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ABSTRACT Detecting forest fire smoke during the initial stages is vital for preventing forest fire events.

Recent studies have shown that exploring spatial and temporal features of the image sequence is important

for this task. Nevertheless, since the long distance wildfire smoke usually move slowly and lacks salient

features, accurate smoke detection is still a challenging task. In this paper, we propose a novel Attention

Enhanced Bidirectional Long Short-Term Memory Network (ABi-LSTM) for video based forest fire smoke

recognition. The proposed ABi-LSTM consists of the spatial features extraction network, the Bidirectional

Long Short-Term Memory Network(LSTM), and the temporal attention subnetwork, which can not only

capture discriminative spatiotemporal features from image patch sequences but also pay different levels of

attention to different patches. Experiments show that out ABi-LSTM is capable of achieving best accuracy

and less false alarms on different types of scenarios. The ABi-LSTM model achieve a highly accuracy

of 97.8%, and there is 4.4% improvement over the image-based deep learning model.

INDEX TERMS Smoke detection, attention, LSTM, spatiotemporal features.

I. INTRODUCTION

An efficient and stable vision-based smoke detection algo-

rithm is critical for the initial forest fire detection. On one

hand, forest fires present a significant challenge to human life

and natural ecological environment. If a forest fire cannot be

promptly extinguished, it will have a bad impact on a wide

area. Reaction time is one of the key factors that determine

the success of forest fire suppression. On the other hand, there

were extensive research on photoelectric- or ionization-based

fire smoke detectors. However, these sensors are limited by

the fact that these always serve as point sensors in space,

which are unsuitable at monitoring larger areas such as early

forest fire detection. The limitations of current smoke sensors

have prompted researches on vision-based smoke detection

methods.

Pan-tilt-zoom (PTZ) IP cameras are excellent for view-

ing large areas. They can be placed in auto-patrol modes

where they automatically step through predetermined
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positions. This paper proposes a novel methods to detect

forest fire using PTZ IP cameras. Figure 1 illustrates the pan-

tilt-zoom (PTZ) long range camera for forest fire detection

and a snapshot of a typical forest fire smoke at the initial

stages captured by a forest watch tower. The main manifesta-

tion of early forest fires is smoke because of tree shelter and

terrain. Therefore, forest fire monitoring system always focus

on smoke identification.

A considerable volume of research effort within the last

decade focused mainly on the identification of specific fea-

tures of smoke. Existing methods of smoke detection can

be divided into two categories: image-based smoke detection

[1]–[3] and video-based smoke detection [4], [5]. The general

smoke detection algorithms usually combine motion detec-

tion, feature extraction and classification method. Image-

based smoke detection methods are usually independent of

inter-frame context information. Video-based methods usu-

ally not only analyze spatial features in single frame images,

but also extract temporal features between frames.

Under certain conditions, single-frame-based detection

method is a good choice when it is difficult to obtain stable
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FIGURE 1. A pan-tilt-zoom (PTZ) long range camera for forest fire detection and a snapshot of a typical forest fire smoke at the initial stage captured by a
forest watch tower.

and reliable image sequence. Tian et al. [1] recently proposed

to separate a frame into quasi-smoke and quasi-background

components by convex optimization. Deep learning with

convolutional neural networks (CNNs) has achieved great

success in image classification and target detection. In [2],

researchers proposed a deep normalization and convolutional

neural network (DNCNN) with 14 layers to implement auto-

matic feature extraction and classification. Yuan et al. [3] pro-

posed a smoke detection method that combines local binary

pattern (LBP) like features, kernel principal component anal-

ysis (KPCA), and Gaussian process regression (GPR).

However, dynamic feature is one of the essential features in

forest fire smoke recognition task. The human vision system

is incredibly good at recognizing complex moving smoke

in sequence image, because it analyzes dynamic character-

istics when judging. If dynamic features can be extracted

and modeled better, it would be helpful for improving the

recognition accuracy. Dimitropoulos et al. [4] introduced a

higher order linear dynamical system (h-LDS) descriptor for

multidimensional dynamic texture analysis. There are also

researchers applying deep learning to forest fireworks iden-

tification. Lin et al. [5] proposed a joint detection framework

based on faster RCNN and 3D CNN. However, the applica-

tion of this algorithm is restricted by the large computational

complexity in practice.

Because the moving speed and direction of smoke in the

image are related to the monitoring distance and weather, it is

necessary for the model to adapt to a variety of scenes. The

difficulties of accurate forest fire smoke recognition lie in two

aspects, (1) learning efficient spatiotemporal representation

of fire smoke; (2) early forest fire smoke has different motion

saliency in different frames, so the model should pay different

attention to each frame.

Given the aforementioned concerns, we propose our

novel attention enhanced bidirectional LSTM Network

(ABi-LSTM) for forest fire smoke recognition. The fore-

ground detection algorithm is used to extract candidate image

patch sequences from video. And the block-based detection

scheme is used to expand the recognition scope (the back-

ground information around the motion pixels can be obtained

effectively) and roughly locate the smoke fire area.

This paper focuses on the candidate image patch sequences

classification. The contributions of this paper are summarized

as follows:

• We propose a novel attention enhanced bidirectional

LSTM network (ABi-LSTM) to tackle the early forest

fire smoke recognition problem.

• We consider spatiotemporal representation of smoke

candidate patch by applying CNN and bidirectional long

short-termmemory network from forward and backward

time direction.

• This is the first publication to apply attention mech-

anism for video-based forest fire smoke recognition.

In our specific implementation, an attention network

is designed to self-adaptively focus on discriminative

frames with a soft attention mechanism that can auto-

matically emphasize motion information in temporal

domain.

• We construct more challenging forest fire smoke data

sets to increase the reliability of the experiment. Exper-

imental results demonstrate that the proposed method

outperforms existing methods for forest fire smoke

recognition.

The rest of this paper is organized as follows. The proposed

ABi-LSTM framework is described in Section 3. The first

part of this section describes the spatial features extraction

network, which is actually an Inception V3 network [23];

the second part briefly review the Recurrent Neural Net-

work (RNN), and Long Short-Term Memory (LSTM) and

build a multi-layer bidirectional LSTMmodel by feed spatial
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feature of single patch to extract temporal features from

forward and backward order; the third part proposes an atten-

tion network to optimize classification process with a soft

attention mechanism. In Section 4, experimental results are

presented, and the ABi-LSTM framework is compared with

other smoke recognition algorithms. Finally, conclusions are

drawn in Section 5.

II. RELATED WORK

Although there is little literature on early forest fire smoke

detection, there is substantial literature on video based smoke

detection and fire detection [6], [7]. Many researchers have

attempted to address the problem of smoke detection focus-

ing mainly on the recognition of spatiotemporal features of

smoke. As mentioned in the previous section, existing meth-

ods of smoke detection can be divided into two categories:

image-based smoke method and video-based smoke method.

A. IMAGE-BASED METHOD

From the point of view of image-based method, there is a

vast literature about the investigations of the static charac-

teristics of smoke. Inspired by the airlight-albedo ambiguity

model, a novel approach to detect smoke using transmission

is proposed in [8]. In order to improve the performance,

Yuan [9] proposed a double mapping framework which

concatenates histograms of edge orientation, edge magni-

tude and Local Binary Pattern (LBP) bit, and densities of

edge magnitude, LBP bit, color intensity and saturation.

Tian et al. [1], [10], [11] formulated the smoke separation

problem as convex optimization that solves a sparse represen-

tation problem. In [10], three different models that constrain

the smoke component are proposed to separate the smoke

component from a given frame. In [11], the sparse coeffi-

cients associated with an over-complete dictionary represen-

tation is used to detect smoke as a new feature. Furthermore,

Tian et al. [1] solved the sparse representation problem using

dual dictionaries for the smoke and background components,

respectively, and developed a method based on the concept

of image matting to separate the smoke and background

components from a single image frame.

However, important dynamic information is often lost in a

single frame image, which is one of the main reasons for the

difficulty of image-based method.

B. VIDEO-BASED METHOD

As one of essential features, the motion information of smoke

will undoubtedly improve the smoke recognition accuracy in

theory. In [12], a smoke detection method using color, motion

and growth properties are proposed. Dimitropoulos et al. [4]

introduced a higher order linear dynamical system (h-LDS)

descriptor to analyze the smoke candidate image patches in

each subsequence. Undoubtedly, the extraction of dynamic

information in the process of recognition improves the per-

formance of mode to some extent.

The above methods usually focus on the boundary of

smoke or the effects of smoke on the edges of objects covered

by smoke by hand crafted features. Traditional hand crafted

feature based smoke detection methods can achieve high

accuracy in a small amount of samples but generalization

performances are less than satisfactory due to sensitivity to

the parameter setting of the detection algorithm. Moreover,

hand crafted feature based methods usually recognize smoke

from small size blocks (often < 50 × 50), which limits the

accuracy of smoke recognition.

C. DEEP LEARNING METHOD

In recent years, Deep Learning approaches (e.g. Convolu-

tional Neural Networks and Recurrent Neural Networks) has

led to very good performance on a variety of problems, such

as visual recognition [13], speech recognition [14] and natural

language processing [15]. Yin et al. [2] proposed a deep

normalization and convolutional neural network (DNCNN)

with batch normalization to extract features for smoke detec-

tion. In [16], researchers demonstrated the effectiveness of

saliency detection method and CNN in localization and

recognition of wildfire in aerial images. Liu et al. [17] pro-

posed a dual convolution network using dark channel prior

(DarkC-DCN) to further improve the recognition accuracy of

image-based CNN model. To ease the limitations of smoke

image samples, an end-to-end trainable framework based

on fast detector SSD and MSCNN for smoke detection is

proposed, which can optimize the model from synthetic and

real smoke samples.

Moreover, there is also video-based method using deep

learning [5]. A joint detection framework based on faster

RCNN [19] and 3DCNN [20] is proposed to detection smoke,

in which an improved faster RCNN with non-maximum

annexation is responsible for the smoke target location and

3D CNN is responsible for smoke recognition by combining

dynamic spatial–temporal information. Although this video-

based method takes into account the dynamic characteristics

between different frames, it can hardly be used in practical

scenarios because of the high computational cost.

Besides CNN, Recurrent Neural Network (RNN) is

another important structure of deep learning, which has

made significant breakthroughs in various tasks, especially

sequence processing [21]. However, the vanishing gradient

problem is a difficulty found in training recurrent neural

network with Back-Propagation Through Time. Long Short

Term Memory (LSTM) is specifically designed to tackle this

problems [22], [24]. There have been somemeaningful works

about RNN and LSTM [32]–[34]. Attention mechanism is

another most influential ideas in the Deep Learning commu-

nity, which is used in various problems like neural machine

translation, human action recognition and so on [25], [26].

The attentionmechanism can focus on discriminative features

in a longer sequence, which can be used in many difficult

tasks.

Our key motivation of ABi-LSTM is that: a) compared

with the hand crafted feature, CNN hasmore powerful feature

extraction ability, and the block size used for forest fire smoke

recognition in this paper is larger, which is helpful for CNN
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FIGURE 2. Framework of the proposed ABi-LSTM for forest fire smoke recognition, which consists of the spatial features
extraction network, the bidirectional LSTM network, and the temporal attention subnetwork. The input images are fed
into the ABi-LSTM network one by one.

model to refer to the surrounding information of suspected

fire smoke in the prediction process; b) bidirectional LSTM

can learn captures long-term information from forward and

backward time direction; c) attention mechanism can guide

the classification network focus on key frames from a long

image sequences.

III. APPROACH

In this section, we propose a novel Attention Enhanced

Bidirectional LSTM architecture for forest fire smoke

recognition.

A. OVERVIEW OF METHODOLOGY

As illustrated in Figure 2, the proposed ABi-LSTM is mainly

composed of three components: the spatial features extrac-

tion network, the Bidirectional LSTM network, and the tem-

poral attention subnetwork. The spatial features extraction

network is employed to extract spatial features from candi-

date patches, which are captured by ViBe [32] background

subtraction method. The Bidirectional LSTM network learns

long-term smoke-related information from spatial features.

In order to make full use of both the past and future context

information of a sequence in classification, a bidirectional

LSTM is employed to extract temporal features from for-

ward and backward order. In this model, the orange arrows

indicate the direction of information flow in forward LSTM

and the blue arrows indicate the direction of information

flow in backward LSTM. In order to concentrate on discrim-

inative frames which contribute more on forest fire smoke

recognition, an attention subnetwork is designed to automat-

ically emphasize motion information with a soft attention

mechanism in temporal domain. We’ll provide a detailed

explanation of each component later.

B. SPATIAL FEATURES EXTRACTION

CNNs have achieved excellent performance in computer

vision tasks. The Inception network was an important mile-

stone in the development of CNN classifiers. GoogLenet is

known as Inception V1 [27], and the researchers have subse-

quently proposed improved models such as Inception V2 [28]

and Inception V3 [23]. In this paper, instead of building a

model from scratch, a pretrained Inception V3 model is used

to capture spatial information from each individual frame.

Inception V3 is a heavily engineered network, which used

a lot of upgrades to increase the accuracy and reduce the

computational complexity: (1) Factorize 5 × 5 convolution

to two 3x3 convolution operations to improve computational

speed. (2) Factorize n × n convolution to a combination of

1 × n and n × 1 convolutions. (3) Expand the filter bank

outputs to remove the representational bottleneck. (4) Com-

bination of additional regularization with batch-normalized

auxiliary classifiers and label-smoothing.

In this study, the output of the ‘‘avg_pool’’ layer of

Inception V3 is used as spatial feature instead of the fully-

connected layer. The 2048-dimensional image features at

each time-step will form spatial features sequence that are

learned by subsequent bidirectional LSTM.

C. BIDIRECTIONAL LSTM

In this section, we briefly review the Recurrent Neural

Network (RNN), and Long Short-Term Memory (LSTM)

to make the paper self-contained. RNN is an extension of
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FIGURE 3. Structures of the neurons. (a) RNN and (b) LSTM.

feed-forward neural networks and has yielded promising

results in sequence learning. Figure 3-a demonstrates an

RNN neuron. The input of the RNN is a sequence data

{x1, x2, . . . , xT }.

As shown in Figure 3-a, the hidden state of all RNN units

at the tth time step is determined by the current input Xt and

the previous hidden state ht−1 at the (t − 1)th time step.

ht = σ (Wxh · Xt +Whh · ht−1 + bh) (1)

yt = g(σ (Who · ht + bo)) (2)

where σ is a nonlinear activation function, g denotes the

operation of the fully-connected layer, bh and bo are bias

vectors, Wxh, Whh and Who denote weight matrices from the

current input layer to hidden layer, the previous hidden layer

to current hidden layer and the current hidden layer to output

layer, respectively. RNN is an important model for sequential

date modeling of the deep learning family. However, it comes

with some challenges in modelling long-term dependencies

such as vanishing and exploding gradient problems during the

training phase. Our model builds on LSTM cells, which is an

advanced RNN architecture explicitly designed for tackling

this problem. Our key motivation of chosen LSTM is that

it can learn long-term dependencies and avoid exploding

and vanishing gradient problems that traditional RNN suffers

from during back propagation optimization. LSTM has been

successfully applied to handwriting recognition, machine

translation and so on. The difference between LSTM and

RNN is that the later adds several gates to the cell to judge

whether the information is useful or not [39].As illustrated

in Figure 3-b, a LSTM neuron updates its memory cell state

Ct from different sources at given time step t: the current

input Xt , the hidden state from LSTM themselves at the last

time step ht−1 as well as previous memory cell state Ct−1.

At each time step, the LSTM neuron can choose to input,

forget, and output the memory cell state governed by four

important parts: input gate it , output gate ot ,forget gate ft and

candidate cell state C̃t . Based on these parts, LSTM neuron

memory cell state and output can be computed by:

it = σ (Wxi · Xt +Whi · ht−1 + bi) (3)

ft = σ (Wxf · Xt +Whf · ht−1 + bf ) (4)

ot = σ (Wxo · Xt +Who · ht−1 + bo) (5)

C̃t = tanh(WhC · ht−1 +WxC · Xt + bC ) (6)

Ct = ft ⊙ Ct−1 + it ⊙ C̃t (7)

ht = ot ⊙ tanh(Ct ) (8)

where tanh presents hyperbolic tangent function, ‘·’ is a

matrix multiplication operator, ‘⊙’ denotes the products

with a gate value, and bi, bf , bo and bC are bias vectors.

The weight matrix subscripts have obvious meaning. For

example, Whi, Wxo and Who denote hidden-input gate

matrix, input-output gate matrix and hidden-output gate

matrix, respectively. In the proposed ABi-LSTM, multi lay-

ers LSTM are stacked to learn long term dependencies in

sequence data.

In order to make full use of both the past and future

context information of a sequence in classification, we build

a bidirectional LSTM model by feed spatial feature of single

patch to extract temporal features from forward and back-

ward order. The bidirectional LSTM model consists of two

parts: forward LSTM and backward LSTM as illustrated

in Figure 4. The forward LSTM updates its memory cell state
ECt , starting at time t = 1 (from x1 to xT ). Similarly, the back-

ward LSTM updates its memory cell state
←

C t , starting at time

t = T (from xT to x1). Formally, the bidirectional LSTM

model works as follows, for raw image patch It , forward

memory cell state ECt and backward memory cell state
←

C t ,

the encoding performs as

Xt = C(It , 2C), ECt = ET (Xt , 2 ET ), (9)

←

C t =
←

T (Xt , 2←
T
)

Ot =M(Xt , 2M) (10)

where C, ET ,
←

T represent CNN, forward LSTM and backward

LSTM respectively and 2C , 2 ET and 2←
T

are their corre-

sponding weights. Xt is the spatial feature of a single frame

extracted by CNN. M presents multi-layer LSTM and 2M

is multi-layer LSTM weights.

D. ATTENTION MECHANISM

For a long image patch sequence, the amount of valuable

information provided by different frames is in general not

equal. We employ an attention network to adaptively focus
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FIGURE 4. A single layer bidirectional LSTM. We feed spatial features in both forward (red arrows) and backward
(blue arrows) order which allows our model learns both the past and future context information context
information from both left and right side over time.

FIGURE 5. The graphical illustration of the attention model.

on discriminative frames with a soft attention mechanism

that can automatically measure the importance of different

frames.

As mentioned previously, for consecutive T frames, the

multi-layer bidirectional LSTM learns spatiotemporal infor-

mation and outputs fire smoke related representation O =
{O1,O2, . . . ,OT }. The illustration of the spatial attention

network is shown in Figure 5. At each time step t , the scores

st for indicating the importance of the T frames are jointly

obtained as

st = Ustanh(WxsXt +WosOt + bs)+ bus (11)

where Us,Wxs,Wos are the weight matrices learned from the

network and bs, bus are bias vectors. Xt is the spatial fea-

tures extracted by CNN.Ot is the spatiotemporal information

extracted by Bi-LSTM. For the kth frame, the importance

value is computed as

αt =
exp (st)

∑T
i=1 exp (si)

(12)

which is a normalization of the scores. Among the sequences,

the larger the score, the more important this frame is for

determining the type of classes. We regard importance values

as attention weights. Instead of assigning equal degrees of

importance to all the spatiotemporal informationOt , the final

output of the attention network is modulated toO
′

t = αt⊙Ot .
Finally, we concatenate all the time step output of attention

network and add a softmax layer on top of the model for

classification.

IV. EXPERIMENTS

In this section, we will introduce the experimental set-

ting in detail. Then we design several groups of experi-

ments to measure the performance of proposed ABi-LSTM.

Finally, we test the computational efficiency of the proposed

framework.

A. DATASET

There is currently no large scale forest fire smoke dataset for

algorithmic train and test. We build a large-scale forest fire

smoke video dataset with Nanjing Enbo Technology Com-

pany Ltd. We collect a large number of real early forest fire

video to create our dataset, all videos were captured from for-

est firemonitoring systemwith an image size of 1920× 1080.

Considering that dynamic feature is one of the essential

features of smoke. In this paper, the foreground detection

algorithm is used for the candidate patch proposal. After

comparing the performance and stability of some foreground

detection algorithms, the ViBe [32] background subtraction

method is selected to detect the candidate patch. When the

number of individual foreground target pixels exceeds a

threshold (50 in this paper), the area in which the foreground

target is located is considered to be a suspected target. The

299 × 299 image sequence centered on the moving target is

fed to ABi-LSTM. The top half of the Figure 6 is the raw

video sequence, and the bottom half is the foreground map

obtained by VIBE.

The sequence sample is 5 frames per second, with a total

length of 20 frames. The total number of sequences is 2000,

including 1000 smoke containing sequences and 1000 non-

smoke sequences. For purpose of training and testing, the
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FIGURE 6. Using background subtraction technique to get the moving
targeted region. Positive sequences are highlighted in red boxes, negative
sequences are highlighted in yellow boxes.

TABLE 1. Dataset for experiment.

dataset is split into training and test sets, with an 80-20 split.

The details of dataset are described in Table 1.

B. IMPLEMENTATION DETAILS

Experiments were conducted on a personal computer with

CPU of Intel Core i5-6500 and GPU of NVIDIA GTX1080.

The proposed ABi-LSTM architecture is implemented on the

TensorFlow framework.

In most of the literature, researchers normally computed

accuracy based at patch-level because there is little test data.

However, we evaluate the accuracy based on suquence-level

evaluation that is smoke and non-smoke sequence classifica-

tion accuracy in our work. The proposed ABi-LSTM frame-

work is trained stage by stage.

In the first stage, we use Adam optimizer for Inception

V3 network training. Instead of randomly initializing the

weights, we use the pre-trained Inception V3 model on Ima-

geNet to finetune, with learning rate of 0.00001, batch size

of 32, input size of 3 × 299 × 299, and train epoch of

30. Since our forest fire smoke recognition task is different

from the ImageNet, we define a new top-level classifier on

the basis of Inception V3 neural network by adding a fully

connected layer. The newly stacked fully connected layer

uses relu as the activation function and uses softmax for

classification. In training phase, we chose to train only the

top 2 inception blocks and newly stacked layer, and freeze

the other 172 layers.

In the second stage, the output of the ‘‘avg_pool’’ layer in

Inception V3 are extracted as spatial feature for each frame.

The learned spatial feature and sequence label are fed to train

the subsequent model. We use RMSprop optimizer for ABi-

LSTM network training, with learning rate of 0.00001, batch

size of 32, input size of 2048 × 20, and train epoch of 50.

C. RESULTS AND COMPARISONS

In this section, we first introduce the evaluation protocol

including statistical measures. Then we evaluate the perfor-

mance our ABi-LSTM method with other methods. Thirdly,

we do the ablation experiments of each sub-model of the

proposed ABi-LSTM.

1) EVALUATION PROTOCOL

For binary classification of image patch sequence, the

sequence can be divided into true positive (TP), false posi-

tive (FP), true negative (TN), false negative (FN) four groups

based on its combination of true class and predicted class. The

predicted class is the output of the ABi-SLTM. The specific

classification is as follows:

• True Positive (TP): Correctly classified as the smoke

sequence

• True Negative (TN): Correctly classified as the non-

smoke sequence

• False Positive (FP): Incorrectly classified as the smoke

sequence

• False Negative (FN): Incorrectly classified as the non-

smoke sequence

Performance of binary classifier are usually evaluated by

the following widely used statistical measures: true positive

rate (TPR), true negative rate (TNR) andAccuracyRate (AR).

The relative number of TP with respect to the overall number

of positives is called the true positive rate (TPR), which

is also known as sensitivity. The true negative rate (TNR)

measures the proportion of actual negatives that are correctly

identified as such. Another, Accuracy Rate (AR) is an overall

measure for the relative number of correct classifications of

both positives and negatives, which can be used to compare

the overall performance of the different algorithms. Mathe-

matically, these statistical measures can be expressed as:

TPR =
TP

TP+ FN
(13)

TNR =
TN

TN + FP
(14)

AR =
TP+ TN

TP+ FN + TN + FP
(15)

In our ABi-LSTM model, the cross entropy loss function

layer is the end with two parts: the predicted probability value

qi and the true label pi. For each sequence x, the probability

of the output y = 1 is given by qy=1 = ŷ, Similarly,

the probability of the output y = 0 is simply given by
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FIGURE 7. Smoke sequences used in our method.

FIGURE 8. Non-smoke sequences used in our method.

qy=0 = 1 − ŷ. The true probabilities can be expressed

similarly as py=1 = y and py=0 = 1 − y. The loss function

for the example is formulated as:

L (p, q)=−
∑

i
pilogqi=−ylogŷ−(1−y) log

(

1−ŷ
)

(16)

2) EXPERIMENTS RESULTS

We first used the test sets to find the optimal setting of our

approach: learning rate, number of LSTM layers, number of

LSTM hidden units, and so on.

To show the superiority of the proposed ABi-LSTM,

we compare our method with Inception V3 [23], CNN+MLP,

3DCNN [20], TSN [35], ECO [36]and three common smoke

and fire recognition methods [29], [30], [31]. Table 2

shows the comparison results of different methods and

parameters on our dataset. In order to analyze the influ-

ence of parameters on the accuracy and complexity of the

model, we compared the experimental results of CNN+MLP

and ABi-LSTM under different parameters. The x in

TABLE 2. Comparison with other method on our dataset.

CNN-MLP-x indicates the number of hidden cells in the

MLP. Similarly, ABi-LSTM-x indicates the number of bidi-

rectional LSTM cells. The input to the other models is
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FIGURE 9. Results of the forest fire smoke monitoring system. The detected smoke was marked in red boxes.

TABLE 3. Confusion matrix for the classification of smoke and non-smoke based on the ABi-LSTM-64.

chronological patch sequences, except that the input to

the Inception V3 is single patches. And we report the

average runtime required to process 20 frame sequences

in Table 2.

As shown in Table 2, the ABi-LSTM framework achieves

the total accuracy of 97.8% with true positive rate 97.5% and

true negative rate 98.0%. From Table 2, we can see that the

results of our proposed ABi-LSTM outperform 4.4% than

image-based Inception V3 model. The comparison results

prove that the ABi-LSTM is optimal for sequence-based

forest fire smoke recognition.

For clarity, the confusion matrix of ABi-LSTM is shown

in Table 3. Furthermore, we conduct an ablation study to

evaluate the performance of each sub-model of the proposed

ABi-LSTM. In this research, we conduct three models for

comparison:
• Inception V3 is a single frame image model, and its

experimental results are mentioned in Table 2, which is

considered as baseline in ablation experiments.

• Uni-directional LSTM-x is a single-direction LSTM,

in which x represents the number of hidden units. Uni-

directional LSTM consists of two sub-model: the spa-

tial features extraction network and the uni-directional

LSTM network.

• Bi-LSTM consists of two sub-model: the spatial fea-

tures extraction network and the Bidirectional LSTM

network. The input patches are fed into the Bi-LSTM

network one by one.

• ABi-LSTM consists of all the three sub-model: the spa-

tial features extraction network, the Bidirectional LSTM

network, and the temporal attention subnetwork. The

input patches are fed into the ABi-LSTM network one

by one.
As shown in the Table 4, the Bi-LSTM network improves

the accuracy of the Inception V3 imaged-based model by

2.1%, and the temporal attention subnetwork improves the

accuracy of the Bi-LSTMmodel by 2.3%. The ablation exper-

iments justify our initial design idea.
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TABLE 4. The ablation analysis of the ABi-LSTM.

TABLE 5. Average complexity comparisons of an image.

The proposed model can be deployed easily, which can be

used to recognize the suspected smoke patches in practical

application. Figure 9 shows the recognition results of pro-

posed model.

V. CONCLUSION

In this paper, we propose an attention enhanced bidirectional

LSTM network (ABi-LSTM) for early forest smoke recogni-

tion. Specifically, the proposed approach can be summarized

as three parts:

a) an Inception V3 network which is used to extract spatial

features from smoke candidate patch step by step; b) Bi-

LSTM model which is designed to extract temporal features

from forward and backward order by feed spatial feature

of single patch; c) attention network is employed to opti-

mize classification process with a soft attention mechanism

that can automatically measure the importance of different

frames. Extensive experiment results show that the proposed

ABi-LSTM framework obtains higher accuracy in early for-

est fire smoke recognition compared with other methods.

Moreover, ablation study is conducted to evaluate the perfor-

mance of each sub-model in ABi-LSTM.

The proposed ABi-LSTM has been inspired by the atten-

tion mechanism in neural machine translation, which can

adaptively focus on discriminative frames. As a result, this

framework may be suitable for early forest fire smoke detec-

tion. An interesting question is whether attention mechanism

can be used in a single frame image to enable the model to

learn more discriminatory spatial information. This will be

investigated in the future.
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Y. H. Habiboǧlu, B. U. Töreyin, and S. Verstockt, ‘‘Video fire detection—

Review,’’ Digit. Signal Process., vol. 23, no. 6, pp. 1827–1843, 2013.

[7] J. A. Ojo and J. A. Oladosu, ‘‘Video-based smoke detection algorithms: A

chronological survey,’’ Comput. Eng. Intell. Syst., vol. 5, no. 7, pp. 38–50,

2014.

[8] C. Long, J. Zhao, S. Han, L. Xiong, Z. Yuan, J. Huang, and W. Gao,

‘‘Transmission: A new feature for computer vision based smoke detec-

tion,’’ in Artificial Intelligence and Computational Intelligence, vol. 6319,

F. L. Wang, H. Deng, Y. Gao, and J. Lei, Eds. Berlin, Germany: Springer,

2010, pp. 389–396.

[9] F. Yuan, ‘‘A double mapping framework for extraction of shape-invariant

features based on multi-scale partitions with AdaBoost for video smoke

detection,’’ Pattern Recognit., vol. 45, no. 12, pp. 4326–4336, 2012.

[10] H. Tian, W. Li, L. Wang, and P. Ogunbona, ‘‘Smoke detection in video:

An image separation approach,’’ Int. J. Comput. Vis., vol. 106, no. 2,

pp. 192–209, Jan. 2014.

[11] H. Tian, W. Li, P. Ogunbona, and L. Wang, ‘‘Single image smoke detec-

tion,’’ in Proc. Asian Conf. Comput. Vis., 2014, pp. 87–101.

[12] L. Millan-Garcia, G. Sanchez-Perez, M. Nakano, K. Toscano-Medina,

H. Perez-Meana, and L. Rojas-Cardenas, ‘‘An early fire detection algo-

rithm using IP cameras,’’ Sensors, vol. 12, no. 5, pp. 5670–5686,May 2012.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, ‘‘Imagenet classifica-

tion with deep convolutional neural networks,’’ in Proc. Adv. Neural

Inf. Process. Syst., vol. 25, F. Pereira, C. J. C. Burges, L. Bottou, and

K. Q. Weinberger, Eds. Curran Associates, 2012, pp. 1097–1105.

[14] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,

‘‘Attention-based models for speech recognition,’’ in Proc. Adv. Neural Inf.

Process. Syst., vol. 28, C. Cortes, N. D. Lawrence, D. D. Lee,M. Sugiyama,

and R. Garnett, Eds. Curran Associates, 2015, pp. 577–585.

[15] Y. Goldberg, ‘‘Neural network methods for natural language processing,’’

Synth. Lectures Hum. Lang. Technol., vol. 10, no. 1, pp. 1–309, 2017.

[16] Y. Zhao, J. Ma, X. Li, and J. Zhang, ‘‘Saliency detection and deep learning-

based wildfire identification in UAV imagery,’’ Sensors, vol. 18, no. 3,

p. 712, Feb. 2018.

[17] Y. Liu,W. Qin, K. Liu, F. Zhang, and Z. Xiao, ‘‘A dual convolution network

using dark channel prior for image smoke classification,’’ IEEE Access,

vol. 7, pp. 60697–60706, 2019.

[18] G. Xu, Q. Zhang, D. Liu, G. Lin, J. Wang, and Y. Zhang, ‘‘Adversarial

adaptation from synthesis to reality in fast detector for smoke detection,’’

IEEE Access, vol. 7, pp. 29471–29483, 2019.

[19] S. Ren, K. He, R. Girshick, and J. Sun, ‘‘Faster R-CNN: Towards real-time

object detection with region proposal networks,’’ in Proc. Adv. Neural Inf.

Process. Syst., vol. 28, C. Cortes, N. D. Lawrence, D. D. Lee,M. Sugiyama,

and R. Garnett, Eds. Curran Associates, 2015, pp. 91–99.

[20] D. Tran, L. Bourdev, R. Fergus, L. Torresani, and M. Paluri, ‘‘Learn-

ing spatiotemporal features with 3D convolutional networks,’’ in Proc.

IEEE Int. Conf. Comput. Vis. (ICCV), Santiago, Chile, Dec. 2015,

pp. 4489–4497.

[21] H. Salehinejad, S. Sankar, J. Barfett, E. Colak, and S. Valaee, ‘‘Recent

advances in recurrent neural networks,’’ Dec. 2017, arXiv:1801.01078.

[Online]. Available: https://arxiv.org/abs/1801.01078

[22] S. Hochreiter and J. Schmidhuber, ‘‘Long short-term memory,’’ Neural

Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[23] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, ‘‘Rethinking

the inception architecture for computer vision,’’ in Proc. IEEE Conf.

Comput. Vis. Pattern Recognit., Jun. 2016, pp. 2818–2826.

VOLUME 7, 2019 154741



Y. Cao et al.: ABi LSTM for Early Forest Fire Smoke Recognition

[24] A. Graves, N. Jaitly, and A.-R. Mohamed, ‘‘Hybrid speech recognition

with deep bidirectional LSTM,’’ in Proc. IEEE Workshop Autom. Speech

Recognit. Understand., Dec. 2013, pp. 273–278.

[25] D. Bahdanau, K. Cho, and Y. Bengio, ‘‘Neural machine translation by

jointly learning to align and translate,’’ Sep. 2014, arXiv:1409.0473.

[Online]. Available: https://arxiv.org/abs/1409.0473

[26] S. Song, C. Lan, J. Xing, W. Zeng, and J. Liu, ‘‘An end-to-end spatio-

temporal attention model for human action recognition from skeleton

data,’’ in Proc. 31st AAAI Conf. Artif. Intell., Feb. 2017, pp. 4263–4270.

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,

V. Vanhoucke, and A. Rabinovich, ‘‘Going deeper with convolutions,’’ in

Proc. IEEE Conf. Comput. Vis. Pattern Recognit., vol. 2015, pp. 1–9.

[28] S. Ioffe and C. Szegedy, ‘‘Batch normalization: Accelerating deep

network training by reducing internal covariate shift,’’ Feb. 2015,

arXiv:1502.03167. [Online]. Available: https://arxiv.org/abs/1502.03167

[29] F. Yuan, ‘‘Video-based smoke detection with histogram sequence of LBP

and LBPV pyramids,’’ Fire Saf. J., vol. 46, no. 3, pp. 132–139, Apr. 2011.

[30] H. Tian,W. Li, P. Ogunbona, D. T. Nguyen, and C. Zhan, ‘‘Smoke detection

in videos using non-redundant local binary pattern-based features,’’ in

Proc. IEEE 13th Int. Workshop Multimedia Signal Process., Oct. 2011,

pp. 1–4.

[31] M. Favorskaya, A. Pyataeva, and A. Popov, ‘‘Verification of smoke detec-

tion in video sequences based on spatio-temporal local binary patterns,’’

Procedia Comput. Sci., vol. 60, pp. 671–680, Jan. 2015.

[32] Q. Liu, F. Zhou, R. Hang, and X. Yuan, ‘‘Bidirectional-convolutional

LSTM based spectral-spatial feature learning for hyperspectral image

classification,’’ Remote Sens., vol. 9, no. 12, p. 1330, 2017.

[33] R. Hang, Q. Liu, D. Hong, and P. Ghamisi, ‘‘Cascaded recurrent neural

networks for hyperspectral image classification,’’ IEEE Trans. Geosci.

Remote Sens., vol. 57, no. 8, pp. 5384–5394, Aug. 2019.

[34] Q. Liu, R. Hang, H. Song, and Z. Li, ‘‘Learningmultiscale deep features for

high-resolution satellite image scene classification,’’ IEEE Trans. Geosci.

Remote Sens., vol. 56, no. 1, pp. 117–126, Jan. 2018.

[35] L. Wang, Y. Xiong, Z. Wang, Y. Qiao, D. Lin, X. Tang, and L. Van Gool,

‘‘Temporal segment networks: Towards good practices for deep action

recognition,’’ in Proc. Eur. Conf. Comput. Vis., vol. 9912, B. Leibe,

J. Matas, N. Sebe, and M. Welling, Eds. Cham, Switzerland: Springer,

2016, pp. 20–36.

[36] M. Zolfaghari, K. Singh, and T. Brox, ‘‘ECO: Efficient convolutional

network for online video understanding,’’ in Proc. Eur. Conf. Comput. Vis.,

vol. 11206, V. Ferrari, M. Hebert, C. Sminchisescu, and Y. Weiss, Eds.

Cham, Switzerland: Springer, 2018, pp. 713–730.

YICHAO CAO received the B.S. degree from the

School of Electrical and Information Engineering,

Jiangsu University, China, in 2015, and the M.S.

degree in automation from Southeast University,

China, in 2019, where he is currently pursuing the

Ph.D. degree with the Department of Automation.

His research interests include image processing,

deep learning, and computer vision.

FENG YANG graduated from the School of

Electrical and Information Engineering, Jiangsu

University of Technology, China, in 2017. She

is currently pursuing the master’s degree with

the School of Instrument Science Engineering,

Southeast University, China. Her research interests

include image processing, computer vision, and

simultaneous localization and mapping.

QINGFEI TANG received the B.S. degree from the

Chongqing University of Science and Technology,

Chongqing, China, in 2015, and the M.S. degree

from Northeastern University, Shenyang, China,

in 2018. He is currently an Algorithm Researcher

with Nanjing Enbo Technology Company Ltd. His

research interests include image retrieval, image

detection, and video classification.

XIAOBO LU received the B.S. degree from

Shanghai Jiao Tong University, Shanghai, China,

the M.S. degree from Southeast University,

Nanjing, China, and the Ph.D. degree from the

Nanjing University of Aeronautics and Astro-

nautics. He did a Postdoctoral research with the

Chien-Shiung Wu Laboratory, Southeast Univer-

sity, from 1998 to 2000, where he is currently

a Professor with the School of Automation and

the Deputy Director of the Detection Technology

and Automation Research Institute. He is the coauthor of the book An

Introduction to the Intelligent Transportation Systems (Beijing, China Com-

munications: 2008). His research interests include image processing, signal

processing, pattern recognition, and computer vision. He has received many

research awards such as the First Prize of the Natural Science Award from the

Ministry of Education of China and a prize of the Science and Technology

Award of Jiangsu Province.

154742 VOLUME 7, 2019


