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Abstract
An industrial robot is a complex mechatronics system, whose failure is hard to diagnose based on monitoring data.
Previous studies have reported various methods with deep network models to improve the accuracy of fault
diagnosis, which can get an accurate prediction model when the amount of data sample is sufficient. However, the
failure data is hard to obtain, which leads to the few-shot issue and the bad generalization ability of the model.
Therefore, this paper proposes an attention enhanced dilated convolutional neural network (D-CNN) approach for
the cross-axis industrial robotics fault diagnosis method. Firstly, key feature extraction and sliding window are
adopted to pre-process the monitoring data of industrial robots before D-CNN is introduced to extract data features.
And self-attention is used to enhance feature attention capability. Finally, the pre-trained model is used for transfer
learning, and a small number of the dataset from another axis of the multi-axis industrial robot are used for
fine-tuning experiments. The experimental results show that the proposed method can reach satisfactory fault
diagnosis accuracy in both the source domain and target domain.

Keywords: Industrial robot, Fault diagnosis, Dilated convolutional neural network, Self-attention mechanism,
Transfer learning

1 Introduction
With the rapid development of automation and indus-
trial production, the industrial robot system has attracted
considerable attention [1]. The rise of industrial robots
has promoted the development of modernization, changed
the mode of production, and replaced some monotonous,
harsh and dangerous jobs. An industrial robot consists of
three parts, namely the main body, drive system and con-
trol system. Industrial robots, the highly integrated de-
vices of mechanical, automated and electrical technolo-
gies, have been increasingly accepted and recognized by
the industry [2]. However, the unexpected failure of the
industrial robot will lead to the stagnation of the produc-
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tion line, casualty and economic loss [3, 4], which poses
great challenges to the development of the modern man-
ufacturing industry. Therefore, it is very important to de-
velop an effective and advanced fault diagnosis method to
detect the working state of multi-axis industrial robots.

The fault diagnosis of industrial robots highly depends
on regular inspection by the technician. With the devel-
opment of the Internet of Things, artificial intelligence
and big data analytics, data-driven approaches have been
widely investigated for fault diagnosis. Traditional models
of the prevailing algorithms such as support vector ma-
chine [5], random forest [6], logistic regression [7], and
artificial neural network [8] have made certain achieve-
ments. However, when handling the complex equipment
monitoring data, such traditional shallow learning algo-
rithms are difficult to mine useful features and achieve
accurate fault diagnosis. Recently deep learning has been
widely applied in the field of fault diagnosis in the in-
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dustrial robot with its powerful learning ability and fea-
ture extraction ability [9–11]. Such as deep neural net-
work [12], deep autoencoder [13], deep belief network
[14], convolutional neural network (CNN) [15] and recur-
sive neural network [16]. To be specific, Jaber and Bicker
[17] measured vibration signals on robot joints and used
discrete wavelet transform and artificial neural network
to identify clearance recoil faults. Brambilla et al. [18]
proposed a model-based robot fault diagnosis method,
which detected sensor faults through a generalized ob-
server scheme. However, model-based robot fault diagno-
sis is difficult to be applied in practical applications be-
cause the state of the robot is difficult to estimate. Kim et
al. [19] proposed a time-domain average method for fault
detection of a gearbox in an industrial robot using vibra-
tion signals. In addition, deep learning has also received a
lot of attention in other electrical equipment such as bear-
ings and circuits. Janssens et al. [20] proposed a three-layer
CNN structure that can be used for bearing fault detec-
tion. The discrete Fourier transform time-frequency trans-
formation of the original signal is needed before train-
ing. Chen et al. [21] proposed a CNN fault classification
method combined with Extreme Learning Machine, which
can effectively achieve fault classification, but it does not
take into account the multi-channel original signals mea-
sured by multiple sensors. With the research of deep learn-
ing, many scholars pay more and more attention to the fea-
tures related to faults, and attention mechanism has been
applied. Gong and Du [22] proposed an analogue circuit
fault diagnosis method based on attention mechanism and
CNN, which effectively solved the problems of difficulty in
extracting analogue circuit fault features, complex model
calculation and poor accuracy. Hao et al. [23] proposed a
CNN based on multi-scale and attention mechanisms to
automatically diagnose the health status of rolling bear-
ings. Yang et al. [24] proposed deep multiple autoencoders
with an attention mechanism network for fault diagnosis
under different working conditions. Zhang et al. [25] pro-
posed a novel fault diagnosis method with global multi-
attention deep residual shrinkage networks, which used
an attention mechanism to dynamically infer self-adaptive
parameters, to achieve fault diagnosis of vibration signals.

Through the attention mechanism, the model is able
to pay more attention to features with a strong correla-
tion of faults, thereby reducing the dependence on exter-
nal information. Compared with CNN, recurrent neural
networks and other models, it has fewer parameters and
lower computation force requirements. However, atten-
tion bias exists for recurrent neural network algorithms,
and the training process still needs a large number of data
samples, while the actual industrial robot data has the fol-
lowing characteristics: 1) The collected signal is noisy. The
electro-mechanical coupling of industrial robots makes
the signals between different parts interfere with each
other, making the collected data noisy. 2) The imbalance

of normal and failure data. Its failure time is far less than
the uptime, which causes the data imbalance issue.

When the failure samples are insufficient, the deep
learning model is difficult to train, resulting in poor fault
diagnosis accuracy of the model. In order to improve the
generalization performance of fault diagnosis methods in
different diagnosis scenarios, some fault diagnosis algo-
rithms based on deep transfer learning have been devel-
oped [26]. Liu et al. [27] proposed adaptive transfer learn-
ing in the adversarial discriminant domain for fault di-
agnosis of gas turbines in different fields. Tian et al. [28]
proposed a multi-source information transfer learning
method for cross-domain fault diagnosis with subdomain
adaptive, using a multi-branch structure to align the spa-
tial distribution of elements in each source domain and
target domain. Han et al. [29] proposed a generative ad-
versarial network diagnosis model, introduced adversarial
learning as a cross-domain regularization term, and took
data under different load conditions as the source domain
and target domain, respectively, to achieve an accurate
diagnosis of rolling bearing faults under few-shot condi-
tions through transfer learning. Pang and Yang [30] real-
ized cross-domain rolling bearing fault diagnosis by using
a cross-domain stacked denoising autoencoder. Zheng et
al. [31] proposed an intelligent fault identification method
based on multi-source domain generalization, which ef-
fectively reduced the risk of negative transfer. Hasan et al.
[32] proposed a transfer learning method based on one-
dimensional CNN and frequency domain analysis of vi-
bration signals because of the influence of reliability of sig-
nal extraction on results, enabling the model to diagnose
faults under other working conditions using information
obtained under given working conditions.

Great achievements have been made in transfer learn-
ing, but few studies have explored the effect of sample im-
balance in the source domain on transfer performance.
As a result, this paper proposes an attention enhanced di-
lated CNN(D-CNN) approach for cross-domain industrial
robotics fault diagnosis to realize the classification and di-
agnosis of industrial robot faults in the case of the issue of
few-shot. The transfer performance under different pro-
portions of normal failure data in the source domain is
studied. The main contributions of this study are listed as
follows:

1) We designed a D-CNN to reduce the loss of spatial
features without reducing the receptive field and can
obtain long-ranged information. By introducing the
dilation rate, the convolutional degradation problem
is solved and the fault diagnosis of the low-parameter
network is realized.

2) Based on the D-CNN model, a self-attention
mechanism is further introduced to enhance the
fault-related features extraction, which does not need
a large number of model parameters to improve the
accuracy of fault diagnosis.
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Figure 1 The general flow chart of fault diagnosis based on transfer learning

3) Aiming at the problem that it is difficult to collect
fault samples of industrial robots in practice, the
transfer learning method is investigated. Through
pre-trained models, cross-axis fault diagnosis of
industrial robots can be realized with fewer failure
data, which solves the problem of limited industrial
robot fault data.

Experimental results show that the model has strong
learning ability and better performance in processing se-
quence data, and is more suitable for multi-axis industrial
robots fault diagnosis. Besides, accurate classification re-
sults can be achieved even when the amount of data in the
target domain is limited.

The rest of the paper is organized as follows. Section 2
details the proposed method. A series of experimental
steps and an analysis of the experimental results are pre-

sented in Sects. 3 and 4, respectively. Finally, the discus-
sions and future works are given in Sect. 5, and the con-
clusions are made in Sect. 6.

2 Methodology
The flow of the fault diagnosis method of transfer learning
proposed in this paper is shown in Fig. 1, which mainly
includes three modules: data processing module, source
domain processing module and target domain processing
module. The details are as follows:

1) Data processing module. All parameter data during
the normal operation of the industrial robot and the failure
of the industrial robot reducer are collected to construct
the dataset, and all the data are preprocessed. In order to
respond to the trend of the dataset, the step length for the
S1 average sampling needs to be considered. The mean
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Figure 2 The sliding window approach

value and the variance of S1 step sampling variation de-
gree can reveal the pattern relevant to the healthy stage of
the reducer. The indicators of mean and variance are mul-
tidimensional, and they still need through the S1 step sam-
pling kurtosis such as non-dimensional indicators which
are used to describe the steep or smooth of the data distri-
bution. Kurtosis is calculated as shown in formula (1). The
mean, variance and kurtosis collected from the above fea-
ture engineering are used to form a new dataset. The nor-
mal data and fault data are labelled respectively and then
merged and scrambled. The data after feature engineering
processing is processed according to the sliding window
mechanism shown in Fig. 2, where the sliding window step
is S2.

Kurtosis =
[
∫ ∞

–∞ x(t) – mean]4p(x) dx
std4 . (1)

2) Source domain processing module. Firstly, in this
module, the data in the source domain is divided into
the training set and testing set to ensure the accuracy of
the pre-training model. Secondly, the CNN model is con-
structed, and the dilation rate is introduced after the pa-
rameters are optimized to complete the construction of the
D-CNN. In order to make the model pay more attention to
the fault information, the self-attention mechanism is in-
troduced to fuse the features extracted by the constructed

D-CNN. Next, the testing set is input to observe different
evaluation indicators. Finally, the final model is obtained
through the testing set.

3) Target domain processing module. In this module,
transfer learning is used to realize the fault diagnosis of
the target domain data to solve the problem of few-shot.
Firstly, an improved neural network pre-trained on the
source domain is introduced. Transfer the network struc-
ture and network parameters to the target domain. Fixing
shallow convolutional layer no longer training (frozen con-
volutional layer), and adding specific full connection layer
and classifier; Then fine-tune the deep network using the
target domain data on the target domain, and finally per-
form predictive classification on the testing set of the tar-
get domain.

Finally, the proposed method model combining the at-
tention mechanism and the D-CNN model is shown in
Fig. 3, in which the attention layer is located after the
fourth convolutional layer.

2.1 Dilated convolutional neural network
Traditional CNN has been widely used in image classifica-
tion, speech recognition, natural language processing and
other fields. Due to the strong feature extraction capability,
it can also be applied to fault diagnosis. CNN is mainly ex-
tracted by features within the convolution check range. In
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Figure 3 Network diagram

the convolution layer, the weight of each neuron connected
to the data window is fixed, and each neuron only focuses
on one feature. The sliding of the convolution kernel en-
ables the integration of global-local features to obtain the
information of the whole sample. When the convolution
kernel is working, it will regularly sweep the input ground
features, multiply and sum the matrix elements of the in-
put features in the receptive field, and add the deviation
amount, as shown in formula (2):

Zl+1(i, j) =
[
Zl ⊗ wl+1](i, j) + b

=
Kl∑

k=1

f∑

x=1

f∑

x=1

[
Zl

k(s0i + x, s0j + y)
]

× wl+1
k (x, y) + b.

(2)

In (2), (i, j) ⊂ {0, 1, . . . , Li+1}, Li+1 = Ll+2p–f
s0

+ 1. The sum
part is equivalent to solving the cross-correlation once,
where b is the deviation, Zl and Zl+1 represent the convolu-
tion input and output of the drop Li+1 layer, and Li+1 is the
size of Zl+1. It is assumed that the length and width of the
feature graph are the same, Z(i, j) corresponds to the pixel
of the feature graph, K is the number of channels of the

feature graph; f , s0 and p are convolution layer parameters
which correspond to the size of the convolution kernel, the
convolution step and the number of filling layers.

The dilated convolution method was studied by [33]
which is often applied to semantic segmentation. Dilated
convolution is a kind of CNN that can increase the re-
ceptive field without increasing the number of parameters.
Its realization method is to add the dilation rate between
elements inside the convolution kernel, which is equiva-
lent to adding zero elements between adjacent elements of
the convolution kernel. The number of inserted dilations
is called dilation rate. Take 3 × 3 convolutions as an ex-
ample in Fig. 4. Figure 4(a) is a common convolution pro-
cess, which is calculated by sliding on the feature graph
of closely arranged convolution kernels. Figure 4(b) repre-
sents convolution calculation with dilation rate is 1. Sim-
ilarly, Fig. 4(c) represents convolution calculation with di-
lation rate is 2.

The dilation rate should meet the criteria of formula (3),
where ri is the dilation rate of layer i, and Mi is the maxi-
mum dilation rate of layer i.

Mi = max
[
Mi+1 – 2ri, Mi+1 – 2(Mi+1 – ri), ri

]
. (3)
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Figure 4 Comparison between ordinary convolution and dilated convolution

2.2 Self-attention mechanism
The principle of the attention mechanism is to adjust the
direction of attention and the weighting model according
to the specific task objective, increase the weighting of the
attention mechanism in the hidden layer of the neural net-
work, and neglect the information that is not essential to
the attention mechanism. Its essence is to obtain more ef-
fective information by placing higher weights on the fo-
cused area. Its main functions are as follows: assign differ-
ent weights to different parts of the input sequence; then
the different parts of the input sequence are multiplied by
the weight value, and the local feature vector is extracted
to realize the amplification and reduction of different local
weights of the input sequence.

After the dilated convolution, it is inserted into the self-
attention layer, and the input of the self-attention layer is
the output of the fourth dilated convolution. In Fig. 3, the
input is transformed into feature space F(x) and H(x) after
passing through a 1 × 1 convolution layer to calculate the
attention map, namely, the correlation of feature space 2:

f (x) = Wf x, (4)

h(x) = Whχ , (5)

g(x) = Wgχ , (6)

sij = f T (χi)g(χj), (7)

βj,i =
exp(sij)

∑N
i=1 exp(sij)

. (8)

In the above formulas, Wf , Wh and Wg are the weight
matrices obtained by training, sij is the correlation ma-
trix, and βj,i indicates the influence degree of i region on
the resultant j region, that is, the correlation degree of the
two. Finally, o is output through the feature map of self-
attention transportation:

o =
N∑

i=1

βj,ih(xi). (9)

In order to make the network rely on local information
at the beginning and gradually train to be able to assign
more weight to the global elements, the weight coefficient
γ , whose initial value is 0, is introduced and increases with
the increase of this iterative process. The final output of the
fault sub-attention module is shown in formula (10):

Output = γ o + xi. (10)

2.3 Transfer learning for cross-axis fault diagnosis of
industrial robots

Transfer learning is an essential part of machine learning,
including sample transfer, feature transfer, relational trans-
fer, model transfer and other methods. Generally speaking,
deep learning based on feature extraction of massive data
is based on the training of historical data, and then it is ap-
plied to the data under the same or similar task for fitting in
the originally trained network. However, transfer learning
can be trained from the data samples in the source domain.
When applied to new scenarios, the knowledge learned in
the source domain can be used to achieve the classifica-
tion of the target domain. In this case, the source domain
and the target domain need not strictly meet the assump-
tion of independent and identically distributed. In particu-
lar, given a marked the source domain Ds = {xi, yi}n

i=1 and a
target domain unmarked Dt = {xj}n+m

j=n+1. Data distributions
P(xs) and P(xt) in these two domains are different, that is
P(xs) �= P(xt). The purpose of transfer learning is to learn
the knowledge (label) of the target domain by utilizing the
knowledge of Ds.

In this paper, the model transfer is adopted, and model
parameters are shared between the source domain and the
target domain. Specifically, the model trained by a large
amount of data in the 6th axis (source domain) is applied
to the 4th axis (target domain) for prediction, so that the
target domain can achieve a good prediction effect even
with a small amount of data. In this paper, the industrial
robot data collected offline are used as the experimental
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Figure 5 Schematic diagram of transfer learning

dataset, and the results are compared in the case of differ-
ent data amounts in the source domain and target domain.
The transfer learning process is shown in Fig. 5.

3 Experimental setup
The monitoring data was collected from an actual indus-
trial robot through the fault injection experiment. In the
experiment, a faulty reducer was used to replace a normal
reducer in an industrial robot, then ran the machine to col-
lect data. The experimental data of the 4th axis and the 6th
axis were collected, in which the failure data and normal
data of the 4th axis were 21,777 and 19,105 respectively,
and the failure data and normal data of the 6th axis were
189,749 and 44,796 respectively. The sampling frequency
was 25 Hz. Firstly, features were extracted from the data,
and the sampling step was S1, and the sliding window step
was S2. Mean, standard deviation and kurtosis were ex-
tracted and normalized. 80% of the processed dataset were
used as training samples and 20% as testing samples.

As shown in Fig. 3, the proposed model mainly has
two modules in the source task part, namely the D-CNN
module and the self-attention mechanism module. The D-
CNN used a 2D feature graph as input, and the size of the
feature graph was Nt × Nf , where Nt represents the length
of input time series processed by time window, and Nf rep-
resents the number of input features. The first layer was
used for feature extraction. Each layer was equipped with
FN filters. The dilation rate was (Dt , Df ), and the convolu-
tion step was (2, 2). In order to ensure that the size of each
layer’s feature map remains unchanged, the experiment
used the zero-filling method. After the first layer of dilated
convolution, the data dimension become Nf × Nt × Nf .
The remaining layers were similar, with the same input

Table 1 Settings of hyper-parameters

Parameter Value

S1 5
S2 3
Nt × Nf 5× 3
FN 10
(Dt ,Df ) (1, 1)
Batch size 256
Epochs 150
Learning-rate 0.01

size as the output size. Secondly, the output of the self-
attention layer was connected through two full connec-
tion layers, and the final classification confidence of each
category was obtained by the SoftMax function. Before
training, random samples were divided into multiple small
batches, each of which contains 256 samples, with a learn-
ing rate of 0.01 and a training cycle of 150. Adam algorithm
was used as the optimizer, and the above parameters are
shown in Table 1.

In order to evaluate the effectiveness of the model and
the impact of transfer learning in few-shot scenarios, Ac-
curacy, Precision, Recall and F1 were used as metrics to
evaluate the model. Among these metrics, the accuracy
can judge the total correct rate, but it cannot reveal the ac-
tual algorithm performance in the case of unbalanced data
classification task. Therefore, introducing the precision for
prediction results and the recall for the original sample.
While the F1 takes the advantage of accuracy and recall,
which is the reconciliation average of both metrics. In ad-
dition, mean and standard deviation were taken to mea-
sure its stability under multiple cycles to make the model
more convincing. The calculation method of each indica-
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tor is as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
, (11)

Precision =
TP

TP + FP
, (12)

Recall =
TP

TP + FN
, (13)

F1 = 2 × Precision × Recall
Precision + Recall

. (14)

In order to verify the superiority of the method proposed
in this paper, relevant comparative experiments were de-
signed under the above evaluation indicators. First, tradi-
tional long-short term memory (LSTM), full convolution
neural network (FCNN), CNN and D-CNN were com-
pared based on the 6th axis data. Second, in the case of
transfer learning, the model obtained from the 6th axis is
transferred to the 4th axis. Comparing the fine-tuning ef-
fects of transfer learning under different data volumes, so
as to compare the impact of data volumes on model per-
formance.

4 Experimental results
4.1 Benchmarking experiments for different algorithm

models
This experiment uses the 6th axis data set and obtains
four indicator data in different algorithm models through
the same data preprocessing. The experimental results are
shown in Fig. 6, where line segments on each column are
error bars.

Figure 6(a) shows the changes in the accuracy of the five
models under the same data processing. It is obvious that
the method proposed in this paper has the highest accu-
racy and low error in the source task. Based on the com-
parative analysis of Figs. 6(b), (c) and (d), it can be found
that the accuracy is higher than other benchmarking al-
gorithms, while the recall rate of the CNN model is only
0.7. Therefore, from the perspective of these indicators,
the confidence is low and the results are not very ideal.

In comparison, D-CNN performs better than the above
models, with the accuracy and the precision being close
to 0.95, the recall and F1 are more than 0.85. Based on
this, the method proposed in this paper uses self-attention
mechanism to make the network pay more attention to the
fault point in the scenario with a larger field of view. In the

Figure 6 Comparison diagram of four indicators under different models
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end, no matter the accuracy, precision, and recall rate or
F1 indicator, the proposed model performed best and the
error rate is low.

4.2 Experiment on cross-axis fault diagnosis diagnostic
In this experiment, the model is transferred to the 4th axis
dataset for fine-tuning and fault diagnosis for the 4th axis.
Before transfer the model, in order to comprehensively
compare the effectiveness of transfer learning, the experi-
mental results of 4th axis with different data volumes are
firstly compared. As shown in Fig. 7, among 6th axis fault
data with different data volumes, the source domain model
is established based on 6th axis data, so the accuracy can
reach 0.9108 even when the data volume is small. How-
ever, with the increase in data volume,the accuracy gradu-
ally tends to be stable, and the average accuracy is 0.9616
after taking the mean value of multiple experiments. By ap-
plying the attention enhanced D-CNN model to the fault
diagnosis of manipulator 4th axis data, it can be found that:
with the increase of data volume, the overall effect of the
model is getting better and better, and the diagnosis accu-
racy can reach 0.9269 even with a small error.

Then save the source domain task model to transfer to
the 4th axis fault diagnosis, the results are shown in Fig. 8,
the horizontal axis represents takes the 6th axis data of
shaft according to the ratio of the amount in the total num-
ber of the vertical axis represents the different indicators,
the curve represents different obtained the 4th axis data
volume accounted for the 4th axis according to the ratio of
the amount applied to the transfer learning, through the
experiment discovers:

1) The amount of data in the source domain affects the
model accuracy before transfer learning: For any curve in

Figure 7 Comparison diagram of fault diagnosis results of the 4th
axis before transfer learning

Fig. 8(a), with the increase of the horizontal axis (the in-
crease of the amount of the 6th axis data), the overall ac-
curacy of the model shows a rising trend; 2) The amount
of data in the target domain affects the fine-tuning effect
of the model after transfer learning: the amount of data in
the source domain is fixed, and the obtained model is de-
termined. When the amount of data in the target domain
is larger after the transfer, the fine-tuning effect is more
obvious and the accuracy is higher; 3) After the transfer
learning, the overall fault diagnosis accuracy is on the rise:
all source domain dataset and target domain dataset are
used for experiments and combined with the experimen-
tal results in Fig. 7, it can be seen that: before the trans-
fer learning, the accuracy of the 4th axis is only about 0.92
at best, but after the transfer learning, it can reach about
0.96 through data fine-tuning, as shown in Fig. 8(a). The
transfer learning effect is obvious; 4) Few-shot issue can be
solved: when the 4th axis data in Fig. 7 is small, if it only ac-
counts for 10% of the total data, the accuracy of the model
without transfer learning is less than 0.7; Under the condi-
tion of the same amount of data, the transfer learning can
reach above 0.9, which greatly solves the problem of few-
shot in the target domain; 5) According to Figs. 8(b), (c),
(d), the proposed model has high accuracy, high accuracy,
high recall rate and high F1 score.

5 Discussion
The increase or decrease of source domain data amount
or target domain data amount will affect the final experi-
mental results, while the source domain data amount af-
fects the transfer learning model, and the target domain
data amount affects the fine-tuning effect of the model af-
ter the transfer learning. Through further experiments, it
is found that the effect is worse when the data amount is
further reduced. However, it can also be found in Fig. 8 that
the effect of increasing the amount of data in a certain area
becomes worse, which is due to the data imbalance caused
by random value, that is to say, certain correctly predicted
data are just taken. As the data volume grows, the accuracy
tends to increase, so it is acceptable.

The experiment is also worthy to be further investi-
gated, such as the source domain, which did not use the
best model for transfer learning. At the time of data pre-
processing adjusting the larger sampling step length and
the length of the sliding window can make the model
own higher accuracy, and can be represented under the
larger cycle averaged model accuracy in order to guaran-
tee the experimental accuracy. Secondly, the source do-
main and target domain can be switched to make the re-
sults more convincing. Finally, the experiment only moved
to the 4th axis, while industrial robots have the 6 axes in
total, namely, six-axis industrial robots.

Therefore, the model does not consider the impact of
data distribution, and the experimental results are ob-
tained by inputting randomly sampled data into the model,
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Figure 8 the 4th axis fault diagnosis accuracy under transfer learning

which has certain specificity and has a certain impact on
fault diagnosis. However, the long time series data problem
can be solved effectively by simple feature engineering and
introducing dilation rate, and good fault diagnosis results
can also be obtained. And the average value of each indica-
tor of the model is obtained through multiple cycles, which
reduces the specificity of the model to a certain extent and
improves its generality. In addition, the gearbox vibration
signal is not easy to obtain, through the motor signal in-
stead, the motor signal is received in real-time and input
to the model, which can quickly and accurately carry out
fault diagnosis. This provides a new idea for fault diagnosis
of industrial equipment, which is of practical meaning.

6 Conclusion
This paper proposes a fault diagnosis model based on big
data analysis of real-time operation of multi-axis industrial
robots. The dataset is from real industrial robot equip-
ment, and the feedback torque, feedback current and po-
sition of different coaxial data are collected. Since it is dif-

ficult to collect fault data, the data amount is small, so
this paper adopts the transfer learning method to imple-
ment cross-axis fault diagnosis to solve the problem of
insufficient data amount. The experimental results show
that the proposed method can effectively diagnose the
fault diagnosis of industrial robots by constructing the D-
CNN,which provides a new idea for real-time fault diagno-
sis and cross-axis prediction of industrial robots. In future
research, we will collect the data of other robotic axis and
obtain a more general model through transfer learning, so
as to solve the problem of few-shot in fault diagnosis mod-
elling.
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