Table 3. Compared with the

original sentence-level BiLSTM-CRF model described in Section 2.2

[BiLSTM-CRF(sent)], our document-level Att-BiLSTM-CRF model

described in Section 2.3 [Att-BiLSTM-CRF(doc)] obtains better per-

formance (improvements of 0.34, 2.31 and 1.36% in precision,

recall and F-score, respectively). The result shows that the recall is

improved significantly without loss of precision. We analyzed the

results and found that the main reason of recall improvement is the

alleviation of the tagging inconsistency problem. We performed an

error analysis to help illustrate the reason of performance improve-

ment of our model. We randomly selected 20% of the test set (600

abstracts) and reviewed the output results of the models. Overall,

these abstracts contain 5155 chemical entity mentions correspond-

ing to 2602 unique chemical entities in document-level (totally 966

entities appear more than once in a document). In the result of

BiLSTM-CRF(sent), 95 entities recognized have the tagging

inconsistency problem. Of these entities, 65 were tagged with the

consistent labels by our Att-BiLSTM-CRF (doc) model, in which 48

were tagged correctly according to the gold standard. Some results

of two models are provided in Supplementary Material: Examples

of NER Results due to space limitation.

In addition, the result of the BiLSTM-CRF(sent) with a consis-

tency post processing method (i.e. tagging any mention already

tagged twice) is provided in Table 3 [BiLSTM-CRF(sent)þPost].

The results show our Att-BiLSTM-CRF(doc) method can achieve

better performance than BiLSTM-CRF(sent) with the consistency

post processing method. The method improves the recall of the

entity by enforcing tagging consistency while, for some incorrectly

tagged entities by the model, it will introduce noise (i.e. incorrectly

tagging any mention already incorrectly tagged twice) leading to the

precision decline.

For the BiLSTM-CRF model, we implemented a document-level

version, BiLSTM-CRF(doc) (i.e. documents are directly used as

inputs of the model instead of sentences). However, the document-

level version does not achieve higher F-score than the sentence-level

vision (89.28% versus 89.48%). The main reason is that LSTM

model is a biased model. Although LSTM can solve hard long time

lag problems with the gating mechanism (Hochreiter and

Schmidhuber, 1997), the fact that later words are more dominant

than earlier words leads to recognition difficulty on long sentences

(Lai et al., 2015). Therefore, it is not effective to capture global

document-level information by simply extending sentences to docu-

ments as inputs of the model.

For our Att-BiLSTM-CRF model, we also investigated the effect

of a sentence-level version, Att-BiLSTM-CRF(sent) (i.e. sentences

are directly fed into the model instead of documents). It can achieve

a higher F-score than the sentence-level BiLSTM-CRF model, but a

lower one than the document-level Att-BiLSTM-CRF model

(90.10% versus 89.48% and 90.84% in F-score). It demonstrates

our attention mechanism can learn the richer context information

even at the sentence-level and, nevertheless, document-level model

can achieve a better performance with the alleviation of the tagging

inconsistency problem.

3.4 The effect of additional features on performance
We also investigated the effect of three additional features (POS,

chunking and dictionary embeddings mentioned in Section 2.1.3) on

the performance of our model and Table 4 shows the results of

Table 2. Performances of our attention-based model with different

alignment functions on the CHEMDNER corpus

Method Precision Recall F-score

Manhattan 91.23 89.92 90.57

Euclidean 91.65 90.04 90.84

Cosine 91.59 89.67 90.62

Perceptron 91.13 88.86 89.98

The bold values denote the highest values.

Table 3. Performance comparison of the document-level and sen-

tence-level methods on the CHEMDNER corpus

Method Precision Recall F-score

BiLSTM-CRF(sent) 91.31 87.73 89.48

BiLSTM-CRF(sent)þPost 90.38 89.81 90.10

BiLSTM-CRF(doc) 90.12 88.46 89.28

Att-BiLSTM-CRF (sent) 91.63 88.63 90.10

Att-BiLSTM-CRF (doc) 91.65 90.04 90.84

The bold values denote the highest values.
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different combinations of these features on the CHEMDNER cor-

pus. The baselines only use word and character embeddings as

inputs of the model and alignment function while the additional fea-

tures are introduced into BiLSTM-CRF model and Att-BiLSTM-

CRF model. For the former, the concatenation of the word embed-

ding, character embedding and additional features as input is fed

into the BiLSTM layer. For the latter, three styles are designed for

adding additional features. Style-I: the additional features are only

added into the BiLSTM layer and the attention weight values are

computed with the original word and character embeddings. Style-

II: the additional features are only added into the attention layer (i.e.

attention weight values are computed with the original word and

character embeddings and additional features) and the original

word and character embeddings as inputs are fed into the BiLSTM

layer. Style-III: the additional features both are added into both

BiLSTM and attention layers.

For the BiLSTM-CRF model, when only the chunking embed-

ding is added, higher F-score (an improvement of 0.49% in F-score

over the baseline) is achieved. The main reason is that some entity

boundary errors can be revised by the chunking information. When

only the POS embedding is added, the model only achieves a small

improvement (an improvement of 0.15% in F-score). Among others,

the dictionary embedding contributes most to the BiLSTM-CRF

model (an improvement of 0.58% in F-score), which demonstrates

that the information of prior chemical entities provided by JoChem

dictionary can help boost the performance. When all additional fea-

tures are added, the best performance (an improvement of 0.83% in

F-score) is achieved.

For our Att-BiLSTM-CRF model, it achieves the best perform-

ance (91.14% in F-score over the baseline, an improvement of

0.30%) when only dictionary feature is added with the Style-II.

Compared with the BiLSTM-CRF model, our model achieves the

smaller improvement (0.83% versus 0.30% in F-score) when the

additional features are added. It demonstrates that our model is

more robust and it is less affected by the additional features. The

plausible reason is that our model itself has learned sufficient effec-

tive features automatically from the word and character embeddings

with our attention mechanism.

3.5 Performance comparison with other existing

methods
To further demonstrate the effectiveness of our method, the per-

formance comparison between our Att-BiLSTM-CRF method and

other state-of-the-art methods are performed on the BioCreative IV

CHEMDNER corpus and the BioCreative V CDR corpus as shown

Table 4. The effect of additional features on performance on the CHEMDNER corpus

BiLSTM-CRF Att-BiLSTM-CRF

Feature Precision Recall F-score style Precision Recall F-score

Baseline 91.31 87.73 89.48 Baseline 91.65 90.04 90.84

þchunk 90.62 89.33 89.97 Style-I 91.89 89.47 90.66

Style-II 91.40 90.52 90.96

Style-III 92.01 89.67 90.82

þPOS 91.84 87.51 89.63 Style-I 92.43 89.26 90.82

Style-II 91.98 89.64 90.80

Style-III 91.95 89.31 90.61

þdic 91.40 88.76 90.06 Style-I 92.48 88.98 90.70

Style-II 92.29 90.01 91.14

Style-III 92.10 89.88 90.98

þdic

þchunk

91.64 88.90 90.25 Style-I 92.38 89.29 90.81

Style-II 92.18 89.64 90.89
Style-III 92.14 89.65 90.88

þdic 91.49 89.17 90.31 Style-I 92.18 89.20 90.66

þchunk Style-II 91.87 90.01 90.93

þPOS Style-III 92.44 89.60 91.00

Note: Chunk denotes the chunking embedding, POS denotes the POS embedding and dic denotes the dictionary embedding. The bold values denote the highest values.

Table 5. Performance comparison with other existing methods on the CHEMDNER and the CDR corpora

BioCreative IV CHEMDNER BioCreative V CDR

Method Precision Recall F-score D Precision Recall F-score D

tmChem (2015) 89.09 85.75 87.39 3.75 – – – –

Lu et al. (2015) 88.73 87.41 88.06 3.08 – – – –

TaggerOne (2016) – – – – 94.20 88.80 91.40 1.17

RNNA-CRF 91.14 88.27 89.68 1.46 92.40 89.69 91.03 1.54

BiLSTM-CRF 91.31 87.73 89.48 1.66 92.82 88.52 90.62 1.95

BiLSTM-CRF* 91.49 89.17 90.31 0.83 92.85 90.44 91.63 0.94

Att-BiLSTM-CRF 91.65 90.04 90.84 0.30 92.88 91.07 91.96 0.61

Att-BiLSTM-CRF* 92.29 90.01 91.14 93.49 91.68 92.57

Note: D denotes the F-score improvement of our model and * denotes the best version of adding additional features. The bold values denote the highest values.
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in Table 5 (in our experiments, all models are trained with the same

data so that the results are comparable).

Among other existing methods, tmChem (Leaman et al., 2015)

and the method of Lu et al.’s (2015) are both CRF-based methods,

in which much feature engineering is employed to improve the per-

formance. tmChem extracts rich hand-crafted features including

general linguistic features, prefixes and suffixes, character features,

Roman numerals and Greek letters, semantic features, chemical ele-

ments, case pattern features and contextual features. Lu et al.’s

method uses word-level and character-level features, and multi-scale

word clustering based on a skip-gram model is used to further

improve the performance. TaggerOne (Leaman and Lu, 2016) is a

semi-markov model for joint NER and normalization, which

achieves an F-score of 91.40% on the CDR corpus. More recently,

Pandey et al. (2017) presented a model similar to our Att-BiLSTM-

CRF to extract knowledge of Adverse Drug Reactions (ADRs). And

we rebuilt their model (RNNA-CRF) to chemical NER. To make the

comparison fair, the same 50-dimensional word embedding was

also used for RNNA-CRF and its hyper-parameters were tuned on

the validation set likes our model. The results show that our method

obtains the state-of-the-art results with much less feature engineer-

ing where word and character embeddings are used and tuned auto-

matically during the training process. Moreover, owing to

document-level attention mechanism, our Att-BiLSTM-CRF model

without additional features achieves better performance than other

sentence-level neural network-based models and our Att-BiLSTM-

CRF model with additional features achieves the best performances

so far on the BioCreative CHEMDNER and CDR corpora (91.14%

and 92.57% in F-score, respectively).

4 Conclusions

In this paper, we present a novel neural network approach to

document-level chemical NER by introducing a document-level

attention mechanism, which allows the model to focus on tagging

consistency across multiple instances of the same token in a docu-

ment. In addition, we explored the effect of additional domain fea-

tures for the neural network models on the chemical NER task.

The experimental results show that (i) our attention mechanism

that is introduced to capture the document-level correlation infor-

mation between words has been proved to be effective to alleviate

the tagging inconsistency problem; and (ii) our Att-BiLSTM-CRF

model is more robust and it is less affected by the removal of man-

ually designed features as discussed in Section 3.4. Owing to these

two advantages, it can still achieve the state-of-the-art perform-

ance on the CHEMDNER and CDR corpora with only word and

character embeddings (90.84 and 91.96% in F-score,

respectively).

Our Att-BiLSTM-CRF approach exhibits promising results for

chemical NER in the biomedical literature. In addition, the

approach can be easily adapted to other domain. However, it may

have shortcoming on the identification of some other entity types

where consistency is not desirable. For example, articles mentioning

genetic diseases sometimes use the same abbreviation to refer to

both the gene and the disease. In the future work, we will improve

our model to solve the problem. Moreover, the NER approach need

to capture longer distance dependency information when applied to

the full text articles than the abstracts, and our approach will be

applied to full text articles in our future works.
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