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Abstract: Stocking density presents a key factor affecting livestock and poultry production on a large
scale as well as animal welfare. However, the current manual counting method used in the hemp
duck breeding industry is inefficient, costly in labor, less accurate, and prone to double counting and
omission. In this regard, this paper uses deep learning algorithms to achieve real-time monitoring of
the number of dense hemp duck flocks and to promote the development of the intelligent farming
industry. We constructed a new large-scale hemp duck object detection image dataset, which contains
1500 hemp duck object detection full-body frame labeling and head-only frame labeling. In addition,
this paper proposes an improved attention mechanism YOLOv7 algorithm, CBAM-YOLOv7, adding
three CBAM modules to the backbone network of YOLOv7 to improve the network’s ability to
extract features and introducing SE-YOLOv7 and ECA-YOLOv7 for comparison experiments. The
experimental results show that CBAM-YOLOv7 had higher precision, and the recall, mAP@0.5, and
mAP@0.5:0.95 were slightly improved. The evaluation index value of CBAM-YOLOv7 improved
more than those of SE-YOLOv7 and ECA-YOLOv7. In addition, we also conducted a comparison test
between the two labeling methods and found that the head-only labeling method led to the loss of a
high volume of feature information, and the full-body frame labeling method demonstrated a better
detection effect. The results of the algorithm performance evaluation show that the intelligent hemp
duck counting method proposed in this paper is feasible and can promote the development of smart
reliable automated duck counting.

Keywords: object detection; YOLOv7; attention mechanism; deep learning; hemp duck count

1. Introduction

With the continuous development of modern society and the economy, the global
consumption level continues to rise. People’s demand for poultry meat, eggs, and other
poultry-related products is increasing, and the livestock and poultry farming industry
bear a wide scope for development. Such a large-scale demand for livestock and poultry
products will inevitably lead to a continuous expansion in the scale of the farming industry.
However, in the context of tight feed grain supplies, soil resources needed for breeding,
and scarce water resources, the farming industry needs to continuously improve the quality
and efficiency of production. Inefficient farming methods will increasingly worsen farming
pollution, leading to an increased environmental burden and deviating from the concept of
environmental protection.

Sparrow ducks, commonly known as “hemp ducks”, are the main species of domestic
ducks and one of the most abundant, widely distributed, and diverse species of domestic
ducks in the world. Occupying about 70% or more of the total waterfowl breeding, duck
breeding is roughly divided into three types: meat, egg, and both meat and egg, which have
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high economic value. Large-scale hemp duck farming can meet the huge market demand
for poultry meat and eggs, but at the same time, it faces pressure and challenges in many
aspects [1]. As countries around the world pay attention to the ecological environment, the
development of waterfowl farming has been subject to certain restrictions and regulations.
Many areas have been prohibited and restricted, and the spatial range suitable for farming
hemp ducks continues to shrink [2]. At present, farming is developing in the direction of
intensification and ecology. Large-scale farming and higher rearing density will have a
greater impact on the temperature, humidity, ventilation, harmful gases, dust, and microbial
content of poultry houses. It indirectly has a series of adverse effects on the intake, growth
performance, and animal welfare of birds. For example, unreasonable duck flock density
rates will lead to poor living conditions, causing physiological diseases, such as body
abrasions, skin damage, and fractures. Considering animal behavior, such as pecking and
fighting among a species, the unreasonable density will bear a negative impact on the
efficiency and economy of the livestock and poultry industry [3,4].

From the above information, it can be concluded that rearing density is one of the key
factors affecting livestock and poultry production on a large scale, as well as animal welfare,
and the key to solving the problem of improving breeding efficiency lies in the real-time
monitoring of breeding density and the reasonable scheduling of the spatial quantity of the
flock: our work is focused on the former. At present, in the hemp duck farming industry,
much of the counting is carried out manually or by artificial machinery, which are both
very laborious. When hemp duck flocks are in motion, it further increases the difficulty of
manual counting, thus affecting the breeding efficiency. In essence, the density of the hemp
duck flock depends on the size of the effective activity space as well as the population size,
and given the constant limitations of the current breeding area, the main factor affecting
the problem is therefore the number of hemp ducks. For this reason, we focused on the
hemp duck flock count.

With the development of technology, monitoring equipment plays a huge role in
farming. There are various methods to monitor the behavior of individual animals, such
as the insertion of chips to record physiological data, the use of wearable sensors, and
(thermal) imaging techniques. Some methods employ wearable sensors attached to the feet
of birds to measure their activity, but this may have an additional impact on the monitored
animals [5–7]. In particular, in commercial settings, technical limitations and high costs lead
to the low feasibility of such methods. Therefore, video assessment based on optical flow
would be an ideal method to monitor poultry behavior and physiology [4]. Initially, many
surveillance videos were manually observed, inefficient, and relied on the staff’s empirical
judgment without standards [8]. However, in recent years, due to the advent of the era
of big data and the rapid development of computer graphics cards, the computing power
of computers has been increasing, accelerating the development of artificial intelligence.
Research related to artificial intelligence is increasing, and computer vision is becoming
more and more widely used in animal detection.

For example, the R-CNN proposed by Girshick et al., in 2014 introduced a two-stage
detection method for the first time. This method uses deep convolutional networks to obtain
excellent target detection accuracy, but its many redundant operations greatly increase
space and time costs, and is difficult to deploy in actual duck farms [9,10]. Law et al.,
proposed a single-stage detection method, CornerNet, and a new pooling method: corner
pool. However, the method, based on key points, often encounters a large number of
incorrect object bounding boxes, which limits its performance and cannot meet the high
performance requirements of the duck breeding model [11]. Duan et al., constructed the
CenterNet framework on the basis of CornerNet to improve the accuracy and recall and
designed two custom modules with stronger robustness to feature-level noise, but the
anchor-free method is a process with key point combinations of the first two, and due to the
simple network structure, time-consuming processing, low rate, and unstable measurement
results, it cannot meet the requirements of high performance and high accuracy rate needed
in the industrial farming of hemp ducks [12].
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Our work uses a single-stage object detection algorithm, which only needs to extract
features once to achieve object detection, and its performance is higher compared to the
multi-stage algorithm. At present, the mainstream single-stage target detection algorithms
mainly include the YOLO series, Single Shot MultiBox Detector (SSD), RetinaNet, etc. In
this paper, we transfer and apply the idea of crowd counting based on CNN to the problem
of counting ducks [13,14]. Along with the output of the detection results, we embedded
an object counting module to respond to industrialization needs. Object counting is also
a common task in the computer vision community. Object counting can be divided into
multi-category object counting and single-category object counting; this work employed
single-category counting of a flock of hemp ducks [15–18].

The objectives that this paper hopes to achieve are:

(1) We built a new large-scale dataset of drake images and named it the “Hemp Duck
Dataset”. The Hemp Duck Dataset contains 1500 labels for the whole body frame and
head frame for duck target detection. The Hemp Duck Dataset was released for the
first time by the team. We have made it public and provide the access method at the
end of the article.

(2) This study constructed a comprehensive working baseline, including hemp duck
identification, hemp duck object detection, and hemp duck image counting, to realize
the intelligent breeding of hemp ducks.

(3) This project model introduced the CBAM module to build the CBAM-YOLOv7 algorithm.

2. Materials and Methods
2.1. Acquisition of Materials

The hemp duck is one of the most abundant, widely distributed, and diverse species
of domestic ducks in China, with the characteristics of small size, feed saving, and high
egg production efficiency, which is of great research value. We used the DJI Pocket 2, an
extremely adaptable and flexible miniature gimbal camera, to capture the image and video
datasets used in this study. Data were collected from the original waterfowl farm in Ya’an,
Sichuan Province, China, founded by Professor Lin-Quan Wang, a renowned waterfowl
breeder from Sichuan Agricultural University.

In the process of preparing the dataset, we first collected data from 10 different hemp
duck houses by changing the image shooting angle and distance several times. Then, we
manually screened and discarded some data with high repetition and some redundant
data that were not captured due to the obstruction of the hemp ducks’ house. In the end,
our dataset contained a total of 1500 images, including 1300 images in the training set
and 200 images in the test set. Figure 1 shows the analysis of the challenges posed by
non-maximum suppression for the hemp duck detection, identification, and counting tasks.
Figure 2 shows an example of a dataset labeling effort.

In the prediction phase of the object detection work, the network output multiple
candidate anchor boxes, but many of them were overlapping around the same object, as
shown in Figure 1b. Non-maximum suppression was able to retain the best one among this
group of candidate anchor boxes, as shown in Figure 1c. We named two different ducks
hemp duck A and hemp duck B. When hemp duck A and hemp duck B are too close, the
prediction box of hemp duck A may be eliminated due to the screening of non-maximum
intrusion. Therefore, it is a challenge to accurately estimate the number of dense Hemp
Duck Datasets with inclusion.

Since labeling the whole hemp duck body resulted in many overlapping labeling boxes,
which affected the accuracy of individual hemp duck counting, we chose the method of
labeling only the hemp duck head and conducted a comparison experiment between
the two.
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1 
 

 
  Figure 1. (a) Two ground truth boxes of hemp ducks; (b) output prediction boxes of the simulated

network for the two hemp ducks; (c) effect of removing the redundant prediction boxes after non-
maximum suppression. 

2 

 
Figure 2. (a) Example of data annotation of the whole body of hemp ducks; (b) example of data
annotation of hemp ducks with only the head annotated.

2.2. Data Pre-Processing
2.2.1. Mixup Data Augmentation

Mixup is an unconventional data enhancement method based on a simple data-
independent data enhancement principle that uses linear interpolation to construct new
training samples and labels [19]. The formula for processing the data labels is as follows:

x̃ = λxi + (1− λ)xj (1)

ỹ = λyi + (1− λ)yj (2)

Among it, the two data pairs (xi, yi) and
(
xj, yj

)
are the training sample pairs in

the original dataset (the training sample and its corresponding label); λ is a parameter
that follows the distribution of β; x̃ is the training sample of the mixup after the data
enhancement operation; ỹ is the label of x̃. Figure 3 shows the data results of the hemp
ducks after the mixup data enhancement process with different fusion proportions.
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Figure 3. The results of the hemp duck data enhanced by mixup data with different fusion proportions,
where lamα and lamβ are the fusion proportions of the images and lamα + lamβ = 1.

2.2.2. Mosaic Data Augmentation

The YOLOv4 network uses Mosaic data augmentation, the idea of which is to ran-
domly cut four images and combine them into one image as newly generated training data,
greatly enriching the detection dataset, making the network more robust, and reducing the
GPU video memory occupation [14]. Figure 4 represents the workflow of Mosaic’s data
augmentation operation.
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Figure 4. Mosaic data augmentation. Firstly, a batch of image data was randomly extracted from the
dataset of mallard ducks. Then, four images were randomly selected, randomly scaled, randomly
distributed, and spliced into new images, and the above operations were repeated for batch size
times. Finally, the Mosaic data augmentation data were fed into the neural network for training.
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2.3. Experimental Environment

The GPU of the project team computer was an NVIDIA GeForce RTX3090, with
3840 CUDA stream processors and 24 GB video memory. The CPU included 14-core
Intel (R) Xeon (R) gold 6330, 2.00 GHz, and 60 GB memory. The operating system was
Windows 10 and PyTorch version 1.8.1, Python version 3.8, and CUDA version 11 were
used.

2.4. Training Parameters

The training parameters of the training process used in the experiment are shown in
Table 1.

Table 1. Training parameters.

Parameter Value Parameter Value

Learning Rate 0.01 Weight Decay 0.0005
Batch Size 16 Momentum 0.937
Image Size 640 × 640 Epochs 300

2.5. Evaluation Metrics

In order to evaluate the performance of the algorithm, the evaluation indices used
in this study were precision (P), recall (R), mean average precision (mAP), F1 score, and
frames per second (FPS).

Precision represents the proportion of positive samples in the samples with positive
prediction results. The calculation formula is as follows:

Precision =
TP

TP + FP
(3)

Recall represents the prediction result as the proportion of the actual positive samples
in the positive samples to the positive samples in the whole sample. The calculation formula
is as follows:

Recall =
TP

TP + FN
(4)

The F1 score is the weighted average of precision and recall, calculated as follows:

F1 =

(
2

Recall −1 + Precision −1

)
= 2 · Precision · Recall

Precision + Recall
(5)

Precision reflects the model’s ability to distinguish negative samples. The higher the
precision, the stronger the model’s ability to distinguish negative samples. Recall reflects
the model’s ability to identify positive samples. The higher the recall, the stronger the
model’s ability to identify positive samples. The F1 score is a combination of the two. The
higher the F1 score, the more robust the model.

The average precision (AP) is the average value of the highest precision under dif-
ferent recall conditions (generally, the AP of each category is calculated separately). The
calculation formula is as follows:

AP =
1

11 ∑
0,0.1...1.0

Psmooth(i) (6)

In Pascal VOC 2008 [20], the threshold value of the IOU is set to 0.5. If one object is
repeatedly detected, the one with the highest confidence is the positive sample and the
other is the negative sample. On the smoothed PR curve, the precision value of 10 bisectors
(including 11 breakpoints) was obtained on the horizontal axis 0–1, and the average value
was calculated as the final AP value.
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The mean average precision (mAP) is the mean value of the average precision and the
mean AP value of each category. The calculation formula is as follows:

mAP =
∑S

j=1 AP(j)

S
(7)

where S is the number of all categories, and the denominator is the sum of the APs of
all categories. The object detection object in this study was only one type of hemp duck,
therefore, AP = mAP.

2.6. Related Network

In this section, the YOLOv7 algorithm is first introduced, and then the improvement
proposed in this paper of adding an attention mechanism to YOLOv7 is introduced in
detail [13].

2.6.1. YOLOv7

In this paper, a recognition and detection algorithm based on computer vision is pro-
posed for object detection and population statistics of farm ducks. By using this algorithm,
breeders can obtain the quantity and behavior dynamics of mallard ducks in real time
so as to realize the rapid management and strategy formulation of farms, optimize the
reproduction rate and growth of ducks, and help to maximize the economic benefits.

In view of the small density of individuals in the duck population and the real-time
requirement of population statistics, we chose the latest Yolov7 model. You Only Look Once
(Yolov7) is a single-stage object detection algorithm. Figure 5 shows the network structure
diagram of Yolov7 [13]. The Yolov7 model preprocessing method is integrated with Yolov5,
and the use of Mosaic data augmentation is suitable for small object detection [13,14,21].
In terms of architecture, extended ELAN (E-ELAN) based on ELAN is proposed. Expand,
shuffle, and merge cardinality are used to continuously enhance the learning ability of
the network without destroying the original gradient path. Group convolution is used
to expand the channel and cardinality of the computing block in the architecture of the
computing block. Different groups of computational blocks are guided to learn more
diverse features [13].

Then, it focuses on some optimization modules and methods known as trainable
“bag-of-freebies” [13], including the following:

1. RepConv without identity connection is used to design the architecture of planned
reparametrized convolution, which provides more gradient diversity for different
feature maps [22].

2. The auxiliary detection head is introduced, and the soft labels generated by the
optimization process are used for lead head and auxiliary head learning. Therefore,
the soft labels generated from it should better represent the distribution and correlation
between source data and object and obtain more accurate results [23].

(1) The batch normalization layer is directly connected to the convolution layer
so that the normalized mean and variance of the batch are integrated into the
deviation and weight of the convolution layer in the inference stage.

(2) By using the addition and multiplication method of implicit knowledge in
YOLOR combined with the convolution feature map, it can be simplified into
vectors by precomputation in the inference stage so as to combine with the
deviation and weight of the previous or subsequent convolution layer [24].

(3) The EMA model is used purely as the final inference model. Finally, real-time
object detection can greatly improve the detection accuracy without increasing
the reasoning cost so that the speed and accuracy in the range of 5–160 FPS
exceed all known object detectors, and fast response and accurate prediction
of object detection can be achieved [25].
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2.6.2. Improved YOLOv7 with Attention Mechanism

The attention mechanism is a common data processing method that is widely used in
machine learning tasks in various fields [26]. The core idea of the attention mechanism of
computer vision is to find the correlation between the original data, and then highlight the
important features, such as channel attention, pixel attention, multi-order attention, and
so on.

The CBAM mainly includes a channel attention module and a spatial attention mod-
ule [10]. The module structure is shown in Figure 6.
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Figure 6. CBAM module structure diagram.

CBAM [27] is a lightweight attention module, which can perform attention operations
in the channel and spatial dimensions. It is composed of a channel attention module
(CAM) and a spatial attention module (SAM). The CAM can make the network pay more
attention to the foreground of the image and the meaningful area, while the SAM can make
the network pay more attention to a position rich in contextual information of the whole
picture [28,29].

2.6.3. YOLOv7 Introduces the CBAM Attention Mechanism

The CBAM attention mechanism was added to the YOLOv7 network structure [13,27],
and the network structure is shown in Figure 7. The function of this module is to further
improve the feature extraction ability of the feature extraction network. Once we added the
attention mechanism to the backbone network, the attention mechanism module destroyed
some of the original weights of the backbone network. This led to errors in the prediction
results of the network. In this regard, we chose to add the attention mechanism to the
part of enhancing feature network extraction without destroying the original features of
network extraction.
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The CBAM attention mechanism works as follows:
In the channel attention module, the input feature map of H ×W × C is subjected to a

global max pooling (GMP) and a global average pooling (GAP), and two feature maps with
a size of 1 × 1 × C are obtained. The two feature maps are sent to a two-layer multilayer
perceptron. The number of neurons in the first layer of the MLP is C/r (r is the reduction
rate), and the activation function is ReLU. The number of neurons in the second layer is
C, and the weights of these two layers of neural networks are shared. Then, the output
features are added based on element-wise computation, and the final channel attachment
feature is generated through sigmoid activation. Finally, the channel attention feature
is multiplied by the original input feature map to obtain the input feature of the spatial
attention module [10].

In the spatial attention module, the feature map in the previous step is used as
the input.

After GMP and GAP, two feature maps with a size of H ×W × 1 are obtained. Then
the Concat operation is performed. After the dimensionality reduction of the feature map,
the spatial attention feature is generated by sigmoid activation. Finally, the spatial attention
feature is multiplied by the input feature map to obtain the final feature map [27].

3. Experiment Results

In order to evaluate the effect of the CBAM-YOLOv7 algorithm, we borrowed SE and
ECA modules to replace the CBAM modules for ablation experiments. SE mainly includes
squeeze and excitation operations [30]. The module structure is shown in Figure 8.
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Figure 8. Structure of the SE.

The SE mechanism can flexibly capture the connection between global information
and local information, allowing the model to obtain the object area that needs to be focused
on and assign it more weight, highlighting significant useful features and suppressing and
ignoring irrelevant features, thereby improving accuracy.

The ECA module proposes a local cross-channel interaction strategy without dimen-
sionality reduction, which can effectively avoid the influence of dimensionality reduction
on the learning effect of channel attention. The ECA module consists of a one-dimensional
convolution determined by nonlinear adaptation, which captures local cross-channel in-
teraction information by considering each channel and its k neighbors. Since only a few
parameters are involved, it is a very lightweight plug-and-play block, but with significant
effect gain [31]. The structure of ECA is shown in Figure 9.
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3.1. Object Detection Network Comparison Experiment Results

In the process of selecting the object detection model of the hemp ducks, we applied
the existing popular object detection model to the Hemp Duck Dataset for training and
testing, and compared the precision, recall, F1 score, mAP@0.5, and other evaluation
indicators. Finally, YOLOv7 was selected as the object detection model in this study for
subsequent experiments. Table 1 shows the comparison of the evaluation indexes of each
object detection model on the Hemp Duck Dataset. The experimental results are shown in
Table 2.

Table 2. Comparison of object detection algorithms.

Method P R F1 mAP@
0.5

mAP@
0.5:0.95 FPS

CenterNet 92.16% 95.12% 0.94 95.41% 62.80% 33
SSD 86.03% 82.40% 0.84 89.03% 45.90% 39

EfficientDet 87.66% 92.98% 0.90 95.91% 60.40% 26
RetinaNet 88.00% 89.17% 0.89 94.04% 56.40% 13
YOLOv4s 92.26% 78.04% 0.85 89.82% 44.10% 22
YOLOv5s 95.50% 88.70% 0.92 94.90% 66.70% 62
YOLOv7 95.80% 93.64% 0.95 97.57% 65.50% 60

As can be seen in Table 2, YOLOv7 performed overall better than the other detection
algorithms tested, leading in terms of the precision, F1 score, and mAP@0.5 and a close
second in terms of the recall, mAP@0.5:0:0.95, and detection speed. For example, the recall
rate of the YOLOv7 algorithm was 15.6% higher than that of YOLOV4. The remaining
indicators are basically superior to the other target detection algorithms. Finally, we chose
YOLOv7 as the target detection algorithm used in the experiment.

3.2. Contrast Experiment Results of Introducing Attention Mechanism

In order to verify the effectiveness of the improved algorithm, this study used CBAM
as the attention mechanism and added it to the YOLOv7 object detection algorithm to
conduct experiments on the Hemp Duck Dataset. The experimental results are shown in
Table 3, and the recall rate, mAP@0.5, and mAP@0.5:0.95 were used as the measures.
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Table 3. Comparative experiments.

Attention Mechanism
P R F1 mAP@

0.5
mAP@
0.5:0.95

FLOPS (G)
SE CBAM ECA

× × × 95.80% 93.64% 0.95 97.57% 65.50% 106.47√
× × 95.36% 93.53% 0.94 97.48% 65.10% 106.49

×
√

× 96.84% 94.57% 0.95 98.72% 66.10% 106.49
× ×

√
95.55% 93.75% 0.95 97.41% 65.20% 106.49

As can be seen in Table 3, compared to the original YOLOv7 algorithm, the accuracy
rate of the SE-YoloV7 algorithm decreased by 0.44%, the recall rate decreased by 0.11%,
the mAP decreased by 0.09%, and the FLOPS increased by 0.02G. The accuracy rate of the
ECA-YOLOv7 algorithm decreased by 0.25%, the recall rate increased by 0.11%, the mAP
also decreased, and the FLOPS increased by 0.02G. The results in Table 3 show that the SE-
Yolov7 and ECA-YOLOV7 algorithms not only had a lower effect than the original YOLOv7,
but also increased the model parameters and the computational pressure. Compared to
the original YOLOv7 algorithm, the accuracy of the CBAM-YOLOV7 algorithm increased
by 1.04%, the recall increased by 0.93%, the mAP@0.5 by 1.15%, and the mAP@0.5:0.95
by 0.60%. In addition, the value of the FLOPS parameter of the CBAM-Yolov7 model is
equal to that of the SE-Yolov7 and ECA–YOLOv7 models. By comparing and analyzing the
experimental results, it can be concluded that the algorithm in this paper demonstrated
better performance than both the original algorithm and the algorithm with the SE and
ECA modules. Compared to the SE-YOLOv7 and ECA-YOLOv7, the CBAM module not
only improved the channel attention module, but also added a spatial attention module,
analyzed it from two dimensions, and determined the order from the channel to the space.

Figure 10 shows the detection effect of the CBAM-YOLOv7 algorithm on the Hemp
Duck Dataset.

1 
 

 

Figure 10. CBAM-YOLOv7 network prediction result graph.



Agriculture 2022, 12, 1659 13 of 18

3.3. Comparison of Experiment Results with Different Data Annotation Methods

In a previous article, we took into account the data sheet annotation section and
compared the data annotation of the whole body with the data annotation of the hemp
duck with only the head. For this, we used the improved CBAM-YOLOv7 algorithm on
two different annotation methods. The experimental results are shown in Table 4.

Table 4. Comparison of two different annotation experiments.

Annotation Method
P R F1

mAP@
0.5

mAP@
0.5:0.95 FPSHead

Annotation
Whole Body
Annotation

√
× 95.06% 91.90% 0.93 94.01% 47.20% 46

×
√

95.80% 93.64% 0.95 97.57% 65.50% 60

As can be seen in Table 4, the experimental data of the head annotation are far inferior
to that of the whole body annotation. We discuss the reasons for this. Usually, the model
extracts the features contained in the pixels of the original image through convolution,
and the receptive field reflects the correspondence between the information of a single
high-level feature and the original pixels, which is determined by the network convolution
kernel. In this case, as the number of network layers increases, a single high-level feature
reflects the larger range of pixels in the original image, and the field of view is wider and
the high-level information can better reflect the macro outline of the object in the original
image. Then, as the number of network layers increases and the receptive field becomes
larger, the microscopic information is lost, so that the information about the small object
will be aggregated to a point, and the small object originally contains fewer pixels. If
it increases, there will be fewer features after aggregation. For example, a small object
of 10 × 10 pixels may have only 1 × 1 features after convolution, or even multiple small
objects of 10 × 10 pixels. After multiple convolution operations, only one feature may be
generated, which leads to the failure of pixel recognition. Therefore, the head annotation
method is unsuitable for the task of count estimation on the Hemp Duck Dataset.

Figure 11 shows the detection results of two different labeling methods based on the
YOLOv7 algorithm on the Hemp Duck Dataset.

In the graph of the results, it can be seen that the two labeling methods obtained
different results in estimating the number of hemp ducks. Based on the comparison, the
experimental results of labeling the whole body method are more accurate.

3.4. Results of Ablation Experiment

Figure 12 shows the prediction chart of Yolov7 algorithm without adding training
skills. Based on the original YOLOv7 algorithm, we tried some training techniques in the
ablation experiment, using different tricks to process the model, such as mosaic processing
and image fusion. Through the experiments, we verified the experimental data obtained
when using the above treatments. The experimental results are shown in Table 5.

Table 5. Ablation experiments.

Group Mosaic MixUp P R F1 mAP@
0.5

mAP@
0.5:0.95 FPS

1 × × 95.30% 93.64% 0.94 97.64% 65.10% 56
2

√
× 95.55% 93.64% 0.95 97.26% 65.40% 57

3 ×
√

95.45% 93.75% 0.95 97.65% 64.80% 56
4

√ √
95.80% 93.64% 0.95 97.57% 65.50% 60
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Figure 12. Yolov7 algorithm prediction chart (without tricks).
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In the ablation experiments of YOLOv7, each group of experiments corresponded to a
set of training skills and evaluation indicators. Among them, “

√
” indicates that this training

technique was used, and “×” indicates that this training technique was not applicable.
As can be seen in Table 5, overall, the simultaneous use of Mosaic and mixup fared better

than using just one method or neither. Figure 13 shows the comparative effect of the results
of the four groups of ablation experiments on Precision, Recall and mAP@0.5 indicators.

1 
 

 

Figure 13. Ablation experiment. Each point in the figure corresponds to a set of training skills and
is distinguished by different colors and shapes of the points. The comparison of the experimental
results shows that when Mosaic and mixup were used, the precision, recall, F1, map, FPS, and other
data improved. The results show that Group 4 worked best.

4. Discussion
4.1. Contribution to Animal Target Detection and Counting

Poultry farming has a very large market size; however, the number of experiments
for target testing and counting of poultry is low. Therefore, conducting reasonable data
annotation of the original poultry pictures and improving the algorithmic network structure
to obtain good feature information had a very significant impact on the experiments
achieving good results. There are few methods for estimating intelligent poultry target
detection counts, and this study fills this gap to some extent. The experiments in this project
present a reflection on the implementation of automated poultry counting and provide an
experimental basis for the target detection counting of poultry.

4.2. Contribution to Intelligent Farming of Sisal Ducks

The manual counting method is inefficient and the results are not always accurate,
both because of the constant movement of the ducks and the high labor costs. As a result, it
is difficult and costly to avoid duplication of effort. In this study, we used an improved
YOLOv7 algorithm to obtain an efficient and accurate stocking density and to control the
stocking density to a suitable value. The accuracy rate of the algorithm increased by 1.04%,
the recall rate increased by 0.93%, the mAP@0.5 increased by 1.15%, and the mAP@0.5:0.95
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increased by 0.60%. The use of minimal manual labor costs will improve farming efficiency
and reduce problems such as irrational disease and pecking and fighting among species. At
the same time, making hemp duck farming intelligent by using deep neural network models
provides an efficient approach to duck target detection and breeding density management.

This study was based on the YOLOv7 model, migrating the learning method to the
intelligent farming of hemp ducks while improving the original YOLOv7 so that the model
has higher target detection, improves the robustness of the model, and is more adaptable
to realistic scenarios. Moreover, we have filled the gap of few automated estimation
algorithms for agricultural poultry farming numbers.

4.3. Comparison of Methods

Two-stage: First stage: focus on finding the location of the target object and obtaining a
suggestion frame, ensuring sufficient accuracy and recall. Second stage: focus on classifying
the suggestion frame and finding a more accurate location. Two-stage structure sampling
is used to deal with category imbalance, but at the same time, it is slow and generally seen
in competition scenarios.

One-stage: Instead of obtaining a suggestion frame stage, the class probability and
position coordinates of the object are generated directly, and the final detection result is
obtained directly after a single detection, which is faster than the multi-stage algorithm
and generally has a slightly lower accuracy. The YOLOv7 and improved algorithms used
in this study are single-stage detection, but the collection of some methods as well as
the module re-referencing and dynamic tag assignment strategies make it much faster
and more accurate. For large-scale, high-density breeding of sisal ducks, the single-stage
algorithm can better focus on the real-time changes in the number of sisal ducks and obtain
better results.

4.4. Limits and Future Work

It should not be overlooked that there are still limitations to this study. Firstly, the
study did not consider disturbances caused by the external environment, such as birds
in the farm field environment, and most of the images in the dataset were based on high
light and average weather conditions, which may not be sufficiently representative. In the
future, we will collect more duck datasets under different conditions.

Secondly, there are false detection and missing detection data in the detection results.
For error detection, we adopted two methods to find a more appropriate confidence level,
namely, adding more negative samples for training, and using the image dataset generated
by GAN [32] for data enhancement. For missed detection, we used two measures. One was
to filter out the samples with a large loss value in each training iteration and add them to
the training set of the next iteration so that the detection model could pay more attention to
the samples that were easily missed. The second was to use the method proposed by Soft
NMS [33] to combine multiple weighted frames according to the confidence level of the
IoU, optimize the final generated frame, and improve the detection performance of dense
small target objects.

To sum up, this study aimed to explore different algorithms to determine the best
algorithm under a wide range of environmental conditions with duck count uncertainty
and deploy the network model to hardware devices for practical application in farms.

5. Conclusions

In this study, a large-scale dataset for estimating the count of hemp ducks was con-
structed, including 1500 pictures of hemp ducks, which can be collected by individuals to
provide data support for visual research in the field of poultry. In this study, three CBAM
modules were added to the backbone network of the YOLOv7 algorithm to optimize the
YOLOv7 network structure. An improved YOLOv7 algorithm with an attention mecha-
nism was proposed, and SE-YOLOv7 and ECA-YOLOv7 were introduced for comparative
experiments. In comparison, the precision rate, recall rate, and mAP all improved, and the
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FLOPS only increased by 0.02 G with no increase in computational pressure. In addition,
this study considered the overlapping problem of hemp duck labeling frames, proposed
two labeling methods, whole body labeling and head-only labeling, and conducted com-
parative experiments. The feature information was lost, and the dense counting task of
hemp ducks could not be realized. The algorithm in this paper achieved good detection
results on the task of counting dense hemp duck groups. The CBAM-YOLOv7 algorithm
was proposed to improve the detection accuracy, and the advantages and disadvantages
of the two labeling methods were discussed. Future research will continue to optimize
the network structure of the proposed algorithm and deploy the network to the hardware
environment used in field farming.
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